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Abstract. Convolutional neural networks (CNN) is a contemporary technique for 

computer vision applications, where pooling implies as an integral part of the deep CNN. 

Besides, pooling provides the ability to learn invariant features and also acts as a regularizer 

to further reduce the problem of overfitting. Additionally, the pooling techniques 

significantly reduce the computational cost and training time of networks which are equally 

important to consider. Here, the performances of pooling strategies on different datasets are 

analyzed and discussed qualitatively. This study presents a detailed review of the 

conventional and the latest strategies which would help in appraising the readers with the 

upsides and downsides of each strategy. Also, we have identified four fundamental factors 

namely network architecture, activation function, overlapping and regularization 

approaches which immensely affect the performance of pooling operations. It is believed 

that this work would help in extending the scope of understanding the significance of CNN 

along with pooling regimes for solving computer vision problems.  

Keywords: Pooling strategies, convolutional neural network, visual recognition, 

regularization, overfitting.   

1. Introduction

Computational models of neural network have evolved more than half a century. 

McCulloch and Pitts developed the very first model in 1943 which is known as linear 

threshold gate [33, 37, 52]. To train such neural models, Hebbian contributed a learning 

algorithm known as the Hebbian learning rule. The Hebbian rule performs well only when 

all the input patterns are orthogonal [20]. The presence of orthogonality in input patterns is 

a serious demand for a good performance of this rule [40]. In order to surpass this demand, 

a more powerful learning rule, i.e. Delta rule came into existence. However, Delta rule is  
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unable to solve the problems that are not linearly separable [10]. To overcome the entire 

problem associated with the above-discussed learning rules, backpropagation emerged as a 

more complex learning algorithm. Backpropagation having the ability to learn many layers 

arbitrarily and can approximate any computable function [10, 39]. Backpropagation is a 

conventional method to train a Feed-Forward Neural Network (FFNN). The simplest FFNN 

composed of at least one hidden layer sandwiched between an input and output layer. In an 

FFNN, each pair of neurons has an acyclic and directed connection between each other as 

depicted in Figure 1.  

 
Figure 1.  Architecture of Feed Forward Neural Network (FFNN) 

 

In multilayer FFNN, a weighted summation process is used to specify the flow wherein 

every layer is fully connected to the next layer. So that, each neuron can be capable enough 

to send its current activation to any connected unit. The transmitted activation is multiplied 

by the weight of the connection and at the receiving neuron moved through some squashing 

function (like sigmoid, ReLU, tan h) in order to introduce nonlinearities [15, 51]. The 

learning is performed by updating the weights to minimize an error function which defined 

as the difference between desired and the actual output activation vector [22]. Usually, the 

backpropagation algorithm is used to accomplish the task of learning by taking a partial 

derivative of the error with respect to the weights of the last layer and then used to modify 

the weights. Similarly, the partial derivative is computed for the errors with respect to the 

weights of the second to last layer, and this process is repeated until all the weights 

connected to the input layer get updated.  In spite of being a universal function 

approximator, FFNNs are poor in dealing with many forms of practical problems such as 

object and face recognition [5, 34-35, 49, 57]. The reason is full connectivity of the network 
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due to which the number of weights grows rapidly with the input dimension. In addition, 

the disconcerting fact about the FFNN is their spatial ignorance [9], because separate 

weights are involved in learning the same object at different location instead of weight 

transferring. All this happens because every pair of neurons between two layers has their 

weights. In order to eradicate the problems related with the implemenation of FFNN, the 

convolutional neural networks (CNNs) are then come into existence. CNNs can exploit the 

two dimensional spatial constraints imposed by the input modality and at the same time 

reduce the number of parameters involved in the training process. 

1.1 General Convolutional Network Architecture 

CNNs are a special class of deep network which has been applied successfully to the data 

with grid-like topology (image data and time-series data) [26-27, 42, 44]. CNN mainly 

composed of convolutional, pooling, activation and fully connected layer. The 

convolutional layer is the integral part of a CNN, where the convolution operation is 

applied to the input. Convolution operation leverages the three important ideas named as 

equivalent representations, sparse connectivity and tied weights which play an essential role 

in the improvement of machine learning systems specifically to solve the tasks related to 

computer vision [43]. Since the architecture of CNN consists of multiple convolutional 

layers so as for images. In this context, a bank of filters is applied to an image (at every 

convolutional layer), and the output is obtained in a piled manner. The piling of outputs 

increases the abstract feature and makes the pixel-wise analysis more complicated. In order 

to alleviate this complexity, pooling layers are inserted after the convolutional layers. A 

schematic representation of the most commonly used CNN architecture with a pooling 

operation is depicted in Figure 2 with an explanation. 

1.1.1 Pooling  

Pooling is a non-linear transformation that permits to summarize the output of a net at a 

certain location with a single value. This single value is obtained from the statistic of the 

neighboring outputs which makes the feature descriptions more robust and invariant to 

small translations of the input data [27, 53]. The pooling layer progressively cuts down the 

dimensionality of the input, consequently reduces the demand of memory for storing the 

parameters, and improves the statistical efficiency [3, 16-18, 25, 28-30, 41, 53-54]. In deep 

networks, over-fitting is also controlled with the application of the pooling layers [16, 54]. 

Numerous application fields of CNN such as visual recognition, tracking, object detection, 

and face recognition have been used pooling operation to create invariance to small shifts 

and distortions of the input data. Average, max, fractional-max out, stochastic pooling and 

mixed pooling are some popular pooling regimes which have been used in numerous 

variant of CNN to solve the problems related to computer vision. Not only CNN, the Scale 

Invariant Feature Transform (SIFT) and Histogram of Oriented Gradient (HOG) methods of 

feature extraction also utilize pooling regimes to design a robust object detection system 

that can firmly recognize the objects in clutter and occlusion [6, 32]. 
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In general, choice of pooling regime matters a lot in solving the computer vision 

problem as its foremost objective is to convert the joint feature representation (mapped by 

convolution) into useable one. Thus, the pooling operation plays a significant role in 

various computer vision architectures. Pooling operation also reduces computational cost as 

it cut down the resolution of feature map while preserving the useful features required for 

the task to perform. In short, the results desired from pooling operation are compact 

representation, robustness to noise and clutter, and invariance to shift, skew or lightening 

condition. Many research communities are working in the direction of development of 

advanced pooling mechanisms to make efficient use of these pivotal features of pooling 

regimes. The motivation behind this study is to appraise the readers from the regular 

advancements in the development of pooling regimes. Additionally, the survey provides a 

common platform to discuss all the popular pooling schemes with their pros and cons. 

 

Figure 2. Illustration of CNN architecture. The image is break down in overlapped tiles by 

using a sliding window approach, where each pixel of the image is represented by a number 

value for its three channels: red, green and blue. Zero padding is applied to each tile in 

order to maintain the size of final output. To perform a convolution operation, image tiles 

are fed to a CNN which is composed of N filters with size (3x3x3) and the filter is slid over 
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each channel of the image tile by considering a local region of size 3x3. A dot product is 

computed between the local region of image tile and the filter, which results in single value. 

This value is then put down in the left most cell of the local region. The filter is then moved 

with stride 1 to the right and looks at the next local region. After filling the cells, the values 

of all the three channels are summed up which represents the contribution of this filter for 

the final output and known as feature map. Similarly, the remaining filters also provide the 

feature maps as their contribution to the output of CNN. An activation function (ReLU) is 

then applied to introduce non-linearity in the network, where negative values in the feature 

maps are replaced by ‘0’. After activation, max-pooling operation is performed to obtain 

the feature map with reduced dimensionality by considering the highest value from each 

window of size 2x2. 

2. Pooling Regimes 

In this section, the pooling regimes are discussed that are important and applied to several 

computer visions related tasks. Few popular pooling regimes are illustrated with the help of 

schematic representations for better understanding and the important characteristics are 

summarized in Table 1. 

2.1 Average Pooling 

In this pooling strategy, the input image is partitioned into a set of the disjoint rectangular 

box. The output for each rectangle is the average of entries in that box [28-29]. A pictorial 

representation of average pooling is depicted in Figure 3. Mathematically, the average 

pooling can be expressed as [26]: 

    𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎(𝑥𝑥) =  
1𝑁𝑁∑ 𝑥𝑥𝑖𝑖𝑁𝑁𝑖𝑖=1                (1) 

 where 𝒙𝒙 is a vector consist of activation values from a rectangular area of 𝑵𝑵 pels (for 

example: dimensions of  the rectangular area in Figure 3 is 2x2) in an image or a channel. 

Earlier, the use of average pooling was common but their use has been limited with the 

advent of max pooling operation [3]. The loss of informations in term of contrast is the 

major rationale behind their failure. In the computation of mean, all the activation values 

which are present in rectangular box are considered. If the magnitude of all the activations 

is low, the computed mean would also be low and give rise to reduced contrast. The 

situation will be worst when the most of the activations in the pooling area come with a 

zero value. In that case, feature map characteristic would reduce by a large amount. 
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Figure 3. Illustration of average pooling with a pooling area of size 2x2 and stride of 2.                                

2.2 Max Pooling 

In this pooling strategy, activation with the maximum value is selected from all the 

activations that present in a rectangular field, as shown in Figure 4. This regime is widely 

applied in most of the architecture which are similar to CNN's [16, 30, 41]. Max pooling 

strategy trims down the computation of upper layers with the elimination of non-maximal 

components. Max pooling provides a better performance with sparse coding and simple 

linear classifiers. Due to this reason, it has gained popularity in the past few years [3]. The 

statistical properties of max pooling make it considerably fit sparse representations, which 

is another appeasement for its fame. Mathematical expression for max-pooling is given as 

[30]: 

    𝑓𝑓𝑚𝑚𝑎𝑎𝑚𝑚(𝑥𝑥) =  𝑚𝑚𝑚𝑚𝑥𝑥𝑖𝑖(𝑥𝑥𝑖𝑖)                                   (2)                           

The major drawback of max pooling is that the pooling operator considered only the 

maximum element from the pooling area and ignores other elements. If the majority of the 

elements in the pooling area would be of high magnitudes, the discerning features get 

disappeared after performing max pooling operation. As a matter of this fact, the situation 

leads to unacceptable results due to the loss of information.  

 
Figure 4. Illustration of max pooling with a pooling area of size 2x2 and stride of 2. 
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2.3 ‘Mixed’ Max-Average Pooling 

Mixed pooling is a blend of max and average pooling, so termed as max-average pooling. 

This pooling scheme is stochastic because of the random employment of max and average 

pooling during the training of CNN [30, 53]. Stochastic nature of the mixed pooling helps 

in prevention of over-fitting to some extent. In this regime, mixing proportion parameters 

(𝑚𝑚) are learned in various fashions (for each net, for each layer, layer/region, layer/channel 

or layer/region/channel combinations) [30]. A graphical representation of this regime is 

illustrated in Figure 5(a). The mathematical expression for mixed pooling is [30]:  

   f𝑚𝑚i𝑚𝑚(x) =  𝑚𝑚 ∗ 𝑓𝑓𝑚𝑚𝑎𝑎𝑚𝑚(𝑥𝑥) + (1 − 𝑚𝑚) ∗ 𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎(𝑥𝑥)                (3) 

 

where 𝑚𝑚 ∈ [0, 1] is a scalar factor which determine the blending of max and average 

pooling and termed as mixing proportion. In order to learn each mixing proportion 

automatically, we have to define the output loss function (E). For this learning, vanilla 

back-propagation is represented as [30]: 

   
𝜕𝜕𝜕𝜕𝜕𝜕𝑎𝑎 =

𝜕𝜕𝜕𝜕𝜕𝜕f𝑚𝑚i𝑥𝑥(x)

𝜕𝜕f𝑚𝑚i𝑥𝑥(x)𝜕𝜕𝑎𝑎 = 𝛿𝛿 �maxi(xi) −  
1N∑ xiNi=1 �               (4) 

Note: To solve this,  𝜕𝜕f𝑚𝑚i𝑚𝑚(x) factor is multiplied in numerator and denominator. Later, 

partial differentiation is performed on 
𝜕𝜕𝜕𝜕𝜕𝜕f𝑚𝑚i𝑥𝑥(x)

 and 
𝜕𝜕f𝑚𝑚i𝑥𝑥(x)𝜕𝜕𝑎𝑎  which correspond to 𝛿𝛿 (the error 

which is propagated back from the succeeding layers) and maxi(xi) −  
1N∑ xiNi=1 , 

respectively.  

 

Moreover, it is necessary to compute the error signal that propagated back to former layer 

because pooling layers are generally placed in the midst of a deep network.  

 
𝜕𝜕𝜕𝜕𝜕𝜕xi =

𝜕𝜕𝜕𝜕𝜕𝜕f𝑚𝑚i𝑥𝑥(xi) 𝜕𝜕f𝑚𝑚i𝑥𝑥(xi)𝜕𝜕xi = 𝛿𝛿 �a ∗ 1[xi = maxi(xi) + (1 − 𝑚𝑚) ∗ 1N�              (5) 

 

The mixed pooling strategy is insensitive towards the important features in the pooled 

area due to the fixed mixing proportion. Non-responsive behaviour is the major drawback 

of this pooling scheme. However, Lee et al. experimentally demonstrated a significant 

improvement in the classification performance of CNN with the mixed-pooling which is 

also compared with the max pooling and average pooling for the standard datasets namely- 

SVHN, MNIST, CIFAR10 and CIFAR100 [30]. The details are tabulated in Table 2.  
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Figure 5. Mixed Pooling, (a) “Mixed” Max-Average Pooling where, ‘a’ is the mixing 

proportion (fixed, once learned). The range in which mixing proportion lie is 0 to 1. (b) 
“Gated” Max-Average Pooling where, ‘w’ is the gating mask, multiplied with the region 

being pooled. The resultant of product passed through a sigmoid ‘σ’ to get the value of 
mixing proportion (adaptive to pooling region’s characteristics). Modified and regenerated 

from [30] 

2.4 ‘Gated’ Max-Average Pooling 

‘Gated’ max-average pooling is similar to mixed max-average pooling as both originates 

from the combinations of max pooling and average pooling (Figure 5(b)). However, 

responsive nature of “gated” max-average pooling makes it different from the mixed max-

average pooling. In this pooling strategy, a dot product is made between the “gating mask” 

and the “region being pooled”, where both are having the same spatial dimension. The 

resultant scalar from this product is run through a sigmoid that yields a value known as 

mixing proportion. According to the strategy, the actual mixing proportion can adapt itself 

to the features that are present in the pooling region.  Similar to “Mixed” max-average 

pooling, “Gated” max-average pooling strategy has the same options to learn mixing 

proportion parameters. The mathematical representation for gated max-average pooling is 

expressed beneath [30]:  

  f𝑎𝑎𝑎𝑎𝑔𝑔𝑎𝑎(x) =  𝜎𝜎(𝑤𝑤𝑇𝑇𝑥𝑥) ∗ 𝑓𝑓𝑚𝑚𝑎𝑎𝑚𝑚(𝑥𝑥) + (1 − 𝜎𝜎(𝑤𝑤𝑇𝑇𝑥𝑥)) ∗ 𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎(𝑥𝑥)              (6) 

The gradient concerning “gating mask” (𝑤𝑤) can be computed by adopting the same 

procedure which is used in “Mixed” max-average pooling:   𝜕𝜕𝜕𝜕𝜕𝜕𝑤𝑤 =
𝜕𝜕𝜕𝜕𝜕𝜕f𝑎𝑎𝑎𝑎𝑔𝑔𝑎𝑎(x)

𝜕𝜕f𝑎𝑎𝑎𝑎𝑔𝑔𝑎𝑎(x)𝜕𝜕𝑤𝑤 = 𝛿𝛿 �𝜎𝜎(𝑤𝑤𝑇𝑇𝑥𝑥) ∗ (1 − 𝜎𝜎(𝑤𝑤𝑇𝑇𝑥𝑥))𝑥𝑥 �maxi(xi) −  
1

N
� xiN
i=1 �� 
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𝜕𝜕𝜕𝜕𝜕𝜕xi =
𝜕𝜕𝜕𝜕𝜕𝜕f𝑎𝑎𝑎𝑎𝑔𝑔𝑎𝑎(xi)𝜕𝜕f𝑎𝑎𝑎𝑎𝑔𝑔𝑎𝑎(xi)𝜕𝜕xi  

= 𝛿𝛿 �𝜎𝜎(𝑤𝑤𝑇𝑇𝑥𝑥) ∗ (1 − 𝜎𝜎(𝑤𝑤𝑇𝑇𝑥𝑥))𝑤𝑤𝑖𝑖 �maxi(xi) −  
1N∑ xiNi=1 � + 𝜎𝜎(𝑤𝑤𝑇𝑇𝑥𝑥) ∗ 1[xi = maxi(xi) +

(1− 𝜎𝜎(𝑤𝑤𝑇𝑇𝑥𝑥) ∗ 1N�                           (7) 

The experimental work by Lee et al. is an evident that “Mixed” strategy involves fewer 

parameters as compared to the “Gated” strategy but still “Gated” network surpasses the 

“Mixed” option on MNIST, CIFAR10, and CIFAR100 except for the SVHN dataset [30] 

(Table 2). 

2.5 Tree Pooling 

In this pooling scheme, the learning of pooling operation is carried out in form of the values 

in pooling filters and further learning is performed to combine these learned filters 

responsively. Both the learning procedures are executed within a binary tree that consists of 

leaf nodes. In this tree-like representation, each leaf node (child node) is related to a 

“pooling filter” with an area of pooling (𝑥𝑥 ∈  ℝ𝑁𝑁) and denoted by (𝑣𝑣𝑚𝑚 ∈  ℝ𝑁𝑁), where 𝑚𝑚 is 

an indexing for the node. The values of two child nodes are further combined into a parent 

node with single value. At each parent node, the mixture is learned responsively with 

learned “gating masks” and denoted by (𝑤𝑤𝑚𝑚 ∈  ℝ𝑁𝑁) which is similar to “gated max-

average” pooling. The parent nodes are also known as internal nodes of a tree. Eventually, 

the parent values are combined into the root node value in a responsive manner to represent 

the overall output of the tree (Figure 6). 

 

Purposely, the tree pooling is proposed to perform the following actions: 

1. Pooling filters are learned directly from the input dataset.  

2. It learns how to “blend” pooling filters in a differentiable manner. 

3. The former characteristics are brought together inside a tree with hierarchal 

structure.  𝑓𝑓𝑚𝑚(𝑥𝑥) = � 𝑣𝑣𝑚𝑚𝑇𝑇 𝑥𝑥                                                                                           𝐼𝐼𝑓𝑓 𝑙𝑙𝑙𝑙𝑚𝑚𝑓𝑓 𝑛𝑛𝑛𝑛𝑛𝑛𝑙𝑙𝜎𝜎(𝑤𝑤𝑚𝑚𝑇𝑇 𝑥𝑥)𝑓𝑓𝑚𝑚,   𝑙𝑙𝑎𝑎𝑙𝑙𝑔𝑔(𝑥𝑥) + �1 − 𝜎𝜎(𝑤𝑤𝑚𝑚𝑇𝑇 𝑥𝑥)�𝑓𝑓𝑚𝑚,   𝑟𝑟𝑖𝑖𝑎𝑎ℎ𝑔𝑔(𝑥𝑥)           𝐼𝐼𝑓𝑓 𝑖𝑖𝑛𝑛𝑖𝑖𝑙𝑙𝑖𝑖𝑛𝑛𝑚𝑚𝑙𝑙 𝑛𝑛𝑛𝑛𝑛𝑛𝑙𝑙    (8) 

Note: A tree pooling function with “2” leaf nodes and “3” internal nodes can be specified 

as: (𝑓𝑓𝑔𝑔𝑟𝑟𝑎𝑎𝑎𝑎(𝑥𝑥) = 𝜎𝜎(𝑤𝑤3𝑇𝑇𝑥𝑥)𝑣𝑣1𝑇𝑇𝑥𝑥 + (1 − 𝜎𝜎(𝑤𝑤3𝑇𝑇𝑥𝑥))𝑣𝑣2𝑇𝑇𝑥𝑥). The chain rule is applied on the tree 

pooling function to compute the gradient with respect to leaf node pooling filters (v1 & v2) 

and internal node gating mask (w3), which is expressed as [30]: 

   
𝜕𝜕𝜕𝜕𝜕𝜕v1 =

𝜕𝜕𝜕𝜕𝜕𝜕f𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(x)

𝜕𝜕f𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(x)𝜕𝜕v1 = 𝛿𝛿[𝜎𝜎(𝑤𝑤3𝑇𝑇𝑥𝑥)𝑥𝑥]                            (9) 

   
𝜕𝜕𝜕𝜕𝜕𝜕v2 =

𝜕𝜕𝜕𝜕𝜕𝜕f𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(x)

𝜕𝜕f𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(x)𝜕𝜕v2 = 𝛿𝛿[(1− 𝜎𝜎(𝑤𝑤3𝑇𝑇𝑥𝑥)). 𝑥𝑥]                         (10) 
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𝜕𝜕𝜕𝜕𝜕𝜕w3 =

𝜕𝜕𝜕𝜕𝜕𝜕f𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(x)

𝜕𝜕f𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(x)𝜕𝜕w3 = 𝛿𝛿�𝜎𝜎(𝑤𝑤3𝑇𝑇𝑥𝑥)�1 − 𝜎𝜎(𝑤𝑤3𝑇𝑇𝑥𝑥)�𝑥𝑥(𝑣𝑣1𝑇𝑇 − 𝑣𝑣2𝑇𝑇)𝑥𝑥�                   (11) 

Whereas, the error signal back-propagated to the former layer is given as: 𝜕𝜕𝜕𝜕𝜕𝜕x =
𝜕𝜕𝜕𝜕𝜕𝜕f𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(x)

𝜕𝜕f𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(x)𝜕𝜕𝑚𝑚 = 𝛿𝛿�𝜎𝜎(𝑤𝑤3𝑇𝑇𝑥𝑥)�1 − 𝜎𝜎(𝑤𝑤3𝑇𝑇𝑥𝑥)� w3(𝑣𝑣1𝑇𝑇 − 𝑣𝑣2𝑇𝑇)𝑥𝑥 +  𝜎𝜎(𝑤𝑤3𝑇𝑇𝑥𝑥)v1 + (1−𝜎𝜎(𝑤𝑤3𝑇𝑇𝑥𝑥))v2�                   (12) 

The tree pooling is different from the traditional decision tree in which decisions makes 

by the tree are “hard decisions”.  The hard decision functions are neither differentiable nor 

continuous with respect to its input as the mixing proportion can take value either 0 or 1. 

This makes the traditional decision tree non-useful for backpropagation in every prospect. 

Due to all these reasons, sigmoid “gate” function (i.e., 𝜎𝜎(𝑤𝑤𝑚𝑚𝑇𝑇 𝑥𝑥) ∈ [0, 1]) is used by the 

internal node in tree pooling; which makes tree pooling differentiable with respect to inputs 

as well as its parameters. Lee et al. [30] have observed through their experiment that the 

tree pooling is useful at the lower network layers where the feature responses are dense. 

However, the “mixed” and “gated” max-average pooling are more advantageous where the 

feature responses are sparse which present at the higher network layers. From this 

observation, an idea of a combined strategy which consist of tree pooling at lower layers 

and max-average pooling at higher layers is implemented on various data sets such as 

MNIST, CIFAR10, CIFAR100 and SVHN, that outperforms not only baseline but also a 

network with tree pooling method alone. This scheme is termed as “tree + max-average 

pooling”. 

 
Figure 6. Tree pooling.  The child node composed of pooling filters (v1

T, v2
T, v3

T, v4
T) that 

learn directly from the input. Like “Gated” max-average pooling, gating mask are used to 

determine the blending of the child node’s output at parent node. The procedure is repeated 

until the root node is attained, where the mixture of parent node is also computed by gating 

mask. Modified and regenerated from [30] 
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2.6 Spatial Pyramid Pooling (SPP) 

Spatial pyramid pooling is also known as spatial pyramid matching (SPM). This pooling 

scheme has a unique characteristic to eliminate the need of input image with fixed size [17, 

25], which is a foremost requirement in CNN [18]. The constraint of fixed size is imposed 

by the fully-connected layers, not the convolution layer. Before the existence of pyramid 

pooling, cropping [23, 55] and warping [8, 13] are the only methods to fix the size of an 

image in order to fit within the CNN. But cropping and warping process lead to content loss 

and geometric distortion in an image, respectively. To obviate the involvement of cropping 

and warping, the SPP layer is added on top of the last convolution layer which gives rise to 

a new network, SPP-net [18]. The schematic representation of SPP operation is shown in 

Figure 7.  
In the SPP-net, the SPP layer is made adaptive to the size of feature maps and the 

numbers of spatial bins are kept constant at every pyramid level. However, the size of bins 

may vary. Consider an image of size 128x128 and 4 numbers of bins at first level of 

pyramid and then create a patch of size “32x32” with 4 bins. At second level of pyramid, 

since the number of bins is 16, patches of size “8x8” are created and maximum value within 

each bin is taken as an activation value. The pooling of activations for each bin give rise to 

a vector of fixed dimension as an output of SPP layer which has a fixed length, equal to the 

multiplication of the number of filters in the last convolutional layer and the number of bins 

in the SPP layer. Thus, the SPP technique has the ability to generate an output of fixed 

length without considering the input size. The involvement of multi-level bins is an asset in 

SPP scheme which makes it robust to the object deformation [25]. In addition, SPP have 

flexibility toward input image scales during the testing and training phases which enhance 

the scale-invariance property and reduce the problem of overfitting in the network [19]. 
SPP technique has been proved as state-of-the-art techniques for classification on 

Caltech101 [12] and Pascal VOC 2007 [11] and also surpassed even the R-CNN in object 

detection with faster computation [13].  
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Figure 7. SPP-net. SPP layer is inserted between the Conv4 (the last convolutional layer of 

considered network) and the fully connected layer. The feature maps of arbitrary size from 

the Conv4 fed to the SPP layer which consists of three level of pyramid: level 0, level 1, and 

level 2 and the number of bins in each level is 1, 4, and 16, respectively. Remember that the 

number of bins is fixed in each level but the size of bins may vary. In each bin, we pool the 

response of each filter present in the Conv4 layer which gives rise to a vector of fixed 

dimension i.e. equal to the product of number of bins and the number of filters in the Conv4 

layer. In this example, 256 depicting the filter number of the Conv4 layer. According to this, 

the dimension of the output vector would be 21*256. Modified and regenerated from [19] 

2.7 Stochastic Pooling 

The key idea behind this strategy is to replace the conventional forms of pooling with a 

stochastic process [54]. In the stochastic pooling, the pooled map response is selected 

randomly from a multinomial distribution of activations which are obtained from each 

pooling region after the application of a linear rectification function (ReLU). This strategy 

involved only the non-negative activations and suppressed the negative activations to zero. 

Therefore, only the strong activations are considered for sampling. Concurrently, it also 

assures the accountability of non-maximal activations due to a random selection of 
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activations from a multinomial distribution which helps in prevention of network over-

fitting. But before the selection, the probability (𝑝𝑝) for each region (𝑅𝑅𝑚𝑚) is computed by 

normalizing the activations and then the selection is performed on the basis of (𝑝𝑝) to pick 

up a location (l) within the region [54]: 

    pi =
ai∑ akk∈Rm                           (13)  

The pooled activation is then set as: 

   sm = al where l ~ P (p1, … … , p|Rm|)                          (14) 

The major drawback of stochastic pooling lies in the constraint to use non-negative 

activation only. Further, it can be observed from the equation 13 that the strategy is not 

applicable to negative activations. Since the ReLU activation function set the negative 

activations to zero, so the stochastic pooling is used with ReLU activation function only. In 

addition, stochastic pooling leads to the problem of overfitting with the limited training 

dataset due to high probability in selection of strong activations during the training process. 

These entire problems in stochastic pooling are known as scale problem.   

 

Figure 8. Stochastic Pooling. The selection of sample is carried out from the multinomial 

distributions of the activations on the basis of the probability computed by normalizing the 

activations. The larger the activation, the larger is the possibility to be chosen. In this 

example, there are two activations 1.6 and 2.4 which are having the probability of 40% and 

60%, respectively. However, 1.6 is chosen as sampled activation, despite the higher 

probability of 2.4. Therefore, the important features may be lost in stochastic pooling as one 

cannot determine that which part of the input will be chosen. Modified and regenerated 

from [54] 

2.8  S3Pool 

The S3Pool strategy is a new method of pooling and proposed by Zhai et al. [56] in 2017. 

In this scheme, the pooling operation is performed in two steps. In step 1, the max-pooling 

operation is performed on the entire feature maps (received from the convolutional layer) 

with stride (s) 1. Whereas in step 2, down-sampling is performed on the output of step 1 

which is carried out stochastically by first partitioning the feature map of size 𝑥𝑥 × 𝑦𝑦 into 

specified number of horizontal (h) and vertical (v) strips, respectively. Where, ℎ = 𝑥𝑥 𝑔𝑔�  and 𝑣𝑣 =
𝑦𝑦 𝑔𝑔� . The ‘g’ is a hyper-parameter known as grid size which decides the number of 

horizontal and vertical strips in a feature map. Once the partitioning is over, 
𝑔𝑔 𝑠𝑠�  rows and 𝑔𝑔 𝑠𝑠�  columns are then selected randomly from each of the horizontal and vertical strip. 
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Eventually, a down-sampled feature map of size 𝑥𝑥 𝑠𝑠⁄ ×
𝑦𝑦 𝑠𝑠�  is obtained. A schematic of 

S3Pooling is shown in Figure 9. 

  

Figure 9. (a) S3Pool, in this example the size of feature map is 4x4 where, x = 4 and y = 4. 

In step 1, zero padding is applied at the edges and max-pooling operation is performed with 

stride 1, while the size of grid and stride will be taken as 2 for step 2. Therefore, the number 

of horizontal (h) and vertical (v) strips will be 2 according to the scheme. In step 2, the stars 

are depicting the randomly selected rows and columns in order to obtain downsampled 

feature map. (b) and (c) Flexibility to control the distortion or stochasticity by the varying 

the grid size in step 2. Modified and regenerated from [56]  

In S3Pool, a random distortion is introduced in the feature maps at each epoch for the 

same training instance since the sampling performed in step 2 is stochastic. These spatially 

distorted feature maps give rise to a “virtual” data augmentation at the intermediate layers 

due to which S3Pool emerged as a firm regularizer. S3Pool also provides flexibility to 

control the distortion just by changing the grid size to suit different architectures and 

applications. In order to determine the effectiveness of S3Pool in comparison of other 

pooling methods, Zhai et al. [56] performed experiments for CIFAR-10, CIFAR-100 and 

SIT datasets using two architectures: network in network (NIN) and residual network 

(ResNet). From the experimentation results, the authors have been observed that S3Pool 

without any data augmentation outperforms the NIN and ResNet with dropout as well as 

with stochastic pooling even when employed with flipping and cropping technique of data 

augmentation during testing phase. In terms of computational costs, S3Pool has been found 

as an efficient method as it provides a computational overhead of 8% and 4% in case of 

NIN and ResNet, respectively. While for the same networks, stochastic pooling increases 
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the training time by 66% (NIN) and 27% (ResNet). Hence, the S3Pool technique has a good 

generalization ability and less computational cost as compared to stochastic pooling. 

2.9 Rank-Based Pooling (RBP) 

In 2016, a new regime of pooling “rank based pooling” was proposed by Shi et al. [45] to 

alleviate the scale problems which is confronted by value based pooling methods such as 

stochastic pooling.  In RBP, a rank is assigned to all the activations in a pooling region, 

where  the activations are sorted in descending order and rank are assigned in ascending 

order (start from one) (Figure 10). Mathematically, rank assigning procedure can be 

represented as [45]: 

    𝑚𝑚(𝑖𝑖) > 𝑚𝑚(𝑗𝑗) ⇒ 𝑖𝑖(𝑖𝑖) < 𝑖𝑖(𝑗𝑗)             (15) 

where ‘a’ is the activations in the pooling region, ‘i’ and ‘j’ defined the position of 

activations in the pooling region, r(i) and r(j) denotes the rank of activation  at ‘i’ and ‘j’, 

respectively. 

If the two activations are of same value, then the rank will be assigned as: 

   𝑚𝑚(𝑖𝑖) = 𝑚𝑚(𝑗𝑗) ∧ 𝑖𝑖 < 𝑗𝑗 ⇒ 𝑖𝑖(𝑖𝑖) < 𝑖𝑖(𝑗𝑗)              (16) 

Further, weights are allocated to all the activations and summed up to get the final 

output. On the basis of different weighting mechanisms, the RBP is categorized into three 

new pooling mechanisms namely; rank-based average pooling (RAP), rank-based 

stochastic pooling (RSP), and rank-based weighted pooling (RWP). 

2.9.1 Rank-based Average Pooling (RAP) 

In RAP, top (t) highest activations are considered, while the remaining activations are 

discarded. The highest activations are then averaged to obtain the pooling output. The 

mathematical expression for the RAP can be given as[45]: 

𝑠𝑠𝑚𝑚 =
1𝑖𝑖 � 𝑚𝑚𝑖𝑖𝑖𝑖∈𝑅𝑅𝑚𝑚,𝑟𝑟𝑖𝑖≤𝑔𝑔                                                          (17) 

Where t is the rank threshold (a hyper-parameter to decide how many activations would 

be involved in averaging) and Rm denotes the pooling area ‘m’ in the feature map. It is 

important to consider that the RAP turns into max-pooling for t = 1 and average pooling for 

t = n (the size of pooling area).  So the selection of rank threshold should be proper, neither 

too small nor too large. According to Shi et al. [45], the setting ‘t’ to median value result in 

satisfactory performance and provides a good trade-off between max-pooling and average 
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pooling. Therefore, RAP is a wonderful mixture of max and average pooling as well as has 

better discriminating ability than the conventional methods of pooling.    

 

Figure 10. Rank-based average pooling scheme. The activations in a pooling area are 

sorted in descending order and ranking is assigned in ascending order. Since t=4, four 

highest activations are averaged to obtain the pooling output. Modified from [45] 

2.9.2 Rank-based Weighted Pooling (RWP) 

The RWP strategy is based on the idea that each region in an image is not having an equal 

importance as the image features are not spatially fixed.  Therefore, the reasonable weights 

are assigned to all the activation in RWP. The smallest weight is assigned to the lowest 

activation and the largest weight to the highest activation (Figure 11). The distribution of 

weights is carried out on the basis of computed probability for all the activations by using 

formula [45]:   𝑝𝑝𝑟𝑟 = ∝ (1−∝)𝑟𝑟−1, where r = 1, 2, … , n               (18) ∑ 𝑝𝑝𝑟𝑟 = 1− (1−∝)𝑛𝑛𝑛𝑛𝑟𝑟=1  , when  0 < ∝ < 1              (19) 

lim𝑛𝑛→+∞�𝑝𝑝𝑟𝑟𝑛𝑛
𝑟𝑟=1 = 1                                                             (20) 

Where the computed probability relies on the rank of the activations and ∝ is a hyper-

parameter which controls the probability of the highest activation. Later, the activations 

within the pooling area are weighted by the probability and then summed up.  𝑠𝑠𝑚𝑚 = � 𝑝𝑝𝑖𝑖𝑚𝑚𝑖𝑖𝑖𝑖∈𝑅𝑅𝑚𝑚                                                               (21) 

According to Shi et al. [45], RWP preserved more discriminating information as 

compared to max, average, value-based stochastic pooling and also RAP which confirms 

their good discriminate ability. It all happens due to assigning of reasonable weights to the 
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activations within a pooling area. However, equal importance is given to all the activations 

in RAP, which became the major reason behind the lack in their discriminate ability.      

 

Figure 11.  Rank-based stochastic pooling (RSP) and rank-based weighted pooling (RWP). 

Activations are sorted in term of ranking and probability is computed for the entire 

activations that present within the pooling area. In RSP, random selection of activation is 

performed on the basis of calculated rank based probabilities and in RWP, reasonable 

weights are assigned to the activations according to the computed probabilities. Modified 

and regenerated from [45] 

2.9.3 Rank-based Stochastic Pooling (RSP) 

RSP is just similar to the value based stochastic pooling, where the activations are selected 

from the multinomial distribution of the probabilities. The only difference lies in the 

computation of probability which is based on the rank of the activation (equation 18), not 

on the value of the activation (Figure 11). More randomness in selection of the activation is 

the major advantage of this regime. There is a single hyper-parameter (∝) which controls 

the probability of the highest activation. According to Shi et al. [45], the setting (∝= 0.5) 

leads to the adequate performance by introducing more randomness. Better capacity to 

preserve more diverse information is another advantage of RSP as it preserves more 

appropriate and task-specific frequencies in the feature maps. In addition, the RSP regime 

has potential to avoid the scale problem confronted by stochastic pooling, where the 

negative activations are substituted by zero to compute the probability. Although, the 

negative activations are not suppressed to zero in RSP as the probabilities are based on the 

rank. Thus, no constraint of activation function is imposed on the implementation of RSP 

which provides the flexibility to choose the activation function.   
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2.10 Fractional Max-out Pooling 

As the name suggests “fractional max-out pooling” is a fractional version of max-pooling in 

which multiplicative factor (∝) is allowed to take non-integer value within a range of 1 < ∝ 

< 2. In this regime, size of hidden layers is reduced by a fractional factor which provides an 

opportunity to view an image at a different scale. The visualization of an image at a 

“proper” scale make it easy to recognize the discerning features that used in identification 

of an object [16]. Fractional max pooling introduces randomness that associated with the 

choice of pooling region due to its stochastic nature. The region of pooling can either be 

overlapped or disjoint which can be selected either randomly or pseudo-randomly with the 

use of dropout and training data augmentation. According to Graham B. et al. [16], the use 

of fractional max pooling with overlapped region of pooling works better than the disjoint 

one. Besides, they have observed that the pseudorandom selection of pooling region with 

data augmentation performs better as compared to random selection.  

Table 1. Evaluation of pooling strategies in terms of upsides and downsides 

Pooling  Upsides Downsides Reference 

Average 

 

• Easy to understand. 

• Implementation is simple. 

• Deterministic in nature. 

• Resulted in reduced contrast 

if low magnitudes are taken 

into consideration. 

 

[3, 28-29] 

Max 

 

• Statistical properties make it fit 

sparse representations. 

• Perform better when coupled 

with sparse coding and simple 

linear classifiers. 

• Reduce computation for upper 

layers with elimination of non-

maximal components. 

• Deterministic in nature. 

• The discerning features get 

disappeared when majority 

of the elements in the 

pooling area are present with 

high magnitudes. 

[16, 30, 

41] 

‘Mixed’ 

Max-

Average 
 

• Stochastic in nature 

• Helps in prevention of the 

problem of over-fitting. 

• Unresponsive to the 

characteristics or features of 

the area being pooled as 

mixing proportion remain 

fixed once it learned. 

[30] 

‘Gated’ 

Max-

Average 
 

• Responsive in nature. 

• Adaptive in nature as the 

mixing proportion can adapt 

according to the features present 

within the pooling region. 

• Resulted in additional 

parameters for training. 

[30] 

Tree 
 

• Responsive in nature. 

• Differentiable with respect to 

inputs as well as parameters. 

• Useful at the lower layers of the 

network. 

• Non-useful for the dense 

layers of network. 

[30] 

Pyramid 
 

• Ability to handle input of 

arbitrary size. 

• Multi-level spatial bins. 

• Flexibility towards input image 

scales.   

• Complex implementation 

during training stage in deep 

networks. [19] 
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Stochastic 
 

• Stochastic in nature. 

• Non-maximal activations can be 

utilized. 

• Possible combination with any 

other regularization approach 

like dropout, data augmentation, 

weight decay etc. 

• No hyper-parameter to tune 

• Negligible computation 

overhead. 

• Difficult to understand. 

• Inapplicable to the negative 

activations. 

• Lead overfitting when 

training data is limited due 

to participation of strong 

activations only in process 

updating. 

• Scale problem. 

 
[4, 54] 

S3Pool 
 

• Easy to understand and 

implement. 

• Fast to compute during training. 

• Flexibility to change the level of 

distortion. 

• Introduce data-augmentation at 

pooling layer level which 

provides it good generalization 

ability. 

• Introduce computational 

overhead by little in comparison 

of max-pooling. 

• In each pooling layer, setting 

of grid size should be proper 

that depends upon the 

application for which it being 

used.  

• Higher grid size may lead to 

increment in testing error.  
[56] 

RBP 

• Stochastic in nature. 

• Avoid scale problem. 

• Introduce more randomness in 

selection of activations than 

stochastic pooling. 

• Single parameter to control the 

probability of the maximum 

activation. 

• Preserve more diverse 

information. 

• Poor performance with 

respect to fractional max-

pooling. 

• No fixed rule to set the value 

of hyper-parameter. 
[45] 

Fractional 

Max 

 

• Stochastic in nature. 

• Randomness or pseudo-

randomness in selection of 

pooling region. 

• Good performance of 

pseudorandom selection with 

data augmentation.  

• Superior result obtained by 

overlapping instead of disjoint 

fractional max pooling 

• Besides data augmentation, 

random selection of the 

pooling region reduces the 

model performance.  

• Performance degradation 

occurs with the disjoint 

fractional max pooling  

 

[16] 

3. Performance Analysis of Pooling Strategies 

In this section, the performance of latest pooling strategies has been reviewed and explored 

for the task of image classification. This paper enlightened the idea of applying pooling 

operation in the various CNN based architectures. However, the utilization of pooling 
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operation is negated by Geoffrey Hinton. According to him “the pooling operation used in 

convolutional neural networks is a big mistake and the fact is that it works so well is a 

disaster”[1]. In this context, he proposed “capsule networks” to discard the pooling layer 

which are different from the CNN and utilized only a fraction of the data to achieve state-

of-the-art performance as compared to the CNN. We note that the goal of our study is not to 

determine the best architecture in terms of classification, rather to provide a fair analysis on 

the implications of the pooling strategies in the CNNs.  

The performance comparison of different pooling schemes on the various benchmark 

dataset such as MNIST, CIFAR-10, CIFAR-100 and SVHN is presented in Table 2. The 

table highlights the network and the type of activation functions which have been utilized 

during the implementation of these strategies. It has been observed from the Table 2 that 

the average pooling showed the lowest performance with the error rate of 0.83% for the 

MNIST dataset. While the gated pooling outperformed the other pooling strategies in which 

the max-pooling and average pooling are mixed responsively. Further, the performance of 

gated pooling is followed by the mixed, tree-max-average pooling, and fractional max-

pooling with a difference of 0.01%, consecutively. A good performance of these pooling 

strategies confirms their firm regularization and generalization ability. Since the NIN and 

maxout networks also claimed a good performance with an error rate of 0.45% and 0.47%, 

respectively. But the performance is still lower than that achieved by employing the pooling 

methods. The rank based pooling provides the error rates for MNIST dataset ranging from 

0.42% to 0.59% and observed that the error rate provided by the RSP is higher than that 

provided by the stochastic pooling for the same network with the ReLU activation function. 

However, the performance of RSP improved when the ReLU activation function is replaced 

with the parametric ReLU (PReLU) and leaky ReLU (LReLU). 
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Table 2. Comparison of different pooling strategies on various standard datasets 

Pooling 

Strategies 
Network 

Activation 

Function 

Classification Error Rate (%) on Dataset 

Ref. 
MNIST 

CIFAR-

10 

CIFAR-

100 
SVHN 

Gated 
6 Conv. Layer 

(3x3) 
ReLU 0.29 7.90 33.22 ---- 

[30] 

Mixed 
6 Conv. Layer 

(3x3) 
ReLU 0.30 8.05 33.35 ---- 

Tree + Max-

Avg 

6 Conv. Layer 

(3x3) 
ReLU 0.31 7.62 32.37 1.69 

Max-pooling 
6 Conv. Layer 

(3x3) 
ReLU 0.39 9.10 34.21 1.91 

Fractional 

Max-

Pooling 

Sparse Conv. 

Network 

Leaky 

ReLU 
0.32 3.47 26.39 ---- [16] 

Spatial 

Pyramid 
---- ---- 0.64 ---- 54.23 ----  

Stochastic 
3 Conv. Layer + 

64 filters (5x5) 
ReLU 0.47 15.13 42.51 2.8 

[54] 

Avg-pooling 
6 Conv. Layer 

(3x3) 
ReLU 0.83 19.24 47.77 3.72 

RAP 
3 Conv. Layer + 

64 filters (5x5) 
ReLU 0.56 18.68 46.22 ---- 

[45] 

RWP 
3 Conv. Layer + 

64 filters (5x5) 
ReLU 0.50 19.05 48.19 ---- 

RSP 
3 Conv. Layer + 

64 filters (5x5) 
ReLU 0.50 15.44 46.83 ---- 

RAP 
3 Conv. Layer + 

64 filters (5x5) 

Leaky 

ReLU 
0.59 17.97 45.66 ---- 

RWP 
3 Conv. Layer + 

64 filters (5x5) 

Leaky 

ReLU 
0.53 19.92 46.69 ---- 

RSP 
3 Conv. Layer + 

64 filters (5x5) 

Leaky 

ReLU 
0.45 13.84 43.91 ---- 

RAP 
3 Conv. Layer + 

64 filters (5x5) 

Parametric  

ReLU 
0.58 18.52 45.82 ---- 

RWP 
3 Conv. Layer + 

64 filters (5x5) 

Parametric 

ReLU 
0.53 18.91 47.05 ---- 

RSP 
3 Conv. Layer + 

64 filters (5x5) 

Parametric 

ReLU 
0.42 14.90 44.79 ---- 

RAP NIN ReLU ---- 9.78 34.81 ---- 

RWP NIN ReLU ---- 10.08 35.28 ---- 

RSP NIN ReLU ---- 9.44 36.23 ---- 

RAP NIN 
Leaky 

ReLU 
---- 9.43 32.17 ---- 

RWP 
NIN Leaky 

ReLU 
---- 9.84 32.16 ---- 

RSP 
NIN Leaky 

ReLU 
---- 9.26 32.15 ---- 

RAP 
NIN Parametric 

ReLU 
---- 8.73 34.82 ---- 

RWP 
NIN Parametric 

ReLU 
---- 8.91 34.48 ---- 
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RSP 
NIN Parametric 

ReLU 
---- 8.67 34.42 ---- 

RSP 
(With data 

augmentation) 

NIN 
ReLU ---- 8.76 ---- ---- 

RSP 
(With data 

augmentation) 

NIN Leaky 

ReLU 
---- 8.54 30.41 ---- 

RSP 
(With data 

augmentation) 

NIN Parametric 

ReLU 
---- 7.76 33.67 ---- 

---- 
NIN 

ReLU 0.47 10.41 35.68 ---- 

---- 

Maxout 

Network ReLU 0.45 11.68 ---- ---- 

---- 

Densely 

Supervised 

Network 
ReLU ---- 9.78 34.57 ---- 

S3Pool 
(With 

flip+crop) 
NIN+dropout ReLU ---- 7.71 30.90 ---- 

[56] 
---- 

NIN+dropout 
(With flip+crop) 

ReLU ---- 9.34 32.36 ---- 

S3Pool 
(With 

flip+crop) 
ResNet ReLU ---- 7.09 29.36 ---- 

---- 
ResNet 

(With flip+crop) 
ReLU ---- 7.72 30.88 ---- 

---- 

ALL-CNN 

(With data 

augmentation) 

ReLU ---- 7.25 ---- ---- 

[46] 

---- 

ALL-CNN 

(Without data 

augmentation) 

ReLU ---- 9.08 33.71 ---- 

In case of the dataset CIFAR-10 and CIFAR-100, fractional-max-pooling provided the 

outstanding performance, followed by the S3Pool (ResNet+data augmentation). Fractional-

max-pooling and S3Pool, both of the pooling regimes surpassed nearly all the architectures 

that have been developed to discard the pooling layer such as NIN and ALL-CNN. The 

worst performance for CIFAR-10 and CIFAR-100 has been shown by RWP (LReLU 

activation) and the spatial pyramid pooling, respectively. While, the average pooling holds 

the second position as a worse performer for both the datasets. In addition, it has been 

observed that the employment of rank based pooling within the NIN network (with or 

without data augmentation) for different activation functions provided an acceptable 

performance and better than the NIN, maxout network, and densely supervised network 

alone. However, the use of rank based pooling within the network of 3 convolutional layer 

and 64 filters of size 5x5 decline the performance considerably. Through these empirical 

observations, it is clear that the average pooling is the worst pooling strategies in 

comparison of other pooling methods. The performance of pooling strategies largely 

depends on the network and the activation function which are chosen for the 

implementation. Moreover, the techniques of data augmentation also influence the overall 
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performance of the network, where the RSP provided a lower error rate with data 

augmentation as compared to no augmentation for CIFAR-10 and CIFAR-100 datasets 

(Table 2). 

4. Pooling – A Firm Prior and Regularizer 

In general, the prior is the distribution of probability for an uncertain quantity which shows 

an impression about the quantity before the acquisition of relevant evidence. Simply, the 

prior distribution of the probability over the parameters of a model is performed to estimate 

a reasonable model for a specified task, before seeing the testing data. Prior can be weak or 

strong which depends on the probability density concentrated in the prior. A prior with low 

entropy (low variance) is considered as strong prior and with high entropy (high variance) 

as weak prior. In neural networks, pooling can be used as an infinitely strong prior. An 

infinitely strong prior distributed zero probability to some parameters and even excluded 

from the use, regardless of the data. By implementing the pooling operation, each unit in 

the network is supposed to be invariant to small translations in the input data. Hence, 

pooling act as a strong prior for example: max-pooling, where only the maximum value is 

considered, whereas the other values are discarded. But in some cases, pooling may cause 

underfitting if the assumption made by the prior is inaccurate. For instance, image 

classification and object detection task greatly depends on preserving the spatial 

information and the application of pooling on all the features may results in information 

loss, which ultimately increase the training errors.  In order to alleviate this problem of 

underfitting, some convolutional networks are designed to get highly invariant features and 

features that will not under fit when the pooling prior is inaccurate [48]. The networks are 

designed in such a way that they use pooling on few channels instead of all the channels to 

minimize the training error.    

Regularization is another key role of the pooling operation in the CNN. In deep 

networks, regularization approach is used to trim down the test error [2]. Dropout [21, 47], 

weight decay [14, 24, 38], data augmentation [31], weight tying [36] and cutout [7] are 

different forms of regularization technique which assists the model in achieving high-

quality performance on the test set and prevent the model from overfitting. Dropout is the 

most popular regularization approach in which some nodes in the neural network are 

dropped out randomly. But, dropout is only applicable to the fully connected layers, not to 

the convolutional layers. Therefore, stochastic pooling emerges as a new regularization 

approach for convolutional layers [54] in which activations are picked randomly on the 

basis of multinomial distribution of probability during training. Max-pooling-dropout [50] 

is another regularization approach in which dropout is applied to the input of the max-

pooling layers. The max-pooling-dropout is similar to stochastic pooling in term of 

activation picking and inspired by the dropout regularization approach. In addition, both the 

strategies adopted probabilistic weighting for model averaging at test time. Despite of these 

similarities, max-pooling-dropout is different from stochastic pooling in performance for 

retaining probability. The max-pooling-dropout outperforms the stochastic pooling by a 

significant margin when the retaining probability (typically around 0.5) is neither too small 

nor too large [50]. Data augmentation is the easiest and one of the simplest methods of 

regularization to reduce overfitting on the test data. However, S3Pool is only the pooling 
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regime which implicitly augments the data and improves the generalization ability of the 

model. The results from the experimental work of Zhai et al. [56] confirmed that S3Pool 

have ability to surpass even the dropout (with data augmentation) and the stochastic pooling 

approach with the marginal increment in the training time. It has also been observed from 

the Table 2 that the pooling strategies act as a stronger regularizer and even able to surpass 

the other popular regularization approaches (dropout, data augmentation, maxout network), 

except cutout. The cutout is a variant of dropout technique in which the nodes are dropped 

at the input stage instead of hidden layers [7]. The cutout approach of regularization also 

has the ability to augment the data implicitly by generating occluded versions of the input 

sample and overcome the problem of occlusion encountered in the most of computer vision 

tasks. The cutout approach has provided a state-of-the-art performance for the CIFAR-10 

and CIFAR-100 dataset (with and without data augmentation). Therefore, the pooling 

strategies can be combined easily with the other regularization approaches in order to 

enhance the performance of the network (Table 2). Hence, the designing of new 

methodologies comprises of pooling methods in conjunction with different regularization 

approaches can be an interesting topic of research in future. The influence of different 

combinations of pooling strategies on the performance of the model can also be another 

aspect of future work.  

5. Conclusions 

The pooling is a powerful concept in deep architecture and widely used in CNN's to solve 

the task related to computer vision. Most of the studies focused on max-pooling due to its 

easy implementation and sparse representation, but its deterministic nature is its major 

drawback. We find stochasticity as an important asset for a variety of pooling regimes such 

as ‘mixed’ max-average, stochastic, S3Pool, RSP and fractional max pooling. Since 

stochasticity in these regimes, introduces randomness to select activation or pooling region 

that helps in reducing the overfitting and improve generalization ability of the model. In 

addition, pooling operations assist the deep architectures in terms of computational cost by 

reducing the number of parameters involved in training by virtue of its dimensionality 

reduction property. However, the “Gated” Max-Average pooling regime is an exception 

which increases the computational overhead by introducing additional parameters for 

training. Based on the detailed analysis of the pooling regimes and their performance for 

the task of classification, we found that the pooling operations largely depend upon the 

network architecture and the activation function for their performance. Overlapping is 

another factor that affects the performance of the network as it decreases the chances of 

information loss during the pooling operation. While the step size of overlapping is very 

necessary to consider because a blind increment in step size can drop the model 

performance significantly. We also found that S3Pool act as the strongest regularization 

approach because it augments the data implicitly. Moreover, it is able to form possible 

combinations with other regularization methods. Thus, it would not be wrong if we say that 

the choice of pooling operation is a kind of empiricism, but we believe that our work could 

pave a leading step in the better understanding of pooling methods and factors involved in 

the improvement of pooling performance. 
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	where 𝒙 is a vector consist of activation values from a rectangular area of 𝑵 pels (for example: dimensions of  the rectangular area in Figure 3 is 2x2) in an image or a channel. Earlier, the use of average pooling was common but their use has been...

