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Implicative Fuzzy Associative Memories
Peter Sussner and Marcos Eduardo Valle

Abstract—Associative neural memories are models of biological
phenomena that allow for the storage of pattern associations
and the retrieval of the desired output pattern upon presentation
of a possibly noisy or incomplete version of an input pattern.
In this paper, we introduce implicative fuzzy associative mem-
ories (IFAMs), a class of associative neural memories based on
fuzzy set theory. An IFAM consists of a network of completely
interconnected Pedrycz logic neurons with threshold whose con-
nection weights are determined by the minimum of implications
of presynaptic and postsynaptic activations. We present a series of
results for autoassociative models including one pass convergence,
unlimited storage capacity and tolerance with respect to eroded
patterns. Finally, we present some results on fixed points and
discuss the relationship between implicative fuzzy associative
memories and morphological associative memories.

Index Terms—Associative memories, convergence, fuzzy Heb-
bian learning, fuzzy neural networks, fuzzy relations, fuzzy sys-
tems, morphological associative memories, storage capacity, toler-
ance with respect to noise.

I. INTRODUCTION

G
ENERALLY speaking, a memory is a system with three

functions or stages: 1) Recording: storing the information;

2) Preservation: keeping the information safely; 3) Recall: re-

trieving the information [1]. Research in psychology has shown

that the human brain recalls by association, that is, the brain as-

sociates the recalled item with a piece of information or with

another item [2]. The focus in this paper is on neural associa-

tive memory (AM) systems. Neural AMs are not only capable

of storing and preserving associative information but can also

be used to perfectly retrieve an item from incomplete or noisy

information. These features make neural AMs a research area

with applications in different fields of science, such as image

processing, pattern recognition, and optimization [3]–[7].

Research on neural associative memories originated in the

1950s with the investigations of Taylor and Steinbuch on ma-

trix associative memories [8], [9]. In 1972, Anderson, Kohonen,

and Nakano introduced, independently, the linear associative

memory (LAM) where correlation or hebbian learning is used

to synthesize the synaptic weight matrix [10]–[12]. Perfect re-

call can be guaranteed by imposing an orthogonality condition

on the stored patterns. The optimal linear associative memory

(OLAM), which employs the projection recording recipe, is not

subject to this constraint [13]–[15]. Although the OLAM ex-

hibits a better storage capacity than the LAM model, this type

of associative memory also has low noise tolerance due to the

fact that it represents a linear model.
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In 1982, Hopfield introduced a dynamic autoassociative

memory model for bipolar patterns [16]. The Hopfield net

revived research efforts in the area of neural networks due

to the following attractive features: ease of implementation

in hardware; characterization in terms of an energy function;

variety of applications [17]. On the downside, the Hopfield net

suffers from a low absolute storage capacity of approximately

patterns, where is the length of the patterns. Several

other models that appeared since then can be viewed as exten-

sions of the Hopfield model [4]. For example, the bidirectional

associative memory (BAM) generalizes the Hopfield model

to include the heteroassociative case [18], [19]. The BAM

retains the low absolute storage capacity of the Hopfield net.

A significant improvement in storage capacity is achieved by

the exponencial capacity associative memory (ECAM) [20].

Note, however, that the ECAM stores the information in a

nondistributive manner in view of the fact that the columns of

the synaptic weight matrix consist of the original patterns.

The associative memory models we mentioned above rep-

resent traditional semilinear neural networks. In each layer, a

matrix-vector product of linear algebra is computed followed

by the application of a possibly nonlinear activation function.

In contrast to semilinear AM models, morphological and fuzzy

associative memory systems employ a nonlinear matrix vector

product at each layer and usually no activation function is

needed [21]–[23]. A biological motivation for the nonlinear

operations that are performed in morphological associative

memories was given by Ritter and Urcid [24].

The earliest attempt to use fuzzy set theory to describe an

associative memory was Kosko’s fuzzy associative memory

(FAM) [23]. This single-layer feedforward neural net is de-

scribed in terms of a nonlinear matrix vector product called

max-min or max-product composition, and the synaptic weight

matrix is given by fuzzy Hebbian learning. Kosko’s FAM

model exhibits a large amount of crosstalk that leads to a very

low storage capacity, i.e., one rule per FAM matrix. Chung and

Lee generalized the FAM model using - compositions

and pointed out that a perfect recall of multiple rules per FAM

matrix is possible if the input fuzzy sets are normal and -

orthogonal [25]. The implicative fuzzy associative memory

(IFAM) model introduced in this paper does not encounter any

of these difficulties. The great difference between the IFAM and

Chung-Lee’s generalized fuzzy associative memory (GFAM)

model lies in the learning rule that was introduced in [26],

[27]. In view of the implication used in this rule, we will speak

of implicative fuzzy learning. Junbo et al. applied this learing

rule to the particular case of max–min composition yielding

the max-min fuzzy associative memory [27]. Liu adapted the

max-min fuzzy associative memory by introducing a threshold

into the model [28].

In this paper, we generalize implicative fuzzy learning to in-

clude any - composition based on a continuous -norm.
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We analyze the IFAM model and provide comparisons with

others models by means of examples drawn from the literature

[28], [30]. In the autoassociative case, we speak of autoassocia-

tive fuzzy implicative memory (AFIM). We show that the AFIM

exhibits unlimited storage capacity, one-pass convergence, and

tolerance with respect to erosive noise. Other associative memo-

ries models with unlimited storage capacity include the morpho-

logical associative memory (MAM) [21], [22], [29]. This paper

shows that morphological associative memories with threshold

can be viewed as a special case of IFAMs if the fundamental

memory set is fuzzy and if the synaptic weight matrix is con-

tained in .

The organization of the paper is as follows. Section II presents

the neuro-fuzzy models, the network topology and the learning

rules that will be used throughout the paper. Section III intro-

duces the IFAM model and the dual IFAM model. This section

also contains a comparison of the IFAM with other FAM models

by means of an example from the literature and an application

as a fuzzy rule-based system for a forecasting problem [28],

[30]. Section IV describes characteristics such as convergence,

storage capacity, noise tolerance and fixed points of AFIMs. We

also show that every fixed point of a binary AFIM is given by

a lattice polynomial in the original patterns. Section V reveals

the relationship between the IFAM and the morphological as-

sociative memory model. This paper finishes with concluding

remarks in Section VI. Some of the proofs of the theorems are

provided in Appendix.

II. BACKGROUND INFORMATION AND LEARNING RULES FOR

NEURO-FUZZY SYSTEMS

Implicative fuzzy associative memories are fuzzy neural

networks endowed with Pedrycz’s logic based neurons with

threshold [31], [32]. If are the input signals then

the output is given by the following equation:

for (1)

A dual model is given in terms of the equation

for (2)

Here, the symbols and denote the synaptic weights and

and denote the thresholds (or biases) for

and . Here, and represent the maximum and

the minimum operations, and the symbol represents a contin-

uous -norm and represents a continuous -norm. Note that

the thresholds and can be interpreted as synaptic weights

connected to a constant input . That is, , where

in the first equation, and , where

in the second equation. We will use this fact to calculate the

threshold value.

These two equations describe single layer feedforward fuzzy

neural networks, the only architecture considered in this paper.

In view of the nonlinearity of triangular norms and co-norms,

we refrain from using any activation functions.

A network with neurons described by (1) and (2)

can be expressed using products of matrices [32]. For a

matrix and , the matrix

, called the max-t composition of

and , is defined by the equation

(3)

Similarly, the matrix called the min-s

product composition of and , is defined by the equation

(4)

Let denote a commutative, binary operation such as the max-

imum and the minimum. Given a scalar and matrices and

of the same size, the matrices and are de-

fined in terms of the equations and ,

respectively.

In matrix form, (1) and (2) become

(5)

and

(6)

where is the input pattern,

and are

the synaptic weight matrices,

and are the thresholds, and

is the output. If we interpret

the threshold as a synaptic weight connected with a constant

input, then (5) and (6) become

(7)

and

(8)

Here, and are matrices in

and and are vectors

with components.

and - compositions have interesting properties

such as associativity and monotonicity [33], [34]. Moreover, the

following distributive laws are valid for all matrices , and

of appropriate sizes:

(9)

(10)

There is an elegant duality between - and - com-

positions. Let be the complement matrix

of defined by

(11)

for all , . If and are fuzzy

matrices, then

(12)
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Equation (12) reveals that the - composition and the

- composition are dual operations if the t-norm and

s-norm used in these compositions are dual operations as well

[34], [35]. Recall that if is a t-norm, then we obtain

(13)

as the dual s-norm for every .

Example 2.1: The minimum is a t-norm and its dual

s-norm is the maximum . The dual s-norm of the product

is the probabilistic sum given by

(14)

for . The t-norm of Lukasiewicz (or bounded

product) and its dual s-norm, called s-norm of Lukasiewicz (or

bounded sum), are defined as follows:

(15)

(16)

A. Implicative Fuzzy Learning

Hebb’s postulate of learning states that the synaptic weight

change depends on the input as well as the output activation

[36]. In implicative fuzzy learning, the weights are adjusted ac-

cording to a certain fuzzy implication. Thus, if is the input

and is the output then the synaptic weight changes according

to the equation

(17)

Recall that a fuzzy implication is a mapping

that generalizes the crisp implication and satisfies the properties

of monotonicity in the second argument, dominance of falsity,

and neutrality of truth [34]. In this paper, we focus on a special

type of fuzzy implication, namely the so-called R-implication

associated with a continuous -norm [35]. Recall that an R-im-

plication is a mapping given by

(18)

Example 2.2: Equations (19)–(21) represent R-implications

associated with the minimum, the product, and the Lukasiewicz

t-norm given by (15), respectively

Godel: (19)

Goguen: (20)

Lukasiewicz: (21)

Suppose that we want to store the fundamental memory

set , where and

, using a synaptic weight matrix

. Let denote

the matrix whose columns are the input patterns and let

denote the matrix whose

columns are the output patterns. Since the minimum op-

eration corresponds to the “and” conjunction, the matrix

is given by the minimum of the

synaptic weight matrices for each pair , i.e.,

(22)

In other words, the synaptic weight matrix is synthetized

according the following rule:

(23)

Here, the product of the matrices

and is computed as follows:

(24)

We refer to the rule given by (23) as implicative fuzzy learning.

In the special case where a R-implication is used in (24), we

speak of R-implicative fuzzy learning and we denote the matrix

product using the symbol .

The following theorem holds true for the synaptic weight ma-

trix given by R-implicative fuzzy learning [37]:

Theorem 2.1: The synaptic weight matrix

given by R-implicative fuzzy learning is the greatest solution of

the fuzzy matrix inequality

(25)

In particular, if the fuzzy matrix equation has a

solution then is also a solution and this solution

is the greatest one.

Implicative fuzzy learning will be used to train a fuzzy neural

network described by (5). In view of the fact that and are dual

operations, we also define dual implicative fuzzy learning that

will be used to train a network described by (6).

B. Dual Implicative Fuzzy Learning

We define a dual fuzzy implication as a mapping

that satisfies the following relation-

ship:

(26)

Despite its name, a dual implication does generally not consti-

tute an implication as defined in [34] and [35]. Applying (13)

and (18) to (26) yields

(27)

for every . According to (27), a dual R-implication

corresponds to a certain continuous s-norm.
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Example 2.3: Equations (28)–(30) represent the dual R-im-

plication associated with maximum, probabilistic sum, and

Lukasiewicz s-norm, respectively

Dual Godel: (28)

Dual Goguen: (29)

Dual Lukasiewicz: (30)

In dual implicative fuzzy learning, the matrix of synaptic

weights is synthesized as follows:

(31)

The matrix can be expressed as the -product of the ma-

trices and . In general, if

and then the entries of

can be determined as follows:

(32)

We will use the symbol for the special case where a dual

R-implication is used in (32). The synaptic weight matrix

given by dual R-implicative fuzzy learning is the least

solution of the fuzzy matrix inequality [37]. Finally,

using the definitions of the products “ ” and “ ” and the duality

relationship of (26), we infer that

(33)

III. INTRODUCTION TO IMPLICATIVE FUZZY ASSOCIATIVE

MEMORIES

An associative memory paradigm may be formulated as an

input–output system that is able to store different patterns pairs

[4]. Mathematically speaking, the associative memory

design problem can be stated as follows: Given a finite set of

fundamental memories , determine a

mapping such that for all . Further-

more, the mapping should be endowed with a certain toler-

ance with respect to noise, i.e., should equal for noisy

versions of .

In neuro-fuzzy associative memories, the mapping is de-

scribed by a fuzzy neural network and the process used to find

becomes a learning rule. If R-implicative fuzzy learning is used

to synthesize the synaptic weight matrix, we obtain an IFAM.

Similarly, if dual R-implicative fuzzy learning is used, we ob-

tain a dual IFAM. Note that there exist infinitely many IFAMs

and dual IFAMs induced by triangular norms and co-norms. A

particular IFAM is specified by its t-norm or R-implication and

a particular dual IFAM is specified by its s-norm or dual R-im-

plication.

The input and output patterns of an IFAM or a dual IFAM are

fuzzy sets. Thus, the inputs and the outputs , ,

are interpreted as fuzzy sets in a finite universe of discourse

and .

We will only discuss neuro-fuzzy networks described by (5)

or (6) or, equivalently, by (7) or (8). Determining results in

an estimation problem [34], because we need to determine the

relation (matrix or ) that satisfies (7) and (8) for each pair

. It is known from Theorem 2.1 and its dual formulation

that and , where

(34)

and

(35)

are solutions of and [37]. Com-

puting the threshold as the first column of we obtain

(36)

Computing from , we obtain . Similarly,

the threshold is given by the equation

(37)

and . Note that the threshold and do not de-

pend on the t-norm or s-norm used in the neuro-fuzzy model. Fi-

nally, as a consequence of Theorem 2.1, we have the following.

Corollary 3.1: If there exist and such that

for all then ,

and holds true for all

.

Using the duality relationships given by (11), (12), and (33),

we can also prove that if there exist and such that

then ,

and holds true for all .

Summarizing, IFAMs are neuro-fuzzy networks described by

(38)

where the synaptic weight matrix and the threshold are given by

and (39)

Here, the implication used in (24) to compute the product

is the R-implication associated with the t-norm of max-t

composition of (38). Similarly, dual IFAMs are described by

(40)

where

(41)
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TABLE I
SET OF INPUT AND OUTPUT PAIRS USED IN EXAMPLE 3.1

Note that the dual R-implication that is used to form the product

is defined in terms of the same co-norm as the one

employed in (40).

From now on, we will only discuss the IFAM model. Note

that every statement concerning the IFAM model yields a

corresponding dual statement concerning the dual IFAM model

in view of (11)–(13) and (33). Specifically, we obtain the

corresponding dual statement from the statement about the

IFAM model by replacing minimum with maximum, t-norm

with s-norm, implication with dual implication, the product

with , with , and vice versa.

Example 3.1: An example provided by Liu indicates that the

absolute storage capacity of the max–min FAM with threshold

exceeds the storage capacity of the FAM of Junbo et al., Kosko’s

FAM, and the generalized FAM of Chung-Lee [23], [25], [27],

[28].

Consider the set of fundamental memories , for

, presented in Table I. We stored these eight

associations using the FAM models mentioned previously. The

max–min FAM with threshold achieved perfect recall of all

patterns. Junbo’s FAM only succeeded in recalling the pairs

, , , and . Kosko’s FAM is

only able to recall the pair prefectly while the general-

ized FAM of Chung-Lee using Lukasiewicz t-norm is unable to

store and recall any of the patterns. From now on, we will refer

to the latter model as the Lukasiewicz GFAM. We also stored

the eight fundamental memories of Table I using the associative

memory of Wang and Lu [29]. This model succeded in recalling

the pairs , , , and .

Considering (39), we note that the threshold that is used in

a particular IFAM model does not depend on the t-norm. For the

patterns of Table I, we compute

(42)

Now, let us construct the weight matrices of some particular

IFAM models using (39). We determine the following weight

matrix of the Lukasiewics IFAM:

(43)

The recall of Lukasiewicz IFAM is performed using the

Lukasiewicz t-norm within a max-t composition. In this case,

for all . The same is true for

TABLE II
ABSOLUTE STORAGE CAPACITY OF THE MODELS IN EXAMPLE 3.1

Goguen and Gödel IFAMs, whose synaptic weight matrices are

given by

(44)

and

(45)

Recall that the Goguen IFAM employs max-product composi-

tion and the Gödel IFAM employs max-min composition during

the recall phase. Table II summarizes the results concerning the

absolute storage capacity of the models presented in this ex-

ample.

Now, let us investigate the relationship between the Gödel

IFAM and Liu’s max–min FAM with threshold. Upon presen-

tation of an input pattern , the latter model computes the fol-

lowing output pattern :

(46)

where is the synaptic weight matrix and

and are threshold vectors. The

synaptic weight matrix and the threshold are determined

using (39) with Gödel R-implication. The threshold vector

is given by

if

if
(47)

where and

. Thus, the difference between the

Gödel IFAM and the max-min FAM with threshold lies in the

threshold . However, due to the monotonicity of the max–min

composition (9), the following equations hold true:

(48)

(49)

(50)

where . These equalities show that the ac-

tion of both thresholds and can be captured in terms of the

new threshold . Moreover, Corollary 3.1 states that if there ex-

ists a threshold such that all input–output pairs are success-

fully stored in the max-min FAM with threshold then the Gödel
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TABLE III
SET OF INPUT AND OUTPUT PAIRS USED IN THE FORECASTING APPLICATION

IFAM can also store all input–output pairs and . In this re-

spect, the performance of the Gödel IFAM is at least as good

as the performance of the max–min FAM with threshold. In

view of this fact, we can view the IFAM as a generalization

of the max–min FAM with threshold for any - composi-

tion. In Section III-A, we will present an experiment where the

Lukasiewicz IFAM outperformed Liu’s model.

A. Application of IFAMs as Fuzzy Rule-Based Systems

Fuzzy associative memories such as the IFAM can be used

to implement mappings of fuzzy rules. In this case, a set of

rules in the form of human-like IF–THEN conditional state-

ments are stored. In this subsection, we briefly present an appli-

cation of the IFAM model to the problem of forecasting man-

power. Specifically, we consider a problem presented in [30].

This problem consists of assessing the engineering manpower

requirement in steel manufacturing industry in the state of West

Bengal, India. Initially, we have five linguistic values ,

and a set of fuzzy conditional statements such as “If

the manpower of year is , then that of year is ”.

Hence, we obtain the set of input–output pairs given by Table III

and we stored them in an IFAM model using (39). For instance,

synthesizing the synaptic weight matrix using the Lukasiewicz

implication yields

(51)

Note that we have . If is the synaptic

weight matrix and is the threshold obtained after the learning

process, then the predicted manpower of year is given by

the following equation:

(52)

where is the manpower of year and is the - com-

position.

Using Kosko’s FAM, Choudhury et. al. found an average

error of 2.669% whereas the statistical methods ARIMA1 and

ARIMA2 exhibited average errors of 9.79% and 5.48%. Fol-

lowing the same procedure using the Lukasiewicz generalized

FAM of Chung and Lee, the max–min FAM with threshold of

Liu, the associative memory of Wang and Lu, the Gödel IFAM,

the Goguen IFAM and, the Lukasiewicz IFAM, we obtained

TABLE IV
AVERAGE ERRORS IN FORECASTING MANPOWER

the average errors presented in Table IV. Kosko’s FAM and the

Lukasiewicz GFAM produced the same results. The associative

memory of Wang and Lu and the Goguen IFAM also produced

the same results. In addition, the max–min FAM with threshold

and the Gödel IFAM also produced the same results. Fig. 1 plots

the manpower data of the years 1984 through 1995. The ac-

tual values are compared to the predictions obtained by some

of these methods.

The Lukasiewicz IFAM outperformed Kosko’s FAM,

the Lukasiewicz generalized FAM, the max-min FAM with

threshold, and the statistical method ARIMA with respect to

the purpose of forecasting [30]. This experiment indicates the

utility of the IFAM model as a fuzzy rule-based system.

IV. BASIC PROPERTIES OF AUTOASSOCIATIVE FUZZY

IMPLICATIVE MEMORIES

Let be the matrix whose

columns are the original patterns. In this section, we focus on

AFIMs whose weight matrices are synthesized in terms of a

-product of and . Thus, we have

and (53)

Upon presentation of an input pattern , the AFIM generates

the pattern

(54)

as an output pattern.

A. Convergence

Suppose that the AFIM is employed with feedback. In

other words, given an input pattern , we iterate the

following equation for until convergence:

(55)

The following equations reveal that for all

:

(56)

(57)

(58)

(59)

for all . Here, we used the associativity and monotonicity

(or distributivity over the maximum) of - composition and
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Fig. 1. Predictions of manpower. The continuous line represents the actual manpower. The dashed line marked by “�” corresponds to the Lukasiewicz IFAM
model, the dotted line marked by “�” corresponds to Kosko’s FAM model and the Lukasiewicz generalized FAM, and the dotted line marked by “+” corresponds
to the max–min FAM with threshold and Gödel IFAM. The lines marked by “ ” and “ ” represent ARIMA1 and ARIMA2.

the fact that is reflexive, - idempotent and .

The first two facts are proven in Theorem 4.1 and the last one is

a consequence of Theorem 4.3.

Theorem 4.1: The matrix is reflexive and

- idempotent. In other words, we have and

, where is the - composition with the t-norm

used in R-implicative fuzzy learning.

We conclude that implicative fuzzy autoassociative memo-

ries exhibit one-pass convergence and thus there is no need for

feedback to recall a pattern. Furthermore, due to the reflexivity

of and the monotonicity of the - composition, the input

pattern is always less than or equal to the retrieved pattern, i.e.,

for all .

B. Storage Capacity

This subsection answers the question as to how many patterns

can be stored in an AFIM. Let , be a set of pat-

terns, our task consists in determining the maximum number of

patterns such that . First of all, note that

the threshold does not affect the storage capacity of an AFIM

because constitutes the minimum of the stored patterns and

is reflexive. Thus, it suffices to determine the maximum number

of patterns such that holds for all .

We begin by presenting the following theorem.

Theorem 4.2: Let . If , then

.

Proof: In view of Theorem 2.1 with , it suffices

to show that . This inequality arises immediately

from a combination of the facts that is reflexive and that the

- composition is monotonic: .

Note that Theorem 4.2 imposes no restrictions on the size

of . Therefore, as many patterns as desired can be stored. In

particular, if the patterns are binary, i.e., , then

patterns can be stored. Hence, the absolute storage capacity of

implicative fuzzy autoassociative memory exceeds the capacity

of the Hopfield net of random binary patterns [38].

Finishing our discusion about the storage capacity of implica-

tive fuzzy autoassociative memories, we need to point out that,

using fuzzy implicative learning, the weight matrix con-

verges rapidly to the identity matrix for . Thus, the

error correction capability decreases considerably as more and

more patterns are stored in the memory. Fig. 2 plots the Frobe-

nius distances for weight matrices

as a function of , the percentage of stored patterns. This ex-

periment was performed by taking the mean after 1000 simu-

lations. The line marked by “ ” corresponds to the weight ma-

trix of Lukasiewicz IFAM. The line marked by “ ” refers to the

weight matrix of Gödel IFAM. The lines marked by “ ” and “ ”

represent the Goguen IFAM and the autoassociative memory

of Wang and Lu, respectively. Let denote the weight-

matrix of Wang and Lu’s autoassociative memory. We would

like to draw the reader’s attention to the fact that

equals in this experiment for a large fundamental

memory set. We will provide an explanation for this fact in Sec-

tion V.

The Lukasiewicz implicative learning recipe exhibits the

slowest convergence to the identity matrix among these four
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Fig. 2. Graph of kW � Ik versus the percentage of recorded patterns. The line marked by “+” corresponds to the weight matrix of Lukasiewicz IFAM. The
line marked by “ ” refers to the weight matrix of Gödel IFAM. The lines marked by “�” and “�” represent the Goguen IFAM and the associative memory of
Wang and Lu, respectively.

learning recipes. Thus, we expect a better tolerance with respect

to noise of the Lukasiewicz IFAM in comparison with the Gödel

IFAM, the Goguen IFAM, and the associative memory of Wang

and Lu. Despite the fact that determining the best t-norm for a

given problem is an open problem, this observation motivates

our choice of the Lukasiewicz IFAM in the forecasting problem

in Section III-A and in Example 4.1.

C. Tolerance With Respect to Noisy Patterns

Since a certain error correction capability is a desired prop-

erty for every associative memory model, we will discuss the

ability of implicative fuzzy autoassociative memories to deal

with incomplete or noisy patterns. For simplicity, we introduce

the following terminology [21]: A pattern is called an eroded

version of a pattern if and only if . Similarly, a pattern

is called a dilated version of if and only if . We will

show that the AFIM model exhibits tolerance with respect to

eroded patterns. Similarly, the dual AFIM model exhibits toler-

ance with respect to dilated patterns.

Theorem 4.3: Let and . For

every input pattern , the output of the

AFIM is the supremum (“sup”) of in the set of fixed points

of greater than . In other words, is the smallest

fixed point of such that and .

Proof: Let be arbitrary. On one hand, the pat-

tern represents an upper bound of and because

by Theorem 4.1 and by

Fig. 3. Patterns of Example 4.1.

monotonicity of the max-t composition. On the other hand, the

fixed point is the least upper bound in the set of

fixed points of AFIM since every fixed point satisfies

.

1) Example 4.1: Consider the 12 patterns shown in Fig. 3.

These are gray-scale images ,

from the faces database of AT&T Laboratories, Cambridge, MA

[39]. This database contains files in PGM format, and the size

of each image is 92 112 pixels, with 256 gray levels per pixel.
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Fig. 4. Patterns with erosive noise used as input in Example 4.1.

We downsized the original images using neighbor interpolation.

In order to verify the tolerance of the AFIM model with respect

to noise, we define ,

where each is a vector obtained using the standard row-scan

method. Then, we treated each pattern as a fuzzy set and we

constructed the matrix using the Lukasiewiscz

implication given by (21). Fig. 4 displays eroded versions ,

of the fundamental memories which we presented

as inputs to the AFIM . These patterns contain erosive noise

that was generated by subtracting the negative part of a Gaussian

distribution with zero mean and variance 0.2. Fig. 5 shows the

patterns , where , that were retrieved by the

Lukasiewicz AFIM. The Lukasiewicz AFIM succeeded in re-

calling the original patterns almost perfectly. We also conducted

the same experiment using Kosko’s FAM, the Lukasiewicz gen-

eralized FAM, the Gödel AFIM, and the Goguen AFIM. Fig. 6

shows the pattern recalled by these associative memory

models. Note that Kosko’s FAM and the Lukasiewicz general-

ized FAM fail to demonstrate an adequate performance on this

task due to a high amount of crosstalk between the stored pat-

terns.

Fig. 7 plots the normalized mean square errors (NMSEs)

(60)

that was generated by various fuzzy associative memory models

for different variances of Gaussian noise whose negative part

was subtracted from . This experiment was performed taking

the mean after 100 simulations. We also conducted the exper-

iment using Kohonen’s OLAM [13], [15]. The Lukasiewicz

AFIM yielded the best performance in this experiment. Note

that both the Kosko FAM and the Lukasiewicz GFAM showed

a NMSE greater than zero even for uncorrupted input patterns,

i.e., when the noise variance is zero. Thus, these two fuzzy

associative memories models fail to store the pattern in

contrast to the AFIM models and the OLAM that succeeded in

storing the complete fundamental memory set. Fig. 7 also re-

veals that the NMSEs of the AFIM models are almost constant.

Fig. 5. Patterns retrieved by Lukasiewicz AFIM when the input are the patterns
of Fig. 4.

Fig. 6. Patterns retrieved by Kosko’s FAM, Lukasiewicz generalized FAM, the
Gödel AFIM, and the Goguen AFIM, respectively, when the input is the first
pattern of Fig. 4.

These models will produce almost the same outputs even if the

variance of Gaussian noise increases from 0.1 to 0.3. Fig. 8

shows the output patterns of the Lukasiewicz AFIM for inputs

that were corrupted using the negative parts of Gaussian noise

with variances 0.01, 0.05, 0.1, and 0.5. Note that all outputs

are very similar. We also performed the latter experiment using

the complete face database, i.e., we stored 40 patterns using

the Lukasiewicz AFIM and the OLAM. Table V compares

the NMSEs for the cases where 12 patterns are stored and

where 40 patterns are stored in a Lukasiewicz AFIM and in a

OLAM model. The NMSE was obtained taking the mean of

1000 simulation for inputs corrupted using the negative part of

a gaussian distribution with variance 0.01, 0.05, 0.1, and 0.5.

Note that the Lukasiewicz AFIM outperformed the OLAM

model in both cases.

Recall that Theorem 4.3 relates the retrieved pattern for a

given input to the set of fixed points of an AFIM. Let us ex-

amine the fixed points of AFIMs.

D. Fixed Points

First, we will present results about the fixed points of the ma-

trix used in the AFIM model. Then we will

consider the fixed points of the AFIM. Recall that

is a fixed point of if and only if and is a fixed

point of the AFIM if and only if .

Theorem 4.4: Let ,

. A pattern is a fixed point of if for some
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Fig. 7. The normalized mean square error versus the variance of the gaussian noise whose negative part was subtracted to x . The lines marked by the symbols
“�,” “�,” “ ,” “ ,” “ ,” and “�” represent the NMSE of the Lukasiewicz AFIM, Gödel AFIM, and Goguen AFIM, the Kosko’s FAM, the Lukasiewicz GFAM,
and the AM of Wang and Lu, respectively. The line marked by the symbol “+” corresponds to the OLAM model.

Fig. 8. At the top, eroded patterns ~x computed using the negative part of
gaussian noise with variance 0.01, 0.05, 0.1, and 0.5. At the botton, the respec-
tive recalled pattern by Lukasiewicz AFIM.

constant vector or if is of the

following form:

(61)

for some and some .

Proof: Let be an index of . Using the

monotonicity of triangular norms, distributivity of and , and

TABLE V
THE NMSE’S OF LUKASIEWICZ AFIM AND OLAM MODEL STORING 12 AND

40 PATTERNS WHERE THE INPUTS WERE CORRUPTED USING THE NEGATIVE

PART OF A GAUSSIAN DISTRIBUTION WITH VARIANCE 0.01, 0.05, 0.1, AND 0.5

Theorem 4.2, we conclude that

(62)

(63)
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(64)

(65)

(66)

Since the diagonal elements of are equal to 1, a constant

pattern remains fixed under an application of due to the

following facts:

(67)

The expression , involving the symbols ,

, and , , represents a lattice polynomial in ,

[40]. Since the lattice is distributive, every

lattice polynomial in is of the form given by (61) and

is a fixed point of according to Theorem 4.4. Note that the

threshold is the smallest lattice polynomial in ,

and, thus, . Moreover, this threshold excludes the

spurius states smaller than . Nevertheless, implicative fuzzy

autoassociative memories have a large number of fixed points,

that include the fundamental memories and many spurious states.

E. Binary Implicative Autoassociative Memories

Let us turn our attention to the binary autoassociative case,

where . This case is of particular interest

because many traditional associative memory models such as

the Hopfield net, the BSB, and the ECAM are dealing with this

case [4], [16].

First of all, note that in the binary case, all triangular norms,

triangular co-norms and implications coincide. Consequently,

only one IFAM model exists in this case. Thus, we may assume

that—without loss of generality— (minimum),

(maximum), and .

In Section IV-B, we mentioned that autoassociative fuzzy im-

plicative memories are endowed with unlimited storage capacity.

In thebinaryautoassociativecase,wecanstore patterns,where

is the length of the patterns. The general results on noise tol-

erance and fixed points of Sections IV-C and D also hold true

for the binary case. However, there is a stronger result that char-

acterizes the fixed points of binary autoassociative implicative

memories. Before we enunciate this result, let us introduce the

following notation: Given a set and a index

, the symbol denotes the subset of

such that for all . In other words, the set consists

of the indexes of the patterns whose th entry equals 1.

Lemma 5.5: Let be the th column of the identity matrix.

We have

(68)

The following theorem provides a precise characterization of

the set of fixed points of a binary AFIM.

Theorem 4.6: Let and

. A binary pattern is a fixed point of if

and only if or or if is a lattice polynomial in

.

Proof: Theorem 4.4 implies that every lattice polynomial

in , and the constant pattern and

are fixed points of . Now, let be a binary fixed point such

that . Evidently, the pattern can be written in the

form

, where is the set of nonzero elements of . We are able to

deduce the following equations for the th element of the fixed

point , where :

(69)

(70)

(71)

Theorem 4.6 tells us that our application of the threshold

in the binary AFIM possibly excludes fixed point in the

binary autoassociative case. Moreover, together with Theorem

4.3, Theorem 4.6 shows that binary AFIMs and AMMs act in the

same way provided that a certain weak condition on the stored

patterns is satisfied [41], [42]. In Section V, we will show that

these similarities between the IFAM and the MAM models are

not restricted to the binary autoassociative case.

V. IFAM AND MORPHOLOGICAL ASSOCIATIVE MEMORIES

In this section, we will discuss the relationship between

IFAMs and MAMs [21], [22].

Recall that the morphological associative memory cal-

culates

(72)

where the synaptic weight matrix is given by

(73)

Here, for matrices and , the matrices

and are defined by

(74)

for all and . The dual formula-

tion is given by the equation , where

.



804 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 14, NO. 6, DECEMBER 2006

Let and be the Lukasiewicz t-norm and the R-impli-

cation given by (15) and (21), respectively. Using this t-norm

and R-implication, the elements of the synaptic weight matrix

will be

(75)

(76)

(77)

(78)

Thus, the synaptic weight matrices of the Lukasiewicz IFAM

and the MAM are related according to the equation

.

In the retrieval phase, the following pattern is recalled by the

Lukasiewicz IFAM

(79)

(80)

(81)

(82)

for all since . Thus, we obtain

(83)

We proceed by describing the relationship between the

Lukasiewicz dual IFAM and the MAM . The entries of

the synaptic weight matrix of the

dual IFAM can be computed as follows:

(84)

(85)

Thus

(86)

In the retrieval phase, the following pattern is recalled by the

Lukasiewicz dual IFAM:

(87)

(88)

(89)

since . Thus, we obtain

(90)

We summarize the results that we deduced in this section by

stating the following theorem.

Theorem 5.1: Let and be the

input and output matrices, respectively. Let and denote the

thresholds and . The Lukasiewicz

IFAM and the MAM are related according

to the following equations:

(91)

(92)

for all .

Similarly, the Lukasiewicz dual IFAM and the MAM

are related according to the following

equations:

(93)

(94)

for all .

Theorem 5.1 explains the relationship between the

Lukasiewicz IFAM and the MAM model. Moreover, this

theorem reveals that the learning phase as well as the re-

trieval phase of the Lukasiewicz IFAM can be described

entirely in terms of the corresponding phases of the MAM

model with threshold. Both models produce the same output

when morphological operations are restricted to the interior

of some hypercube. More precisely, the output patterns of

the Lukasiewicz IFAM and the MAM coincide when-

ever and the threshold is used in the

recall phase of . Similarly, the output patterns of the

Lukasiewicz dual IFAM and the MAM coincide when-

ever and the threshold is used in the

recall phase of . Thus, if the fundamental memories are

fuzzy and the synaptic weight matrix ( , respec-

tively) is restrained to the hypercube ( ,

respectively), we can view the IFAM (the dual IFAM) as a

generalization of the MAM model. The probability of this event

rapidly approaches 1 as more and more patterns are stored. The

synaptic weight matrix of the MAM model converges

as fast as the synaptic weight matrix of Lukasiewicz IFAM in

Fig. 2 to the identity matrix for . An application of
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the MAM to the forecasting problem of Section III-A

yields the same results as the ones predicted by the Lukasiewicz

IFAM. We also stored the eight patterns of Example 3.1 in the

MAM with and without threshold. The MAM with

threshold achieved perfect recall of all patterns while the MAM

without threshold only succeded in recalling the pairs

, , , , , and .

Finally, we would like to point out a relationship between the

Goguen IFAM and the associative memory model of Wang and

Lu that is known as “ fuzzy morphological associative memory”

[29]. Apart from the previously defined matrix-products called

additive maximum (“ ”) and additive minimum (“ ”), min-

imax algebra defines the matrix-products multiplicative max-

imum and multiplicative minimum (this terminology stems from

image algebra that encompasses minimax algebra and linear al-

gebra as subalgebras) [43]–[45]. For an matrix and an

matrix with elements in ,

the multiplicative maximum and the multiplicative

minimum are the matrices given by

(95)

for all and . The operations and

differ as follows:

(96)

(97)

Otherwise, these products act as one would expect. Using and

, we construct the synaptic weight matrix of a multiplicative

minimum associative memory in terms of

(98)

where the , th element of is . Here, we used the con-

ventions and . The recall phase is described

by

(99)

A multiplicative maximum associative memory can be

constructed in a similar fashion.

Note that the recall phases of the Goguen IFAM and

are identical—regardless of the fact whether a threshold is used

or not. The difference between these two models lies in the

recording phase because the following equations hold for all

and for all :

(100)

(101)

Thus, the synaptic weight matrix of Goguen IFAM is in

while the synaptic weight matrix of multi-

plicative minimum model is in . The Goguen dual

IFAM and the multiplicative maximum model differ in

both storage and recall phases.

VI. CONCLUDING REMARKS

This paper introduces the IFAM, a neuro-fuzzy model de-

scribed by Pedrycz logic neurons with thresholds where the

synaptic weight matrices are computed using fuzzy implica-

tive learning. A dual IFAM model arises from the duality re-

lationships between maximum and minimum, triangular norm

and co-norm, as well as implication and dual implication. Re-

call that every statement concerning the IFAM model proved in

this paper corresponds to a dual statement concerning the dual

IFAM model that arises by replacing the minimum with max-

imum, t-norm with s-norm, implication with dual implication,

the products “ ” with “ ,” “ ” with “ ,” and vice versa. A

particular IFAM model, such as the Lukasiewicz, Gödel, and

Goguen IFAM, is associated with a certain R-implication.

Comparisons of these IFAM models with other FAM models

by means of a simple example taken from [28] and a forecasting

problem presented in [30] indicate the utility of IFAMs in ap-

plications as fuzzy rule-based systems. In the first experiment,

the fundamental memory set was perfectly stored by the IFAM

models under consideration and by Liu’s FAM whereas other

FAM models did not demonstrate perfect recall of the original

patterns due to crosstalk. In the second experiment, concerning

the prediction of manpower in steel industry, the Lukasiewicz

IFAM outperformed the FAM models of Kosko, Liu, and

Chung and Lee as well as the statistical methods ARIMA1 and

ARIMA2. These experiments are dealing with applications of

heteroassociative IFAM’s.

In the autoassociative case, we speak of the AFIM. We were

able to prove that—in sharp contrast to other FAM models—the

AFIM exhibits unlimited storage capacity, one-pass conver-

gence, and tolerance with respect to erosive noise. Similarly, the

dual AFIM also exhibits unlimited storage capacity, one-pass

convergence, and tolerance with respect to dilative noise. Thus,

we recommend to consider the expected type of noise before

selecting an AFIM model or a dual AFIM model. We illustrated

the capabilities of AFIMs using face images from the database

of AT&T Laboratories, Cambridge, MA. We noted that the

functionality of an AFIM is completely determined by its fixed

points and corresponding basins of attraction that are described

in this paper. These results reveal that AFIMs and MAMs are

almost identical in the binary case. Finally, we showed that the

Lukasiewicz IFAM, which exhibited the best performance in

our experiments, and the MAM model are very closely related

if the fundamental memory set consists of fuzzy patterns.

Further research is needed on how to choose the best IFAM or

dual IFAM model for an arbitrary given application.

APPENDIX

PROOFS OF THEOREMS AND LEMMAS

a) Lemma 1.1: If , then the

following inequality holds for every t-norm:

(102)
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Proof: Consider arbitrary . By monotonicity

of the t-norm, both and represent upper bounds of

. Thus, and

(103)

(104)

Now, we will prove Lemma 1.1 by induction. It is trivial that

(102) holds true for . Assume that (102) is satisfied for

. Using this hypothesis and (104), we are able to

conclude the proof of the lemma as follows:

(105)

(106)

(107)

b) Lemma 1.2: Let be a continuous

t-norm and let be the corresponding

-implication. For all , we have

(108)

Proof: Let , and

. Let denote . It suffices to show that .

The commutativity and monotonicity of t-norm and the fact

that imply that

(109)

and, thus, the inequality holds. Since

by the definition of the -im-

plication , we have for all such that .

Therefore, this inequality holds in particular for .

Lemma 1.2 is a weak version of the syllogism of classical

logic where the inequality symbol is replaced by an equality

symbol. Given the results of Lemmas 1.1 and 1.2, we are now

able to show that is t-transitive.

c) Lemma 1.3: Thematrix is t-transitive.In

other words, we have , where is the - th com-

position with the t-norm used in R-implicative fuzzy learning.

Proof: To begin with, let us apply Lemma 1.2 to triples of

entries of We obtain

(110)

for all and for all , , . Applying

the principle of closing of minimax algebra [43] to (110) yields

(111)

for all and for all , , . Using this

inequality and Lemma 1.1, we are able to deduce the following

inequalities for all :

(112)

(113)

(114)

(115)

for all , . Thus, we obtain

for all , , which implies and is t-transitive.

Proof of Theorem 4.1: We begin by showing that is re-

flexive. Note that

(116)

Now, assume that is reflexive and t-transitive. We will

prove that is - idempotent. Note that we have the fol-

lowing inequalities in view of the t-transitivity of and the

definition of max-t composition:

(117)

for all , . Applying the principle of opening [43]

to the latter expression yields

(118)

which equals due to the reflexivity of and

the t-norm boundary property. Combining these facts with (117)

implies that is bounded both from above and from below

by which concludes the proof of the equation .

Proof of Lemma 4.5: The proof employs the definitions of

and as well as some properties of the operations “ ,” “ ,”

and “ .” Note that equals , where , if and

0, otherwise. For all , , we obtain
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