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1 Introduction

After the successful discovery of a Higgs Boson consistent with the predictions of the

Standard Model (SM), the focus of the current and upcoming runs of the Large Hadron

Collider (LHC) at 13TeV will be to discover evidence for physics beyond the SM. Among

the prime targets of this search is dark matter (DM), which has so far only been observed

via its gravitational interactions at astrophysical and cosmological scales. Since no particle

within the SM has the required properties to explain these observations, DM searches at

the LHC are necessarily searches for new particles.

In fact, LHC DM searches are also likely to be searches for new interactions. Given

the severe experimental constraints on the interactions between DM and SM particles, it

is a plausible and intriguing possibility that the DM particle is part of a (potentially rich)

hidden sector, which does not couple directly to SM particles or participate in the known

gauge interactions. In this setup, the visible sector interacts with the hidden sector only

via one or several new mediators, which have couplings to both sectors.

In the simplest case the mass of these mediators is large enough that they can be

integrated out and interactions between DM particles and the SM can be described by
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higher-dimensional contact interactions [1, 2]. This effective field theory (EFT) approach

has been very popular for the analysis and interpretation of DM searches at the LHC [3–5].

Nevertheless, as any effective theory it suffers from the problem that unitarity breaks down

if the relevant energy scales become comparable to the cut-off scale of the theory [6–10]

(for other examples of applying unitarity arguments in the DM context see refs. [11–14]).

The easiest way to avoid this problem appears to be to explicitly retain the (lightest)

mediator in the theory. The resulting models are referred to as simplified DM models, in

which couplings are only specified after electroweak symmetry breaking (EWSB) and no

ultraviolet (UV) completion is provided [15]. Compared to the EFT approach, simplified

models have a richer phenomenology [8, 16–23], including explicit searches for the mediator

itself [24–26]. Moreover, it is possible to achieve the DM relic abundance in large regions

of parameter space [26–28]. Constraining the parameter space of simplified DM models is

therefore a central objective of experimental collaborations [29–31].

In the present work we focus on the case of a spin-1 s-channel mediator [24, 28, 32–46].

Our central observation is that the simplified model approach is not generally sufficient to

avoid the problem of unitarity violation at high energies and that further amendments are

required if the model is to be both simple and realistic. In particular, a spin-1 mediator

with axial couplings violates perturbative unitarity at large energies, pointing towards the

presence of additional new physics to restore unitarity.

Indeed, the simplest way to restore unitarity is to assume that the spin-1 mediator is

the gauge boson of an additional U(1)′ gauge symmetry [47, 48] and that its mass as well

as the DM mass are generated by a new Higgs field in the hidden sector. The famous Lee-

Quigg-Thacker bound [49] implies that the additional Higgs boson cannot be arbitrarily

heavy and may therefore play an important role for LHC and DM phenomenology. In

particular, it can mix with the SM-like Higgs boson and mediate interactions between DM

particles and quarks.

Furthermore, we require for a consistent simplified DM model that the coupling struc-

ture respects gauge invariance of the full SM gauge group before EWSB (see [50] for a

similar discussion in the EFT context). If the mediator has axial couplings to quarks,

this requirement implies that the new mediator will also have couplings to leptons and

mixing with the SM Z boson, both of which are tightly constrained by experiments. Much

weaker constraints are obtained for the simplified DM model containing a spin-1 mediator

with vectorial couplings to quarks. Constraints from direct detection can be evaded if the

mediator has only axial couplings to DM, which naturally arises in the case that the DM

particle is a Majorana fermion. We discuss the importance of loop-induced mixing effects

in this context, which can play a crucial role for both direct detection experiments and

LHC phenomenology.

The outline of the paper is as follows. Starting from a simplified model for a spin-1

s-channel mediator, we explore in section 2 the implications of perturbative unitarity,

deriving a number of constraints on the model parameters and in particular an upper

bound on the scale of additional new physics. In section 3 we then consider the case where

this additional new physics is a Higgs field in the hidden sector and derive an upper bound

on the mass of the extra Higgs boson. We then discuss additional constraints on the SM
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couplings implied by gauge invariance. Section 4 focuses on the case of non-zero axial

couplings between SM fermions and the mediator, whereas in section 5 we assume that the

SM couplings of the mediator are purely vectorial. Finally, we discuss the experimental

implications of a possible mixing between the SM Higgs and the hidden sector Higgs in

section 6. A discussion of our results and our conclusions are presented in section 7.

2 Unitarity constraints on simplified models

2.1 Brief review of S matrix unitarity constraints

Consider the scattering matrix element Mif (s, cos θ) between 2-particle initial and final

states (i, f), with
√
s and θ being the centre of mass energy and scattering angle, respec-

tively. We define the helicity matrix element for the Jth partial wave by

MJ
if (s) =

1

32π
βif

∫ 1

−1

d cos θ dJµµ′(θ)Mif (s, cos θ) , (2.1)

where dJµµ′ is the Jth Wigner d-function, µ and µ′ denote the total spin of the initial and the

final state (see e.g. [51]), and βif is a kinematical factor. In the high-energy limit s→ ∞,

which we are going to consider below, βif → 1. The right-hand side of eq. (2.1) is to be

multiplied with a factor of 1/
√
2 each if the initial or final state particles are identical [52].

Unitarity of the S matrix implies

Im(MJ
ii) =

∑

f

|MJ
if |2

= |MJ
ii|2 +

∑

f 6=i

|MJ
if |2 ≥ |MJ

ii|2 (2.2)

for all J and all s. The sum over f in the first line runs over all possible final states.

Restricting these to be all possible 2-particle states leads to a conservative bound. If

the relation (2.2) is strongly violated for matrix elements calculated at leading order in

perturbation theory one can conclude that either higher-order terms in perturbation theory

restore unitarity (i.e. break-down of perturbativity) or that the theory is not complete and

additional contributions to the matrix element are needed.

From eq. (2.2) one obtains the necessary conditions

0 ≤ Im(MJ
ii) ≤ 1 ,

∣

∣Re(MJ
ii)
∣

∣ ≤ 1

2
. (2.3)

In the following we will apply these inequalities to leading-order matrix elements in order

to identify regions in parameter space where perturbative unitarity is violated. Since these

matrix elements are always real in the present context, only the second constraint will

be relevant.

If the matrixMJ
if is diagonalized the inequality in eq. (2.2) becomes an equality. Hence,

stronger constraints can be obtained by considering the full transition matrix connecting

all possible 2-particle states with each other (or some submatrix thereof) and calculating
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the eigenvalues of that matrix. Then the bounds from eq. (2.3) have to hold for each of

the eigenvalues [52].

We note that dJ00(θ) = PJ(cos θ), where PJ are the Legendre polynomials. If initial and

final state both have zero total spin, eq. (2.1) therefore becomes identical to the familiar

partial wave expansion of the matrix element. In the following we will focus on the J = 0

partial wave, which typically provides the strongest constraint. Since d0µµ′ is non-zero only

for µ = µ′ = 0, we then obtain from eq. (2.1)

M0
if (s) =

1

64π
βif δµ0δµ′0

∫ 1

−1

d cos θMif (s, cos θ) . (2.4)

2.2 Application to a simplified model with a Z
′ mediator

Let us consider a simplified model for a spin-1 mediator Z ′µ with mass mZ′ and a Dirac

DM particle ψ with mass mDM.1 The most general coupling structure is captured by the

following Lagrangian:

L = −
∑

f=q,l,ν

Z ′µ f̄
[

gVf γµ + gAf γµγ
5
]

f − Z ′µ ψ̄
[

gVDMγµ + gADMγµγ
5
]

ψ . (2.5)

Although these interactions appear renormalisable, the presence of a massive vector boson

implies that perturbative unitarity may be violated at large energies. In the following, we

will study this issue in detail and derive constraints on the parameter space of the model.

Let us first consider diagrams between 2-fermion states with the Z ′ as mediator. The

appropriate propagator for the mediator is

〈Z ′µ(k)Z ′ν(−k)〉 = 1

k2 −m2
Z′

(

gµν − kµkν

m2
Z′

)

, (2.6)

where kµ is the momentum of the mediator. For the case of a gauge boson this corresponds

to unitary gauge in which the Goldstone boson has been absorbed. Since we are interested

in the high-energy behaviour of the theory we concentrate on the second term, which

does not vanish in the limit k → ∞. This corresponds to restricting to the longitudinal

component of the mediator, Z ′
L, which dominates at high energy [51].2 For instance,

considering DM annihilations, we can contract the longitudinal part of the propagator

with the DM current. Making use of k = p1 + p2, where p1 and p2 are the momenta of the

two DM particles in the initial state, leads to a factor

kµv̄(p2)
(

gVDMγµ + gADMγµγ
5
)

u(p1) = v̄(p2)
[

gVDM(/p2 + /p1) + gADM(/p2γ
5 − γ5/p1)

]

u(p1)

= −2 gADMmDM v̄(p2)γ
5u(p1) . (2.7)

1In the case of Majorana DM the vector current vanishes and hence there can only be an axial coupling

on the DM side. We will come back to this case shortly but will consider Dirac DM here to allow for both

vectorial and axial couplings.
2It turns out that for certain processes the transversal part of the propagator leads to a logarithmic

divergence for m2

Z′ ≪ s. This divergence is not related to the UV completeness of the theory, but signals

breakdown of perturbativity in the IR, see also [14]. By restricting to the longitudinal components of the

Z′ [51] we can avoid the occurence of those IR divergences.
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Hence, the second term in the propagator behaves exactly like a pseudoscalar with mass

mZ′ and couplings to DM equal to 2 gADMmDM/mZ′ , just like the Goldstone boson present

in Feynman gauge. Note that the term is independent of the vector couplings. The same

argument holds for the quark couplings, which are found to be given by 2 gAf mf/mZ′ . This

consideration suggests that perturbative unitarity will not only lead to bounds on gV,A,

but also on the combination gAf mf/mZ′ .

We can make this statement more precise by applying the methods outlined in the

previous subsection to the self-scattering of two DM particles or two SM fermions. We

obtain for any fermion f with axial couplings gAf 6= 0 that the fermion mass must satisfy

the bound

mf .

√

π

2

mZ′

gAf
. (2.8)

Here f can be any fermion, including SM fermions and the DM particle. As suggested by

the above discussion we do not obtain any bound on the masses of fermions with purely

vectorial couplings, nor on the scale of new physics.

Let us now turn to the discussion of processes involving Z ′ in the external state,

in particular Z ′ with longitudinal polarisation. For concreteness, we study the process

ψψ̄ → Z ′
LZ

′
L.

3 At large momenta, k2 ≫ m2
Z′ , the polarisation vectors of the gauge bosons

can be replaced by ǫµL(k) = kµ/mZ′ . One might therefore expect the matrix element for

this process to grow proportional to s/m2
Z′ . However, such a term is absent due to a

cancellation between the t- and u-channel diagram. To obtain a non-zero contribution,

one needs to include a mass insertion along the fermion line [53]. It turns out that the

contribution proportional to gVDM still cancels in this case and that the leading contribution

at high energies becomes proportional to (gADM)2
√
smDM/m

2
Z′ . As a result, perturbative

unitarity is violated unless [53–55]4

√
s <

πm2
Z′

(gA
DM

)2mDM

. (2.9)

For larger energies new physics must appear to restore unitarity. This can be accomplished

by including an additional diagram with an s-channel Higgs boson, since both contributions

have the same high-energy behaviour. The consideration above implies an upper bound on

the mass of the Higgs that breaks the U(1)′ and gives mass to the Z ′:

ms <
πm2

Z′

(gA
DM

)2mDM

. (2.10)

We will discus the consequences of such an extension of the minimal model in section 3.

In summary we have found that there are two different types of constraints on the

parameters of this simplified model, even for perturbative couplings. For non-vanishing

3Note that this process corresponds to an off-diagonal element of Mif , with i 6= f , whereas the bounds

from eq. (2.3) apply for diagonal elements. In order to apply the unitarity constraint we consider the

2 × 2 submatrix of Mif spanned by the states ψψ̄ and Z′

LZ
′

L. For s → ∞ only the off-diagonal element

survives, and hence the eigenvalues of the matrix become equal to the off-diagonal element, and we can

apply eq. (2.3).
4Our result differs from the one in [53] by a factor 1/

√
2.
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Figure 1. Parameter space forbidden by the requirement of perturbative unitarity in the
√
s−mZ′

plane for mDM = 500 GeV. The constraint resulting from DM scattering is shown in grey (solid),

the constraint resulting from DM annihilation into Z ′s is shown in blue (dashed). Thick (thin)

lines correspond to gA
DM

= 1 (gA
DM

= 0.1). In these cases, the Z ′ can never be lighter than about

400 GeV (40 GeV) irrespective of the UV completion.

axial couplings there is an energy scale for which the theory violates perturbative unitarity

and needs to be UV completed, see eq. (2.9). In addition, imposing that the coupling

between the longitudinal component of the vector mediator and the DM particle remain

perturbative, we find that the vector mediator cannot be much lighter than the DM, see

eq. (2.8). This constraint is not related to missing degrees of freedom and is therefore

completely independent of the UV completion. We illustrate both constraints in figure 1

for different axial couplings and a DM mass mDM = 500 GeV.

To conclude this section, we emphasise that for pure vector couplings of the Z ′ (gADM =

gAf = 0) the simplified model considered in this section is well-behaved in the UV in the

sense that there is no problem with perturbative unitarity.5 Indeed in this specific case

a bare mass term for the dark matter is allowed such that it is sufficient to generate the

vector boson mass via a Stueckelberg mechanism without the need for additional degrees of

freedom [56, 57]. However, this specific coupling configuration is highly constrained, since

it is very difficult to evade bounds from direct detection experiments and still reproduce the

observed DM relic abundance. This is illustrated in figure 2 where we show the parameter

region excluded by the bound on the spin-independent DM-nucleon scattering cross section

from LUX [58] and the parameter region where the DM annihilation cross section becomes

so small that DM is overproduced in the early Universe. One can clearly see that only a

finely-tuned region of parameter space close to the resonance mDM = mZ′/2 is still allowed.

For the rest of the paper, we will therefore not consider this case further and always assume

that at least one of the vector couplings vanishes such that direct detection constraints can

be weakened.

5As discussed below there can be anomalies which require additional fermions.
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Figure 2. Vector(SM)–Vector(DM): parameter space excluded by the bound on the spin-

independent DM-nucleon scattering cross section from LUX (green, dashed) and the parameter

region where the DM annihilation cross section becomes so small that DM is overproduced in the

early Universe (red, solid).

3 Including an additional Higgs field

As we have seen in the previous section, for non-zero axial couplings the simplified model

violates perturbative unitarity at high energies, implying that additional new physics must

appear below these scales. This observation motivates a detailed discussion of how to

generate the vector boson mass from an additional Higgs mechanism. To restore unitarity

let us therefore now consider the case that the Z ′ is the gauge boson of a new U(1)′ gauge

group. To break this gauge group and give a mass to the Z ′, we introduce a dark Higgs

singlet S, which needs to be complex in order to allow for a U(1)′ charge. We then obtain

the following Lagrangian

L = LSM + LDM + L′
SM + LS , (3.1)

where the first term is the usual SM Lagrangian and the second term describes the inter-

actions of DM. The third term contains the interactions between SM states and the new

Z ′ gauge boson while the fourth term contains the extended Higgs sector.

3.1 Implications for the dark sector

As mentioned above, it is well-motivated from a phenomenological perspective to consider

the case that vector couplings to the Z ′ mediator vanish in at least one of the two sectors,

so that direct detection is suppressed. On the DM side this is naturally achieved for a

Majorana fermion, which we will focus on from now. We therefore write

ψ =

(

χ

ǫχ∗

)

, (3.2)
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where χ is a Weyl spinor. We assume that χ carries a charge qDM under the new U(1)′

gauge group, such that under a gauge transformation

ψ → exp
[

i g′qDM α(x) γ5
]

ψ , (3.3)

where g′ is the gauge coupling of the new U(1)′. The kinetic term for ψ can hence be

written as

Lkin =
1

2
ψ̄(i/∂ − g′ qDM γ5 /Z

′
)ψ =

i

2
ψ̄ /∂ψ − 1

2
gADMZ

′µψ̄γ5γµψ , (3.4)

with gADM ≡ g′qDM. The U(1)′ charge forbids a Majorana mass term. Nevertheless, if

the Higgs field S carries charge qS = −2qDM, we can write down the gauge-invariant

combination

Lmass = −1

2
yDMψ̄(PLS + PRS

∗)ψ . (3.5)

Including the kinetic and potential terms for the Higgs singlet, the full dark Lagrangian

therefore reads

LDM =
i

2
ψ̄ /∂ψ − 1

2
gADMZ

′µψ̄γ5γµψ − 1

2
yDMψ̄(PLS + PRS

∗)ψ ,

LS =
[

(∂µ + i gS Z
′µ)S

]† [
(∂µ + i gS Z

′
µ)S
]

+ µ2s S
†S − λs

(

S†S
)2

. (3.6)

Once the Higgs singlet aquires a vacuum expectation value (vev), it will spontaneously

break the U(1)′ symmetry, thus giving mass to the Z ′ gauge boson and the DM particle.

After symmetry breaking, we obtain the following Lagrangian (defining S = 1/
√
2(s+ w)

and using gS ≡ g′qS = −2gADM)

L =
i

2
ψ̄ /∂ψ − 1

4
F ′µνF ′

µν −
1

2
gADMZ

′µψ̄γ5γµψ − mDM

2
ψ̄ψ − yDM

2
√
2
sψ̄ψ (3.7)

+
1

2
m2

Z′ Z ′µZ ′
µ +

1

2
∂µs∂µs+ 2(gADM)2 Z ′µZ ′

µ(s
2 + 2 sw) +

µ2s
2
(s+ w)2 − λs

4
(s+ w)4 ,

with F ′µν = ∂µZ ′ν − ∂νZ ′µ and

mDM =
1√
2
yDMw , mZ′ ≈ 2gADMw . (3.8)

If the SM Higgs is charged under the U(1)′ the Z ′ mass will receive an additional contribu-

tion from the SM Higgs vev, see eq. (3.19) below. Electroweak precisison data requires that

this contribution is small, and therefore we neglect this term in eq. (3.8) and for the rest of

this subsection. Note that without loss of generality we can choose w and yDM to be real

(ensuring real masses) by absorbing complex phases in the field definitions for S and ψ.6

As discussed above, the mass of the additional Higgs particle must satisfy

ms <
πm2

Z′

(gA
DM

)2mDM

(3.9)

6This will no longer be true if we allow for an explicit mass term for ψ. In this case the relative phase

between yDM and the mass term is physical (see e.g. [59]). Here we do not allow for an explicit mass term

and we assume that the vev of the singlet is the only source of U(1)′ symmetry breaking.
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in order for perturbative unitarity to be satisfied, which when substituting the masses of

the Z ′ and DM becomes

ms <
4
√
2πw

yDM

. (3.10)

Once we include such a new particle coupling to the Z ′, however, there are additional

scattering processes such as ss → ss that need to be taken into account when check-

ing perturbative unitarity [60]. Here we consider the scattering of the states ss/
√
2 and

Z ′
LZ

′
L/

√
2. In the limit

√
s ≫ ms ≫ mZ′ , the J = 0 partial wave of the scattering matrix

takes the form [49]

lim√
s→∞

M0
if = −(gADM)2m2

s

8πm2
Z′

(

3 1

1 3

)

. (3.11)

Partial wave unitarity requires the real part of the largest eigenvalue, which corresponds

to the eigenvector (ss+ Z ′
LZ

′
L)/2, to be smaller than 1/2. We hence obtain the inequality

ms ≤
√
πmZ′

gA
DM

=
√
4πw . (3.12)

This inequality together with eq. (2.8) gives a stronger bound on the Higgs mass than

the one obtained in eq. (2.10). In other words, the bound in (2.10) can never actually be

saturated in this UV completion. We note that eqs. (2.8) and (3.12) can be unified to

√
π
mZ′

gA
DM

≥ max
[

ms,
√
2mDM

]

. (3.13)

3.2 Implications for the visible sector

For the discussion above we only needed to consider the DM part of the Lagrangian. Let

us now also look at the coupling to the SM, see e.g. [61]. The interactions between SM

states and the new Z ′ gauge boson can be written as

L′
SM =

[

(DµH)†(−i g′ qH Z ′
µH) + h.c.

]

+ g′2 q2H Z ′µZ ′
µH

†H

−
∑

f=q,ℓ,ν

g′ Z ′µ [qfL f̄LγµfL + qfR f̄RγµfR
]

, (3.14)

where Dµ denotes the SM covariant derivative. We can now immediately write down a

list of relations between the different charges q required by gauge invariance of the SM

Yukawa terms:7

qH = qqL − quR
= qdR − qqL = qeR − qℓL . (3.15)

After electroweak symmetry breaking, we obtain

L′
SM =

1

2

e g′ qH
sW cW

(h+ v)2 ZµZ ′
µ +

1

2
g′2 q2H (h+ v)2 Z ′µZ ′

µ

−
∑

f=q,l,ν

1

2
g′Z ′µ f̄

[

(qfR + qfL)γµ + (qfR − qfL)γµγ
5
]

f . (3.16)

7If right-handed neutrinos exist their charge qνR would be constrained by qH = qℓL − qνR to allow for a

Yukawa term with the lepton doublet. In the following we assume that if right-handed neutrinos exist they

are heavy enough to decouple from all relevant phenomenology.
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Comparing the second line of eq. (3.16) with eq. (2.5) we can read off the vector and axial

vector couplings of the fermions:

gVf =
1

2
g′(qfR + qfL) , gAf =

1

2
g′(qfR − qfL) . (3.17)

It is well known that a U(1)′ under which only SM fields are charged is in general

anomalous, unless the SM fields have very specific charges (e.g. U(1)B−L is anomaly free).

The relevant anomaly coefficients can e.g. be found in [61]. The presence of these anomalies

implies that the theory has to include new fermions to cancel the anomalies. While these

fermions can be vectorlike with respect to the SM, they will then need to be chiral with

respect to the U(1)′. The mass of the additional fermions is therefore constrained by the

breaking scale of the U(1)′. In particular, the bound from eq. (2.8) applies to these fermions

as well and therefore they cannot be decoupled from the low-energy theory.

It is however interesting to note that the anomaly involving two gluons and a Z ′ is

proportional to

AggZ′ = 3 (2qqL − quR
− qdR) , (3.18)

which always vanishes if we restrict the charges based on gauge invariance of the Yukawa

couplings (see eq. (3.15)). This implies that no new coloured states are needed to cancel

the anomalies, greatly reducing the sensitivity of colliders to these new states.8 In any case,

there are many different possibilities for cancelling the anomalies via new fermions. While

the existence of additional fermions will lead to new signatures, a detailed investigation of

these is beyond the scope of this work.

If the SM Higgs is charged under U(1)′ (qH 6= 0) the mass of the Z ′ receives a contri-

bution from both Higgses:

m2
Z′ = (g′qHv)

2 + 4(gADMw)
2 , (3.19)

and we obtain a mass mixing term of the form δm2 ZµZ ′
µ with

δm2 =
1

2

e g′ qH
sW cW

v2 , (3.20)

where sW (cW) is the sine (cosine) of the Weinberg angle.

As we are going to discuss below, electroweak precision data requires |δm2| ≪ |mZ −
mZ′ | (see also appendix A.1). Using mZ = ev/(2sWcW), g′qs = −2gADM, and neglecting

order one factors this requirement implies either g′qH ≪ e or qsw ≫ v. In the parameter

regions of interest it follows from those conditions that the first term in eq. (3.19) is small

and hence the mass of the Z ′ is dominated by the vev of the dark Higgs. Taking into

account eqs. (3.15) and (3.17), the condition |δm2| ≪ |mZ −mZ′ | then implies either small

axial couplings (gAf ≪ 1) or mZ′ ≫ mZ . We are going to present more quantitative results

in the next section and discuss a number of interesting experimental signatures resulting

from the new interactions due to eq. (3.16).

8This conclusion is in disagreement with the observations made in [41].
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To conclude this section, it should be noted, that the Lagrangian introduced above is

UV-complete (up to anomalies) and gauge invariant but does not correspond to the most

general realization of this model. In particular the term

L ⊃ −λhs(S∗S)(H†H) , (3.21)

which will lead to mixing between the SM Higgs h and the dark Higgs s can be expected

to be present at tree level. Furthermore, the term

L ⊃ −1

2
sin ǫF ′µνBµν , (3.22)

which generates kinetic mixing between the Z ′ and the Z-boson, respects all symmetries

of the Lagrangian. It can be argued that ǫ might vanish at high scales in certain UV-

completions, but even in this case kinetic mixing is necessarily generated at the one-loop

level and can have a substantial impact on EWPT. We will return to these issues and the

resulting phenomenology of the model in sections 5 and 6. For the moment, however, we

are going to neglect these additional effects and focus on the impact of δm 6= 0, which

necessarily leads to mass mixing between the neutral gauge bosons in the case of non-

vanishing axial couplings.

4 Non-zero axial couplings to SM fermions

Let us start with the case that axial couplings on the SM side are non-vanishing. An

immediate consequence is that the SM Higgs is charged under the U(1)′, which follows

from eqs. (3.15) and (3.17) for gAf 6= 0. Note that these equations also imply that it is

inconsistent to set the vectorial couplings for all quarks equal to zero. For example, if

we impose that the vectorial couplings of up quarks vanish, i.e. gVu = 0, eq. (3.17) implies

quR
= −qqL , which using eq. (3.15) leads to gVd = 2g′qqL . In the following, whenever gAf 6= 0,

we always fix gVf = gAf , which corresponds to setting qqL = qℓL = 0.

Furthermore, eq. (3.15) requires that Z ′ couplings are flavour universal and leptons

couple with the same strength to the Z ′ as quarks. This conclusion could potentially

be modified by considering an extended Higgs sector, e.g. a two-Higgs-doublet model.

Here we focus on the simplest case where a single Higgs doublet generates all SM fermion

masses. This implies that the leading search channel at the LHC will be dilepton res-

onances, which give severe constraints. In principle also electron-positron colliders can

constrain this scenario efficiently. Limits on a Z ′ lighter than 209GeV derived from LEP

data imply g . 10−2 [62] (see also [63, 64]). We do not include LEP constraints here since

other constraints will turn out to be at least equally strong.

For general couplings, the partial decay width of the mediator into SM fermions is

given by

Γ(Z ′ → ff̄) =
mZ′Nc

12π

√

1−
4m2

f

m2
Z′

[

(gVf )
2 + (gAf )

2 +
m2

f

m2
Z′

(

2(gVf )
2 − 4(gAf )

2
)

]

, (4.1)
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Figure 3. Axial+Vector(SM)–Axial(DM): parameter space forbidden by constraints from dilepton

resonance searches from ATLAS (light green, dashed) and Tevatron (dark green, dashed), elec-

troweak precision observables (blue, dotted) and DM overproduction (red, solid) in the mZ′ − gAq,l
parameter plane for two exemplary DM masses 100GeV (left) and 500GeV (right). In the shaded

region to the left of the vertical grey line the Z ′-mass violates the bound from perturbative unitarity

from eq. (2.8).

where Nc = 3 (1) for quarks (leptons). The decay width into DM pairs is

Γ(Z ′ → ψψ) =
mZ′

24π
(gADM)2

(

1− 4m2
DM

m2
Z′

)3/2

. (4.2)

Consequently, for mDM ≪ mZ′ and gAℓ = gAq ≪ gADM the branching ratio into ℓ = e, µ

is given by BR(R → ℓℓ) ≈ 8(gAℓ )
2/(gADM)2. For mDM > mZ′/2, on the other hand, the

branching ratio is given by BR(R→ ℓℓ) ≈ 0.08–0.10 depending on the ratio mZ′/mt.

We implement the latest ATLAS dilepton search [65], complemented by a Tevatron

dilepton search [66] for the low mass region, and show the resulting bounds in figure 3.

One can see that the bounds strongly depend on the assumed branching ratio of the Z ′.

As a conservative limiting case we show gADM = 1 and mDM = 100GeV, which leads

to a rather large branching fraction into DM and hence suppressed bounds. The second

benchmark, mDM = 500GeV, allows for Z ′ decays to DM only for rather heavy Z ′s, leading

to correspondingly more restrictive dilepton constraints. Overall the bounds turn out to be

very stringent and the Z ′ coupling to leptons and quarks needs to be significantly smaller

than unity for 100 GeV . mZ′ . 4 TeV, so that dijet constraints are basically irrelevant

in this case given that gq = gl.

The fact that the SM Higgs is charged also implies potentially large corrections to

electroweak precision observables. In particular we obtain the non-diagonal mass term

δm2 ZµZ ′
µ leading to mass mixing between the SM Z and the new Z ′. The diagonalisation

required to obtain mass eigenstates is discussed in the appendix. In the absence of kinetic

mixing between the U(1)′ and the SM U(1) gauge bosons (ǫ = 0), the resulting effects
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can be expressed in terms of the mixing parameter ξ = δm2/(m2
Z −m2

Z′) (see eq. (A.5) in

the appendix with ǫ = 0). In particular, we can calculate the constraints from electroweak

precision measurements, which are encoded in the S and T parameters. To quadratic order

in ξ we find [67]

αS = −4c2Ws
2
Wξ

2 ,

αT = ξ2
(

m2
Z′

m2
Z

− 2

)

, (4.3)

where α = e2/4π. The resulting bounds are shown in figure 3. To infer our bounds we use

the 90% CL limit on the S and T parameters as given in [62].

Note that the bound from electroweak precision data is completely independent of the

Z ′ couplings to the DM as well as the DM mass. Hence, the same bound would apply also

in the case of Dirac DM with vector couplings to the Z ′. Note however that since vectorial

couplings to quarks are necessarily non-zero if gAq 6= 0 (see eqs. (3.15), (3.17)), there will be

very stringent bounds from direct detection experiments on any model with gVDM 6= 0 due

to unsuppressed spin-independent scattering. For Majorana DM, the vectorial coupling

always vanishes and the constraints from direct detection are much weaker.

In figure 4 we show the constraints from electroweak precision data as well as LHC

dilepton searches in the mDM −mZ′ plane for different values of the axial vector coupling

to fermions. In the lower right corner of the plots (grey area) the perturbative unitarity

condition from eq. (2.8) is violated. We also show the region excluded by direct detection

searches (dark region in the lower left corners). For the axial-axial couplings DM-nucleus

scattering proceeds through spin-dependent interactions, with a scattering cross section

given by

σSDN =
3 a2N (gADM)2 (gAq )

2

π

µ2

m4
Z′

, (4.4)

where µ is the DM-nucleon reduced mass, N = p, n and ap = −an = 1.18 is the effective

nucleon coupling [62]. This is the dominant contribution in this case as the vector-axial

coupling combination is even further suppressed. In the plots we show the bound on the

spin-dependent scattering cross section that can be calculated from the published LUX

results [58], following the method described in [68]. We observe that in this case direct

detection is never competitive with other constraints.

The red solid curves in figures 3 and 4 show the parameter values that lead to the

correct relic abundance. In order to calculate the relic abundance we have implemented

the model in micrOMEGAs v4 [69], assuming that the mass of the Higgs singlet saturates

the unitarity bound and setting the mixing with the SM Higgs to zero.9 In the regions

shaded in red (to the right/above the solid curve) there is overproduction of DM. In this

region additional annihilation channels are required to avoid overclosure of the Universe,

since the interactions provided by the Z ′ are insufficient to keep DM in thermal equilibrium

9Note that since ξ can be large in some regions of parameter space, it is not a good approximation to

expand the annihilation cross section in ξ. We therefore use the exact expression for the mixing between

the neutral gauge bosons in terms of ǫ and δm2 as derived in the appendix.
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Figure 4. Axial+Vector(SM)–Axial(DM): parameter space forbidden by constraints from dilepton

resonance searches (green, dashed) and electroweak precision observables (blue, dotted) in the

mDM −mZ′ plane for four different sets of couplings. We also show the regions excluded by DM

overproduction (red), direct detection bounds (purple, dot-dashed) and the parameter space where

perturbative unitarity is violated (grey). For the relic density calculation we have assumed that the

mass of the hidden sector Higgs saturates the unitarity bound.

long enough. Such additional interactions could be obtained for instance from the scalar

mixing discussed in section 6. Conversely, to the left/below the red solid curve the model

does not provide all of the DMmatter in the Universe, since the annihilation rate is too high.

Let us briefly discuss the various features that can be observed in the relic abundance

curve. First there is a significant decrease of the predicted abundance as the DM mass

crosses the top-quark threshold, mχ > mt, resulting from the fact that the s-wave con-

tribution to the annihilation cross section is helicity suppressed and hence annihilation

into top-quarks becomes the dominant annihilation channel as soon as it is kinematically

allowed. The second feature occurs at mχ ∼ mZ′ and reflects the resonant enhancement
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of the annihilation process χχ → qq̄ as the mediator can be produced on-shell. A third

visible feature is a very narrow resonance at 2mχ ∼ ms =
√
πmZ′/gADM due to a resonant

enhancement of the process χχ → s → Z ′Z. The position and magnitude of this effect

depends on the mass of the dark Higgs, which has been (arbitrarily) fixed to saturate the

unitarity bound. However, even for this extreme choice, it turns out to give a non-negligible

contribution to the relic abundance. For mχ > mZ′ direct annihilation into two media-

tors becomes possible, leading to a significant decrease of the predicted relic abundance.

Finally, the fact that the relic abundance curve in figure 4 touches the unitarity bound

for high DM masses reflects the well-known unitarity bound on the mass of a thermally

produced DM particle [11].

All in all we find the case with non-vanishing axial couplings on the SM side to be

strongly constrained by dilepton searches as well as electroweak precision observables, im-

plying that in a UV complete model this is where a signal should first be seen. For com-

parison, we show recent bounds from LUX as well as from the CMS monojet search [29].10

We find that these searches, as well as searches for dijet resonances, are not competitive.

Note that in figure 4 we assume gADM = 1. We comment on smaller couplings on the DM

side later in the context of figure 7. Let us now look at the case where axial couplings to

quarks are taken to be zero, which will turn out to be somewhat less constrained.

5 Purely vectorial couplings to SM fermions

Let us now consider the case with purely vectorial couplings on the SM side, i.e. gAq =

gAℓ = gAν = 0. In this case the SM Higgs does not carry a U(1)′ charge and therefore

the charges of quarks and leptons are independent. In particular, it is conceivable that

gVq ≫ gVℓ , so that constraints from dilepton resonance searches can be evaded. Also there

can in principle be a flavour dependence of the Z ′ couplings to quarks. Nevertheless, to

avoid large flavour-changing neutral currents, we will always assume the same coupling for

all quark families in what follows [15]. Finally, in contrast to the case discussed above,

tree-level Z − Z ′ mass mixing is absent. It therefore seems plausible that the Z ′ is the

only state coupling to both the visible and the dark sector. Nevertheless, as mentioned

above, potentially important effects in this scenario can be kinetic mixing of the U(1) gauge

bosons as well as effects induced by the dark Higgs, which we are going to discuss below.

Let us just mention that all these effects will also be present in the scenario discussed in the

previous section. They are, however, typically less important than the effects of tree-level

Z-Z ′ mixing.

We first consider the effects of kinetic mixing between the Z ′ and the SM hypercharge

gauge boson B:

L ⊃ −1

2
sin ǫ F ′µνBµν , (5.1)

10To interpret the CMS results in the context of our model, we implement our model in Feynrules v2 [70]

and simulate the monojet signal with MadGraph v5 [71] and Pythia v6 [72]. Imposing a cut on the missing

transverse energy of /ET > 450 GeV, we exclude all parameter points that predict a contribution to the

monojet cross section larger than 7.8 fb. We find good agreement between this procedure and an analogous

implementation using CalcHEP v3 [73] and DELPHES v3 [74].
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Figure 5. Vector(SM)–Axial(DM): parameter space forbidden by constraints from ATLAS and

Tevatron dileptons (green, dashed), electroweak precision observables (blue, dotted) and relic DM

overproduction (red, solid) in the mZ′ -ǫ parameter plane (left) and the mDM-mZ′ parameter plane

(right). In both panels we show the parameter space where perturbative unitarity is violated (grey).

For the relic density calculation we have assumed that the mass of the hidden sector Higgs saturates

the unitarity bound.

where F ′µν = ∂µZ ′ν − ∂νZ ′µ and Bµν = ∂µBν − ∂νBµ. A non-zero value of ǫ leads to

mixing between the Z ′ and the neutral gauge bosons of the SM (see appendix A.1). As

in the case of mass mixing discussed above, there are strong constraints on kinetic mixing

from searches for dilepton resonances and electroweak precision observables.

The dilepton couplings induced via the kinetic mixing parameter ǫ can be inferred from

the mixing matrices and are given in the appendix, cf. eq. (A.10). The S and T parameters

are given by

αS = 4c2WsWξ(ǫ− sWξ) ,

αT = ξ2
(

m2
Z′

m2
Z

− 2

)

+ 2sWξǫ , (5.2)

where for δm2 = 0 the mixing parameter ξ is given by ξ = m2
ZsWǫ/(m

2
Z −m2

Z′) at leading

order. If ǫ is sizeable, i.e. if mixing is present at tree level, the resulting bounds can be

quite strong. This expectation is confirmed in figure 5. Note that the relic density curves

shown in figure 5 are basically independent of ǫ, because freeze-out is dominated by direct

Z ′ exchange for the adopted choice of couplings.

While tree-level mixing is tightly constrained, it is reasonable to expect that ǫ vanishes

at high scales, for example if both U(1)s originate from the same underlying non-Abelian

gauge group, as in Grand Unified Theories. Since quarks carry charge under both U(1)′ and

U(1)Y , quark loops will still induce kinetic mixing at lower scales [47], but the magnitude

of ǫ can be much smaller than what we considered above. The precise magnitude of the

kinetic mixing depends on the underlying theory, but if we assume that ǫ(Λ) = 0 at some
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Figure 6. Vector(SM)–Axial(DM): parameter space forbidden by constraints from ATLAS and

Tevatron dileptons (green, dashed) and electroweak precision observables (blue, dotted) in the

mZ′ -gVq parameter plane (left) and the mDM-mZ′ parameter plane (right), assuming that ǫ = 0

at Λ = 10 TeV so that kinetic mixing is only induced at the one-loop level. In the right panel

we show also the region excluded by LHC monojet (orange, dashed) and dijet (violet, dot-dashed)

searches due to tree-level Z ′ exchange for the adopted coupling choice. In both panels we show the

parameter space where perturbative unitarity is violated (grey). For the relic density calculation

we have assumed that the mass of the hidden sector Higgs saturates the unitarity bound.

scale Λ ≫ 1 TeV, the kinetic mixing at a lower scale µ > mt will be given by [75]

ǫ(µ) =
e gVq

2π2 cos θW
log

Λ

µ
≃ 0.02 gVq log

Λ

µ
. (5.3)

We can use this equation (setting µ = mZ′) to translate the bounds from figure 5 into

constraints on gVq . The results of such an analysis are shown in figure 6 assuming Λ =

10TeV. As can be seen in figure 6 (left), searches for dilepton resonances give again

stringent constraints, implying gVq < 0.1 for mZ′ = 200 GeV and gVq < 1 for mZ′ = 1 TeV.

In the right panel of figure 6 we also show the constraints coming from LHC searches

for monojets (i.e. jets in association with large amounts of missing transverse energy) and

for dijet resonances, adopted from ref. [26].11 These limits are independent of the kinetic

mixing ǫ since they originate from the tree-level Z ′ exchange and probe larger values of

mZ′ and smaller values of mDM. Nevertheless, dilepton resonance searches and EWPT

give relevant constraints for small mZ′ and large mDM, which are difficult to probe with

monojet and dijet searches.

We conclude from figure 6 that the combination of constraints due to loop-induced

kinetic mixing and bounds from LHC DM searches leave only a small region in parame-

11Note that as long as the mediator is produced on-shell, the production cross section is proportional to

(gVq )2 + (gAq )
2 and hence it is a good approximation to apply the bounds obtained for gVq = 0 and gAq 6= 0

also to the case gAq = 0 and gVq 6= 0. However, ref. [26] assumes a Dirac DM particle, while we focus on

Majorana DM. As a result, the invisible branching fraction will be somewhat smaller in our case and bounds

from dijet resonance searches will be strengthened. The dijet bounds we show are therefore conservative.
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Figure 7. Constraints for small DM couplings (gA
DM

= 0.1). The left panel considers the case

Axial+Vector(SM)–Axial(DM) and should be compared to figure 4. The right panel considers the

case Vector(SM)–Axial(DM) with loop-induced kinetic mixing, assuming that ǫ = 0 at Λ = 10TeV

(cf. figure 6).

ter space (a small strip close to the Z ′ resonance), where DM overabundance is avoided.

While this result depends somewhat on our choice Λ = 10TeV and µ = mZ′ , it is only

logarithmically sensitive to these choices.

It is worth emphasising that the unitarity constraints shown in figures 4–6 depend

sensitively on the choice of gADM (cf. figure 1). We therefore show in figure 7 how these

constraints change if we take gADM = 0.1 rather than gADM = 1. In this case both mDM

and ms can be much larger than mZ′ . At the same time, however, relic density constraints

become significantly more severe, excluding almost the entire parameter space with mDM <

mZ′ (apart from the resonance region mDM ∼ mZ′). Even for mDM > mZ′ is it difficult

to reproduce the observed relic abundance, because the annihilation channel χχ → Z ′Z ′

is significantly suppressed due to the smallness of gADM. It only becomes relevant close

to the unitarity bound, where also the process χχ → ZZ ′ mediated by the dark Higgs

gives a sizeable contribution. While in the case with axial couplings on the SM side the

region compatible with thermal freeze-out becomes fully excluded by dilepton resonance

searches, the case with vector couplings on the SM side is very difficult to probe at colliders

and direct detection, leading to a small allowed parameter region close to the bound from

perturbative unitarity.

In addition to the effects of kinetic mixing, we have shown above that for gADM 6= 0

the dark sector necessarily contains a new Higgs particle. The presence of this additional

Higgs can change the phenomenology of the model in two important ways. First, loop-

induced couplings of the dark Higgs to SM states may give an important contribution to

direct detection signals. And second, there may be mixing between the SM Higgs and the

dark Higgs, leading to pertinent modifications of the properties of the SM Higgs as well as

opening another portal for DM-SM interactions. We will discuss loop-induced couplings in

this section and then return to a detailed study of the Higgs potential in the next section.
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Figure 8. Contributions to spin-independent scattering.

For gAq = gVDM = 0, scattering in direct detection experiments is momentum-suppressed

in the non-relativistic limit and the corresponding event rates are very small. This con-

clusion may change if loop corrections induce unsuppressed scattering [76]. Indeed, at the

one-loop level the dark Higgs can couple to quarks and can therefore mediate unsuppressed

spin-independent interactions. The resulting interaction can be written as L ∝
∑

q mq s q̄q.

After integrating out heavy-quark loops as well as the dark Higgs this interaction leads to

an effective coupling between DM and nucleons of the form L ∝ fN mN mDM N̄N ψ̄ψ,

where mN is the nucleon mass, N = p, n and fN ≈ 0.3 is the effective nucleon coupling.

In the non-relativistic limit, the diagram in the left of figure 8 induces the effective

interaction

Leff ⊃
(gADM)2 (gVq )

2

π2
1

m2
sm

2
Z′

×mDM fN mN N̄N ψ̄ψ . (5.4)

The corresponding spin-independent scattering cross section is given by

σSIN =
m2

DM f2N m2
N µ2

π

(gADM)4 (gVq )
4

π4
1

m4
sm

4
Z′

, (5.5)

where µ is the DM-nucleon reduced mass. For masses of order 300 GeV and couplings of

order unity this expression yields σSIN ∼ 10−46 cm2, which is below the current bounds from

LUX but well within the potential sensitivity of XENON1T.

We note that there are two additional diagrams (shown in the second and third panel

of figure 8) that also lead to unsuppressed spin-independent scattering of DM particles [76].

For mDM ≫ mN , the resulting contribution is given by

Leff ⊃
(gADM)2 (gVq )

2

4π2
m2

DM −m2
Z′ +m2

Z′ log(m2
Z′/m2

DM)

m2
Z′(m2

Z′ −m2
DM

)2
×mDM fN mN N̄N ψ̄ψ . (5.6)

If there is no large hierarchy between mDM, mZ′ and ms, this contribution is of comparable

magnitude to the one from dark Higgs exchange and interference effects can be important.

Moreover, there may be a relevant contribution from loop-induced spin-dependent scatter-

ing. We leave a detailed study of these effects to future work.

6 Mixing between the two Higgs bosons

In addition to the loop-induced couplings of the dark Higgs to SM fermions discussed in

the previous section, such couplings can also arise at tree-level from mixing. In fact, an

important implication of the presence of a second Higgs field is that the two Higgs fields will
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in general mix, thus modifying the properties of the mostly SM-like Higgs. Furthermore,

the mixing opens up the so-called Higgs portal between the DM and SM particles, leading

to a much richer DM phenomenology than in the case of DM-SM interactions only via the

vector mediator.

The mixing between the scalars is due to an additional term in the scalar potential:

V (S,H) ⊃ λhs(S
∗S)(H†H) . (6.1)

The coupling λhs is a free parameter, independent of the vector mediator. For non-zero

λhs, the scalar mass eigenstates H1,2 are given by

H1 = s sin θ + h cos θ

H2 = s cos θ − h sin θ (6.2)

where, as shown in appendix A.2,

θ ≈ − λhs v w

m2
s −m2

h

+O(λ3hs) . (6.3)

We emphasise that perturbative unitarity implies that ms cannot be arbitrarily large (for

given mZ′ and gADM) and hence it is impossible to completely decouple the dark Higgs.

The resulting Higgs mixing leads to three important consequences. First, the (mostly)

dark Higgs obtains couplings to SM particles, enabling us to produce it at hadron colliders

and to search for its decay products (or monojet signals). Second, the properties of the

(mostly) SM-like Higgs, in particular its total production cross section and potentially

also its branching ratios, are modified. And finally, both Higgs particles can mediate

interactions between DM and nuclei, leading to potentially observable signals at direct

detection experiments.

Higgs portal DM has been extensively studied, see for instance [12, 59, 77–81] for an

incomplete selection of references. A full analysis of Higgs mixing effects is beyond the

scope of the present paper. Nevertheless, to illustrate the magnitude of potential effects,

let us consider the induced coupling of the SM-like Higgs H1 ≈ h to DM particles

L ⊃ −mDM sin θ

2w
h ψ̄ψ ≃ mDM λhs v

2(m2
s −m2

h)
h ψ̄ψ . (6.4)

For small λhs, the resulting direct detection cross section is given by [77]

σSIN ≃ µ2

πm4
h

f2N m2
N m2

DM λ2hs
(m2

s −m2
h)

2
, (6.5)

where we can neglect an additional contribution from the exchange of a dark Higgs provided

m4
s ≫ m4

h. The parameter regions excluded by the LUX results [58] are shown in figure 9

(green regions).

We note that (in the linear approximation) the direct detection cross section is in-

dependent of w and does therefore not depend on mZ′ or gADM. Nevertheless w is not

arbitrary, because unitarity gives a lower bound
√
4πw > max

[√
2mDM,ms

]

. At the same
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Figure 9. Constraints on ms and λhs from bounds on the Higgs invisible branching ratio (blue,

dotted) and from bounds on the spin-independent DM-nucleon scattering cross section (green,

dashed). In the grey parameter region unitarity constraints are in conflict with the stability of the

potential.

time, stability of the Higgs potential requires 4λs λh > λhs. These two inequalities can

only be satisfied at the same time if

mDM <

√
2πmsmh

v
. (6.6)

In figure 9, we show the parameter region where unitarity and stability are in conflict in grey.

Finally, if the DM mass is sufficiently small, the SM-like Higgs can decay into pairs of

DM particles, with a partial width given by [77]

Γinv =
1

8π

m2
DM λ2hs

(m2
s −m2

h)
2
v2mh

(

1− 4m2
DM

m2
h

)3/2

. (6.7)

The invisible branching fraction is tightly constrained by LHC measurements: BR(h →
inv) < 0.27 [82]. Furthermore, a combined fit from ATLAS and CMS yields µ = 1.09+0.11

−0.10

for the total Higgs signal strength [83], which can be used to deduce BR(h → inv) < 0.11

at 95% CL. The resulting constraints, compared to the ones on σSIN from LUX, are shown

in figure 9 (blue regions).

The crucial observation is that the necessary presence of a dark Higgs will in general

induce additional signatures and therefore lead to new ways to constrain models with a

Z ′ mediator using both direct detection experiments and Higgs measurements. However,

since λhs and ms are effectively free parameters, it is difficult to directly compare the

constraints shown in figure 9 to the ones obtained from monojet and dijet searches at the

LHC. Nevertheless, we can conservatively estimate the relevance of these effects by fixing

the dark Higgs mass ms to the largest value consistent with perturbative unitarity.

The resulting constraints in the conventional mZ′-mDM parameter plane with fixed

couplings are shown in figure 10. For comparison we show the constraints from the CMS
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the hidden sector Higgs to saturate the unitarity bound. The blue (dotted) region is excluded by

bounds on the Higgs invisible branching ratio and the green (dashed) region is in conflict with

bounds on the spin-independent DM-nucleon scattering cross section. The orange (dashed) region

shows constraints from the CMS monojet search, the purple (dot-dashed) region is excluded by a

combination of dijet searches from the LHC, Tevatron and UA2 (adopted from ref. [26]). In the

grey parameter region unitarity constraints are in conflict with the stability of the potential, the

red region corresponds to DM overproduction. Note the change of scale in these figures.

monojet search [29] and a combination of dijet searches from the LHC, Tevatron and UA2

(adopted from ref. [26]). We find that the additional constraints due to Higgs mixing

provide valuable complementary information in the parameter region with small mZ′ and

large mDM, which is difficult to probe with monojet or dijet searches. Note that for

mZ′ > 2 TeV (not shown in figure 10) there is still an allowed parameter region if either

mDM ≈ mZ′/2 or mDM > mZ′ (cf. figure 6). Furthermore, it is worth emphasising that

for smaller values of ms significantly stronger constraints are expected from Higgs mixing.

Moreover, these constraints are independent of the SM couplings of the Z ′ and will therefore

become increasingly important in the case of small gq.

7 Discussion and outlook

In this paper we have studied the so-called simplified model approach to DM used to

parametrise the interactions of a DM particle with the SM via one or several new mediators.

It should be clear that simplified models are considered merely as an effective description,

used as a tool to combine different DM search strategies. Nevertheless, it is important

that such models fulfil basic requirements, such as gauge invariance and that perturbative

unitarity is guaranteed in the regions of the parameter space where the model is used to

describe data. To ensure gauge invariance, one needs to impose certain relations between

the different couplings, whereas it is necessary to introduce additional states in order to

restore perturbative unitarity.
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We have illustrated these issues by considering a simplified model consisting of a

fermionic DM particle and a vector mediator, which may for example be the Z ′ gauge

boson of a new U(1)′ gauge symmetry in the hidden sector. The phenomenology of this

model depends decisively on whether the couplings of the mediator are purely vectorial

or whether there are non-zero axial couplings (implying that left- and right-handed fields

are charged differently under the new U(1)′). Since the coupling structure on the SM side

may be different from the one of the DM side, there are four different cases of interest:

purely vectorial couplings on both sides, non-zero axial couplings on either the SM side or

the DM side, and non-zero axial couplings in both sectors. Our results can be summarized

as follows:

1. Vector(SM)-Vector(DM). In this case no additional new physics is needed to

guarantee perturbative unitarity and the mass of the Z ′ can be generated via the

Stueckelberg mechanism. This model is however highly constrained phenomenolog-

ically and a thermal DM is excluded for large parts of the parameter space due to

strong limits on the spin-independent DM-nucleon scattering cross section.

Generally, if at least one of the axial couplings is non-zero one needs new physics to unitarize

the longitudinal component of the Z ′. As a simple example we consider a SM-singlet

Higgs breaking the dark U(1)′. Unitarity then requires the mass of the new Higgs to be

comparable to the Z ′ mass. Models with non-zero axial couplings are therefore expected to

have a rich phenomenology with promising experimental signatures in DM direct detection

experiments and invisible Higgs decays as well as additional DM annihilation channels.

2. Axial(SM)-Axial(DM). The crucial observation in this case is that gauge invari-

ance of the SM Yukawa terms requires that the SM Higgs has to be charged under

the U(1)′. This requirement has important implications for phenomenology:

(a) Electroweak symmetry breaking leads to mass mixing between the Z ′ and the

SM Z-boson, which is strongly constrained by EWPT.

(b) The axial couplings of SM fermions to the Z ′ are necessarily flavour universal and

equal for quarks and leptons. Hence, it is not possible to couple the DM particle

to quarks without also inducing couplings of the Z ′ to leptons. Since the LHC

is very sensitive to dilepton resonances, the resulting bounds severely constrain

the model (dominating over constraints from monojet and dijet searches).

3. Axial(SM)-Vector(DM). The constraints from EWPT and dilepton resonance

searches are largely independent of the coupling between the Z ′ and DM and there-

fore also apply in the case of purely vectorial couplings on the DM side. However,

gauge invariance of the Yukawa couplings implies that it is impossible for the Z ′ to

have purely axial couplings to quarks. Consequently, as soon as there is a vectorial

coupling on the DM side, one necessarily obtains a vector-vector component inducing

unsuppressed spin-independent DM-nucleus scattering, which is strongly constrained

by direct detection (see item 1 above).
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4. Vector(SM)-Axial(DM). In contrast to the couplings between the Z ′ and quarks

it is possible for the DM-Z ′ coupling to be purely axial. Indeed, this situation arises

naturally in the case that the DM particle is a Majorana fermion such that the vector

current vanishes. If the couplings on the SM side are purely vectorial (i.e. left- and

right-handed SM fields have the same charge), the SM Higgs is uncharged under the

U(1)′ and consequently the constraints discussed in item 2 do not apply. Furthermore,

the tree-level direct detection cross section is velocity suppressed, leading to much

weaker constraints on this particular scenario.

Nevertheless, sizeable spin-independent DM-nucleus scattering can be induced at

loop level. In addition, kinetic mixing between the Z ′ and SM gauge bosons (at

tree level or loop-induced) can be potentially important for EWPT and dilepton

signatures. Assuming ǫ = 0 at Λ = 10TeV, we find that bounds from searches

for dilepton resonances due to loop-induced kinetic mixing can still be relevant and

give constraints that are complementary to the ones obtained from monojet and

dijet searches.

All in all we find that imposing gauge invariance and conservation of perturbative

unitarity has important implications for the phenomenology of DM interacting via a vector

mediator and that relevant experimental signatures are not captured by considering only

the interactions of the vector mediator with DM and quarks. This observation is relevant

for the interpretation of various recent analyses of Z ′-based simplified models, e.g. [22, 26,

28, 40, 41, 46]. Indeed, the Z ′ model considered here is severely constrained by EWPT and

dilepton resonance searches, either due to tree-level effects or loop-induced kinetic mixing.

Moreover, the general expectation is that the mixing between the dark Higgs and the SM

Higgs is sizeable and that as a result Higgs portal interactions are present in addition to

the interactions mediated by the Z ′.

The weakest constraints are obtained in the case of purely vectorial couplings on the

SM side and purely axial couplings on the DM side. Indeed, this is the only case where

LHC monojet and dijet searches are potentially competitive with other kinds of constraints.

In all cases that we have considered we find the hypothesis of thermal DM production to

be under significant pressure. In large regions of the parameter space which is still allowed

by experiments additional annihilation channels (beyond the Z ′-mediated interactions) are

necessary to avoid DM overabundance. A more systematic parameter scan of the model

will be performed in a forthcoming publication [84].

Two final comments are in order. First, in this work we have not taken into account

gauge anomalies. In general new fermions are needed to cancel the anomalous triangle

diagrams, potentially leading to additional signatures and further constraints on the model.

However, due to the constraints implied by gauge invariance of the SM Yukawa terms, the

gluon-gluon-Z ′ anomaly vanishes automatically, so that the new fermions need not be

charged under colour, making them difficult to probe at the LHC.

Second, the requirement of universality of all axial fermion charges (including leptons)

follows from the gauge invariance of the SM Yukawa term. It relies on the fact that in the

SM all fermion masses are generated by the same Higgs doublet. If the Higgs sector is more

– 24 –



J
H
E
P
0
2
(
2
0
1
6
)
0
1
6

complicated, for example in a two-Higgs-doublet model, this condition is relaxed and it is

possible to have different axial couplings to up- and down-type quarks or different axial

couplings to quarks and to leptons. In any case, such extensions of the SM go significantly

beyond the simplified model approach and would most likely have a number of implications

for Higgs physics, EWPT and other searches for new physics.

In conclusion we would like to emphasise that one of the most intriguing implications

of our study is that a model with a vector mediator should generically also contain a scalar

mediator, corresponding to the dark Higgs that generates the vector mass. In the limit

that the mass of the vector mediator is much larger than the mass of the scalar, our Z ′

model can also be used to study simplified models with a scalar mediator, where gauge

invariance and perturbative unitarity can be similarly problematic. Indeed, our findings

suggest that a strict distinction between simplified models with scalar and vector mediators

is unnatural and many of the issues with these models may be best addressed in a more

realistic set-up combining the two. Future direct detection experiments together with the

upcoming runs of the LHC will be able to thoroughly explore the parameter space of such

a realistic simplified model and test the hypothesis of DM as a thermal relic.
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A Coupling structure from mixing

A.1 Gauge boson mixing

In this appendix we discuss the mixing of a gauge boson Ẑ ′ of a new U(1)′ gauge group

with the SM U(1)Y gauge field B̂ and the neutral component Ŵ 3 of the SU(2)L weak fields,

where we use hats to denote the interaction eigenstates in the original basis. The mixing will

then lead to the mass eigenstates Z ′, Z and A. Following the discussion in [67], we consider

an effective Lagrangian including both kinetic mixing and mass mixing (see also [48])

L = LSM − 1

4
X̂µνX̂µν +

1

2
m2

Ẑ′
Ẑ ′

µẐ ′µ − 1

2
sin ǫ B̂µνX̂

µν + δm2ẐµẐ ′µ , (A.1)

where X̂µν ≡ ∂µẐ ′ν − ∂νẐ ′µ. Furthermore, we have defined Ẑ ≡ ĉWŴ
3 − ŝWB̂, where

ŝW (ĉW) is the sine (cosine) of the Weinberg angle and ĝ′, ĝ are the corresponding gauge

couplings.
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The field strengths are diagonalised and canonically normalised via the following two

consecutive transformations [48, 67, 85]






B̂µ

Ŵ 3
µ

Ẑ ′
µ






=







1 0 −tǫ
0 1 0

0 0 1/cǫ













Bµ

W 3
µ

Z ′
µ






, (A.2)







Bµ

W 3
µ

Z ′
µ






=







ĉW −ŝWcξ ŝWsξ
ŝW ĉWcξ −ĉWsξ
0 sξ cξ













Aµ

Zµ

Rµ






, (A.3)

where

t2ξ =
−2cǫ(δm

2 +m2

Ẑ
ŝWsǫ)

m2

Ẑ′
−m2

Ẑ
c2ǫ +m2

Ẑ
ŝ2
W
s2ǫ + 2 δm2 ŝWsǫ

. (A.4)

For ǫ≪ 1 and δm2 ≪ m2

Ẑ
,m2

Ẑ′
, this equation can be approximated by

ξ =
δm2 +m2

Ẑ
ŝWǫ

m2

Ẑ
−m2

Ẑ′

. (A.5)

The mass eigenvalues mZ and mZ′ are given by

m2
Z = m2

Ẑ
(1 + ŝW tξ tǫ) +

δm2 tξ
cǫ

≈ m2

Ẑ
+ (m2

Ẑ
−m2

Ẑ′
)ξ2 , (A.6)

m2
Z′ =

m2

Ẑ′
+ δm2(ŝW sǫ − cǫ tξ)

c2ǫ (1 + ŝW tξ tǫ)

≈ m2

Ẑ′
+m2

Ẑ′
ξ(ξ − ŝWǫ)−m2

Ẑ
(ξ − ŝWǫ)

2 . (A.7)

We define the ‘physical’ weak angle via

s2W c2W =
π α(mZ)√
2GFm2

Z

, (A.8)

where α = e2/(4π). Eq. (A.8) also holds with the replacements sW → ŝW, cW → ĉW and

mZ → mẐ , leading to the identity sW cWmZ = ŝW ĉWmẐ . This equation implies

s2W = ŝ2W − ŝ2W ĉ2W
ĉ2
W

− ŝ2
W

(

1−
m2

Ẑ′

m2

Ẑ

)

ξ2 . (A.9)

These equations allow us to fix ŝW and mẐ in such a way that we reproduce the experi-

mentally well-measured quantities sW and mZ .

The couplings of the Z ′ to SM fermions induced via mixing can e.g. be found in [24].

Of particular interest to our current analysis are the couplings to leptons which are strongly

constrained. In terms of the mixing parameters they can be written as

gVℓ =
1

4
(3ĝ′(ŝWsξ − cξtǫ)− ĝĉWsξ) , gAℓ = −1

4
(ĝ′(ŝWsξ − cξtǫ) + ĝĉWsξ) , (A.10)

with ĝ and ĝ′ the fundamental gauge couplings of SU(2)L and U(1)Y .
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A.2 Scalar mixing

Considering the SM Higgs h plus the dark Higgs s, the most general scalar potential after

electroweak and dark symmetry breaking can be written as

V (s, h) = −µ
2
s

2
(s+w)2−µ2h

2
(h+v)2+

λh
4
(h+v)4+

λs
4
(s+w)4+

λhs
4

(h+v)2(s+w)2 . (A.11)

For λhs = 0, we obtain the usual formulas

v2 =
µ2h
λh

, m2
h = 2λh v

2 , (A.12)

w2 =
µ2s
λs

, m2
s = 2λsw

2 . (A.13)

In this case, there is no mixing between the two Higgs fields even at one-loop level. Nev-

ertheless, there is no reason why λhs should be negligible and therefore the two fields will

in general mix. One then obtains for the minimum (assuming 4 λh λs > λ2hs)

v2 = 2
2λs µ

2
h − λhs µ

2
s

4λs λh − λ2hs
, (A.14)

w2 = 2
2λh µ

2
s − λhs µ

2
h

4λs λh − λ2hs
, (A.15)

and for the mass squared eigenvalues

m2
1,2 = λh v

2 + λsw
2 ∓

√

(λsw2 − λhv2)2 + λ2hsw
2v2 . (A.16)

The corresponding mass eigenstates are

H1 = s sin θ + h cos θ

H2 = s cos θ − h sin θ (A.17)

with

tan 2θ =
λhs v w

λh v2 − λsw2
. (A.18)

For small λhs we find m2
1 ≈ 2λh v

2 ≡ m2
h and m2

2 ≈ 2λsw
2 ≡ m2

s. This yields

θ ≈ − λhs v w

m2
s −m2

h

+O(λ3hs) . (A.19)
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[46] J. Heisig, M. Krämer, M. Pellen and C. Wiebusch, Constraints on Majorana Dark Matter

from the LHC and IceCube, arXiv:1509.07867 [INSPIRE].

[47] B. Holdom, Two U(1)’s and Epsilon Charge Shifts, Phys. Lett. B 166 (1986) 196 [INSPIRE].

[48] K.S. Babu, C.F. Kolda and J. March-Russell, Implications of generalized Z − Z ′ mixing,

Phys. Rev. D 57 (1998) 6788 [hep-ph/9710441] [INSPIRE].

[49] B.W. Lee, C. Quigg and H.B. Thacker, Weak Interactions at Very High-Energies: The Role

of the Higgs Boson Mass, Phys. Rev. D 16 (1977) 1519 [INSPIRE].

[50] N.F. Bell, Y. Cai, J.B. Dent, R.K. Leane and T.J. Weiler, Dark matter at the LHC: Effective

field theories and gauge invariance, Phys. Rev. D 92 (2015) 053008 [arXiv:1503.07874]

[INSPIRE].

[51] M.S. Chanowitz, M.A. Furman and I. Hinchliffe, Weak Interactions of Ultraheavy Fermions.

2., Nucl. Phys. B 153 (1979) 402 [INSPIRE].

[52] A. Schuessler and D. Zeppenfeld, Unitarity constraints on MSSM trilinear couplings, in

proceedings of The 15th International Conference on Supersymmetry and Unification of

Fundamental Interactions (SUSY 2007), July 26 –August 1, 2007, Karlsruhe, Germany,

http://www.susy07.uni-karlsruhe.de/Proceedings/proceedings/susy07.pdf

[arXiv:0710.5175] [INSPIRE].

[53] J. Shu, Unitarity Bounds for New Physics from Axial Coupling at LHC, Phys. Rev. D 78

(2008) 096004 [arXiv:0711.2516] [INSPIRE].

[54] M. Hosch, K. Whisnant and B.-L. Young, Unitarity constraints on anomalous top quark

couplings to weak gauge bosons, Phys. Rev. D 55 (1997) 3137 [hep-ph/9607413] [INSPIRE].

[55] K.S. Babu, J. Julio and Y. Zhang, Perturbative unitarity constraints on general W’ models

and collider implications, Nucl. Phys. B 858 (2012) 468 [arXiv:1111.5021] [INSPIRE].

[56] E.C.G. Stueckelberg, Interaction energy in electrodynamics and in the field theory of nuclear

forces, Helv. Phys. Acta 11 (1938) 225 [INSPIRE].

[57] B. Körs and P. Nath, Aspects of the Stueckelberg extension, JHEP 07 (2005) 069

[hep-ph/0503208] [INSPIRE].

– 30 –

http://dx.doi.org/10.1103/PhysRevD.91.095001
http://arxiv.org/abs/1409.8165
http://inspirehep.net/search?p=find+EPRINT+arXiv:1409.8165
http://dx.doi.org/10.1016/j.physletb.2014.05.025
http://dx.doi.org/10.1016/j.physletb.2014.05.025
http://arxiv.org/abs/1403.4837
http://inspirehep.net/search?p=find+EPRINT+arXiv:1403.4837
http://dx.doi.org/10.1103/PhysRevD.91.035025
http://dx.doi.org/10.1103/PhysRevD.91.035025
http://arxiv.org/abs/1411.4079
http://inspirehep.net/search?p=find+EPRINT+arXiv:1411.4079
http://dx.doi.org/10.1007/JHEP04(2015)175
http://arxiv.org/abs/1503.01780
http://inspirehep.net/search?p=find+EPRINT+arXiv:1503.01780
http://dx.doi.org/10.1103/PhysRevD.92.083004
http://arxiv.org/abs/1501.03490
http://inspirehep.net/search?p=find+EPRINT+arXiv:1501.03490
http://dx.doi.org/10.1007/JHEP10(2015)076
http://arxiv.org/abs/1506.06767
http://inspirehep.net/search?p=find+EPRINT+arXiv:1506.06767
http://dx.doi.org/10.1103/PhysRevD.92.083521
http://arxiv.org/abs/1506.05107
http://inspirehep.net/search?p=find+EPRINT+arXiv:1506.05107
http://arxiv.org/abs/1509.07867
http://inspirehep.net/search?p=find+EPRINT+arXiv:1509.07867
http://dx.doi.org/10.1016/0370-2693(86)91377-8
http://inspirehep.net/search?p=find+J+"Phys.Lett.,B166,196"
http://dx.doi.org/10.1103/PhysRevD.57.6788
http://arxiv.org/abs/hep-ph/9710441
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9710441
http://dx.doi.org/10.1103/PhysRevD.16.1519
http://inspirehep.net/search?p=find+J+"Phys.Rev.,D16,1519"
http://dx.doi.org/10.1103/PhysRevD.92.053008
http://arxiv.org/abs/1503.07874
http://inspirehep.net/search?p=find+EPRINT+arXiv:1503.07874
http://dx.doi.org/10.1016/0550-3213(79)90606-0
http://inspirehep.net/search?p=find+J+"Nucl.Phys.,B153,402"
http://www.susy07.uni-karlsruhe.de/Proceedings/proceedings/susy07.pdf
http://arxiv.org/abs/0710.5175
http://inspirehep.net/search?p=find+EPRINT+arXiv:0710.5175
http://dx.doi.org/10.1103/PhysRevD.78.096004
http://dx.doi.org/10.1103/PhysRevD.78.096004
http://arxiv.org/abs/0711.2516
http://inspirehep.net/search?p=find+EPRINT+arXiv:0711.2516
http://dx.doi.org/10.1103/PhysRevD.55.3137
http://arxiv.org/abs/hep-ph/9607413
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9607413
http://dx.doi.org/10.1016/j.nuclphysb.2012.01.018
http://arxiv.org/abs/1111.5021
http://inspirehep.net/search?p=find+EPRINT+arXiv:1111.5021
http://dx.doi.org/10.5169/seals-110852
http://inspirehep.net/search?p=find+J+"Helv.Phys.Acta,11,225"
http://dx.doi.org/10.1088/1126-6708/2005/07/069
http://arxiv.org/abs/hep-ph/0503208
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0503208


J
H
E
P
0
2
(
2
0
1
6
)
0
1
6

[58] LUX collaboration, D.S. Akerib et al., First results from the LUX dark matter experiment at

the Sanford Underground Research Facility, Phys. Rev. Lett. 112 (2014) 091303

[arXiv:1310.8214] [INSPIRE].

[59] L. Lopez-Honorez, T. Schwetz and J. Zupan, Higgs portal, fermionic dark matter and a

Standard Model like Higgs at 125GeV, Phys. Lett. B 716 (2012) 179 [arXiv:1203.2064]

[INSPIRE].

[60] L. Basso, S. Moretti and G.M. Pruna, Theoretical constraints on the couplings of non-exotic

minimal Z ′ bosons, JHEP 08 (2011) 122 [arXiv:1106.4762] [INSPIRE].

[61] M. Carena, A. Daleo, B.A. Dobrescu and T.M.P. Tait, Z ′ gauge bosons at the Tevatron,

Phys. Rev. D 70 (2004) 093009 [hep-ph/0408098] [INSPIRE].

[62] Particle Data Group collaboration, K.A. Olive et al., Review of Particle Physics, Chin.

Phys. C 38 (2014) 090001 [INSPIRE].

[63] T. Appelquist, B.A. Dobrescu and A.R. Hopper, Nonexotic neutral gauge bosons, Phys. Rev.

D 68 (2003) 035012 [hep-ph/0212073] [INSPIRE].

[64] SLD Electroweak Group, SLD Heavy Flavor Group, LEP Electroweak Working Group,

DELPHI, LEP, ALEPH, OPAL, L3 collaborations, A combination of preliminary

electroweak measurements and constraints on the standard model, hep-ex/0312023 [INSPIRE].

[65] ATLAS collaboration, Search for high-mass dilepton resonances in pp collisions at√
s = 8TeV with the ATLAS detector, Phys. Rev. D 90 (2014) 052005 [arXiv:1405.4123]

[INSPIRE].

[66] CDF, D0 collaborations, M. Jaffre, Search for high mass resonances in dilepton, dijet and

diboson final states at the Tevatron, PoS(EPS-HEP 2009)244 [arXiv:0909.2979] [INSPIRE].

[67] M.T. Frandsen, F. Kahlhoefer, S. Sarkar and K. Schmidt-Hoberg, Direct detection of dark

matter in models with a light Z’, JHEP 09 (2011) 128 [arXiv:1107.2118] [INSPIRE].

[68] B. Feldstein and F. Kahlhoefer, Quantifying (dis)agreement between direct detection

experiments in a halo-independent way, JCAP 12 (2014) 052 [arXiv:1409.5446] [INSPIRE].

[69] G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs4.1: two dark matter

candidates, Comput. Phys. Commun. 192 (2015) 322 [arXiv:1407.6129] [INSPIRE].

[70] A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0 – A complete

toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250

[arXiv:1310.1921] [INSPIRE].

[71] J. Alwall et al., The automated computation of tree-level and next-to-leading order

differential cross sections and their matching to parton shower simulations, JHEP 07 (2014)

079 [arXiv:1405.0301] [INSPIRE].
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