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[1] We analyze the impacts of the steady state assumption on inverse model parameter
retrieval from biogeochemical models. An inverse model parameterization study using
eddy covariance CO2 flux data was performed with the Carnegie Ames Stanford
Approach (CASA) model under conditions of strict and relaxed carbon cycle steady state
assumption (CCSSA) in order to evaluate both the robustness of the model’s structure for
the simulation of net ecosystem carbon fluxes and the assessment of the CCSSA
effects on simulations and parameter estimation. Net ecosystem production (NEP)
measurements from several eddy covariance sites were compared with NEP estimates
from the CASA model driven by local weather station climate inputs as well as by
remotely sensed fraction of photosynthetically active radiation absorbed by vegetation
and leaf area index. The parameters considered for optimization are directly related to
aboveground and belowground modeled responses to temperature and water availability,
as well as a parameter (h) that relaxed the CCSSA in the model, allowing for site level
simulations to be initialized either as net sinks or sources. A robust relationship was
observed between NEP observations and predictions for most of the sites through the
range of temporal scales considered (daily, weekly, biweekly, and monthly), supporting
the conclusion that the model structure is able to capture the main processes explaining
NEP variability. Overall, relaxing CCSSA increased model efficiency (21%) and
decreased normalized average error (�92%). Intersite variability was a major source of
variance in model performance differences between fixed (CCSSAf) and relaxed
(CCSSAr) CCSSA conditions. These differences were correlated with mean annual NEP
observations, where an average increase inmodeling efficiency of 0.06 per 100 g Cm�2 a�1

(where a is years) of NEP is observed (a < 0.003). The parameter h was found to
be a key parameter in the optimization exercise, generating significant model efficiency
losses when removed from the initial parameter set and parameter uncertainties were
significantly lower under CCSSAr. Moreover, modeled soil carbon stocks were generally
closer to observations once the steady state assumption was relaxed. Finally, we also show
that estimates of individual parameters are affected by the steady state assumption. For
example, estimates of radiation-use efficiency were strongly affected by the CCSSAf

indicating compensation effects for the inadequate steady state assumption, leading to
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effective and thus biased parameters. Overall, the importance of model structural evaluation
in data assimilation approaches is thus emphasized.

Citation: Carvalhais, N., et al. (2008), Implications of the carbon cycle steady state assumption for biogeochemical modeling

performance and inverse parameter retrieval, Global Biogeochem. Cycles, 22, GB2007, doi:10.1029/2007GB003033.

1. Introduction

[2] The quantification and the understanding of the main
processes controlling biosphere-atmosphere fluxes are cen-
tral to advancing understanding of terrestrial carbon cycle.
The stable implementation of independent monitoring infra-
structures, such as the eddy covariance measurements of
ecosystem gas exchange networks (e.g., Ameriflux, Euro-
flux), contributes new information needed for ecosystem
modeling of vegetation dynamics and interactions with the
atmosphere [e.g., Baldocchi et al., 2000; Falge et al., 2002].
These measurements provide crucial information needed for
modeling ecosystem processes and interactions with the
atmosphere and upscaling of flux processes for regional-
scale carbon balance estimates [Papale and Valentini, 2003;
Tenhunen et al., 1998].
[3] In particular model-data synthesis approaches have

become popular and have shown large potential for im-
proving and constraining biogeochemical models [e.g., Law
et al., 2000; Reichstein et al., 2003; Xu et al., 2006]. In
principle all three elements of such a model-data synthesis,
the model itself, the data and the parameter estimation
algorithm have to be investigated with respect to errors
and uncertainties introduced by them. Past research has
addressed the effect of observation errors [Rannik et al.,
2006; Richardson et al., 2006b] and analyzed the influence
of different parameter estimation algorithms [Trudinger et
al., 2007], but largely neglected errors introduced by
‘‘false’’ model structure (but see Richardson et al. [2006a]).
[4] One common problematic feature of virtually all

process-oriented biogeochemical models is the requirement
for initialization which is usually achieved by a spin-up run
of the model, i.e., a run of the model to steady state
conditions for a specified vegetation type by repeating
climate conditions over several hundreds to thousands of
years [Law et al., 2001; Pietsch and Hasenauer, 2006].
Previous works challenged the inherent concepts behind
carbon cycle steady state assumption (CCSSA) in modeling
[e.g., Cannell and Thornley, 2003; Lugo and Brown, 1986].
Nonetheless, CCSSA is commonly assumed in most studies
over a considerable range of temporal and spatial scales
[Box, 1988; Law et al., 2001; Morales et al., 2005; Potter et
al., 1998; Schimel et al., 1997]. Differences in research goals
and specific case studies entail different levels of exposure to
CCSSA caveats and limitations, such as overestimation of
pools or of faster decay rates of recalcitrant pools [Pietsch and
Hasenauer, 2006;Wutzler and Reichstein, 2007]. Examples of
parameterization studies considering CCSSA include: model
intercomparison studies supported by eddy covariance meas-
urements [Amthor et al., 2001]; turnover times of vegetation
and soil pools [Barrett, 2002]; and model parameter optimi-
zation [Dufrêne et al., 2005], based on results for 20 years spin-
up runs [Epron et al., 2001].
[5] In this study we hypothesize that the CCSSA in

biogeochemical modeling and parameter optimization stud-

ies tends to reduce model performance, as well as to bias
parameter estimates and respective constraints in model-
data fusion approaches. We suspect that model initialization
until equilibrium may lead to compensation effects on
optimized parameters when observations show sink or
source ecosystem behavior.
[6] In this context we used a model-data synthesis ap-

proach, combining observations from multiple sites from
the CarboEurope-IP (Integrated Project) Network (http://
www.carboeurope.org/) with a biosphere model. We used
the Carnegie Ames Stanford Approach (CASA) model to
simulate biosphere-atmosphere carbon fluxes [Field et al.,
1995; Friedlingstein et al., 1999; Potter et al., 1993;
Randerson et al., 1996] which integrates the general
CCSSA principles. The optimization focused on parameters
associated with the governing functions driving the main
processes behind carbon fluxes variability. Inferences about
CCSSA significance in model performance and parameter-
ization are supported by inspection of the optimization
results from a defined ensemble of parameter sets.

2. Materials and Methods

2.1. Eddy Covariance Data and Sites

[7] Under the auspices of the CarboEurope-IP an exten-
sive set of eddy covariance flux measurement towers has
been established all over Europe, supporting ecosystem
level research on energy and mass transfer processes
[Aubinet et al., 2000]. From this network a limited set of
sites was chosen for the current study (Table 1). The
selection focused mainly on Mediterranean climate classes
or ecosystems present in the Iberian Peninsula [Oak Ridge
National Laboratory Distributed Active Archive Center
(ORNL DAAC), 2006a] that met minimum data availability
requirements for remotely sensed variables and in situ
measurements of climate variables and ecosystem C fluxes.
The final selection of sites includes deciduous broadleaf
(DBF), evergreen needleleaf (ENF), mixed deciduous/ever-
green (MF), and evergreen broadleaf (EBF) forests, as well
as an evergreen broadleaf scattered tree canopy (savannah
type) with understorey (EBG). The site selection NEP
ranges between �75.4 and 566.7 gC m�2 a�1 (where a is
years), reflecting different ecosystem development stages,
as a result of different types and intensities of past and
present disturbances. Though this study focuses on a limited
number of plant functional types and climate regimes, the
site collection characteristics represent a manageable set for
testing our hypothesis on the impacts of the steady state
assumption on model optimization.
[8] The selected sites have experienced varying distur-

bance histories, management practices and climate regimes.
ES-ES1 last disturbances report to 1986 after which became
a natural area: no fire or human disturbances (construction
projects) since the 1970s. IT-Non is a reforestation site that
transited from agricultural to a forested area in 1992. IT-PT1
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is a managed poplar plantation site with rotation of 9–
12 years, last planted in 1993 and cut in 2005, where the
residues and stumps are removed after each logging to allow
ploughing, causing significant reductions in soil C [Ferré et
al., 2005]. IT-Ren harvest cycles represent a 10% removal
of aboveground biomass (mean tree age � 85 years). IT-
Ro1 and IT-Ro2 are two coppice management sites with
very different soil C estimates, caused by differences in
times since coppicing: 2 and 11 years, respectively [Rey et
al., 2002]. At IT-Ro2, the total precipitation for IT-Ro2 in
2003 was half of 2002 records, suggesting a significant
drought in 2003. FR-Hes is a young Beech stand (�34 years
old). In FR-LBr, forest management practices include se-
lective thinning (1991 and 1996, 20% of stems removed)
[Loustau et al., 1999]. Two major disturbances were ob-
served at this site: a wind storm in December 1999 (destroy-
ing 19.4% of the stems) and a summer drought in 2002,
significantly reducing NEP. The latest disturbances recorded
in FR-Pue consist on a clear cut circa 60 years ago [Joffre et
al., 1996]. PT-Mi1 consists of a Q. suber and Q. ilex stand
(�90 years) strongly influenced by drought regimes [Jarvis
et al., 2007; Pereira et al., 2007].
[9] These data sets were processed using a standardized

methodology. The fluxes of CO2 were first corrected for
within canopy CO2 storage, then controlled for insufficient
turbulence (u* filtered) and outliers (‘‘spikes’’), and parti-
tioned into gross primary productivity and ecosystem res-
piration [Papale et al., 2006; Reichstein et al., 2005].
Uncertainties of the data processing are discussed and
quantified therein. Gap filling was performed according to
the marginal distribution sampling method [Reichstein et
al., 2005], for which uncertainties were quantified in gap
filling by Moffat et al. [2007]. Systematic errors in eddy
covariance fluxes due to nonideal observation conditions
(e.g., advection and the imbalance in the energy budget) are
under intensive research and remain to be further quantified
[Aubinet et al., 2005].
[10] Fluxes were aggregated into daily, weekly and

monthly integrals by summing up the half-hourly gap-filled
flux estimates. Flux integrals were only used for the analysis
when more than 80% of the half-hourly data were either
original or gap filled with high confidence (Reichstein et

al.’s [2005] Category A; see also http://gaia.agraria.unitus.
it/database/eddyproc/). This is a heuristic compromise be-
tween avoiding the use of gap-filled data for model parame-
terization and disregarding valuable data information.

2.2. Model Description

[11] The Carnegie-Ames Stanford Approach (CASA)
model [Field et al., 1995; Friedlingstein et al., 1999; Potter
et al., 1993; Randerson et al., 1996] is a production
efficiency model [Ruimy et al., 1999], estimating net
ecosystem production (NEP) as the difference between net
primary production (NPP) and soil heterotrophic respiration
(Rh). Model’s NPP estimates are based on the concept of
radiation use efficiency [Monteith, 1972, 1977] and calcu-
lated as the product between absorbed photosynthetically
active radiation (APAR) and light use efficiency (e):

NPP ¼ APAR � e; ð1Þ

where APAR is expressed by the product between fraction
of photosynthetically active radiation absorbed by vegeta-
tion (FAPAR) and the amount of photosynthetically active
radiation (PAR):

APAR ¼ FAPAR� PAR ð2Þ

and e is calculated by down regulating maximum light use
efficiency (e*) via the effect of temperature (Te) and water
(We) stress factors:

e ¼ e	 � Te �We: ð3Þ

[12] On the other hand, Rh, resulting from microbial
mediated decomposition of plant and soil organic residues,
can be generically described as:

Rh ¼
Xp

i

Ci � ki �Ws � Ts � 1�Með Þ; ð4Þ

where (1) p is the number of pools, (2) Ci is the carbon
content of pool i, (3) ki is the maximum decay rate constant

Table 1. Identification of the Different Sites Included in the Parameter Optimization Analysis

Site Name
Site
Code

Plant
Functional Typea

Latitude
(decimal degrees)

Longitude
(decimal degrees)

Precipitationb

(mm a�1)

Mean
Temperatureb

(�C)

Solar
Radiation
(MJ m�2)

Mean
NEP

(g C m�2 a�1)
Observation

Years

El Saler ES-ES1 ENF 39.34 �0.32 615.32 17.45 586.16 310.59 2000–2004
Hesse FR-Hes DBF 48.67 7.06 945.41 10.94 443.46 566.69 2000–2003
Le Bray FR-LBr ENF 44.72 �0.77 616.75 14.47 448.51 214.11 2000–2002
Puechabon FR-Pue EBF 43.74 3.60 974.08 13.67 513.97 192.07 2000–2002
Nonantola IT-Non MF 44.69 11.09 968.89 13.85 537.91 478.80 2001–2003
Parco Ticino IT-PT1 DBF 45.20 9.07 743.41 14.89 541.54 555.20 2002–2003
Renon IT-Ren ENF 46.59 11.43 1107.41 4.86 545.51 565.93 2000–2002
Roccaresp.1 IT-Ro1 DBF 42.39 11.92 973.10 16.51 520.75 �75.37 2002–2002
Roccaresp.2 IT-Ro2 DBF 42.41 11.93 772.43 14.98 536.93 543.71 2002–2003
Mitra PT-Mi1 EBG 38.54 �8.00 673.07 15.70 610.70 70.31 2002–2004

aThe several plant functional types include: evergreen needleleaf forest (ENF); evergreen broadleaf forest (EBF); deciduous broadleaf forest (DBF);
mixed forest (MF); evergreen broadleaf with grasses (EBG).

bThe presented total annual precipitation, mean annual temperature and net ecosystem carbon fluxes refer to each site’s data temporal range used in the
current study.

GB2007 CARVALHAIS ET AL.: STEADY STATE EFFECTS ON C FLUX MODELING

3 of 16

GB2007



of pool i, (4) Ws is the effect of soil moisture content on
decomposition, (5) Ts is the effect of temperature on
decomposition, and (6) Me is the carbon assimilation
efficiency of microbes. The carbon content of each pool
results from the integrated carbon transfers between litter,
microbial and soil pools. In plant pools carbon is gained
through NPP and lost because of foliage, wood and root
mortality and transferred to microbial and soil organic
pools. The CASA model has been widely used in studies
ranging from ecosystem to global scales [e.g., Potter et al.,
2001; Randerson et al., 2002, 1996]; focusing on different
ecological and biogeochemical processes [e.g., Potter et al.,
2001, 1998; Randerson et al., 2005]; evaluating distur-
bances impacts [e.g., Masek and Collatz, 2006; van der
Werf et al., 2003]; and integrated with ocean models for
global productivity studies [e.g., Behrenfeld et al., 2001;
Field et al., 1998].
[13] The CASA model is only a partial mechanistic

representation of the main processes governing carbon
fluxes between the ecosystem and atmosphere. The level
of complexity represents the trade off between biogeochem-
ical detail and tractability for global-scale studies integrating
extensive satellite observations and meteorological drivers.
The parameterizations of temperature and water stress
scalars in CASA aim to reproduce mechanistic effects of
both factors on productivity and heterotrophic respiration
[Field et al., 1995]. Carbon cycling processes are based on
the mechanistic compartment structure of the CENTURY
model [Parton et al., 1987] with multiple pools, each with
its own turnover time, and is expected to reproduce plau-
sible dynamics allowing examination of the steady state
assumption on NEP estimates. Accordingly, CASA is
considered suitable to evaluate the steady state impacts on
model performance and parameter optimization in inverse
biogeochemical modeling and data fusion exercises.
[14] The CASA model inputs include climatologic drivers

(mean daily, weekly, biweekly and monthly temperature,
total precipitation and solar radiation), vegetation state
(plant functional type and fractional tree cover) and bio-
physical properties (FAPAR and leaf area index), as well as
soil properties (texture and rooting depth).

2.3. Remote Sensing Data

[15] In the initial CASA model implementation, seasonal
vegetation biophysical properties, FAPAR and leaf area

index (LAI), were estimated through satellite remotely
sensed normalized difference vegetation index (NDVI)
estimates [Potter et al., 1993]. The emergence of robust
methods for FAPAR and LAI estimations on the basis of
radiative transfer principles [Gobron et al., 1997; Knyazikhin
et al., 1998; Myneni et al., 1995] are providing remote
sensing products of significant usefulness in biophysical
modeling. The current study makes use of 8 day composites
of FAPAR and LAI products from the Moderate Resolution
Imaging Spectroradiometer (MODIS), on board the Terra
platform [Myneni et al., 2002], available from ORNL DAAC
[2006b]. The identification of poor quality records flagged
by ancillary data sets and the occurrence of not flagged
sudden underestimation spikes (mainly associated to atmo-
spheric contamination) lead to the FAPAR and LAI time
series treatment based on two different methods: (1) the best
index slope extraction (BISE) [Viovy et al., 1992] and (2) a
Fourier Wave Adjustment (FWA) [Sellers et al., 1996]; both
supported by robust relationships with other variables and/
or information contained from good quality neighboring
pixels (Text S2 and Figure S3).1 The rationale behind this
approach is the minimization of poor model performance in
the optimization procedure resulting from low data quality
issues in input data.

2.4. Optimized Parameters Description

[16] The first step in selecting parameter sets for optimi-
zation was the identification of scalars governing both NPP
and Rh processes. Chosen parameters are mainly related to
temperature and water response curves, although maximum
energy mass conversion rates (light use efficiency) and soil
carbon turn over rates were also evaluated (Table 2).
Furthermore, a parameter (h) was defined that scaled soil
carbon pools (microbial and slow turnover rate’s pools) at
the end of the initialization process, allowing for the impact
assessment of the CCSSA in the model performance and
parameter constraints. In this context, the simulation of
carbon source or sink ecosystems becomes possible by
relaxing the CCSSA approach at the end of the model spin
up, reducing the possibility of compensating effects biasing
other model parameters (Text S1 and Figures S1 and S2).
[17] The selection of the main set of parameters for

optimization focused on the temperature and water stress
response scalars affecting both NPP (Topt and Bwe) and Rh
(Q10 and Aws), the two principal environmental controls on
NEP, as well as energy-mass conversion rates (e*) and the
CCSSA relaxing parameter (h) (Table 3; S0). In order to
assess the significance of h in the initial parameter set (S0)
six new parameter sets were created by removing each
element of S0 individually, generating the parameter vectors
Se*
� , STopt

� , SBwe
� , SQ10

� , SAws
� , and Sh

� (the minus superscript
indicates the removal of the parameter in the subscript). The
initial value (a standard value that was also the initial guess
when included in the optimization) was used for each
parameter removed from the optimization (Text S1). Four
other parameters related to temperature control on carbon
assimilation (Ta and Tb) and respiration (Tref) processes, as

Table 2. Parameters Used in the Different Model Optimizations

Symbol Parameter Definition Units Submodel

e* Maximum light use efficiency g C MJ�1 APAR NPP
Topt Optimum temperature

for photosynthesis
�C NPP

Ta Temperature sensitivity below Topt Unitless NPP
Tb Temperature sensitivity above Topt Unitless NPP
Bwe Sensitivity to water stress Unitless NPP
Q10 Multiplicative increase in soil

biological activity for a 10�C
increase in temperature

Unitless Rh

Tref Reference temperature in Q10

function
�C Rh

Aws Sensitivity to water storage Unitless Rh
k Soil pools turnover rates dt�1 Rh
h Steady state relaxing parameter Unitless Rh

1Auxiliary materials are available in the HTML. doi:10.1029/
2007GB003033.
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well as the maximum turnover rates of soil carbon pools (k),
were examined with regard to their ability to improve model
performance for fixed CCSSA. In these cases h was
removed from the parameter vector and replaced by each
of the potential alternatives, yielding four new parameter
sets: Sk

+, STa
+ , STb

+ , and STref
+ (the plus superscript indicates the

replacement of h by the parameter in the subscript). The
complete ensemble of parameter sets can be divided in two
different groups: (1) one considering a relaxed CCSSA
(CCSSAr) composed by all parameter vectors that include
h (S0, Se*

� , STopt
� , SBwe

� , SQ10
� , and SAws

� ) and (2) another
considering a fixed CCSSA (CCSSAf) comprising all pa-
rameter vectors that exclude h (Sh

�, Sk
+, STa

+ , STb
+ , and STref

+ ).

2.5. Parameter Optimization Method

[18] Eddy covariance measurements of CO2 fluxes and
simulated NEP estimates were used to estimate the model
parameters independently for each parameter set and for
each site at different temporal scales. The optimization
method consisted of the minimization of a cost function
(least sum of residual squares) by the Levenberg-Marquardt
algorithm [Draper and Smith, 1981]. Standard errors and
covariances of parameter estimates were calculated as the
square root of the diagonal elements of the parameter
covariance matrix that in turn was calculated from the
Jacobi matrix and the sum of residual squares according
to Draper and Smith [1981], using standard assumptions
(e.g., normality and independence of the residuals). For
half-hourly fluxes Richardson et al. [2006b] found random
errors to be non-Gaussian distributed, but this result is
currently under debate since it could partly emerge from
superposition of several Gaussian distributions with varying
variance, e.g., when pooling nighttime and daytime data
[Lasslop et al., 2008]. For longer-time integrals flux errors
tend to become more Gaussian [Richardson et al., 2008]
which is consistent with the central limit theorem. An exact
characterization at daily to monthly timescales remains to be
done, but is out of scope and focus of the current study and
would not likely change the major conclusions derived here.

[19] The parameter optimization was performed individ-
ually by site, parameter set, temporal resolution and remote
sensing correction, providing independent results in a full
factorial design. We followed a strategy similar to Wang et
al. [2006], where each optimized parameter is normalized
by its initial value, that is d = P/P0, being P the optimized
parameter and P0 the initial parameter value. Consequently,
the optimization lies on d, rather than on P, where P was
calculated as P = dT P0, since all P0 are set the same for all
simulations.

2.6. Statistical Analysis

[20] The CASA model performance is evaluated through
different statistical indices by comparing NEP simulations
against measurements, for the different sites according to
Janssen and Heuberger [1995]. Four main indices were
chosen to evaluate the model performance in different
perspectives: (1) the Normalized Average Error (NAE),
expressing mean model biases when compared to observa-
tions; (2) the Variance Ratio (VR), aiming to analyze the
pattern of variability generated by simulations through the
ratio between estimates’ and observations’ variance; (3) the
modeling efficiency (MEF), measuring the variance of the
predictions from the one-to-one prediction line [Nash and
Sutcliffe, 1970] and sensitive to systematic deviations be-
tween model and observation [Smith et al., 1996]; as well as
the commonly used (4) coefficient of determination or
correlation coefficient (r2) (Text S3).
[21] As a consequence of the current experimental design,

the variance observed either in optimized parameters or in
model performance measures may be driven by different
factors (site, parameter set or temporal resolution) indepen-
dently or as a result of interactions between them. In order
to identify the main determinants of variance of a given
variable an n-way analysis of variance (ANOVA) was
performed for the three main factors considered, for a
0.05 significance level [Hogg and Ledolter, 1987].
[22] The evaluation of statistical differences between two

distributions relied on one-sided Kolmogorov-Smirnov
(KS) difference tests [Janssen and Heuberger, 1995] for
both higher (F1(x) > F2(x)) and lower (F1(x) < F2(x))
alternative hypothesis. The KS tests supported the evalua-
tion of model performance differences between different
parameter sets, as well as the identification of differences
between optimized parameters and parameters standard
errors distributions, at a significance level of 0.05, through-
out sites and temporal scales.

3. Results and Discussion

3.1. General Model Performance

[23] Generally, model performance results supports sig-
nificant confidence in model structure, for which robust
relationships were observed between simulations and obser-
vations throughout the different sites, temporal scales and
parameter sets considered (Table 4). These results are
further supported by an analysis of variance of model
evaluation parameters with site, parameter sets and temporal
scale. The main determinants of r2 were found to be the
sites and the interaction between site and parameter set,

Table 3. Identification of the Different Parameters Included in

Each Parameter Set

Parameter Seta

Parameter

e* Topt Bwe Q10 Aws h k Ta Tb Tref

S0 X X X X X X
Sk
+ X X X X X X
STa
+ X X X X X X
STb
+ X X X X X X
STref
+ X X X X X X
Se*
� X X X X X
STopt
� X X X X X
SBwe
� X X X X X
SQ10
� X X X X X
SAws
� X X X X X
Sh
� X X X X X

aEach capital letter S stands for a parameter set; S0 identifies the base
parameter set. Whenever h is being replaced by any other parameter, the
superscript of S will show a plus sign and the subscript will represent the
parameter acronym used instead of h; whenever one parameter present in
S0 is removed, the superscript will be a minus sign and the subscript will
represent the parameter acronym removed from S0.
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respectively responsible for 34 and 37% of the explained
variability in r2 (Figure 1). Variance ratios <1 indicate a
systematic underestimated variance in simulations, reflect-
ing model structure deficiencies in modeling processes
responsible for extreme (positive and negative) NEP obser-
vations, but also reflect noise in the observed eddy flux data
themselves that is not reproduced by the model [Moffat et
al., 2007], which ultimately limit the agreement between
models and observations. The main isolated determinant of
MEF and NAE variance was found to be parameter set
responsible for 30 and 44% of its variability, respectively,
while the interaction between site and parameter set explain
50 and 38% of MEF and NAE variance, respectively. MEF
values yield satisfactory model performance [Quinton,
1997], indicating model’s suitability for simulating carbon
fluxes at the different temporal scales (Figure 2). NAE
results show a positive bias, underestimating NEP for sink
situations, and vice versa, indicating that in an average
sense the model has a tendency to approach null balances
(Table 4).
[24] The ANOVA results for the main determinants of

model performance generally show significant variability
from site to site and with parameter selection. The main
effects of parameter set are observed in NAE and in MEF,
showing the parameter set selection relevance in reducing
model’s residuals. Overall, model performance measures
(Table 4) demonstrate the model’s ability in simulating net
ecosystem fluxes.

3.2. Parameter Set Selection

[25] The current experimental design generated one cor-
relation matrix per optimization run, yielding multiple

results per parameter comparison pair, varying with site,
temporal resolution and parameter set. Correlation matrix
results showed negligible to low covarying pairs of
parameters in most cases (70%), although moderate
(15%) marked (10%) and high (5%) correlations were
also observed. Significant reductions in correlation be-
tween parameters are observed when increasing temporal
resolution (Table S1). Thus it seems that there is informa-
tion in the daily data, that allows to better resolve
individual processes represented by model parameters
and that help to reduce parameter correlations that occur
when the day-to-day variability is smoothed to weekly or
monthly time steps.

3.3. CCSSA Impacts on Model Performance

[26] Model performance results for S0 optimization
showed lower model biases, indicating that CCSSAr

brought modeled NEP closer to observations (closer to the
one-to-one line; Figure 3). MEF and NAE results show
improvement trends from Sh

� to S0 of 0.21 and �0.92, on
average, respectively. A strong relationship was found
between mean annual NEP observations and MEF increases
for CCSSAr, where an average increase in MEF of 0.06 is
observed per 100 g C m�2 a�1 of NEP (a < 0.003). These
results indicate that the integration of h in the parameter set
for optimization generates improvements in effective net
fluxes estimates (Figure 4b), suggesting improved estimates

Figure 1. ANOVA test results on the four model
performance indicators yielded by the CASA model
optimization throughout sites (FST) and temporal resolu-
tions (TMR) for all parameter sets considered (PRM). The
percentage values correspond to the variance explained by
each factor or combination of factors over the total
explained variance. Here r2 is correlation coefficient,
MEF is modeling efficiency, NAE is normalized average
error, and VR is variance ratio.

Figure 2. MEF distribution for simulations where h is
considered in the parameter set (CCSSAr). Rectangular
boxes are bounded by 25th (right) and 75th (left) percentile,
while the vertical line inside indicates the sample median;
dashed lines limited by vertical bars indicate the extent of
the remaining data, excluding outliers; plus signs indicate
statistical outliers.
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of the other parameters and thus a better representation of
environmental variability effects on NEP. By relaxing the
common steady state assumption and hence allowing flex-
ibility to soil carbon pool sizes, h allows for regulation of
carbon efflux from the soil as a function of distance to an
equilibrium stage, permitting higher process sensitivity to
environmental conditions. The only systematic exception to
the previously referred improvements by including h in the
parameter set for optimization was PT-Mi1, which is a weak
carbon sink, generally yielding h values close to unity.
[27] We further tested if the improving effect of h could

also have been achieved instead by optimizing other param-
eters. Replacing h with optimized soil pools maximum turn
over rates (Sk

+) or temperature effects on NPP (STa
+ and STb

+ )
or Rh (STref

+ ) produced poorer agreement with observations
than S0 optimizations. Both MEF and NAE statistics
showed reductions throughout sites and temporal scales
compared to simulations where h was included to relax
the steady state assumption (Figure 5). The differences
between S0 versus CCSSAf (Sk

+, STa
+ , STb

+ and STref
+ ), evalu-

ated independently per parameter set, show a mean increase
of 0.20–0.36 in MEF and a mean decrease of 0.85–0.96 in
NAE under CCSSAr conditions. MEF differences reveal a
significant relationship (a < 0.001) with mean annual NEP
values throughout temporal scales, showing an average
increase in MEF of 0.04 per 100 g C m�2 a�1 of NEP,
which is consistent with the previous relationship found for
S0 versus Sh

�. These results indicate that neither environ-
ment response curve related parameters (STa

+ , STb
+ , and STref

+ ),
nor carbon mineralization rates of soil pools (Sk

+) (Figure 4a)
can substitute the effect of h on model performance.
[28] In addition to h, we found e* and Topt to be of

significant importance in S0, since the removal of each
individually yielded significant differences in model perfor-
mance (Figure 5; Se*

� and STopt
� ). The exclusion of e* from

the optimization (Se*
� ) limits the ranges of NPP seasonality

in the simulations by imposing a fixed e*, causing signif-
icant increases in VR (not shown) and decreases in MEF
(Figure 5). Optimizing NEP fluxes with such an imposed
limited NPP seasonality also reduces the model’s capacity
in correctly simulating higher NEP fluxes (Figure 4c).
Further, we found that by replacing Topt from the initial
parameter set (STopt

� ) with a prescribed value (in this case
25�C), we reduced agreement between modeled and ob-
served seasonal cycle in NPP expressed as significant
reductions in r2 (not shown) and MEF (Figure 5).
[29] As shown above, simulations’ MEF and NAE sig-

nificantly improved when h was included in the optimized
parameter vector. Furthermore, a significant correlation was
found between MEF and distance to steady state under

CCSSAr (a < 0.001). Moreover, the sites’ mean annual
NEP values were inversely related to h estimates (Figure 6)
indicating increasing importance of h for ecosystems that
are farther from steady state conditions. These results reflect
the fact that the introduction of a parameter that scales soil C
pools after spin up is directly related to the magnitude of the
source/sink conditions observed at the ecosystem level,
through the regulation of substrate availability for Rh. Fur-
ther, statistically significant performance improvements in
both NAE and MEF (Figure 5) and r2 support the hypothesis
that the underlying mechanisms driving net ecosystem fluxes
are better represented by the CCSSAr optimizations.
[30] In addition to the influence of h, the significance of

both e* and Topt is indicated by the reduction in the quality
of model results in Se*

� and STopt
� when compared to S0,

reflecting that amplitude and seasonality mismatches be-
tween observations and simulations occurred as a result of
deficiencies in NPP simulations.

3.4. Factors Controlling Parameters and Their
Constraints

[31] Generally, the main determinants of parameters var-
iability are related to the site, either isolated or through
interactions with other factor (Figure S4). The site factor is
the main isolated determinant for parameter variability in
e*, Topt and Bwe (40, 39, and 17%, respectively), followed
by parameter set (16, 7, and 9%, respectively). Note that e*
variability strongly depends on these two factors, site and
parameter set, which isolated or interacting account for 89%
of its variability. These results reflect the importance of
ecosystem characteristics/properties for e*, as well as a high
sensitivity of parameter selection for its optimization. The
main isolated determinants of Q10 variability were found to
be parameter set (28%) and flux site (9%), while the
interaction behind these two factors determines 56% of
Q10 variability. The variability in Aws explained by isolated
factors is significantly low (<15%), while interaction effects
explain more than 85% if it variability, mainly flux site and
parameter set (55%). These results suggest parameter set
selection is a significant determinant of parameters variance,
except for h where site alone explains 83% of its variability.
3.4.1. Effect of Steady State Assumption on
Parameter Estimates
[32] Under relaxed steady station conditions significant

positive correlations were observed between observed mean
annual NEP fluxes (NEP) and optimized e* values, while
for strict steady state conditions this correlation was not
significant. For daily calculations, the inclusion of h in the
optimized parameter set (S0) yielded significant differences
in e* estimates, positively correlated (a < 0.02) to NEP
(Figure 7b). Consequently, differences in e* under relaxed
and strict steady state conditions were inversely related to h
values (a < 0.08) (Figure 7a), making the latter inversely
related to NEP (Figure 6). These results suggest that for S0
the sink magnitudes were achieved not only by reducing
soil C pools and hence Rh, through h (reducing the soil C
pools, hence Rh) but also by increasing e* (increasing
NPP), consequently increasing NEP estimates. Values found
for e* (Table 5) showed significant differences with plant
functional type (PFT), and usually fell within conversion

Table 4. Model Performance Results for Different Temporal

Resolutions (Mean ± Standard Deviation)

Statistics

Temporal Resolution

Daily Weekly Biweekly Monthly

r2 0.66 ± 0.14 0.75 ± 0.13 0.77 ± 0.14 0.74 ± 0.14
MEF 0.57 ± 0.23 0.65 ± 0.27 0.66 ± 0.29 0.66 ± 0.27
NAE 0.49 ± 0.62 0.54 ± 0.89 0.50 ± 0.63 0.47 ± 080
VR 0.66 ± 0.18 0.76 ± 0.16 0.75 ± 0.19 0.74 ± 0.18
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Figure 3. CASA model NEP estimates for IT-Non at different temporal scales: (a–d) daily calculations
and (e–h) weekly calculations; and CASA model NEP estimates for IT-Non for different parameter sets:
(Figures 3a, 3b, 3e, and 3f) under CCSSAf (Sh

�) and (Figures 3c, 3d, 3g, and 3h) under CCSSAr (S0).
CCSSAr reflect an effective improvement by approximating NEP estimates to the one-to-one line. The
differences between daily and weekly results illustrate the potential to overlook these effects with noisy
data.
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efficiencies previously compiled by Ruimy et al. [1994],
although reported maximums (for cultivated vegetation) per
PFT were usually not found in the optimization.
[33] Generally, Topt estimates fell within those reported by

Adams et al. [2004], although no significant differences
were found between Topt estimates under relaxed or fixed
steady state conditions (Figure 8a). These results suggest
optimized Topt depends more on day-to-seasonal NEP
variability than on annual NEP (sink strength).
[34] Comparing Bwe estimates between relaxed (CCSSAr)

against fixed (CCSSAf) steady state simulations we observed
significant differences: CCSSAr estimates were lower than
CCSSAf (Figure 8a). Higher Bwe values indicate lower
sensitivity of light use efficiency to the ratio of estimated
evapotranspiration to potential evapotranspiration (PET),
hence decreased impact of water deficits on NPP, enabling
higher NEP estimates for sites that are carbon sinks. Occa-
sionally, the optimization resulted in unrealistic parameter
estimates of Bwe (Bwe > 1). Although CCSSAr optimizations
show lower occurrence of erratic Bwe values, two main
reasons were found for such results. One case for spurious
Bwe optimizations occurred for IT-Ren, where not only
estimates of Bwe were often higher than one, but also Bwe

standard errors (SE) ranged 1 order of magnitude higher than
for any other sites. The differences in model efficiency
between both optimizations were negligible (between 1
and 5.5%), as well as differences between the optimization
of other parameters (between 0 and 7%). The optimization
insensitivity to Bwe in IT-Ren lead to the assumption that
here vegetation does not experience water stress. Further
analysis on the reasons behind unrealistic Bwe retrievals
revealed estimated evapotranspiration (EET) showed statis-
tically significant correlations between CASA model EET
estimates and EET observations. However, a weak relation-
ship observed between NEP measurements and the observed
evapotranspiration-PET ratio (not shown) indicates the data
inability to properly constrain Bwe in some cases. In such
cases of unconstrained parameters Bayesian approaches,
where a priori parameter likelihoods are defined, are appro-
priate, but this is out of the focus of this study.
[35] Throughout parameter sets, Q10 estimates ranged

within values found in literature [Kätterer et al., 1998;
Kirschbaum, 1995; Raich and Schlesinger, 1992; Reichstein
et al., 2003]. Overall, no significant differences were found
between optimized Q10 values distribution under relaxed
and fix steady state conditions, although most of the
optimizations yield Q10 values lower in CCSSAf (67% of
the cases) (Figure 8a). The lower temperature sensitivity of
Rh in the CCSSAf cases resulted in reduced seasonal
amplitude in Rh with lower Rh and thus higher NEP during
the warmer growing season yielding a better match to
observations. Q10 estimates for two sites (FR-Hes and IT-
Non; Table 5) were <1, resulting from the integrated effect
of temperature and water availability on Rh. Seasonal
climate patterns of temperature and precipitation resulted
in positive correlations between water availability and
temperature controls. As a consequence, the effects of water
availability and temperature were difficult to disentangle,
and interfered with parameter retrievals.

Figure 4. Observations versus simulations results between
different parameter sets and S0 (IT-PT1). (a and b)
Simulations without h (Sh

�) or integrating turnover rates
instead of h (Sk

+) in the optimization parameter set show
higher mismatch with observations. (c) The removal of e*
(Se*

� ) from the initial parameter set (S0) significantly affects
the agreement between measured and modeled ecosystem
fluxes.
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[36] Generally, for CCSSAf cases, results illustrate the
systematic biases in optimized parameters since the optimi-
zation tended to modify the Rh and NPP responses to
climate and phenological drivers, in order to compen-
sate for NEP estimates biases caused by the steady state
assumption.
3.4.2. CCSSA Impacts on Parameter Standard Errors
[37] The parameter standard errors (SE) showed signifi-

cant differences between the different temporal resolutions

as a result of varying time series size and smoother variation
as time steps became longer. Consequently, the relevance of
temporal resolution on parameters standard errors (SE)
variability is significant, either as an isolated factor or in
interaction with site or parameter set, depending on the
parameter (Figure S5). The largest variability in SE was
attributed to parameter vector and parameter vector x site
interactions, suggesting constraints on parameters depended
mostly on the optimized parameter vector selection.

Figure 5. Comparison between model performances of the different parameter sets considered in the
optimization exercise: (left) MEF and (right) absolute NAE. Each intersection box indicates differences in
model performance measures distribution between the optimized parameter set in the x axis and y axis
parameter set. Grey (black) intersection squares indicate model performance distribution for x axis
parameter set is significantly lower (higher) than for y axis parameter set.

Figure 6. Relationship between mean annual NEP observations and h optimization results throughout
parameter sets for daily calculations.
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[38] The inclusion of h in the optimized parameter set
tends to reduce the standard errors (SE) of optimized
parameters across temporal scales (Figure 8b). NPP related
parameters, e*, Topt and Bwe show the highest-median SE
reductions (19, 21, and 38%, respectively) and a significant
occurrence of SE improvements throughout sites and tem-
poral resolutions (61, 61, and 81%, respectively). For Rh
related parameters, SE was reduced for Aws in 64% of the

cases, and for Q10, in 42% of the cases. Comparisons
between optimized parameter SE for the full parameter set
ensembles revealed that SEs are lower in CCSSAr than in
CCSSAf populations, and that these differences are statisti-
cally significant (except for Q10 SE) (Table 6).
[39] The current results demonstrate that the consideration

of a relaxed steady state on inverse model parameter
optimization leads to significantly better constrained param-
eters. Better parameter constraints on different parameters
are achieved under CCSSAr, in part because sink or source
conditions were not imposed on climate or phenological
driven responses in NEP as was the case for CCSSAf (see
section 3.4.1 above).

3.5. Relaxation of the Carbon Cycle Steady State

[40] As shown above, the variability in h was strongly
determined by inter site variability and much less so by
temporal resolution or parameter set, corroborating the
previous correlation between h and magnitude of the source
or sink behavior of each site (Figure 6). The CCSSAr

approach forced the adjustments of C pools after spin up
routines, regulating each site’s respiration potential hence
modifying the differences between mean annual NPP and
Rh fluxes. These results suggest ecosystem respiration
(Reco) controls on net ecosystem carbon exchange [Valentini
et al., 2000]. The parameter h and measured NEP/Reco

(considered a normalized distance measure from equilib-
rium) were significantly correlated (a < 0.05) for all relaxed
steady state parameters sets. Yet, significant positive corre-
lations found between NEP (and also NEP/Reco) and e* in
relaxed steady state optimizations suggest stronger sinks are
associated with marked NPP seasonality. These results
imply a significant role of mean annual gross primary
productivity (GPP) in determining net ecosystem carbon
exchange (Figure S6).
[41] In summary, we find that in the CCSSAr approach

allows for the simulation of C sinks, by decreasing the soil
C pools, hence the Rh potential. However, the observed
correlations between GPP and NEP (and GPP and e*)
suggest that sink magnitudes not only depend on adjustment
of C pools further from an estimated equilibrium per se but
also on increasing productivity through adjustment of e* in
CCSSAr. This behavior does not hold true under CCSSAf

since higher NPP estimates are counterbalanced by Rh at
steady state.

3.6. Site History Effects on h and Soil C Pools

[42] The current study relies on h to properly quantify the
distance from each ecosystem to steady state and, although
h’s estimate is strongly determined by NEP and the ratio
between NEP and Reco, we generally found consistent
improvements in total soil C pools measurements between
relaxed and fixed steady state assumptions (Figure 9). Five
of the sites showed marked improvements, for one site both
relaxed and fixed cases were similar to observations and for
one site the relaxed and fixed were similar to each other and
significantly higher than observations.
[43] In IT-Ro2, FR-LBr, and PT-Mi1 droughts were

observed during measuring period. In this regard, Jarvis
et al. [2007] point out the importance of appropriate

Figure 7. CCSSAr impact on e* estimates reveals: (a) an
inverse relationship between differences in e* estimates
(calculated as the difference between e*(S0) and e*(Sh

�))
and h estimates, at daily temporal scales, and (b) a direct
relationship between differences in e* estimates and annual
NEP observations, also for daily simulations.
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discrimination of drought related issues in C flux modeling.
The nonconsideration of such phenomena may lead to
biases in total soil C balance estimates, as well as in C
partitioning among the soil C pools, which is of significant
importance in regions prone to systematic droughts, as is the
case of PT-Mi1 [Pereira et al., 2001, 2007]. Furthermore, in
these areas, spin up routines may also yield significant
biases in soil C pools by prescribing transient climate data
sets based on averages or smoothed time series, where
climate variability and extremes are removed or reduced.
[44] Although the current results demonstrate that relaxed

steady state assumptions through h approximate modeled
from measured total soil C pools, some important assump-
tions were made regarding soil C pools, disturbances and
inter annual variability (IAV): (1) although total soil C pools
estimates improved in CCSSAr optimizations, a correct
partitioning between the different soil C pools is not
assumed, due to h’s undifferentiated nature; (2) being h
strongly related to NEP, and the NEP/Reco ratio, the
relationship between h and disturbances is only possible if
these cause variations in annual C balance; and (3) when
uniquely analyzing individual years, IAV can be a source of
error in the quantification of the distance to steady state.

3.7. Potential Applications of the CCSSAr in
Biogeochemical Modeling

[45] The concept of capturing the disequilibrium in car-
bon fluxes through a parameter h has potential implications
and applications for generalizing carbon fluxes from site to
regional scales. Following the two-component modeling
approach by Andrén and Kätterer [1997], first-order soil C
dynamics equations can be analytically solved for both
pools at steady state (Text S4). Assuming non steady state
conditions, h can be calculated as:

h ¼ 1� 1

h

NEP

fGPP
; ð5Þ

where h stands for the ‘‘humification coefficient’’, expres-
sing the fraction of annual C fluxes entering a carbon pool
with long turnover times, and fGPP describes the mean
annual input of C to the soil, which in steady state is
assumed equivalent to observations of mean annual NPP
(NPP), considered a constant fraction of GPP [Waring et al.,
1998]. Our results show significant correlations (a < 0.002)
between h and NEP/GPP with an offset of 1.026 ± 0.027
and a slope of �3.043 ± 0.088, implying an h of 0.7 ± 0.02,
considering an f of 0.47 [Waring et al., 1998]. Estimates

found for h are significantly above values reported by
Andrén and Kätterer [1997] (ranging from 0.13 to 0.34),
possibly reflecting a carbon sequestration in multiple pools
including woody material, while Andrén and Kätterer
[1997] considered herbaceous ecosystems [Kätterer et al.,
1998].
[46] These results suggest an approach to integrate top-

down and bottom-up approaches in C flux modeling, as
exemplified by Rayner et al. [2005]. The main goal would
be to quantify spatially the distance to steady state
conditions in terrestrial ecosystems by constraining the soil
C pools with NEP estimates from atmospheric inversions,
and GPP (or NPP) estimates from the ecosystem biogeo-
chemical model. Using equation 5 one could give an
estimate of h that could be compared to disturbance and
land-use history.

4. Overall Discussion

[47] The current model evaluation study quantifies the
ability of the CASA model to simulate carbon fluxes at the
ecosystem scale, and indicates a significant robustness in
estimating NEP of ten eddy covariance monitoring sites at
different temporal scales. CASA is well suited to evaluate
the impact of the steady state approach on model perfor-
mance and parameterization through one parameter, h, which
relaxes this assumption. The consideration of a relaxed
versus a strict steady state approach produces: (1)
significant increases in model performance, via increases
in MEF and reductions in NAE and (2) improvements in
parameter constraints. The correlation between h and
differences in model performance emphasizes the positive
impact of a CCSSAr the farther apart an ecosystem is from
equilibrium. Overall, a clear distinction can be made
between CCSSAr and CCSSAf model performance results
although a significant intersite variability is observed both
in model performance as well as in the results of the
parameter optimization. Changes in the optimization results
of environmental response parameters associated with
significant increases in model performance under CCSSAr

suggest parameterization biases under fixed steady state
assumption, mainly on NPP related parameters.
[48] The relevance of optimizing e* is emphasized in this

selection of sites, where GPP is driving NEP observations,
and not Reco, as commonly found [Reichstein et al., 2007].
The current study demonstrates modeled sink/source
magnitudes can be improved by considering both a
parameter h quantifying the distance to an estimated steady

Table 5. Parameter Optimizations Results for S0 at Daily Temporal Scale per Site (Parameters Standard Errors in Parentheses)

Site Code e* Topt Bwe Q10 Aws

ES-ES1 0.72 (0.02) 17.95 (0.53) 0.65 (0.02) 3.03 (0.23) 0.51 (0.02)
FR-Hes 0.83 (0.02) 15.13 (0.27) 0.45 (0.06) 0.70 (0.04) 0.31 (0.05)
FR-LBr 0.69 (0.03) 7.88 (0.43) 0.67 (0.03) 1.55 (0.11) 0.90 (0.04)
FR-Pue 0.50 (0.02) 5.73 (0.30) 0.93 (0.04) 1.63 (0.12) 0.12 (0.01)
IT-Non 0.84 (0.02) 20.57 (0.22) 0.92 (0.03) 0.87 (0.04) 1.05 (0.09)
IT-PT1 1.00 (0.02) 21.00 (0.38) 0.61 (0.02) 1.44 (0.09) 0.57 (0.04)
IT-Ren 0.66 (0.01) 10.05 (0.38) 1.06 (0.10) 1.43 (0.09) 5.95 (0.35)
IT-Ro1 0.45 (0.02) 16.63 (0.63) 0.78 (0.06) 1.91 (0.15) 0.29 (0.02)
IT-Ro2 0.82 (0.05) 22.85 (0.83) 0.82 (0.03) 1.94 (0.25) 1.18 (0.22)
PT-Mi1 0.39 (0.01) 9.75 (0.43) 0.73 (0.03) 1.18 (0.09) 0.92 (0.07)
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state situation, yielding adjustments in total C pools closer
to measurements; and adjustments to primary production
through e*. Furthermore, the significance of synchronizing
NEP seasonal cycles through Topt is emphasized by
significant improvements in model performance. Potential
biases in h can occur because of strong NEP interannual
variability, suggesting the consideration of time series of
multiple years for a robust analysis of h.
[49] As a limitation we note however, that these calcula-

tions hinge on the accuracy of annual sums of eddy covari-
ance flux data, which might even after state-of-the-art
corrections underestimate nighttime fluxes and hence over-
estimate NEP. There are clear indications that errors are site
dependent and need further investigation [e.g., Aubinet et al.,
2005; Belelli-Marchesini et al., 2007; Marcolla et al.,
2005].
[50] From a more generalized modeling perspective the

current study demonstrates the usefulness of model-data
synthesis approaches for testing conceptual principles used
in biogeochemical modeling. In this sense the importance
of appropriate and flexible model structures is emphasized,
since we showed that inappropriate structure in one part

of the model can introduce biased parameter estimates
in apparently unrelated other model parts via statistical
correlations.

5. Conclusions

[51] While previous studies have shown the potential of
model inversion against eddy covariance data and have
emphasized the importance of data error characterization,
our study shows the implications of a typical biogeochem-

Figure 8. Effects of h in optimized parameter constraints. Except for Q10, the distribution of the
standard error in S0 (SE (S0)) generally presents tighter constraints than in Sh

� (SE (Sh
�)). Rectangular

boxes are bounded by 25th (lower) and 75th (upper) percentile, while the horizontal line inside indicates
the sample median; dashed lines limited by vertical bars indicate the extent of the remaining data,
excluding outliers; plus signs indicate statistical outliers.

Table 6. Results for the Parameters’ Standard Errors Mean and

Standard Deviation Considering Both a Fixed CCSSA (CCSSAf)

and a Relaxed CCSSA (CCSSAr)
a

Parameter

CCSSA

CCSSAf CCSSAr

e* 0.13 ± 0.15 0.08 ± 0.09
Topt 2.85 ± 3.49 1.37 ± 1.14
Bwe 0.16 ± 0.15 0.12 ± 0.15
Q10 0.46 ± 0.51 0.42 ± 0.47
Aws 0.37 ± 0.68 0.23 ± 0.80
aBold values indicate a statistically significant difference.
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ical model structure on model performance and parameter
retrieval for the first time in a systematic way. Furthermore,
our results emphasize the need for future studies on model
structure, both in the context of diagnostic as well as
prognostic models.
[52] While the overall ability of the CASA model to

simulate ecosystem carbon fluxes has been confirmed here,
the limitations of the carbon cycle steady state assumption
(CCSSA) embodied in almost all biogeochemical modeling
approaches has been clearly disclosed. We show that the
CCSSA deteriorates not only model performance expressed
as model errors or modeling efficiency, but more impor-
tantly, leads to biased parameter retrieval in a model-data
fusion framework. Indicative of this, the relaxation of the
CCSSA via one parameter h that relates to imbalance of soil
carbon pools yielded better model performance and more
constrained parameter estimates. Hence our study clearly
demonstrates that implications of model structure for
inverse parameter retrieval deserve more attention. In
particular the common steady state assumption may
compromise model-data synthesis in biogeochemical mod-
eling and needs to be addressed thoroughly. In our study we
used a semiempirical correction approach, but future
solutions might include a more explicit simulation of
reasons for nonsteady state in parameter optimization
procedures.
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