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Abstract. In a naive Bayesian classifier, discrete variables as well as discretized continuous variables are assumed
to have Dirichlet priors. This paper describes the implications and applications of this model selection choice.
We start by reviewing key properties of Dirichlet distributions. Among these properties, the most important one
is “perfect aggregation,” which allows us to explain why discretization works for a naive Bayesian classifier.
Since perfect aggregation holds for Dirichlets, we can explain that in general, discretization can outperform
parameter estimation assuming a normal distribution. In addition, we can explain why a wide variety of well-
known discretization methods, such as entropy-based, ten-bin, and bin-log l, can perform well with insignificant
difference. We designed experiments to verify our explanation using synthesized and real data sets and showed that
in addition to well-known methods, a wide variety of discretization methods all perform similarly. Our analysis
leads to a lazy discretization method, which discretizes continuous variables according to test data. The Dirichlet
assumption implies that lazy methods can perform as well as eager discretization methods. We empirically
confirmed this implication and extended the lazy method to classify set-valued and multi-interval data with a naive
Bayesian classifier.
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1. Introduction

Learning a naive Bayesian classifier (a.k.a. naive Bayes) (Duda & Hart, 1973; Langley &
Thompson, 1992) from data is an important technique for data classification. In spite of its
simplicity, the naive Bayesian classifier can perform surprisingly well in some domains.
Domingos and Pazzani (1997) provided an interesting analysis of why the naive Bayesian
classifier can perform well even though it violates the independence assumption. They
reported an experiment that compared the naive Bayesian classifier with several classical
learning algorithms such as C4.5 with a large ensemble of real data sets. The results show
that statistically the naive Bayesian classifier can outperform those algorithms significantly
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in many domains. But a more interesting aspect of their result is that it was achieved by a
version of the naive Bayesian classifier that uses a very “naive” discretization method to
handle continuous data. That method, usually referred to as “ten-bin,” divides the domain of
each continuous variable into ten equal-width bins. Such a simple method was considered
to be inferior and many complex methods have been proposed and applied, but surprisingly,
simple discretization methods perform well while not much improvement is found when
complex methods are used. Dougherty, Kohavi, and Sahami (1995) conducted an empirical
study comparing the performance of four well-known discretization methods and concluded
that the discretization methods can outperform a version of the naive Bayesian classifier
that assumes normal distributions for continuous variables. Moreover, these discretization
methods performed approximately the same, though an entropy-based method (Fayyad
& Irani, 1993) performed slightly better for some data sets. Kohavi and Sahami (1996)
compared the entropy-based method with an error-based method, which is not considered
in Dougherty, Kohavi, and Sahami (1995). Again, both methods outperformed the normal
version whereas no statistically significant difference between their performance was found.

Previous work provided some informal discussion but none explained why these dis-
cretization methods can work well regardless of their complexities. In this paper, we present
an explanation of this phenomenon. The key of our explanation is the “perfect aggrega-
tion” property of Dirichlet distributions. In a naive Bayesian classifier, the class conditional
probability of a discrete variable is usually modeled as having a multinomial distribution
with a Dirichlet prior (Monti & Cooper, 1999). This model selection choice is also applied
to discretized continuous variables. Perfect aggregation of Dirichlets implies that, with suf-
ficient training examples, we can estimate the class conditional probabilities of discretized
intervals with an arbitrary accuracy. This explains why a naive Bayesian classifier with
discretization can be effective in approximating a broad range of probability distributions
of continuous data. We also found that to achieve optimal performance, the probability
corresponding to an interval must simulate the role of the true density in the classification.
This led us to identify situations where discretization may cause performance degradation.
We show that these situations are unlikely to happen under zero-one loss for a wide variety
of discretization methods including the well-known methods. Therefore, these methods will
produce similar performance for many data sets regardless of their complexities.

The properties of Dirichlet distributions implies that it is not necessary to determine cut
points of the domain of a continuous variable before a naive Bayesian classifier performs
classification, as in existing discretization methods. Instead, a “lazy” discretization method
that dynamically discretizes continuous variables according to test data can achieve the
same result. In this paper, we present an instance of lazy discretization method and conduct
experiments to evaluate its performance. According to the Dirichlet assumption, this new
method should perform equally well as the well-known methods. Experiments revealed
results consistent with our prediction. Though the lazy method is not superior to existing
methods, one of its contributions is in justifying the selection of Dirichlet priors and verifying
our analysis. Another contribution is that the lazy discretization method can be extended to
allow a naive Bayesian classifier to classify set-valued and multi-interval data.

The remainder of this paper is organized as follows. Section 2 reviews the definition and
the perfect aggregation property of Dirichlet distributions. Section 3 describes the Dirichlet
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assumption made by a naive Bayesian classifier and discretization methods. Section 4
explains why well-known discretization methods can outperform parameter estimation
with approximately the same results. Section 5 provides empirical evidence of our ex-
planation. Section 6 presents the lazy discretization method. Section 7 describes the use of
lazy discretization for set-valued and multi-interval data. The last section summarizes the
conclusions and presents directions of future research.

2. Dirichlet distributions and perfect aggregation

In a naive Bayesian classifier, discrete variables as well as discretized continuous variables
are assumed to have Dirichlet priors. This section reviews the important properties of
Dirichlet distributions.

2.1. Dirichlet distributions

A Dirichlet distribution is formally defined as follows (Wilks, 1962):

Definition 1. Random vector � = (θ1, θ2, . . . , θk) has a k-variate Dirichlet distribution
with parameters α j > 0 for j = 1, 2, . . . , k + 1 if it has density

f (�) = �
( ∑k+1

j=1 α j
)

∏k+1
j=1 �(α j )

k∏
j=1

θ
α j −1
j (1 − θ1 − · · · − θk)αk+1−1

for θ1 + θ2 + · · · + θk ≤ 1 and θ j ≥ 0 for j = 1, 2, . . . , k. This distribution will be
denoted Dk(α1, α2, . . . αk ; αk+1). A Beta distribution is a univariate Dirichlet distribution
and usually denoted Beta(α1, α2).

The expected value for θ j is E[θ j ] = α j

α
, for j = 1, 2, . . . , k, where α = α1 +α2 +· · ·+

αk+1.
An important property of Dirichlets is that the Dirichlet distribution is conjugate to

the multinomial sampling (Wilks, 1962). This property basically states that the poste-
rior distribution of a Dirichlet given our observation is also a Dirichlet. Formally, let
D = {y1, y2, . . . , yk+1} be a data set for the outcomes in n trials, where y j denotes the
number of trials that have outcome j . When the prior distribution p(�) is a Dirichlet dis-
tribution with parameters α j for j = 1, 2, . . . , k + 1, and the likelihood function L(D | �)
follows a multinomial distribution, then the posterior distribution p(� | D) is also a Dirich-
let distribution with parameters α′

j = α j + y j for j = 1, 2, . . . , k + 1. Similarly, the Beta
distribution is conjugate to the binomial sampling. Due to the conjugate property, given a
data set D, the expected value for θ j will be updated and become E[θ j | D] = α j +y j

α+n , for
j = 1, 2, . . . , k + 1.

The following “closure properties” of Dirichlet distributions are critical to our analy-
sis. These properties greatly simplify the computation of the moments of the Dirichlet
distribution in Bayesian analysis.
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Lemma 1. Suppose random vector � = (θ1, θ2, . . . , θk) has a Dirichlet distribution
Dk(α1, α2, . . . , αk ; αk+1), then any subvector (θn1, θn2, . . . , θnm) of θ has an m-variate
Dirichlet distribution Dm(αn1, αn2, . . . , αnm ; α − ∑m

j=1 αnj ).

Lemma 2. Suppose random vector � = (θ1, θ2, . . . , θk) has a Dirichlet distribution
Dk(α1, α2, . . . , αk ; αk+1), then the sum of any subset � ⊆ {θ1, θ2, . . . , θk} has a Beta
distribution with parameters

∑
j∈� α j and α −∑

j∈� α j , where α = α1 +α2 +· · ·+αk+1.

The proofs of Lemmas 1 and 2 can be found in Wilks (1962).

2.2. Perfect aggregation

Let � be a subset of {θ1, θ2, . . . , θk}, and let the probability of interest q be the sum of the
variables in �; i.e., q = ∑

j∈� θ j . Suppose the prior distribution of � = (θ1, θ2, . . . , θk)
is a Dirichlet distribution Dk(α1, α2, . . . , αk ; αk+1). A straightforward application of the
Bayesian approach uses the training data D to update the prior distribution to obtain the pos-
terior distribution f (� | D), which is a Dirichlet distribution Dk(α1 + y1, α2 + y2, . . . , αk +
yk ; αk+1 + yk+1). Then the posterior distribution f (q | D) is derived from f (� | D). By
Lemmas 1 and 2, f (q | D) is a Beta distribution:

f (q | D) = Beta

(∑
j∈�

(α j + y j ), α + n −
∑
j∈�

(α j + y j )

)
(1)

However, by the properties of Dirichlet distributions, there exists an alternative and simpler
way to compute f (q | D). We can first derive the prior distribution for the probability of
interest f (q) from the prior distribution of f (�). Then we can convert the training data D
into a new set of training data D′ in terms of q by computing the sum of the observations
of our interest in D. Now, we can use D′ to update the prior distribution of f (q) to obtain
the posterior distribution f (q | D′).

Definition 2. Perfect aggregation (Iwasa, Levin, & Andreasen, 1987; Wong, 1998) holds
for a distribution f if f (q | D) = f (q | D′).

Theorem 1. Perfect aggregation holds for the Dirichlet distribution.

Proof: Sketch. (Azaiez, 1993) By Lemmas 1 and 2.

For example, suppose that we are interested in the probability of showing an odd number
in throwing a die. Let θ j be the probability that the die shows number j in a trial, and let
y j be the number of trials that the die shows j in n trials. Then the probability of interest
can be represented as q = θ1 + θ3 + θ5. In the straightforward approach, we derive the
distribution f (q | D) from the data {y1, y2, . . . , y6}, while in the alternative approach, we
can use D′ = {n, y1 + y3 + y5} instead and will obtain the same result.

An implication of perfect aggregation is that with Dirichlet distributions, to estimate the
posterior probability of a union of events, there is no need to estimate the probabilities of
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individual events. This implication allows us to show that discretizing continuous variables
for a naive Bayesian classifier can be effective in approximating a variety of probability dis-
tributions. Another implication is that when perfect aggregation holds, identifying the exact
outcome of an observation in D will not be necessary. In this case, we are only concerned
about whether the result of an observation is an outcome included in the event corresponding
to the probability of interest. Thus, when a probability of interest is known before training,
perfect aggregation can simplify the training effort in identifying the outcome of an obser-
vation in D. This implication allows us to derive a lazy discretization method for a naive
Bayesian classifier.

Two properties are important for perfect aggregation to hold for Dirichlet distributions.
First, the order of the variables in a random vector with a Dirichlet distribution can be
arbitrary. Second, the relationships of conditional independence among the variables are
strong (Wong, 1998). For other multivariate distributions defined on the simplex, such as
generalized Dirichlet distributions and Liouville distributions (Wilks, 1962), the conditions
for perfect aggregation to hold are usually extremely restricted. Therefore, the Dirichlet
assumption is critical for the perfect aggregation property to hold.

3. Dirichlet distributions in naive Bayesian classifiers

A naive Bayesian classifier classifies a query vector x by selecting class c that maximizes
the posterior probability

p(c | x) ∝ p(c)
∏
x∈x

p(x | c), (2)

where x is a variable in x. p(x | c) is the class-conditional density of x given class c. Let �

denote the vector whose elements are the parameters of the density of p(x | c). In a Bayesian
learning framework, we assume that � is an uncertain variable (Heckerman, 1998) and can
be learned from a training data set. This estimation is at the heart of training in a naive
Bayesian classifier.

3.1. Dirichlet assumption

Suppose x is a discrete variable with k + 1 possible values. In principle the class label c
of the data vector x dictates the probability of the value of x . Thus the appropriate p.d.f.
is a multinomial distribution and its parameters are a set of probabilities {θ1, θ2, . . . θk+1}
such that for each possible value X j , p(x = X j | c) = θ j and

∑
j θ j = 1. Now, let

� ≡ (θ1, θ2, . . . θk). We choose a Dirichlet distribution with parameters α1, . . . , αk+1 as the
prior for �. Given a training data set, we can update p(x = X j | c) by its expected value:

p̂(x = X j | c) = α j + ycj

α + nc
, (3)

where nc is the number of the training examples belonging to class c and ycj is the number of
class c examples whose x = X j . Since a Dirichlet distribution is conjugate to multinomial
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sampling, after the training, the posterior distribution of � is still a Dirichlet, but with the
updated parameters α j + ycj for all j . This property allows us to incrementally train a naive
Bayesian classifier.

In practice, we usually choose the Jaynes prior (Almond, 1995) α j = α = 0 for all j
and have p̂(x | c) = ycj

nc
. However, when the training data set is too small, this often yields

p̂(x | c) = 0 and impedes the classification. To avoid this problem, another popular choice
is α j = 1 for all j . This is known as smoothing or Laplace’s estimate (Cestnik & Bratko,
1991).

If x is a continuous variable, a conventional approach is to assume that p(x | c) =
N (x ; µc, σ

2
c ), where N (x ; µc, σ

2
c ) is the p.d.f. of a normal distribution. In this case, training

involves learning the parameters µc and σc from the training data (Duda & Hart, 1973).
This approach has been shown to be less effective than discretization when p(x | c) is not
normal (John & Langley, 1995), and discretization is often used. Generally, discretization
involves partitioning the domain of x into k + 1 intervals as a pre-processing step. Then we
can treat x as a discrete variable with k + 1 possible values and conduct the training and
classification.

More precisely, let I j be the j-th discretized interval. Training and classification in a
naive Bayesian classifier with discretization uses p̂(x ∈ I j | c) as an estimate of p̂(x | c) in
Eq. (3) for each continuous variable. This is equivalent to assuming that after discretization,
the class-conditional density of x has a Dirichlet prior. We call this assumption “Dirichlet
discretization assumption.” Apparently, this assumption is adopted implicitly by all well-
known discretization methods, including ten-bin, entropy-based, etc. See Section 4.1 for a
brief survey.

3.2. Partition independence assumption

The Dirichlet discretization assumption is reasonable because of another implicit assump-
tion described below. Let f (x | c) be the “true” probability density function of p(x | c).
Assuming that f (x | c) is integrable everywhere. Then for any discretized interval I j , the
“true” probability of p(x ∈ I j | c) = ∫

I j
f (x | c) dx. By choosing equivalent sample size α,

the Dirichlet parameter corresponding to random variable “x ∈ I j | c” is α
∫

I j
f (x | c) dx. We

call this assumption “partition independence assumption.” By the partition independence
assumption, any discretization of x can have a Dirichlet prior.

The partition independence assumption implies that for any interval, the Dirichlet pa-
rameter corresponding to this interval depends only on the area below the curve of the p.d.f.
f (x | c), but is independent of the shape of the curve in the interval. In figure 1, the shape
of the p.d.f. curves in [a1, a2] are different, yet the Dirichlet parameters corresponding to
this interval for these two p.d.f’s are identical.

4. Why discretization works for naive Bayesian classifier

Based on the properties of Dirichlet distributions, this section explains the empirical findings
presented in previous work concerning the performance of the discretization methods for
naive Bayesian classifiers (Dougherty, Kohavi, & Sahami, 1995; Kohavi & Sahami, 1996;



DIRICHLET ASSUMPTION AND NAIVE BAYES 241

Figure 1. Partition independence assumption.

Domingos & Pazzani, 1997) and extend the explanation to conclude that a wide variety of
discretization methods all perform similarly.

4.1. Review of the well-known discretization methods

This section reviews four well-known discretization methods. A more comprehensive review
can be found in Dougherty, Kohavi, and Sahami (1995).

4.1.1. Equal width interval binning. Equal width interval binning involves sorting the
observed values of a continuous variable and dividing the range of observed values for the
variable into k equally sized bins, where k is usually set to ten.

4.1.2. Bin-logl. This is an equal width interval discretization method with the number of
bins k = max{1, 2 log(l)}, where l is the number of distinct observed values for each at-
tribute. The heuristic was chosen based on examining S-plus’s histogram binning algorithm
(Spector, 1990).

4.1.3. Holte’s 1R discretizer. This method, referred to here as 1RD (One-Rule Discretizer)
(Holte, 1993), sorts the observed values of a continuous variable and attempts to greed-
ily divide the domain of the feature into bins where each contains only instances of one
particular class. Since such a scheme could possibly lead to one bin for each observed
real value, the algorithm is constrained to forms bins of at least some minimum size (ex-
cept the rightmost bin). Holte suggests a minimum bin size of six based on an empirical
analysis.

4.1.4. Recursive minimal entropy partitioning. This method, referred to here as entropy-
based method, is based on a minimal entropy heuristic developed by Fayyad and Irani
(1993). This method uses the class information entropy of candidate partitions to select
bin boundaries for discretization. If we are given a set of instances S, a variable x , and a
partition boundary T . Then T partition the set S of examples into the subsets S1 and S2.
Let there be k classes C1, . . . , Ck and let Pr(Ci , S) be the proportion of examples in S that
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have class Ci . The class entropy of a subset S is defined as:

Ent(S) = −
k∑

i=1

P(Ci , S) log(P(Ci , S)). (4)

Then the class information entropy of the partition induced by T , denoted E(x, T ; S) is
given by:

E(x, T ; S) = |S1|
|S| Ent(S1) + |S2|

|S| Ent(S2). (5)

For a given variable x , the boundary Tmin which minimizes Eq. (5) over all possible
partition, a boundary is selected as a binary discretization boundary. This method can then
be applied recursively to both of the partitions induced by Tmin until some stopping condition
is achieved, thus creating multiple intervals on the feature x .

Fayyad and Irani make use of the Minimal Description Length Principle to determine a
stopping criterion for their recursive discretization method. Recursive partitioning within a
set of values S stops iff

Gain(x, T ; S) <
log2(N − 1)

N
+ �(x, T ; S)

N
, (6)

where N is the number of instances in the set S,

Gain(x, T ; S) = Ent(S) − E(A, T ; S), (7)

�(x, T ; S) = log2(3k − 2) − [kEnt(S) − k1Ent(S1) − k2Ent(S2)], (8)

and ki is the number of class labels represented in the set Si . Since the partitions along
each branch of the recursive discretization are evaluated independently using this criteria,
some areas in the continuous spaces will be partitioned very finely whereas others will be
partitioned coarsely.

4.2. Why discretization outperforms parameter estimation

Previously, Dougherty, Kohavi, and Sahami (1995) empirically verified that a variety of
well-known discretization methods in handling continuous variables could perform similar
to or better than the methods that assumed normal priors for the continuous variables in
many situations. In addition, those discretization methods generally achieve higher accuracy
than the methods with normal priors for the data sets in which the continuous variables are
not actually normally distributed. An enhanced approach of the method with normal priors
proposed by John and Langley (1995) achieves only limited performance improvement for
some data sets.

We conducted a simple experiment to see if we can draw the same conclusion. This
experiment uses two data sets iris and glass from UCI ML repository (Blake & Merz,
1998). All continuous variables in data set iris are known to fit normal distributions well,
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while data set glass is too small to determine appropriate probability distributions for its
continuous variables. We applied a genetic algorithm to search for the best distributions
and their corresponding parameters for the variables in the two data sets. The genetic
algorithm quickly found a set of normal distributions for set iris and achieved a 95.00 ±
2.52% cross-validation accuracy. On the contrary, it took about three weeks for the genetic
algorithm to search a distribution for glass, and the best accuracy is only 61.50 ± 3.96%,
worse than the accuracy achieved by most discretization methods. This again confirms that
when the distributions of continuous variables cannot be modeled as normally distributed,
discretization is generally a better approach than assuming that the variables are normally
distributed.

When the density function of a continuous variable x is known, the conditional probability
p(x | c) will be used in Eq. (2) for classification. In a discretization approach, p(x | c) is
replaced by the estimate p̂(x ∈ I j | c) that represents the probability that x is in interval
I j when the class is c. This estimate is then used in Eq. (2) for classification. Based on
the Dirichlet assumption, the random vector of the estimates p̂(x ∈ I j | c) has a Dirichlet
distribution.

Let f (x | c) be the conditional p.d.f. of x . When f (x | c) is not integrable everywhere,
we have

p(x ∈ I j | c) =
∫

x∈I j

f (x | c) dx ≈
∑
�⊆I j

p̂(x ∈ � | c),

where � is a disjoint sub-interval in I j . The precision in estimating p̂(x ∈ I j | c) can be
raised by increasing the number of sub-intervals in I j to make f (x | c) integrable everywhere
in each sub-interval �. Therefore, p̂(x ∈ I j | c) can be estimated arbitrarily close to the real
p(x ∈ I j | c) regardless of the original density function f (x | c).

Since perfect aggregation always holds for the Dirichlet distribution (Theorem 1), by
the Dirichlet assumption, deriving p̂(x ∈ I j | c) can be achieved by estimating the p(x ∈
� | c) such that each disjoint sub-interval in � is integrable everywhere. By the partition
independence assumption, the estimate of p̂(x ∈ I j | c) is independent of the shape of
f (x | c) in interval I j when

∫
x∈I j

f (x | c)dx is fixed. Therefore, discretization methods can
construct a more appropriate prior for a continuous variable that is unlikely to have a normal
distribution. This implies that discretization methods are more widely applicable than the
methods by assuming normal priors for continuous variables.

When the training data set is not sufficiently large, discretization may not yield accurate
estimations. Parameter estimation, however, suffers the same problem. How data sizes affect
the performance of discretization methods will be discussed in Section 4.3.

4.3. Why different discretization methods achieve similar performance

Dougherty, Kohavi, and Sahami (1995) conducted a comparative study of a variety of
discretization methods and concluded that an entropy-based method (Fayyad & Irani, 1993)
performs slightly better in some data sets but on average all discretization methods performs
approximately the same. Subsequent work also confirmed their finding.
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Figure 2. Conditional distributions of the synthesized data.

Suppose we have the “true” densities of p(x | c), it can be shown that Eq. (2) (i.e., the
Bayes rate) is the optimal classification accuracy achievable by any classifier (Duda & Hart,
1973). With discretization, to achieve the optimal classification accuracy, p̂(x ∈ I | c) must
simulate the role of p(x | c) by distinguishing the class that gives x high density from the
class that gives x low density. More precisely, if p(x = X j | ci ) is the largest among all
classes ci , then at least we should require that p̂(x ∈ I | ci ) is the largest among all classes,
too. Otherwise, performance degradation may still occur.

Consider a simple case with only one continuous variable x with uniformly distributed
classes. We can plot the curves of the conditional densities as the one shown in fig-
ure 2. The domain of x can be divided into regions by decision boundaries, which cor-
respond to the intersection points of the curves where ties occur among the largest con-
ditional densities. The optimal classification is to pick the class c such that p(x | c) is the
largest, and the pick of the class is different when x is on different sides of a decision
boundary.

Suppose a discretization method creates an interval I that contain a decision boundary.
For x values in the interval but at the different sides of the decision boundary, the classifier
should pick a different class for each value. But we will have the same p̂(x ∈ I | c) for
these x values. That is, x values at one of the two sides of the decision boundary will be
misclassified. Therefore, to minimize the distortion, the boundaries of intervals that contain
decision boundaries should be close to the decision boundaries, or these intervals should
be as narrow as possible.

On the other hand, the widths of intervals that contain no decision boundary can be as large
as possible. Their width do not affect too much on the classification performance but when
these intervals are too narrow, the number of examples in the training data set in the intervals
will be too small to allow accurate estimation of p̂(x ∈ I | c). In this case, discretization will
cause performance degradation. A loose bound can be derived as follows. Let n be the size
of the training data set. The number of examples that will fall in an interval I has a binomial
distribution with parameters n and p(x ∈ I | c) and has expected value n ∗ p(x ∈ I | c). If
we want the estimation to be accurate to two digits, we will need n > 100/ p̂(x ∈ I | c). This
bound is loose but is sufficient to illustrate our idea. The entropy-based method and 1RD
are designed to avoid narrow intervals, and thus their performance may be slightly better
in some domains.



DIRICHLET ASSUMPTION AND NAIVE BAYES 245

In summary, to avoid performance degradation, a discretization method should partition
the domain of a continuous variable into intervals such that their cut points are close to
decision boundaries to minimize the distortion due to the discretization. The selection of
the cut points at the intervals that contain no decision boundaries has almost no impact on
the classification performance, but their width should be large enough to cover sufficient
examples.

The above analysis can be extended to multivariate cases and the “right” choice of
cut points can be widely spread. Since a naive Bayesian classifier takes all variables into
account simultaneously, the impact of a “wrong” discretization for one variable can be
absorbed by other variables under zero-one loss performance measure. Also, due to the
way a naive Bayesian classifier updates its posterior probabilities, correct classification of
a given example depends only on the interval containing the values of that example, and is
completely independent of how other regions are discretized. As a result, a wide variety of
discretization methods can have similar performance in general.

5. Empirical evidence of the analysis of discretization

In this section, we report the empirical verification of our explanation using synthesis and
real data sets.

5.1. Controlled experiments

We synthesized an artificial data set composed of 1500 examples with three different classes.
Each class has the same number of examples. Each example has two continuous attributes
A1, A2 and a class label. The values of A1 and A2 are generated by normal distributions
{N (10, 2), N (15, 2)} for class 1, {N (15, 2), N (20, 2)} for class 2, and {N (20, 2), N (10, 2)}
for class 3. For each attribute, we divided its domain into 5 intervals as shown in figure 2
such that S2 and S4 contain the decision boundaries for each variable.

In the first experiment, we investigated how the distance of the cut points of S2 and S4 to
the intersection points affect the performance. S2 and S4 are initialized with a small width
and their boundaries are extended with a constant percentage of the initial width of S3.
The decision boundaries within S2 and S4 were kept in the middle such that the regions
at both sides of the decision boundaries always have the same width. For each resulting
discretization, we ran a five-fold cross-validation to obtain an average accuracy. Figure 3
plots the results. As we predicted, when S2 and S4 become wide, the accuracies drop rapidly.

The second experiment is to see if there are other factors that may cause significant
changes of the accuracies in addition to the width of S2 and S4. We first kept the boundaries
of S2 and S4 unchanged (their widths were set as in ten-bin) and randomly partitioned S1,
S3, and S5 into at most fifty intervals. We repeated the random partition thirty times and ran
a five-fold cross-validation for each repetition. The variance of the resulting accuracies is
0.27. The average accuracy is 96.25% with the maximum and minimum accuracies being
96.67% and 95.47%, respectively. We repeated the same experiment, but this time, the entire
domains are randomly partitioned. By contrast, the variance of the resulting accuracies is
3.84, which is 14 times higher than the result of the controlled random partition. The average
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Figure 3. Accuracies drop when we increase the widths of the intervals that contain the intersection points.

Figure 4. Accuracies of controlled random partition and complete random partition.

accuracy is 93.79% with the maximum and minimum accuracies being 96.80% and 82.73%,
respectively. Figure 4 plots the detailed accuracy data of each individual trial. The results
show that when the widths of S2 and S4 are fixed, the partitions of the other intervals have
only tiny impact on the classification accuracy.
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Figure 5. Predicted curve pattern of accuracy vs. number of bins.

The third experiment is to show that “equal-width bins” such as ten-bin can be effective
in many cases. In fact, if the number of bins is not too “extreme,” the performance will not
be significantly different. Our analysis predicts that when the number of intervals is two, it
is likely that these intervals will contain decision boundaries and the performance will be
generally poor. As the number of bins increases, the accuracies will improve and reach a
plateau. When the number of bins is extremely large, the widths of the bins will be too small
for all intervals and the accuracies will drop gradually. That is, the curve of the accuracy
as a function of the number of bins will have a characteristic shape like an up-side-down
“J” as shown in figure 5. Moreover, how fast the curve drops will depend on the size of the
training data set. A small data set will cause the accuracy to drop faster.

We conducted the experiment on two data sets: our synthesized data set (with 1500
examples) and its subset (with 300 examples). The resulting curves are given in figure 6,
which confirms our prediction.

5.2. Experiments on real data sets

The next question is whether we can obtain the same results with real data sets. Table 1 lists
the sixteen real data sets selected from UCI ML repository (Blake & Merz, 1998) for our
experiments. Ten of them are “pure” continuous data sets whose attributes are all numeric,
and six of them have both types of attributes.1 The first experiment is similar to the third
experiment described in 4.1. In this experiment, we partitioned each continuous variable
into two equal-width bins at first, and then increased the number of the equal-width bins by
one until 50. All accuracy figures are obtained by using five-fold cross-validations.

Figure 7 shows the results for the “pure” continuous data sets. As expected, the curves
for most data sets match the pattern of the curve given in figure 5, especially for large data
sets. The variances of the accuracy for most data sets are found to be surprisingly small.
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Table 1. Data sets for our experiments. The fourth column shows the accuracies of a naive Bayesian classifier
with the continuous variables removed, and the fifth column shows the accuracies with all variables.

Data set Variable. Data NB acc% NB acc%
(classes) cont:disc size w/o cont. w cont.

Australian (2) 6:8 898 85.80 ± 3.06 85.22 ± 2.73

Breast-W (2) 30:0 569 – –

Cleve (2) 6:7 303 81.24 ± 3.69 81.86 ± 5.83

CRX (2) 6:9 690 83.77 ± 3.93 84.93 ± 2.07

German (2) 24:0 1000 – –

Glass (7) 9:0 214 – –

Heart (2) 5:8 270 85.19 ± 3.41 83.33 ± 1.17

Hepatitis (2) 6:13 155 83.87 ± 3.53 87.10 ± 4.56

Hypothyroid (2) 7:18 3190 95.23 ± 0.73 97.12 ± 0.56

Iris (3) 4:0 150 – –

Liver (2) 6:0 345 – –

PIMA (2) 8:0 768 – –

Vehicle (4) 18:0 846 – –

Waveform (3) 21:0 5000 – –

Wine (3) 13:0 178 – –

Yeast (10) 8:0 1484 – –

Figure 6. Experimental results match our prediction. Also, with fewer data, accuracies drop faster as the number
of bins increases.
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Figure 7. Accuracy results by increasing the number of equal-width bins for the “pure” continuous data sets.

As long as the numbers of equal-width bins are not too large or too small, the accuracies
are approximately the same. The curves for some data sets (glass, iris, liver, wine)
are rougher than others, since the variances of the accuracy appear to depend on the size of
the data sets. In general, small data sets (with less than 300 examples) have relatively larger
variances. As discussed earlier, this is because the examples are not sufficient for accurate
probability estimation. Data set glass has a particularly zigzag curve because the number
of examples in this data set is small. In addition, this data set has seven classes, which produce
too many decision boundaries and the accuracies become sensitive to discretization.
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Figure 8. Accuracy results by increasing the number of equal-width bins for the “hybrid” data sets.

In the above experiment, we focus on domains that are entirely continuous. We also
performed the same experiment for some data sets with hybrid domains. Figure 8 shows
the results for these “hybrid” data sets. The curves of those hybrid data sets again generally
match the pattern but flatten out at the beginning instead of growing. We examined those
data sets by comparing the accuracies of a naive Bayesian classifier with and without
their continuous variables. Table 1 gives the resulting accuracy figures. The fourth column
shows the accuracies of a naive Bayesian classifier with the continuous variables removed,
and the fifth column shows the accuracies with all variables.2 Since the resulting pairs of
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the accuracy figures are about the same, the continuous variables in those data sets have
almost no impact in classifying test data. When a continuous variable in a data set is nearly
dormant in classification, the distributions of different classes of that variable will be similar
everywhere. Therefore, a naive Bayesian classifier with only two bins for those data sets
can still achieve a high accuracy.

We also conducted a similar experiment for all data sets to visualize the effect when the
number of bins is very large. Basically, we partitioned each continuous variable into two
equal-width bins at first and increased the number of bins by �5% ∗ n� in each iteration,
where n is the training data size. For data set waveform, we increased the number of bins
by fifty for each iteration because its size is too large. Figures 9 and 10 plot the resulting
curves for the “pure” continuous data sets and the “hybrid” data sets respectively. The index
of the horizontal axis indicates how many percentages of n are added to the number of
equal-width bins. As expected, the curves suggest a decreasing trend, minor in most cases,
as the number of bins increases.

The results presented above does not exclude the possibility that by carefully selecting
the cut points, the performance will be improved drastically. Therefore, we conducted
a similar experiment with the entropy-based method (Fayyad & Irani, 1993). Since the
entropy-based method always selects a cut point from training data at the boundary where
the classes switch, in theory it is more likely for this method to select a cut point near a
decision boundary. For each data set, we recursively called the entropy heuristic to select
cut points and reported the five-fold cross-validation accuracy. In each recursion, cut points
are selected in the resulting intervals of the previous calls without applying MDL stopping
criterion (Fayyad & Irani, 1993). Figures 11 and 12 show the resulting curves. The horizontal
axis indicates how many levels of the recursion have been invoked. At the lth level of the
recursion, a continuous variable will have at most 2l cut points. However, when all of the
data contained in an interval have the same class, no cut point will be selected. Therefore,
the number of intervals is generally considerably less than 2l , and each variable may be
partitioned into a different number of intervals.

The resulting curves show that the accuracies with different levels of recursions are
surprisingly similar for all data sets. Their shapes match the pattern of the curves in figure 5.
This again confirms that discretization methods can perform similarly even though they
select radically different sets of cut points.

6. Lazy discretization

Our “lazy” discretization method is derived from the properties of Dirichlet distributions.
If the Dirichlet assumption is appropriate, the lazy method should perform as well as other
“eager” discretization methods, including the well-known ones. Therefore, a motivation to
introduce this method is to justify the selection of Dirichlet priors and verify our analysis
given in previous sections. Another motivation is that the lazy method can be extended to
classify set and interval data, which will be described in Section 7.

The lazy discretization method waits until one or more test data are given to determine
the cut points for each continuous variable. This method produces only a pair of cut points
surrounding the value of each variable. That is, it creates only one interval (denoted as I )
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Figure 9. Accuracy results by increasing the number of equal-width bins with a constant percentage of data size
for the “pure” continuous data sets.

for each variable and leaves the other region untouched. From the training data, we can
estimate p̂(x ∈ I | c) by Eq. (3) and use this estimate to classify the query vector.

6.1. Derivation of the lazy discretization method

The lazy discretization method is derived from perfect aggregation and other properties
of Dirichlet distributions. Let x be a continuous variable in a naive Bayesian classifier
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Figure 10. Accuracy results by increasing the number of equal-width bins with a constant percentage of data
size for the “hybrid” data sets.

and its value is X for a given query vector. The lazy discretization method will create an
interval I = [X −0.5δ, X +0.5δ] for x , where δ is a constant. If the partition independence
assumption holds, by Lemma 2, “x | c” will have a Beta prior with parameters α

∫
I p(x | c)dx

and α(1 − ∫
I p(x | c)dx), where α is an equivalent sample size. By perfect aggregation,

we can estimate p̂(x ∈ I | c) by counting how many c examples with x ∈ I and how many
are not. In other words, there is no need to check the exact value of x for those examples
whose value of x is not in I .
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Figure 11. Accuracy results by using entropy to determine cut points for the “pure” continuous data sets.

More precisely, given a data set of training examples and a query vector to be classified,
the lazy discretization method works as follows:

1. for each continuous variable x = X , determine cut points X − 0.5δ, X + 0.5δ surround
data value;

2. treat that variable as if it is a discrete variable with only two possible outcomes;
3. train the naive Bayesian classifier with the training examples;
4. classify the query vector.
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Figure 12. Accuracy results by using entropy to determine cut points for the “hybrid” data sets.

There can be different instantiations of this method, depending on how we determine
the width of the interval δ. For example, we can select δ to be equal to the width of the
intervals created by ten-bin. We call this instantiation of the lazy discretization method as
“lazy ten-bin.” Similarly, we can have “lazy bin-log” by assigning δ to be half of the width
of log l equal bins and “lazy entropy” by assigning cut points surrounding x according to
minimum entropy heuristics.



256 C.-N. HSU, H.-J. HUANG AND T.-T. WONG

An advantage of this method is that when the test data contain interval values, we can
simply assign I to be the given interval and no more discretization is necessary. This point
will be elaborated in Section 7.

6.2. Fast lazy discretization

To speed up the estimation of p̂(x ∈ I | c), we can divide the domain of each continuous
variable into a large number of equal-width bins in advance, then count the number of
the training examples in each bin for each class c and cache the results in a hash table.
During the classification time, an approximate value of p̂(x ∈ I | c) can be computed by
table lookup. The larger the number of bins that we divide in advance, the closer to the real
values the estimated probabilities will be. In our experiments, we divided each continuous
variable into one thousand equal-width bins and cache the example counts in advance. We
call this variation of the lazy discretization method as “fast-lazy discretization.”

6.3. Experimental results

We empirically compared lazy ten-bin, fast-lazy ten-bin, ten-bin, entropy-based, bin-log l
and a normal version of a naive Bayesian classifier on data sets from UCI ML repository. We
ran a five-fold cross-validation for each data set and reported the average and the standard
deviation of the accuracies. Tables 2 and 3 give the results. The best accuracy for each data
set is indicated in boldface.

Table 2 also compares the elapsed time of one training-test trial of cross-validation of
lazy ten-bin and fast-lazy ten-bin. Obviously, the elapsed time of fast-lazy ten-bin is much
less than that of lazy ten-bin.

We also use ANOVA with the Bonferroni procedure for multiple comparisons statistics
(McClave & Dietrich, 1991) to compare the lazy method with the well-known methods.
The Required Difference (RD) value for each data set is given in Table 4. The difference
between any two accuracies of a data set in Tables 2 and 3 must be at least as large as
the corresponding RD value in order to be considered statistically significant at the 90%
confidence level for the experiment as a whole.

The results show that the performance of fast-lazy ten-bin is approximately the same
as lazy ten-bin and both perform as well as well-known discretization methods. Among
all six discretization methods (lazy ten-bin, fast-lazy ten-bin, ten-bin, entropy-based and
bin-log l), no method is statistically significantly better or worse than the others for all data
sets. Also, no discretization method is significantly worse than normal in all data sets, but
normal is significantly worse than all discretization methods in six data sets (australian,
crx, glass, liver, vehicle and yeast) as indicated with a superscript “−” sign in
Table 3.

7. Classifying set and interval data

This section presents an extension of lazy discretization method that allows a naive Bayesian
classifier to classify a query vector containing set or interval values.
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Table 2. Performance comparison of lazy and fast-lazy discretization methods in terms of the classification
accuracy and the computational cost.

Accuracy (%) Elapsed time (sec)

Data set Lazy Fast-lazy Lazy Fast-lazy

Australian 85.94 ± 2.85 85.36 ± 2.95 277 2

Breast-W 96.00 ± 3.08 94.39 ± 2.95 1081 4

Cleve 83.60 ± 4.19 82.83 ± 1.83 137 <1

CRX 85.36 ± 2.01 85.94 ± 2.73 314 2

German 74.00 ± 2.98 75.30 ± 1.42 3465 10

Glass 64.43 ± 5.29 63.48 ± 6.77 159 <1

Heart 83.33 ± 2.03 82.29 ± 3.17 111 <1

Hepatitis 87.74 ± 4.16 85.00 ± 6.19 18 <1

Hypothyroid 97.88 ± 0.38 96.82 ± 0.60 11253 29

Iris 96.00 ± 2.49 97.00 ± 4.33 10 <1

Liver 64.64 ± 3.26 63.58 ± 3.17 105 <1

PIMA 76.18 ± 4.84 76.12 ± 3.51 455 1

Vehicle 61.23 ± 1.75 61.08 ± 1.71 3337 6

Waveform 81.75 ± 3.22 81.41 ± 3.14 75896 43

Wine 97.19 ± 1.81 97.78 ± 1.67 50 <1

Yeast 57.53 ± 3.91 58.72 ± 4.26 2588 4

Average 80.80 80.44 6203.5 6.75

7.1. Training and classification for set and interval data

In previous work of naive Bayesian classifiers, variables usually have point values in the
sense that their values are atomic. In fact, a variable may have a set value if its value is a
set, or have an interval value if its value is an interval. If a set-valued variable whose value
contains interval members, then we call this variable a multi-interval variable. For example,
variable x1 = {red, yellow, green} has a set value, x2 = [20.5, 38.5] has an interval value,
and x3 = {[20.5, 38.5], [49.6, 60.4]} has a multi-interval value.

In many situations, it is more appropriate to model a variable as set-valued or interval-
valued than as point-valued. One of such situations is when the variable represents a time
frame within a certain period of time in temporal reasoning. The other example is when
each query vector represents the observation of a collection instead of an individual. Interval
values are also more appropriate when the data is obtained from a sensor that returns an
interval instead of a point value. The interval can be formed by the maximum and minimum
values detected by the sensor.

To classify a query vector that contains an interval-valued variable, no discretization is
necessary because we can simply estimate the probability of the interval from training data
set, as if the interval were a discretized interval in lazy discretization. We can also classify
set-valued and multi-interval valued data in a similar manner. Let x be the variable that has
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Table 3. Accuracies of naive Bayesian classifier using three well-known discretization methods and using pa-
rameter estimation assuming normal.

Data set Ten bins Entropy Bin-log l Normal

Australian 85.22 ± 2.73 85.94 ± 0.98 84.78 ± 1.94 77.10 ± 2.27−

Breast-W 94.37 ± 2.16 94.37 ± 1.93 94.37 ± 1.84 92.79 ± 2.61

Cleve 81.86 ± 5.83 83.83 ± 3.23 80.86 ± 3.87 82.86 ± 5.14

CRX 84.93 ± 2.07 86.09 ± 1.97 83.91 ± 2.03 77.83 ± 2.13−

German 73.80 ± 2.77 74.70 ± 2.84 72.40 ± 3.14 70.00 ± 2.49

Glass 62.34 ± 6.03 67.12 ± 3.60 66.89 ± 4.02 47.58 ± 4.96−

Heart 83.33 ± 1.17 82.59 ± 2.51 80.74 ± 4.16 84.44 ± 2.22

Hepatitis 87.10 ± 4.56 85.81 ± 5.28 85.81 ± 5.24 84.51 ± 4.74

Hypothyroid 97.12 ± 0.56 98.29 ± 0.52 97.00 ± 0.43 97.78 ± 0.36

Iris 94.67 ± 3.40 95.33 ± 1.63 95.33 ± 3.40 96.00 ± 3.89

Liver 64.35 ± 2.84 65.22 ± 2.25 62.00 ± 2.92 56.81 ± 5.09−

PIMA 75.01 ± 4.64 74.47 ± 2.92 76.05 ± 3.81 74.34 ± 2.57

Vehicle 62.06 ± 1.39 62.29 ± 2.15 60.87 ± 1.91 43.26 ± 3.82−

Waveform 81.08 ± 2.87 82.17 ± 2.87 81.66 ± 0.96 82.00 ± 2.92

Wine 97.71 ± 2.14 97.14 ± 1.81 98.29 ± 2.29 97.14 ± 2.52

Yeast 56.86 ± 3.09 57.74 ± 3.20 58.72 ± 2.85 46.66 ± 5.36−

Average 80.11 80.81 79.98 75.69

Table 4. Required differences of Bonferroni multiple comparisons between the lazy methods and the well-known
methods.

Data set RD Data set RD

Australian 5.17 Hypothyroid 1.05

Breast-W 5.36 Iris 7.18

Cleve 9.14 Liver 6.80

CRX 4.71 PIMA 8.25

German 5.78 Vehicle 4.91

Glass 11.33 Waveform 6.01

Heart 5.87 Wine 4.47

Hepatitis 10.99 Yeast 8.40

a multi-interval value Im = {I1, I2, . . . , Ik}, where I1, I2, . . . , Ik are intervals. The class-
conditional density of x given class c is p(x ∈ Im | c). By perfect aggregation (Theorem 1)
and Lemma 2, we can estimate p̂(x ∈ Im | c) by

p̂(x ∈ Im | c) = αm + ycm

α + nc
(9)
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where ycm is the number of class c examples in the training data set whose x ∈ Im , and
αm = α1 + α2 + · · · + αk . Equation (4) is a generalization of Eq. (3) and can be applied to
query vectors that contain discrete or set-valued data. Note that as long as we can compute
ycm , we can apply this equation regardless of the data type of x in the training data set. That
is, in the training data set, x can be point-valued, set-valued, or interval-valued.

7.2. Experimental results

Since there is no set-valued or interval-valued data in the UCI ML repository (Blake & Merz,
1998), we developed a technique to generate interval-valued data from point-valued data to
observe the effectiveness of this new method. The idea is to form intervals by selecting pairs
of point-valued continuous data with the same class label such that the difference of the val-
ues in each pair is within a certain range. By selecting an appropriate range for each data set,
classifying interval data can yield much better accuracies than classifying point-valued data.

We used the ten “pure” continuous data sets from UCI ML repository to evaluate our ap-
proach empirically and compare its performance with the well-known discretization meth-
ods. Suppose we have two query vectors with the same unknown class label and x is a
continuous variable in these vectors. Suppose the values of x for these vectors are X1 and
X2, respectively, and X1 ≤ X2. Then the x value of the merged vector is [X1, X2]. The idea
is that if we have two different samples of the same unknown class, then it is very likely that
the values of the feature of the samples in this class are within the interval bounded by the
values from the two samples. For example, suppose we pick up two leaves dropped from a
tree of an unknown genus and we want to use the features of the leaves, such as their length,
to recognize the genus. If the length of the two leaves are 16.57 and 17.32, respectively, then
we can assume that the length of the leaves of this genus is within the interval [16.57, 17.32].

However, the width of the intervals created by merging should be constrained. If two
values are too close and the merged interval becomes too narrow, the number of the examples
in the training data set in the interval will be too small to allow accurate estimation of
p̂(x ∈ I | c). Therefore, we will set a minimum threshold for the interval width. If the width
of the interval created by merging is smaller than the threshold, we will extend both ends
of the interval to reach the minimum threshold.

On the other hand, if the difference between the two values are too large and the merged
interval become too wide, the interval may contain decision boundaries and result in mis-
classification. Consider a simple classification task that involves a single variable x and
two classes c1 and c2. Suppose we have two data D1 and D2 that have the same class label
c1 and their x values are marked in figure 13 which also shows the curves of the “true”
densities of p(x | c). If we classify D1 and D2 individually based on the densities, both D1

and D2 will be correctly classified to class c1. If we merge D1 and D2, we will create an
interval I as shown in figure 13. The merged data will be incorrectly classified to c2 because
p(x ∈ I | c1) < p(x ∈ I | c2) (illustrated as the shaded areas in figure 13). Therefore, we must
set a maximum threshold for the width of the merged intervals. If the width is larger than
that threshold, we will partition the interval into multiple intervals with a pre-determined
width SI . In the case of figure 13, we will form two intervals I1 and I2 that contain D1 and
D2 respectively. The merged query vector will have a multi-interval value {I1, I2}.
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Figure 13. Merging two widely separated samples may result in misclassification.

In the experiment, the thresholds are determined empirically as follows. The threshold
of the minimum width for each variable is equal to the width of “fifty-bin” for large data
sets (size > 350), “twenty-bin” for medium-sized data sets (size between 350 and 150), and
“fifteen-bin” for small data sets. The threshold of the maximum width is equal to “four-bin”,
because we investigated the experiments in Section 5.2 and concluded that when the number
of bins is greater than four bins, the accuracies will reach a plateau for most data sets. The
value of SI is equal to the threshold of the minimum width of the variable.

For each data set selected for the experiment, we randomly chose twenty percent of data
from each class for testing and the remainder for training. Then we randomly picked pairs of
data from the test set and merged them into interval data by applying the method described
above. The merged data are classified by the “lazy interval” approach described in Section
7.1 and the resulting accuracy is reported. This procedure is repeated ten times to obtain
the average and the standard deviation of the accuracies for each data set. Table 5 gives the
results. We also extract the best results for each data set from Tables 2 and 3 for comparison.
For all data sets, “lazy interval” outperforms the best result of discretization significantly.
This result reveals that the “lazy interval” approach is useful for classifying interval data.

The improvement of the classification accuracies by the lazy interval approach can be
attributed to the pre-processing step that merges the point-valued data into the multi-interval
data. The merging reduces the probability of “Bayes error.” Bayes error occurs when a query
vector is classified to a wrong class when the Bayes decision rule is applied. The region of
Bayes error for a class C and a variable x is the region in the domain of x where Bayes
error occurs.

Given a pair of query vectors to be merged, their values can be either inside or outside
of the region of Bayes error. Therefore, we have three possible combinations. The first
combination is that both query vectors are outside of the region of Bayes error. Then the
merged interval data will be correctly classified. In the second combination, we have both
query vectors in the region of Bayes error, and the classification result will be incorrect. Both
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Table 5. Comparison of the accuracies achieved by the naive Bayesian classifier that classifies merged interval
data and the best accuracies achieved by the naive Bayesian classifier that classifies point data.

Data set Lazy interval The best of Table 2 and 3

Breast-W 98.60 ± 1.31 96.00 ± 3.08

German 78.40 ± 2.76 75.30 ± 1.42

Glass 67.39 ± 6.53 67.12 ± 3.60

Iris 100.00 ± 0.00 97.00 ± 4.33

Liver 68.29 ± 5.49 65.22 ± 2.25

PIMA 81.71 ± 4.22 76.18 ± 4.84

Vehicle 64.22 ± 5.36 62.29 ± 2.51

Waveform 89.45 ± 2.52 82.17 ± 2.87

Wine 99.44 ± 1.67 97.78 ± 1.67

Yeast 64.66 ± 3.04 58.72 ± 2.85

Average 81.22 77.78

of the above combinations yield the same result as classifying the data without merging.
In the third combination, one of the query vector is in the region while the other is not. In
this case, without merging, one query vector will be classified correctly while the other will
be misclassified. But with merging, it is more likely that the merged query vector will be
correctly classified, and as a result, the classification accuracy will be boosted.

We can show that this is the case. Consider again a simple classification task that involves
a single variable x and two classes c1 and c2 with their p.d.f. curves given in figure 14. D1

and D2 are two query vectors of class c1. D2 is in the region of Bayes error but D1 is not.

Figure 14. The area under the p.d.f. curve in the region of Bayes error is usually small and therefore merging
can improve the classification accuracy.
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If we classify each of them based on their conditional densities, D2 will be misclassified.
However, if we merge D2 with D1, the classification will be based on p(x ∈ [D1, D2] | c1)
and p(x ∈ [D1, D2] | c2), the areas between the interval [D1, D2] under the curves of
p(x | c1) and p(x | c2) respectively. For x value in the region of Bayes error, such as D2,
since D2 is supposed to be of class c1, it is likely that both p(x | c1) and p(x | c2) are
low and their difference is small. On the other hand, if x is outside of the region, such as
D1, then it is quite likely that p(x | c1)  p(x | c2). Therefore, chances are that we have
p(x ∈ [D1, D2] | c1) > p(x ∈ [D1, D2] | c2), as illustrated in figure 14, and hence the
merged query vector will be classified correctly. A counterexample is the pair D2 and D3.
Merging this pair will yield incorrect result. But it is unlikely that we select such a pair of
query vectors because p(x = D3 | c1) must be relatively low.

8. Conclusions

This paper reviews the properties of Dirichlet distributions and describes its implications
and applications to learning naive Bayesian classifiers. The results can be summarized as
follows:

– Perfect aggregation of Dirichlets ensures that a naive Bayesian classifier with discretiza-
tion can effectively approximate the distribution of a continuous variable.

– A discretization method should partition the domain of a continuous variable into intervals
such that their cut points are close to decision boundaries and their width is sufficiently
large. It turns out that this requirement is not difficult to achieve the above requirement
for many data sets and as a result, a wide variety of discretization methods can have
similar performance regardless of their complexities.

– We presented a new lazy discretization method, which is derived directly from the prop-
erties of Dirichlet distributions, and showed that it works equally well compared to
well-known discretization methods. These results justify the selection of Dirichlet priors
and verify our analysis.

– We also extend the method to allow a naive Bayesian classifier to classify set and interval
data.

We plan to investigate whether our analysis can provide any new insight on handling
continuous variables in general Bayesian networks as our future work.
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Notes

1. Though the document of heart states that all of its attributes are continuous, attribute 2, 3, 6, 7, 9, 11, 12, 13
are actually binary or discrete.
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2. The accuracies were obtained from five-fold cross-validation tests where continuous variables are handled by
the lazy ten-bin discretization method described in Section 6.
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