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ABSTRACT

This paper considers implications of different forms of the ensemble transformation in the ensemble
square root filters (ESRFs) for the performance of ESRF-based data assimilation systems. It highlights the
importance of using mean-preserving solutions for the ensemble transform matrix (ETM). The paper shows
that an arbitrary mean-preserving ETM can be represented as a product of the symmetric solution and an
orthonormal mean-preserving matrix. The paper also introduces a new flavor of ESRF, referred to as ESRF
with mean-preserving random rotations. To investigate the performance of different solutions for the ETM
in ESRFs, experiments with two small models are conducted. In these experiments, the performances of two
mean-preserving solutions, two non-mean-preserving solutions, and a traditional ensemble Kalman filter
with perturbed observations are compared. The experiments show a significantly better performance of the
mean-preserving solutions for the ETM in ESRFs compared to non-mean-preserving solutions. They also
show that applying the mean-preserving random rotations prevents the buildup of ensemble outliers in
ESRF-based data assimilation systems.

1. Introduction

There is an extensive literature on the ensemble
square root filter (ESRF; see Tippett et al. 2003 and
references therein) that can be viewed as a determin-
istic ensemble-based implementation of the Kalman fil-
ter. An ESRF updates an ensemble of forecasts in two
steps. First, the ensemble mean is updated with the
standard Kalman filter analysis equation. Second, the
ensemble anomalies are transformed so that the en-
semble-based analysis error covariance matches the
theoretical solution given by Kalman filter theory.

It has recently been recognized (Wang et al. 2004)
that some solutions described in the literature (e.g.,
Bishop et al. 2001; Evensen 2004) do not preserve the
ensemble mean during this transformation. As a result,
both the analysis and analysis error covariance effec-
tively do not match the theoretical estimates as the fil-
ters intend. The significance of this has not received due
prominence in the literature and has therefore been
overlooked by some researchers in the data assimila-

tion community (e.g., Evensen 2004; Leeuwenburgh
2005; Leeuwenburgh et al. 2005; Torres et al. 2006).

Note that preserving the mean is irrelevant for ap-
plications that do not require the calculation of analy-
sis, such as adaptive sampling. This particularly applies
to many studies using the ensemble transform Kalman
filter (ETKF), starting with the original work by Bishop
et al. (2001); however, the non-mean-preserving solu-
tions used in these studies have often became associ-
ated with the ETKF (e.g., Tippett et al. 2003).

Despite the theoretical deficiency of using non-
mean-preserving solutions in data assimilation, the im-
portance of using a mean-preserving solution in prac-
tice remains unclear. Wang et al. (2004) investigated
the performance of a mean-preserving and non-mean-
preserving ETKF in the ensemble generation context.
They compared forecast errors in terms of the total
energy norm for ensembles generated with both solu-
tions, and reported only a “small improvement” of the
mean-preserving (spherical simplex) ETKF over the
non-mean-preserving (one-sided) ETKF. The authors
have not investigated implications of using a non-mean-
preserving solution for data assimilation, in which the
degradation of the filter performance may be stronger
because of the repetitive subtraction of the ensemble
mean.
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In this paper, we present an overview of the ESRF
theory and show that any mean-preserving ESRF can
be presented in a form of the symmetric solution for the
ensemble transform matrix (ETM) multiplied by an ar-
bitrary orthonormal mean-preserving matrix. Subse-
quently, we conduct numerical experiments with two
small models that clearly demonstrate a major advan-
tage of mean-preserving solutions over non-mean-
preserving solutions in data assimilation. We then dis-
cuss different mean-preserving solutions and their im-
plications for data assimilation with a nonlinear model.

This manuscript is organized as follows; relevant
background information is presented in section 2; a de-
scription of the experiments presented is given in sec-
tion 3 followed by the results in section 4. Section 5
contains a brief discussion of the significance of our
results, and our conclusions are in section 6.

2. Background

Ensemble Kalman filter (EnKF) methods are based
on the Kalman filter equations:

xa � x f � K�d � Hx f � and �1�

Pa � �I � KH�P f, where �2�

K � P fHT�HP fHT � R��1; �3�

xa is the analysis; x f is the forecast; d is the vector of
observations; H is the observation sensitivity matrix,
H � �x H(x f), where H(x) is the (nonlinear) operator
mapping state vector space to observation space; R is
the observation error covariance matrix; P f is the fore-
cast error covariance matrix; and Pa is the analysis er-
ror covariance matrix. Ensemble methods are typically
used for applications with relatively high-dimensional
discrete systems, when explicit storage and manipula-
tion with the system error covariance P are impossible
or not practical. In such cases, the model state and the
system error covariance are stored and manipulated im-
plicitly via an ensemble X of model states, X � [X1, . . . ,
Xm], where m is the ensemble size. The covariance ma-
trix P is typically assumed to be carried by the ensemble
by means of the relation

P �
1

m � 1 �
i�1

m

�Xi � x��Xi � x�T �
1

m � 1
AAT,

�4�

where x is the ensemble mean,

x �
1
m �

i�1

m

Xi, �5�

and A � [A1, . . . , Am] is the ensemble of anomalies, or
perturbations, Ai � Xi � x; and the model state is as-
sumed to be represented by the ensemble mean.

The traditional EnKF (Evensen 1994; Houtekamer
and Mitchell 1998) is a Monte Carlo method, in which
the ensemble represents the system error covariance in
a statistical way. During the analysis, each ensemble
member is updated according to the analysis equation
(1):

Xi
a � Xi

f � K�d � HXi
f �, i � 1, . . . , m. �6�

Because the system state is represented by the en-
semble mean, the average of this equation yields the
analysis equation (1), which is therefore automatically
satisfied; however, this is not the case for the covariance
equation (2). A straightforward application of (6) is
known to result in an ensemble collapse, when the en-
semble spread reduces too rapidly (Burgers et al. 1998).
The standard way to prevent the ensemble collapse in
the EnKF is to update each ensemble member using
independently perturbed observations (Burgers et al.
1998; Houtekamer and Mitchell 1998); the resulting al-
gorithm has became known as the EnKF with per-
turbed observations and is currently commonly associ-
ated with the acronym EnKF. Because in the EnKF
with perturbed observations the covariance equation
(2) is satisfied in a statistical sense only, it results in a
suboptimal filter behavior, which is particularly evident
for small ensembles (Whitaker and Hamill 2002).

As an alternative to the traditional EnKF, a number
of methods have been proposed, identified as ESRFs,
which allow a deterministic update of the ensemble
anomalies, so that the analysis error covariance
matches the theoretical value given by the Kalman fil-
ter (Tippett et al. 2003). In contrast to the EnKF, in an
ESRF both the ensemble mean and the ensemble
anomalies are updated explicitly. The ensemble mean is
updated by using the analysis equation (1), while the
ensemble anomalies are updated via an explicitly cal-
culated transformation, represented by the ensemble
transform matrix T:

Aa � AfT, �7�

such that the analyzed covariance matrix calculated
from the analyzed anomalies Aa using (4) matches the
theoretical value (2):

AfT�AfT�T � �I � KH�AfAf T. �8�

Because both the forecast and analyzed covariance be-
long to the same linear subspace spanned by the en-
semble anomalies A f, all possible transformations of
the ensemble can be represented in the form of (7).

The specific details of an ESRF depend on the flavor
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and implementation; a brief description of four existing
algorithms may be found in Tippett et al. (2003); see
also Ott et al. (2004) and Evensen (2004). In this paper,
we will use the formalism of the ETKF introduced by
Bishop et al. (2001), for three reasons. First, the ETKF
uses an ensemble transformation in the linear space of
the ensemble (7), which seems quite natural, given that
each analyzed anomaly is a linear combination of the
forecast anomalies. Second, for many oceanographic
and atmospheric applications, when the state vector di-
mension n and number of observations p are typically
large compared with the ensemble size m, it represents
the most numerically efficient flavor of the ESRF.
When the inverse of the observation error covariance
matrix R�1 is readily available, the computational cost
of the ETKF is estimated as O(m2p � m3 � m2n) (Tip-
pett et al. 2003), which, unlike some other solutions, is
linear over n and p. Third, the ETKF may be shown to
be formally equivalent to other flavors of ESRF in the
sense that any two solutions for the ensemble transform
matrix T that match (8) can be obtained one from an-
other by a rotation in ensemble space.

A general form of an ETM that satisfies (8) is

T � T sU, �9�

T s � �I �
1

m � 1
�HAf �TR�1HAf��1�2

�10�

(Bishop et al. 2001), and [·]�1/2 denotes the inverse of
the unique positive definite square root of a positive
definite matrix (Horn and Johnson 1985, p. 406); and U
is an arbitrary orthonormal matrix, UUT � I. Alterna-
tively, a more complicated expression can be used:

T s � �I �
1

m � 1
�HAf �T�HP fHT � R��1HAf�1�2

�11�

(Evensen 2004), where [·]1/2 denotes the unique positive
definite square root of a positive definite matrix, and P f

is used as an abbreviation for A fA f T/(m � 1). The
equivalence of (10) and (11) can be shown by using the
Sherman–Morrison–Woodbury identity (e.g., Horn and
Johnson 1985, p. 19). It is easy to see that the positive
definite square root of a symmetric positive definite
matrix is a symmetric matrix: such a matrix can be rep-
resented via its eigenvalue decomposition V�V�, and
V�1/2V� is then its unique positive definite square root.
Given the eigenvalue decomposition of the matrix in
square brackets in (10),

I �
1

m � 1
�HAf �TR�1HAf � C�CT, �12�

the solution for T s is

T s � C��1�2CT. �13�

Following Ott et al. (2004), we will refer to (13) as the
“symmetric” solution [Wang et al. (2004) refer to it as
the “spherical simplex” solution].

The symmetric solution (13) has been shown by
Wang et al. (2004) to preserve the mean in the case
when rank{[(HA f)TR�1HA f ]} � m � 1; this conclusion
can be shown to be valid for the case of an arbitrary
rank (see appendix A).

Despite the fact that any solution given by (9) results
in the analyzed anomalies Aa such that the analyzed
covariance Pa calculated by (4) matches the theoretical
covariance (2), not all of these solutions are valid in the
data assimilation context. Because the ensemble X car-
ries both the state vector x (via ensemble mean) and the
state error covariance P (via anomalies A), it is neces-
sary that the analyzed anomalies do not perturb the
ensemble mean, or, in other words, remain zero cen-
tered:

Aa1 � 0, �14�

where 1 is a vector with each element equal to 1. Vio-
lation of the condition (14) is equivalent to an implicit
alteration of the state vector, which, in turn, leads to an
alteration of the error covariance matrix. More specifi-
cally, it can be shown that for a non-zero-centered en-
semble the variance associated with each state vector
element will, generally, be less than the variance calcu-
lated from the same ensemble without subtracting the
ensemble mean. Suppose, for example, that the vari-
ance associated with some arbitrary vector a of length
m is given by var(a) � aTa/(m � 1); a may be a row
vector of the matrix A of ensemble anomalies, corre-
sponding to some state vector element. If we then sub-
tract the mean a from each element of a, than the actual
variance represented by a becomes var(a � a1) �
var(a) � ma2/(m � 1), which is, generally, smaller than
the initially assumed value. The underestimation of the
system error covariance is highly undesirable. Unlike
the overestimation, it can lead to the divergence of the
filter and therefore affects the robustness of the data
assimilation system (Julier and Uhlmann 1997). Since
applying an arbitrary rotation to the symmetric solution
does not, generally, produce a zero-centered ensemble
of analyzed anomalies, we will refer to (9) as non-mean-
preserving general solution for the ETM.

Because by definition the forecast anomalies are zero
centered, A f1 � 0, to preserve the ensemble mean it is
sufficient for the ETM to retain (up to an arbitrary
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multiple) the sum of elements of each row vector of the
forecast ensemble A f, which may be written as

T1 � �1, �15�

where � is a scalar constant. If the ensemble is of full
rank, so that rank(A) � m � 1, then up to an arbitrary
multiple 1 can be the only vector orthogonal to each
row vector of A; and the condition that the analyzed
ensemble is zero centered, A fT1 � 0, can only be sat-
isfied if T1 � �1. Consequently, for a full-rank en-
semble condition (15) is not only a sufficient but also a
necessary condition for an ETM T to retain zero cen-
tering of the ensemble anomalies; and to preserve the
ensemble mean only those solutions need to be left out
of the general non-mean-preserving solution (9) that
satisfy this condition.

Because the symmetric solution T s is a mean-
preserving solution, it satisfies condition (15). Conse-
quently, for a solution T in representation (9) to be
mean preserving, it is sufficient for the orthonormal
matrix U in (9) to satisfy (15); and for a full-rank en-
semble (15) becomes a necessary and sufficient condi-
tion. Hence, for a full-rank ensemble the general mean-
preserving solution for the ETM may be written as

T � C��1�2CTUp, �16�

where Up is an arbitrary orthonormal mean-preserving
matrix,

UpUpT � I, Up1 � 1. �17�

Note that for preserving the mean it would be sufficient
to require Up1 � const 	 1; however, the constant here
can only be equal to 1, because if Ua � b, where U is an
orthonormal matrix and a and b are vectors, then |a | �
|b | .

To obtain a general representation for an arbitrary
mean-preserving orthonormal matrix, we note that the
condition Up1 � 1 means that the linear transformation
Up preserves the unit vector 1/
m. Consequently, in
an orthonormal basis B � [B1, . . . , Bm] such that the
first basis vector coincides with this vector, B1 � 1/
m,
this transformation will have the following form:

�Up�B � �1 0

0 U�, �18�

where U is an arbitrary orthonormal matrix of size
(m � 1) 	 (m � 1). Given the matrix [Up]B of the linear
transformation Up in the basis B, it is possible to find its
matrix in the original basis:

Up � B�Up�BBT �19�

(e.g., Horn and Johnson 1985, p. 32). This representa-
tion can be used for generating a random mean-

preserving matrix Up of size m 	 m from a random
orthonormal matrix U of size (m � 1) 	 (m � 1). The
exact composition of the orthonormal matrix B is not
important, as long as B1 � 1/
m.

Some authors (e.g., Anderson 2001; Whitaker and
Hamill 2002) seek a solution for the ensemble transfor-
mation in the linear space of the system state rather
than in the linear space of the ensemble by left multi-
plying the ensemble anomalies by the ETM:

Aa � T̃A f. �20�

We use the tilde over T here to underline the difference
between the ETMs in the left-multiplied and right-
multiplied forms. Written in this form, the ensemble
transformation automatically preserves the ensemble
mean, which may be shown by right multiplying (20) by
1; but apart from the trivial case of assimilating a single
observation, this representation is, generally, more
computationally expensive because it involves calcula-
tion of a matrix of size n 	 n, rather than m 	 m. It may
be shown (see appendix B) that the symmetric solution
can be rearranged into the left-multiplied form (20),
with the ETM given by

T̃ s � �I � KH�1�2, �21�

where K is the Kalman gain (3). The superscript s in T̃ s

here underlines the equivalence of this solution with
the symmetric solution in the right-multiplied form (7),
given by either (10) or (11), although T̃ s itself is, gen-
erally, nonsymmetric (but positive definite).

In the singular evolutive extended Kalman filter
(SEEK) and singular evolutive interpolated Kalman fil-
ter (SEIK; Pham et al. 1998; Pham 2001), the analyzed
error covariance is calculated via updating of the eigen-
values of the covariance matrix with subsequent re-
drawing of the ensemble anomalies. Because the ana-
lyzed ensemble matches the theoretical expressions for
the mean and covariance given by the Kalman filter,
these filters essentially represent another flavor of the
ESRF, so that the equivalent ensemble transformation
can be written in form of (9). The particular form of the
ensemble transformation in these filters depends on the
implementation of the redrawing procedure, which
must ensure that the redrawn ensemble remains zero
centered (Hoteit et al. 2002; Nerger et al. 2005).

The original formulation of the ETKF (Bishop et al.
2001) used the simplest (one sided) solution:

T � C��1�2. �22�

Leeuwenburgh et al. (2005) showed that, for a scalar
model, assimilation of a single observation using the
one-sided solution results in all ensemble anomalies but
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one equal to zero. This result can be easily generalized
for the arbitrary dimension of the state vector: if a small
number of observations are assimilated using the one-
sided solution, the variance of the ensemble at each
observation location will be provided by a constant set
of p ensemble members, with the anomalies of all other
m � p members being equal to zero at these locations.
This deficiency of the one-sided solution has been rec-
ognized by Evensen (2004) and Leeuwenburgh et al.
(2005). They raised concern about the tendency of the
one-sided solution to produce outliers that contain
most of the variance in the ensemble noticed by Law-
son and Hansen (2004). To counter this deficiency of
the one-sided solution, Evensen (2004) and Leeuwen-
burgh et al. (2005) proposed an ensemble transforma-
tion with a random rotation in ensemble space. Such a
rotation is carried out by right multiplying the one-
sided ETM (22) by a random orthonormal matrix and
has a form

T � C��1�2U, �23�

where U is a random orthonormal matrix. This solution
does not, generally, preserve the ensemble mean but
does tend to improve the performance compared to the
one-sided solution by spreading the variance between
the ensemble members.

Below we present experiments with two small models
in which we compare the performance of a number of
solutions for the ETM in the ETKF as well as the per-
formance of the traditional EnKF with perturbed ob-
servations. We demonstrate a significantly better per-
formance of the mean-preserving solutions for the
ETM and conclude that only such solutions should be
used in practical data assimilation.

3. Experimental setup

We will compare the performance of a number of
different solutions for the ETM in the ETKF using two
small models: the linear advection model (LA model)
of Evensen (2004) and the strongly nonlinear model of
Lorenz and Emanuel (1998; L40 model). These two
models expose different aspects of the performance of
the filter. Specifically, the LA model is a stationary,
linear model. It allows investigation of the scenario
where the analysis gradually approaches the known sta-
tionary solution. In contrast, the L40 model is a strongly
nonlinear model characterized by instability in regard
to small perturbations. We investigate the performance
of the ETKF with the symmetric solution for the ETM
(10); the ETKF with the one-sided solution (22); the
ETKF with the solution with random rotations (9); the
ETKF with the solution with mean-preserving random

rotations (16); and the traditional EnKF with perturbed
observations.

a. LA model

The LA model, described below, is based on that of
Evensen (2004). The dimension of the state vector x is
1000; the signal propagates (advects) in the positive
direction by one element at each time step without
changing its shape; and the model domain is periodic:

x�t� � �x1�t�, . . . , x1000�t��, t � 1, 2, . . . ;

xi�t � 1� � �xi�1�t�, i � 2, . . . , 1000;

x1000�t�, i � 1

where xi(t) is the ith component of the state vector at
the tth time step.

To generate a state vector sample, a sum of a 25 sine
curves with random amplitude and phase and a random
offset is calculated:

si � �
k�0

25

ak sin� 2�k

1000
i � �k�, i � 1, . . . , 1000,

where ak and k are random numbers uniformly dis-
tributed in the intervals (0, 1) and (0, 2�), correspond-
ingly. This sample is then normalized to have a variance
of 1:

x�1� �
s

��s � s�T�s � s��1�2 ,

where s denotes the state average. To generate the ini-
tial ensemble, a specified number of samples are gen-
erated using this procedure. The ensemble mean field is
subsequently subtracted from each member, and an-
other random sample (climatology) is added to each
member. The true field is defined as a sum of yet an-
other random sample and the climatology.

Therefore, by construction all possible model state
vectors belong to a subspace with dimension of 51 (re-
ferred to hereafter as the model subspace dimension) of
the full model state vector space with dimension of
1000. Also by construction, the initial root-mean-square
error (RMSE) of the ensemble mean is equal to 1. Note
that because the ensemble mean has been subtracted
from each member after the normalization, each en-
semble anomaly has an initial variance that is slightly
different from 1.

Four observations of the true field are conducted and
assimilated into the model at every fifth time step, t �
1, 6, 11, . . . , at equidistant locations i � {125, 375, 625,
875}. Each observation is contaminated with random
normally distributed uncorrelated noise with variance
of 0.01.

1046 M O N T H L Y W E A T H E R R E V I E W VOLUME 136



b. L40 model

The L40 model (Lorenz and Emanuel 1998) is a
strongly nonlinear model with a state vector dimension
of 40. Lorenz and Emanuel (1998) argue that it roughly
imitates the evolution of an unspecified scalar meteo-
rological quantity (such as temperature or vorticity)
along the latitude circle. This model has been used for
testing ensemble-based assimilation methods in a num-
ber of earlier studies (Anderson 2001; Whitaker and
Hamill 2002; Ott et al. 2004; Lawson and Hansen 2004).
It contains 40 coupled ordinary differential equations in
a domain with cyclic boundary condition:

ẏi � �yi�1 � yi�2�yi�1 � yi � 8, i � 1, . . . , 40;

y0 � y40, y�1 � y39, y41 � y1.

The consecutive model states are obtained by integrat-
ing these equations forward by intervals of �t � 0.05, so
that the model states x(t) relate to the solution of the
above system as

x�t� � y�0.05t�, t � 1, 2, . . . .

The model has an estimated fractal dimension of 27.1,
the doubling time of the leading Lyapunov exponent of
0.42, the mean of 2.34, and standard deviation of 3.66
(Lorenz and Emanuel 1998).

Following Lorenz and Emanuel (1998), each model
time step in our tests is conducted by a single step of the
standard fourth-order Runge–Kutta integrator. The en-
semble members are initialized by random sampling
from a set of 10 000 model states obtained during one
continuous integration at t � 1000, 1001, . . . , 11 000.
The true field is initialized by one more randomly cho-
sen state from this set. Following Whitaker and Hamill
(2002) and Ott et al. (2004), at every time step we con-
duct 40 observations of the true field at each grid point,
i � 1, . . . , 40; each observation is contaminated with
random normally distributed uncorrelated noise with a
variance of 1.

Common for assimilation with nonlinear models, an
ensemble inflation is applied to the ensemble at the end
of each assimilation step by multiplying the ensemble
anomalies by the inflation factor � with typical values
between 1.00 and 1.10: Aa ← � · Aa.

4. Results

a. LA model

Figure 1 shows the RMSE versus the ensemble size
for four different filters applied to the LA model. The
filters involved include the symmetric ETKF, the one-

sided ETKF, the ETKF with random rotations, and the
EnKF. Because of the linearity of the model, for a given
initial ensemble and forward observations all mean-
preserving solutions yield the same covariance matrix
(within the round-up error). Consequently, all mean-
preserving solutions produce the same results and are
represented by the symmetric ETKF. The RMSE val-
ues represent an average over 50 independent model
runs; the RMSE of a particular run is calculated as a
mean RMSE of analyses at time steps t � 901, 906, . . . ,
1001. The same set of 50 initial ensembles has been
used for each filter presented in Fig. 1. The figure also
contains the average over all 50 realization RMSE �min

of the best possible fit in the least squares sense for a
given ensemble, referred to as “best fit,” and calculated
as follows:

�min � ||Xs � x t || , s � �XTX��1XTx t,

where X is the ensemble matrix, and x t is the true so-
lution. No inflation has been applied in these experi-
ments with the linear model.

Figure 1 shows a remarkable performance of the
symmetric ETKF, with RMSEs that are very close to
the best possible values. The other three filters produce
very similar results, with both the one-sided ETKF and
the ETKF with random rotations being very close to
each other and only slightly better than the EnKF.

One interesting feature of the performance of the
symmetric ETKF in Fig. 1 is the early “saturation” of

FIG. 1. RMSE of different flavors of ETKF and EnKF for the
LA model, averaged for the time interval t � [900, 1000], and over
50 realizations.
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the RMSE versus the ensemble size, with almost no
improvement after the ensemble size exceeds the di-
mension of the model subspace (equal to 51). This may
be related to the orthogonalization of the ensemble
anomalies over time that is achieved by the symmetric
ETKF.

To demonstrate this phenomenon, we show the nor-
malized singular value decomposition (SVD) spectra of
the ensemble anomalies A f after 1000 time steps, aver-
aged over 50 runs, in Fig. 2. The first example (Fig. 2a)
shows the normalized SVD spectra (i.e., singular values
divided by the largest singular value) for the case when
the ensemble size is smaller than the model subspace
dimension (m � 30 � 51), while the second example
(Fig. 2b) shows the SVD spectra for the case when the
ensemble size is larger than the model subspace dimen-
sion (m � 60 � 51). In both cases the SVD spectrum of
the ensemble anomalies for the symmetric ETKF is
nearly flat. This means that all modes of the model are
equally represented in the ensemble. In the case when
the ensemble size is smaller than the model subspace
dimension (m � 30 � 51), the flatness of the SVD
spectrum also means that the ensemble anomalies are
orthogonal to each other and represent the eigenvec-
tors of the covariance matrix (which are defined in this
case up to an arbitrary rotation in the system’s sub-
space). In contrast, the normalized SVD spectra of the
non-mean-preserving one-sided ETKF and the ETKF
with random rotations are nearly identical and both
show a tendency toward the loss of rank. This may be a
result of the repetitive subtraction of the ensemble
mean that has been noted by Wang et al. (2004). The
spectra of the EnKF ensemble anomalies show neither
a tendency toward loss of rank or toward orthogonal-
ization.

b. L40 model

Figure 3 shows the average RMSE over a long run of
the L40 model versus ensemble size and inflation factor
for five different filters: the symmetric ETKF, the
ETKF with mean-preserving random rotations, the
one-sided ETKF, the ETKF with random rotations, and
the EnKF. Each run uses the same true field, and for a
given ensemble size each filter starts from the same
ensemble. The RMSE values are averaged over time
steps t � 1000, . . . , 3 	 105. The white cells correspond
to experiments in which the filter did not converge, which
are defined as the runs with RMSE greater than 1.

Figure 3 clearly shows a superior performance of the
two mean-preserving filters: the symmetric ETKF and
the ETKF with mean-preserving random rotations;
however, in contrast with the case of the LA model, the
specific characteristics of their performance are differ-
ent. The ETKF with mean-preserving random rotations
is able to achieve a marginally smaller mean RMSE
than the symmetric ETKF; but at the same time it re-
quires more inflation. This difference in performance
characteristics of the two mean-preserving filters occurs
because of the nonlinearity of the L40 model. Unlike
the results from the LA model, the one-sided ETKF
performs substantially worse than the ETKF with ran-
dom rotations, which in turn performs close to the
EnKF.

Note that for all filters involved, other than the sym-
metric ETKF, the best performance is often achieved
with the minimal or close to minimal value of the in-
flation factor necessary for the convergence of the fil-
ter. This means that achieving the best performance
with these filters in practice may require a significant
tuning of the inflation factor to avoid divergence.

FIG. 2. Normalized singular-value spectra of the ensemble anomalies for the LA model,
averaged over 50 realizations: (a) m � 30; (b) m � 60.
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Further study of Fig. 3 shows that comparing the
performance of different filters in absolute terms is not
straightforward because different values of the inflation
factor are required to achieve the best performance for
a particular filter. For example, while the symmetric
ETKF clearly outperforms the one-sided ETKF in our
tests with the L40 model, testing them with a common
inflation factor of 1.09 (suitable for the one-sided
ETKF) would lead us to the conclusion that these filters
perform nearly equally. Such a comparison is further
complicated by the stochastic nature of the L40 model,
which only makes it possible to characterize the filter
performance in a statistical sense. In particular, we
found it necessary to use longer runs (3 	 105 steps)
compared to Whitaker and Hamill (2002) (5 	
104 steps) or Ott et al. (2004) (4 	 104 steps) to account
for rare but long periods of divergence that happen for
smaller inflation factors. This is particularly essential
for assessing the difference in the performance between
the symmetric ETKF and the ETKF with mean-
preserving random rotations for small inflation factors;
however, even runs of 3 	 105 steps do not exclude the
possibility of filter divergence in longer runs. For ex-
ample, the run of the ETKF with random mean-
preserving rotations and inflation factor of 1.015 has

diverged for ensemble size m � 54 but produced three
best values of RMSE for m � 38, 45, and 64.

To compare the performance of different filters in
absolute terms, we plot the best RMSE achieved for a
given filter and ensemble size over all inflation factors
involved (Fig. 4). The plot shows substantially better
performance achieved by the symmetric ETKF and the
ETKF with mean-preserving random rotations com-
pared to other filters; this is particularly evident for
small and intermediate ensemble sizes. Similar to the
behavior of the symmetric ETKF in the case of the LA
model, both these mean preserving solutions show an
early “saturation” of the performance versus the en-
semble size. Interestingly, the symmetric ETKF shows a
slight degradation in the performance for ensemble
sizes greater than 40.

To investigate a possible reason for this degradation
in performance of the symmetric ETKF for larger en-
sembles, we investigate the statistics of the ensemble
spread by using rank histograms. Figure 5 contains
three ensemble rank histograms that summarize our
findings. Each of these histograms shows statistics col-
lected over 2 	 104 steps after a spinup of 1000 steps. At
each assimilation, the number of ensemble members
with the value of the first element smaller than that of

FIG. 3. RMSE of different flavors of ETKF and EnKF for the L40 model averaged over a long model run.
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the true field is calculated, after which the counter for
the corresponding bin is increased by one. Figure 5
presents histograms for the symmetric ETKF with the
ensemble size of m � 38 and the ensemble inflation of
� � 1.01, for the symmetric ETKF with m � 91 and � �
1.01, and for the ETKF with mean-preserving random
rotations with m � 91 and � � 1.02. For each configu-
ration, we used the value of the inflation that yields the
best RMSE in the long model runs presented in Fig. 3.
We see that the symmetric ETKF with the ensemble
size of m � 91 has a distinct cup shaped ensemble rank
histogram, similar to observed in Lawson and Hansen
(2004); however, its histogram for a smaller ensemble
of size m � 38 is much flatter. In contrast, the ensemble

rank histogram for the ETKF with mean-preserving
random rotations is cap shaped, which we attribute to
the ensemble inflation: the cap-shaped histograms be-
come more pronounced for bigger ensemble inflations
and flatter for smaller ensemble inflations. This hap-
pens because the ensemble inflation makes the true
field more likely to be positioned in the middle of the
ensemble sorted by the observed element. The histo-
gram for the ETKF with random rotations becomes flat
when � � 0, but in that case the system becomes prone
to divergence.

If follows from Fig. 5 that the degradation in the
performance of the symmetric ETKF for larger en-
sembles is accompanied by the deterioration in the en-
semble statistics. A cup-shaped rank histogram can be
caused by a nonnormal distribution of the ensemble or
by its bias (Hamill 2001). Because the symmetric ETKF
and the ETKF with mean-preserving random rotations
have very close RMSE, the observed difference in the
ensemble rank histograms for these filters is most likely
to be caused by different distributions of the ensemble
members. Figure 6 shows the statistics of the distribu-
tion of the ensemble relative to the ensemble mean for
these filters. The presented histograms were calculated
in the same way as the ensemble rank histograms in Fig.
5, but the ensemble mean has been used instead of the
true field for obtaining the rank value at each step.

The much broader distribution in Fig. 6 for the sym-
metric ETKF indicates that it is more likely to have
asymmetric distribution of the ensemble members rela-
tive to the ensemble mean than the ETKF with mean-
preserving random rotations. For example, for the sym-
metric ETKF the number of ensemble members ranked
below the ensemble mean is smaller than 41 or greater
than 50 in 61.9% of all cases, while for the ETKF with
mean-preserving random rotations this fraction is only
10.0%.

FIG. 5. Ensemble rank histograms for three different configurations.

FIG. 4. The best RMSE from Fig. 3 for a given ensemble size
over all inflation factors.
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These statistics show that the symmetric ETKF is
prone to the existence of the ensemble outliers, or en-
semble members with particularly big deviations from
the mean, and that this effect increases with the in-
crease of the size of the ensemble. Figure 4 shows that
this asymmetry of the ensemble results only in a very
marginal deterioration in the performance of the sym-
metric ETKF with the increase of the ensemble size. It
becomes more pronounced in systems with bigger non-
linearity or larger ensembles, such as used by Lawson
and Hansen (2004).

5. Discussion

The results presented in the previous section demon-
strate that the mean-preserving solutions for the ETM
perform substantially better than either the one-sided
solution or the solution with random rotations. We also
note that the ESRFs with the mean-preserving solu-
tions for the ETM achieved the best performance with
the ensembles of size equal to, or slightly larger than,
the model subspace dimension, unlike the traditional
EnKF with perturbed observations, which always per-
formed better with larger ensembles. This is evident
from the saturation of the RMSE for the mean-
preserving ETMs in Figs. 1 and 4, which occurs when
the ensemble size exceeds the dimension of the model
subspace (equal to 51 for the LA model and approxi-
mately 27 for the L40 model). These results indicate to
us that the ensemble anomalies in ESRFs may be in-
terpreted as a factorization of the system’s error covari-
ance rather than its Monte Carlo approximation.

The observed difference in the performance charac-
teristics of the symmetric ETKF and the ETKF with
mean-preserving random rotations for the L40 model

(Figs. 3 and 4) can only occur in a nonlinear system and
is therefore a consequence of the nonlinearity of the
L40 model. We note that, in the case of the symmetric
ETKF operating with the L40 model, an increase of the
ensemble size over the model dimension produces a
counterintuitive result of slightly degrading the filter
performance (Fig. 4). We attribute this to the buildup
of the ensemble outliers observed in Lawson and
Hansen (2004). The analysis of the rank histograms
presented in section 4 indicates that the effect of outli-
ers only occurs in systems with large ensembles; there-
fore, it is not clear to us whether this effect ever mani-
fests itself in large-scale applications like NWP. Impor-
tantly, using ETMs with mean-preserving random
rotations prevents the buildup of outliers when such a
possibility exists.

6. Summary and conclusions

Based on a series of data assimilation experiments
with two small models, we demonstrated that mean-
preserving solutions for the ETM in ESRFs yield a sig-
nificantly better performance than that of non-mean-
preserving solutions. For the LA model, the mean-
preserving ESRFs produce the RMSEs that are close to
the best possible RMSE for a given initial ensemble,
while non-mean-preserving solutions and the EnKF
with perturbed observations result in a much bigger
errors. For the nonlinear L40 model the two mean-
preserving solutions used in the experiments achieve
convergence with a smaller ensemble, require less en-
semble inflation, and result in smaller RMSEs, in par-
ticular for ensembles of modest size, compared to non-
mean-preserving solutions. Concerning the non-mean-
preserving solutions, we believe that the performance

FIG. 6. Distribution of the ensemble relative to the ensemble mean for the symmetric
ETKF and the ETKF with mean-preserving random rotations.
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of the one-sided solution and the solution with random
rotations in our tests justify a conclusion that these so-
lutions should not be used in practice for data assimi-
lation, although they can still yield a similar or margin-
ally better performance than the traditional EnKF for
some systems. The traditional EnKF is found to require
substantially larger ensembles than mean-preserving
ESRFs to achieve convergence or to achieve a similar
value of the RMSE. Given a sufficiently large en-
semble, its performance becomes as good as that of any
other scheme we tried in our experiments.

Considering the performance of particular mean-
preserving solutions for the ETM, we note that, al-
though these solutions produce different ensembles,
they are otherwise equivalent for a linear system. For a
nonlinear system, the symmetric solution preserves the
identity of the ensemble members during the analysis in
the best possible way, but it may also lead to the exis-
tence of ensemble outliers that cause deterioration in
the system performance.
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APPENDIX A

The Symmetric Solution Always Preserves the
Ensemble Mean

We will show that, for any zero-centered ensemble A,
A1 � 0, the symmetric solution (10) for the ETM sat-
isfies

T s1 � 1, �A1�

which is a sufficient condition for preserving the en-
semble mean. Using (13), this condition can be ex-
panded as

C��1�2CT1 � 1,

where C and � are defined by the eigenvalue decom-
position (12). Let us assume that C and � are organized
so that the first r vectors in C span the range of B,
where

B �
1

m � 1
�HA�TR�1HA

is the matrix added to the identity matrix in (10):

range�B� � �C1, . . . , Cr�, null�B� � �Cr�1, . . . , Cm�.

Let us represent C as a sum of two components, corre-
sponding to the range and null space of B:

C � C̃ � C̃̃, C̃ � CĨ, C̃̃ � CĨ̃

where Ĩ is a diagonal matrix containing ones for the first
r diagonal entries and zeros for the rest, and Ĩ̃ � I � Ĩ.
We now notice that, because �� Ĩ̃ � Ĩ̃ for an arbitrary
power �,

C��CT � C̃��C̃T �C̃̃C̃̃T,

so that the condition (A1) becomes

C̃��1�2C̃T1 �C̃̃C̃̃T1 � 1.

For a zero-centered ensemble we have A1 � 0, and
therefore, from the definition of B, B1 � 0. This means
that

1 ⊆ null�BT� � null�B�.

Consequently, from the definition of C̃ and C̃̃, first,
C̃T1 � 0, and second, because C̃̃T1 represents the vector
of coefficients of expansion of 1 in the basis of columns
of C̃̃, C̃̃C̃̃T1 � 1.

Note that the above arguments can be applied to any
solution of the form T � (I � ATDA)�, where D is an
arbitrary symmetric matrix, and � is an arbitrary power.

APPENDIX B

The Left-Multiplied Form of the Symmetric
Solution

We will show that the ensemble transformation rep-
resented by the symmetric solution (11) in the right-
multiplied form (7) can be rearranged to the left-
multiplied form

Aa � T̃ sA f,

with the ETM given by

T̃ s � �I � KH�1�2;

in other words, we will show that

A f� I �
A f T

HTM�1HA f

m � 1
�1�2

� �I � KH�1�2A f,

where M � HP fHT � R, and K is the Kalman gain (3).
Because the left-hand side of this equation can be

rearranged to the equivalent form (10), in which the
expression in square brackets is positive definite, and
because the inverse of a positive definite matrix is a
positive definite matrix, the expression in brackets in
the left-hand side is positive definite. Consequently, it
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can be expanded into Taylor series about I (hereafter
we omit the superscript for A f):

Aa � A�I �
ATHTM�1HA

m � 1 �1�2

� A �
k�0

�

ak�ATHTM�1HA
m � 1 �k

,

where ak are the coefficients of the expansion. Because

A�ATNA�k � �AATN�kA,

where N is an arbitrary matrix, this expression can be
further rearranged as follows:

Aa � ��
k�0

�

ak�AATHTM�1H
m � 1 �k�A � ��

k�0

�

ak�KH�k�A

� �I � KH�1�2A.
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