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Summary. We consider a long strike-slip fault in a lithosphere modelled as an 
elastic slab. To the base of the slab a shear stress distribution is applied which 
simulates the viscous drag exerted by the asthenosphere. The resulant stress 
on the fault plane may directly fracture the lithosphere in its brittle upper 
portion; alternatively it may give rise at first to a stable aseismic sliding in the 
lower portion. In the latter case, stress concentration due to the deep aseismic 
slip is the relevant feature of the pre-seismic stress acting on the upper section 
of the lithosphere. The two cases are examined by use of dislocation theory 
and their observable effects compared. Different depths of the aseismic slip 
zone and the presence or absence of a uniform friction on the seismic fault 
are allowed for. If the model is applied to the San Andreas fault region, where 
a steady sliding condition actually seems to be present at shallow depth, it 
turns out that the slip amplitudes commonly associated with large earth- 
quakes are consistent with average basal stress values which can be sub- 
stantially lower than a few bars, a value often quoted as the steady state basal 
stress due to a velocity gradient in the upper asthenosphere. 

1 Introduction 

In the study of the coupling between the lithosphere and the asthenosphere and its effects 
on the seismic mechanism, two-dimensional models, in which an elastic slab lies over a visco- 
elastic half-space, have often been proposed (see, e.g. Rundle & Jackson 1977). 

The value of the basal shear stress applied by the asthenosphere to the base of the litho- 
sphere is a critical parameter in determining the relative importance of driving forces 
responsible for plate motion (Forsyth & Uyeda 1975). Let 71, and T, be the average stresses 
acting on the plate base and edges respectively. If the viscous drag of the asthenosphere is 
responsible for this stress, we should have at equilibrium a relation between Tb and T,  which 
we can roughly write as 

71, Y2 = ZYT, (1) 
for a square plate with thickness Z and half-length Y. Lower bounds for edge stresses can be 
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370 
inferred from stress drops of interplate earthquakes (10-100 bar); resisting stresses may be 
much larger (Hanks 1977) and 7, may reach values of several hundred bars. 

Independent estimates of 7b can be obtained from studies of the asthenosphere rheology 
(Melosh 1977). Most estimates of the viscosity of the upper asthenosphere are based on the 
assumption of Newtonian rheology and yield values which vary by two or three orders of 
magnitude. In fact, the values of 7b obtained vary from 0.3 to 600 bar depending on the 
values assumed for the viscosity and ,thickness of the asthenosphere. Estimates based on the 
assumption of a non-Newtonian rheology (Melosh 1976a, b) impose much more restricted 
bounds, 7b = 2-3 bar. Such low values seem to imply that basal stresses might be negligible 
in determining plate motion, particularly for smaller plates. The previous argument assumes 
that a perimetral stress as high as inferred from earthquake stress drops acts almost uniformly 
on the whole plate margin (however, we know that aseismic creep continuously relieves the 
edge stress on some fault sections, as is well documented for the San Andreas fault - see, 
e.g. Turcotte 1977). 

Furthermore, geodetic measurements in the San Andreas fault region (Savage & Burford 
1973, see also Thatcher 1975a,b) and the apparent absence of earthquake foci below about 
15 km (Barker 1976) suggest that in the lower lithosphere ‘the plates slip past one another 
fairly uniformly along a steep contact; . . . along some fault segments fault creep occurs at 
the surface; this behaviour probably represents an extension of the area of stable sliding on 
the fault surface upward through the entire crust . . . In other regions the upper portion of 
the fault surface appears to be locked.. .’ (from Savage & Burford 1973). It appears then 
that the right side of equation (1) is severely inadequate to represent the contribution of 
edge stresses to the equilibrium condition, since the lithospheric thickness Z ought to be 
replaced by a much smaller value representative of the width of the locked sections of plate 
margins . 

The rheological and geochemical implications of this stable sliding condition have been 
investigated by Yuen et al. (1978), who show that a narrow zone of intense shear deforma- 
tion due to viscous slip can be present along major transform faults and subducting slabs. 

Below the locked section, a stress concentration pattern is originated by the steady sliding 
condition (Turcotte & Spence 1974, see also Savage 1975 and Turcotte & Spence 1975), 
whose influence on seismic rupture has been considered in a previous paper (Bonafede & 
Dragoni 1981). 

In the present paper we try to derive conclusions on the basal shear stress from seismic 
slip and ground deformation measured at the Earth’s surface. To this aim we assume that a 
basal shear stress drives the aseimsic steady slip envisaged in the Savage & Burford (1973) 
model. This region of continuous stable sliding is modelled as a vertical crack embodied in 
the lower lithosphere. The stress concentration thus created around the upper crack edge 
adds to the basal stress in determining the initial conditions for a seismic dislocation to take 
place on locked fault sections in the upper, brittle lithosphere. The relation between basal 
traction, seismic stress drop and resisting stress at transform boundaries has been already 
discussed by Hanks ( 1977) employing a simplified model of the lithosphere and of the stable 
sliding region. 
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2 Themodel 

We consider the lithosphere as an elastic slab. At the base of this slab a stress distribution is 
applied which represents the effect of viscous motions within the asthenosphere. The model 
is illustrated in Fig. 1. A long strike-slip fault lies on the plane xz=O, from the Earth’s 
surface (x3=O) to a depth a. The slab thickness is 2. While most models simply assume a 
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Stress concentration on strike-slip fmrlts 37 1 

Figure 1. A section of the lithosphere at the fault region as modelled in the present paper. Conventional 
arrowheads and tails on the plane x3 = 2 indicate the asthenospheric drag force depicted in Fig. 2. 

uniform shear stress applied on the fault from remote boundaries at infinity, we assign a 
specific flow pattern at the top of the asthenosphere, which is responsible for the drag force 
on the lithosphere. In particular we suppose that the fault is situated above the boundary 
between two adjacent convective cells in which a steady plastic flow occurs horizontally in 
opposite directions. 

2.1 T H E  ASTHENOSPHERIC D R A G  

We assume that the asthenosphere (x3 > Z) applies on the lithospheric base (x3=Z) a steady 
shear stress 

which has a parabolic shape on both sides of the xl-axis; Y is the characteristic horizontal 
half-length of either plate (Fig. 2) .  It can be seen from equation (2) that the average basal 
stress is Tb in the interval O<x,< Y and - T b  in the interval - Y < x 2 <  0. This may be 
obviously connected with a velocity field 0 in an asthenosphere behaving as a Newtonian 
viscous ‘fluid’: in this case 

where 77 is the viscosity of the asthenosphere. 
The model being two-dimensional, we assume antiplane strain 

Figure 2. The basal shear stress 73, (x,, 2 -) on the base of the lithosphere. Stress is uniform in the 
x,direction. 

14 
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where it is the displacement field in the lithosphere. We take free-surface boundary con- 
ditions both on the plane x3=0 (the Earth’s surface) and on the plane x3=Z outside the 
range lx21 < Y: 

M. Bonafde and M. Dragoni 

731 (x2, 0) = 0 ( 5 4  

T31(x2,z)=o, 1x21 > y- (5b) 

The stress pattern in Ix21 G Y is specified in equation (2). As it will become clear in the 
following, condition (5b) is pertinent to the drag force distribution (equation 6) which 
yields the stress given in equation (2). Displacements and stresses produced in the litho- 
sphere by the asthenospheric drag given in equation (2) are in fact equivalent to those due to 
a distribution of single-force strain nuclei (see, e.g. Love 1944) 

8(X2,xg)=2731(X2,z-) 6(xJ-z)21, 1x21 < y. (6)  

Computation of the displacement produced by this distribution in an unbounded elastic 
space is performed by integrating the right side of equation (6) with the displacement field 
due to an infinite linear uniform distribution of single forces with unit intensity and 
direction xl. Such a distribution placed along a line x2 =y, x3= Z gives rise to a displacement 

1 

where p is the rigidity of the elastic medium. Non-vanishing stress components 721 and 731 

are calculated consequently from Hooke’s law: 

A similar approach was used in Bonafede & Dragoni (1981). Displacements and stresses in 
the slab, 0 < x3< Z, are obtained by simply superimposing an infinite number of image force 
distributions placed on the planes x3=(2n +1)Z, n =f 1, +2,. . . ,f-. The total stress field 
satisfies the boundary conditions(2) and (5). What is of main interest to us is the stress com- 
ponent T~~ acting on the fault plane x2 = 0. By straightforward calculation 

where Zn =(2n t l)Z.  We now introduce the notation 

70 = 721 (090) 

7z = 721 (0, Z). 

Assuming for Z and Y values appropriate to a large plate: 

Z = 100 km, 

Y = 4000 km 

(9) 

we get (72 - T ~ ) / T Z  = 0.2 per cent, i.e. the stress varies very little on the fault plane. Thus we 
are allowed to take a uniform shear stress between x3=0 and x3=a and we put it equal to 
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Stress concentration on strike- slip fmrlts 373 
ro for a seismic dislocation to take place in the upper lithosphere. The deformation produced 
at the Earth's surface by the asthenospheric drag (equation 2)  is also fairly uniform along the 
x2-axis as long as the distance from the fault is much less than the plate half-length Y. 

2.2 A SEISMIC DISLOCATION IN A UNIFORM STRESS FIELD 

First, we look at what happens if a dislocation originates on the fault due to  direct 
asthenosphere-induced stress only. We assume crack-like boundary conditions on the fault 
faces, i.e. the dislocation completely relieves the applied stress; friction is neglected. The 
influence of a residual stress on the fault will be considered in a later section. 

A way to obtain displacement and stress fields of a crack subjected to anti-plane shear 
stress rZ1 in an unbounded elastic medium is to solve the integral equation 

which gives the distribuiion 9 ( x 3 )  of infinitesimal screw dislocations equivalent to the 
crack. Here b is the Burgers vector of an infmitesimal dislocation and the slash on the 
integral sign denotes Cauchy principal value. The solution to equation (1 1) is given by (see, 
e.g. Bilby & Eshelby 1968) 

From 9 ( x 3 )  we can calculate the displacement discontinuity 

where L is the fault length (L > a by assumption). The released stress and strain field com- 
ponents are given by 

where i = 2 ,  3 and the us1 are the non-vanishing stress components due to an infinitesimal 
screw dislocation placed in x2 = 0, x3= f .  

The results for a uniform applied stress are simple to obtain and have been reported by 
several authors (e.g. Bilby & Eshelby 1968). These results are immediately applicable to a 
halfspace (x3> 0 in our case), because the stress component ~ 3 1  of the crack vanishes on the 
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374 
plane x 3 = 0 ,  owing to the symmetry of the problem. Since we know that the asthenosphere 
behaves elastically for short times, we take just such half-space solution, neglecting the 
difference between the lithospheric and the asthenospheric rigidities. 

The expressions for the relevant quantities of the single dislocation problem (I) are the 
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following: 

MI = na2r0/2, (19) 

AE' = -r0M1/(2p), ( 20) 

where @=(el  +02)/2 and 18 I < n/2. The coordinates used for the stress field are defined in 
Fig. 3.  

The strain at the Earth's surface is 

The stress component ~ 3 1  obviously modifies the pre-seismic stress pattern at the lithosphere 
base (equation 2) and we may suppose that the original value for the drag force will be 
restored by the asthenospheric flow only after a characteristic time a l p .  

2.3 I N T R O D U C T I O N  O F  AN ASEISMIC DISLOCATION 

Introduction of the values (10) for Z and Y in the relations (18)-(23), with Tb = 2  bar as 
inferred by Melosh (1976a, b), yields values commonly accepted for a large earthquake along 
the San Andreas fault. If, however, we take into account that a condition of stable aseismic 
sliding prevails under the locked section of the fault, as discussed in the introduction, we are 
led to think that the first effect of the asthenospheric drag is the creation of an aseismic 

Figure 3. The coordinate system employed for the seismic dislocation stress field. 
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Stress concentration on strike-slip fatlts 375 

x3  

Figure. 4. The aseismic dislocation. The arrows on the plane x ,=Z  denote the displacement field. 

dislocation in the lower part of  the lithosphere, d < x 3 < 2 ,  d > a ,  on the same fault plane 
xz=O (Fig. 4). This aseismic dislocation is a schematic representation o f  the narrow zone of 
intense shear deformation envisaged by  Yuen et d. (1978). 

We approximate the shear stress produced by the asthenosphere on the lower aseismic 
section o f  the fault with a uniform stress rz as given by equation (9). Displacement and 
stress due t o  the aseismic dislocation in the lithospheric slab are obtainable b y  modifying for 
anti-plane strain a solution given by  Koiter (1959). They are given in terms of  a complex 
variable z =x3t ixz:  

2 2  

2 2  

nz 
(xz, x3) = rz Re 

This solution satisfies the boundary conditions, equations ( 2 )  and (5). The problem of a 
dislocation in the lower lithosphere has been worked out by  Turcotte & Spence (1974) with 
the boundary conditions o f  uniform shear stress applied at infinity and vanishing traction on  
the whole plane x3=Z,  so that their solution differs from the present one in its behaviour at 
large distances from the fault. 

The displacement discontinuity and the energy release are 

and the strain at the Earth's surface is 

-112 

t sin' ") - I] 
2 2  
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376 
The consequence of introducing an aseismic dislocation is obviously a stress concentration 
on the locked section of the fault, 0 < x3< a,  which is the more pronounced the less the 
aseismic slip is distant from the Earth's surface. This is evident in Fig. 5 ,  where we have 
plotted the total shear stress rgt on the seismic fault 
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7Et(0'X3) = T o + &  (03x3) (30) 
where 

and 0 < x j  < d .  

2.4 A SEISMIC DISLOCATION WITH STRESS CONCENTRATION 

We look now for seismic slip on the locked section of the fault in the presence of the stress 
concentration produced by the aseismic dislocation (model 11). The solution is obtained by 
calculating numerically the Cauchy integral in equation (12) with applied shear stress given 
by equation (30). The displacement discontinuity, seismic moment and energy release are 
also calculated numerically according to equations (13), (14) and ( 1  5) respectively. 

These results can be put in the form 

A d 1  (x3) = arb '4Y(x3)/p, 0 < x3 < a  (32) 

M n = a 2 L r b A  (33) 

= -a2Lrg 8Ip (34) 

where @(x3), A and 8 are non-dimensional quantities. A and 8 are given in Table 1 .  

x102 

1 6 

'1 

d=100 

0 0.5 1 

Fire 5. The total pre-seismic stress on the seismic section of the fault. The non-dimensional quantity 
rtyt (O,xr)/q, is plotted. 
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Stress concentration on strike-slip fmlts 377 
Table 1. The non-dimensional seismic 
moment & and energy release 8 of the 
seismic dislocation for various values of d .  
Zero residual stress. Y=4000km, 2- 
100 km, a =10 km. 

.u 4 
d Otm) (X 10%) (X 10-9 

11 4.3 5.8 
20 2.1 1 A 
50 0.89 0.25 

100 0.63 0.13 

The strain eFl at the Earth's surface has been calculated numerically according to 
equations(l7) and( 16). 

Model I (single dislocation) can be considered the limiting case of model I1 when d + Z .  
Fig. 5 shows the initial stress field 7Kt (0,x3) on the seismic fault surface. We see that the 
initial stress is practically uniform when d=100 and d=50km,  but a substantial non- 
uniformity of the initial stress appears on the seismic fault section if the aseismic dislocation 
tip reaches shallow depths. 

The seismic dislocation amplitude @(x3) is fairly sensitive to a change in the initial stress 
as is evident from Fig. 6, where the effect of a change in d on the vertical profiles @(x3) is 
shown. 

3 Discussion and conclusions 

The previous arguments show how the presence of the aseismic dislocation affects the 
vertical trend of the stress field and the seismic dislocation amplitude. The values of such 
quantities, however, can be directly observed only in the proximity of the Earth's surface. 
Fig. 7 shows the ground deformation due to the aseismic dislocation along a horizontal 
traverse across the fault. The strain e& (xz, 0) is normalized to the same maximum value in 
order to bring out the influence of the parameter d on deformation patterns. These strain 
profiles are the same that could be obtained from Turcotte & Spence's (1974) model, the 
difference arising when we compare total pre-seismic ground strains at large distances from 

0 5 10 IS 

P i  6. The non-dimensional slip amplitude 9 (x,) (bottom scale) on the seismic section of the fault, 
for various values of d ;  d =lo0 km stands for the absence of aseismic dislocation. The top scale shows 
values of Au (x,)/q, 01 = 3 X 10" dyne cm-',u = 10 km). 
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378 M. Bonafede and M. Dragoni 

Fmre 7. The ground deformations produced by the aseismic dislocation for different values of d. The 
dashed curve shows, for comparison, the ground deformation produced by the single screw dislocation 
model, ford = 11 km. Curves are normalized to the same maximum value. 

the fault. The total ground strain is in fact obtained in our model by adding to e& (x2,  0) the 
non-uniform ground strain 721(x2, 0)/21.( due to the asthenospheric drag. From Fig. 7 we 
note that, at least in principle, geodetic measurements can determine the depth d of the 
aseismic dislocation tip. Unfortunately the strain measurements across real faults do not 
allow any fme resolution, although the actual strain traverses vaguely resemble the trends 
displayed in Fig. 7 (Savage & Burford 1970, 1973;Thatcher 1975b). 

A model of strain accumulation due to a buried strike-slip fault was already presented by 
Savage & Burford (1973). They employed a single screw dislocation placed at x 3 = d  in an 
elastic half-space, which corresponds to a step- function displacement discontinuity 

Au(x,) z b O ( ~ 3 - d )  (35) 

(to be compared with our Somigliana dislocation - equation 27). Their model, while 
yielding a first estimate of the effect, is clearly an oversimplification. Unless the dislocation 
is very far from the Earth's surface, a single screw dislocation gives a ground strain which is 
considerably different from that of a Somigliana dislocation, whatever the choice for b may 
be. The normalized strain profile produced by the single screw dislocation model is shown 
in Fig. 7 ,  for a value d =  1 1 km, for comparison with our model. 

Fig. 8 shows how a change in d modifies the sudden ground deformation produced by the 
slip occurring on the seismic fault section: the greater slip amplitude associated with stress 

- 4  - 2  0 2 4 

Fgure 8. The ground deformation produced by the seismic dislocation for different values of d ;  d = 
100 km means no aseismic dislocation. The non-dimensional quantity p e 2 ,  (x2, O ) / T ~  is plotted. 
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concentration (see Fig. 6) obviously entails larger ground deformations in the proximity of 
the fault. 

The question we wish to answer, on the basis of the previous considerations, is the follow- 
ing: once we accept that a stable sliding condition at low levels of stress is present at depth 
along major transform faults, what inference can be derived regarding the average value 7b of 
the basal shear stress acting on the lithospheric plates? The discussion is restricted to the San 
Andreas fault, where several data are available for our purposes. We take a= lOkm,  Z= 
100 km, Y = 4000 km. 

Looking at Fig. 6, we see that a surface slip in the order of 5 m (as observed in connection 
with the 1906 San Francisco earthquake) is attained for 7b = 2 bar in the absence of aseismic 
dislocation. If, however, stress concentration produced by the stable sliding regime below 
depth d is taken into account, we find lower estimates for 7b : when d = 1 1 km, the average 
basal stress required for the observed displacement of the plate margin can be lower than 
0.5 bar. In the limiting case of creep taking place at vanishing levels of stress, the viscous drag 
applied by the asthenosphere to the lithospheric base could be entirely responsible for the 
motion of larger plates. 

The previous conclusions, however, are drawn in the absence of friction (or any residual 
stress) on the seismic dislocation surface. A simple friction model has been considered to 
oiercome this limitation: we assume that a uniform residual stress 7f is left on the seismic 
fault surface. It is to be mentioned, incidentally, that Weertman (1964) considered a dis- 
location model of the San Andreas fault with non-uniform friction. We write 7f as a fraction 
a of the total pre-seismic stress 7gt acting at the Earth's surface: 

7f=a7gt(0, 0). (36) 

Models I and I1 have been reconsidered with the boundary condition of a residual stress 7f 

on the seismic dislocation surface. The distribution of infinitesimal dislocations relative to  
this case is still computed from equation (12), where the stress to be released on the seismic 
dislocation surface ( ~ ~ ~ ( 0 , c )  in the absence of friction) is replaced by ~ ~ ~ ( 0 ,  {) - r f .  The 
other quantities are then calculated through the same steps as before. 

The non-dimensional seismic slip Qf (xj) and the ground deformation e:l (xz, 0) are 
shown in Figs 9 and 10 in the case d = 11 km, for various values of a. It is to be stressed that 
when a approaches 1 the maximum slip amplitude is attained at depth: this feature reflects 

W(%) 
Figure 9. The non-dimensional slip amplitude wf (x,) (bottom scale) on the seismic section of the fault, 
for d = 1 1  km and different values of a. The top scale shows values of Auf (x3)/7b ( f i  = 3 X l0"dyne cm-', 
u = 10 kml. 
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- 4  - 2  0 2 4 

0 

- 0.5 

-1 

x’o’ I 
Figure 10. The ground deformation produced by the seismic dislocation in the presence of friction. The 
non-dimensional quantity ref,  (x2, o)/q, is plotted ford =11 km and different values of a. 

the vanishingly small stress available to drive the dislocation in the proximity of the Earth’s 
surface, which also requires zero ground deformation on the fault trace. When a= l ,  slip still 
occurs on the seismic fault section, since at depth the driving stress of our model is still 
higher than frictional stress (see equations 30 and 36). 

Table 2 shows the average basal stress 7b needed for a surface slip of 5 m to take place in 
the presence of friction for various values of d .  We can see that, in the presence of aseismic 
dislocation, 7b values are always lower than 3 bar (the maximum value predicted by Melosh 
(1976a,b) on the basis of a non-Newtonian rheology for the asthenosphere) as long as the 
residual stress on the seismic dislocation surface does not exceed 100 bar. On the other hand, 
in the presence of a significant residual stress (7f> 100 bar), small ?b values are possible only 
when d = l  lkm in Table 2. If, however, d 2 20 km, 5 m  slip amplitudes could only be 
attained if 7b is substantially greater than a few bars. 

We have accordingly subdivided Table 2 into three regions: the region on the left gives 
residual stresses which are less than 100 bar; the other two regions contain respectively fault 
models with low 7b values (7b S 3 bar) up, and fault models with higher 7b values down. 

Since geodetic measurements and the apparent absence of earthquake foci below about 
15 km on the San Andreas fault seem to deny that d > 20 km, if we admit that creep on deep 
fault sections can take place at very low levels of stress, we are almost inevitably led to 
conclude that an average basal shear stress lower than 3 bar is still capable of driving the 
motions of major tectonic plates (at least as we observed them at the Earth’s surface in 
connection with greater earthquakes). If, however, the stable regime at depth prevails only 
when a significant stress threshold is exceeded, larger values can be accepted for the basal 

Table 2. Values of the basal shear stress q, (in bar) as inferred from dislocation models with various values 
of d and a. Y = 4000 km, Z =lo0 km, u = 10 km. The furthest right column shows, after multiplication by 
aq,, the corresponding values of residual stress on the seismic fault section (in bar). See the text for the 
subdivision in three regions. 

d @ m A a  0 0.25 050  7flaTb 1 ii; 2 i . l  I 233 11 0.3 0.4 0 5  
20 0.6 0.8 1.1 129 
50 1.3 1.8 2.7 5.3 1000 57 

100 1 9 25 3.8 7 5  40 
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Stress concentration on strike-slip fmrlts 38 1 
Table 3. Values of the basal shear stress q, (in bar) as inferred from dislocation models with various values 
of d and 8. Y =4000 km, 2 = 100 km, u =10 km. The furthest right column shows, after multiplication by 
&,, the corresponding values of residual stress on the u s e h i c  fault section (in bar). No friction on the 
seismic fault section. 

d e m \ p  o 025 050 0.75 1 Trlp7b 

11 0.3 0.4 05 0.8 - 40 
20 0.6 0.7 0 9  1.2 - 40 
50 1.3 1 A 1.6 1.7 - 40 

100 1.9 19 1 9 1 9  1 9 40 

shear stress. Let us assume that a residual stress T ,  is left on the aseismic dislocation surface: 
we write 

7 ,  = PTZ (37) 

where T Z  is defined by equation (9) and O G  /3< 1. In order that a surface slip of 5 m is 
attained, in the absence of friction on the seismic fault section (a =O), 71, values as shown in 
Table 3 must be applied to the base of the lithosphere. We see that 71, values (< 1.9 bar) 
requested in Table 2 for a certain value of d are consistent in Table 3 with a lower value of d, 
when /3> 0. In conclusion, Tb values derived according to our model depend on observable 
quantities (such as ground strain, slip and stress drop) through the two parameters a and 0, 
which are poorly constrained. Accordingly, some degree of non-uniqueness in the previous 
inferences must be clearly recognized. 

Some evident limitations of our dislocation models can moreover affect the previous 
conclusions. Among these, the assumption of a perfectly elastic lithosphere is probably 
inadequate to describe the region between the seismic and the aseismic dislocation(u < x3< d) 
where a high stress concentration is localized and, according to Yuen et ul. (1978), an 
inelastic regime may prevail. This might modify the detailed stress concentration pattern at 
depth. A second limitation is implicitly present in classical dislocation models: the edges of a 
dislocation surface must be prescribed, while we reasonably expect that the seismic disloca- 
tion surface might, sooner or later, extend into the aseismic dislocation surface. 

Bearing in mind both the previous limitations, conclusions for the post-seismic long-term 
defokation are not taken here (see, e.g. Savage 1975 and Turcotte & Spence 1974, 1975). 
A viscoelastic description of the asthenosphere is necessary to this end. Many authors have 
considered the effect of the asthenosphere rheology on strike-slip faults; however, some of 
them (e.g. Nur & Mavko 1974; Spence & Turcotte 1979) do not allow for the pre-seismic 
stable sliding condition at depth, while others (Savage & Prescott 1978) model it as a single 
screw dislocation and do not consider the details of the seismic events. 
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