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Abstract
We study and derive algorithms for nonlinear eigenvalue problems, where the system
matrix depends on the eigenvector, or several eigenvectors (or their corresponding
invariant subspace). The algorithms are derived from an implicit viewpoint. More
precisely, we change the Newton update equation in a way that the next iterate does
not only appear linearly in the update equation. Although the modifications of the
update equation make the methods implicit, we show how corresponding iterates can
be computed explicitly. Therefore, we can carry out steps of the implicit method
using explicit procedures. In several cases, these procedures involve a solution of
standard eigenvalue problems. We propose two modifications, one of the modifica-
tions leads directly to a well-established method (the self-consistent field iteration)
whereas the other method is to our knowledge new and has several attractive proper-
ties. Convergence theory is provided along with several simulations which illustrate
the properties of the algorithms.

Keywords Eigenvector nonlinearity · Inexact Newton · Implicit Newton · SCF

1 Introduction

Let M ⊂ R
n×n denote the set of symmetric n × n-matrices. Let A : Rn×p → M ,

p ≤ n. We consider the problem of finding V ∈ R
n×p and a symmetric S ∈ R

p×p

such that

A(V )V = V S, (1a)

V T V = I . (1b)
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This is the general formulation of the eigenvector-dependent nonlinear eigenvalue
problem. In our work, A satisfies A(V P ) = A(V ) for any non-singular matrix P

such that the range of V can be seen as an invariant subspace of A. This property
(and a notion of invariant subspace) is characterized in Section 2.1, where we also
provide a problem transformation applicable when the condition is not satisfied.

If p = 1, the setting reduces to a class of problems which has received consider-
able attention, mostly in application-specific settings, as we further discuss below. In
this case, we need to determine v ∈ R

n and λ ∈ R such that

A(v)v = λv (2)

where ‖v‖ = 1.
A number of algorithms have been proposed for the above problems, both for

p = 1 and the general case. In this paper, we propose to derive algorithms based
on implicit formulations, in particular based on implicit improvements of Newton’s
method. One proposed algorithm leads to a linearly convergent well-established
method, whereas the other approach leads to a new method with quadratic conver-
gence. Both of the implicit approaches have advantages for certain problem classes
that we characterize.

Our approach is based on viewing iterative eigenvalue solvers (for eigenvector
nonlinearities) as modifications of Newton’s method. This has also been done for
standard eigenvalue problems, already by Wilkinson and Peters [23]. The Newton’s
method viewpoint of iterative methods has also been used in the derivation of algo-
rithms for nonlinear eigenvalue problems with eigenvalue nonlinearity, e.g., [15, 21,
32]. See also the recent review paper [30] and to our knowledge the first publication
in this direction by Unger [33].

One of the most important applications for (1) is within the field of quantum
mechanics and electronic structure calculations. Discretization methods in combi-
nation with the Hartree-Fock approximation or the Kohn-Sham equations lead to
problems of type (1). See standard literature in quantum chemistry [29]. For a survey
of numerical methods, see [28]. Considerable application-specific research has been
carried to specialized algorithms for this problem, mainly based on the self-consistent
field iteration (SCF). SCF is an iterative method that involves solving a linear eigen-
value problem in each step until convergence or self-consistency. The convergence
of SCF and its variants has been studied in a number of works which can be classi-
fied into two broad categories: the optimization-based approach of looking at (1) as
the optimality conditions of a minimization problem [8, 18–20] or different matrix
analysis–based approaches [34, 35]. For a discussion of similarities and differences
among the two approaches, see [9]. Strategies for accelerating the convergence of
SCF have also been studied well, e.g., [24, 25].

The special case p = 1 has very important applications in quantum physics. Char-
acterization of the ground state of bosons is usually done with the Gross-Pitaevskii
equation, see, e.g., references in [1] (and also [16]), whose spatial discretization is
of the form (2). Although SCF can be used in this case too, the more common tech-
niques involve discretization of a gradient flow. See [5], and references therein. Also
applicable to the Gross-Pitaevskii equation is the result in our paper [16], which has
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similarities with the current approach in the sense that we both use higher order terms
(represented with a specific type of Jacobian).

Another class of applications where p = 1 arises is in data science, for example,
applications such as spectral clustering which rely on computing eigenpairs of the
p-Laplacian [7, 13, 22]. See [4] for a Rayleigh quotient minimization approach for
Fisher linear discriminant analysis, which is used in pattern recognition and classi-
fication. In [31], the authors propose a new model for the core-periphery detection
problem in network science (in the sense of [6]) and show its equivalence to the
p = 1 problem.

Our approach is based on flavors of Newton’s method and there are many other
approaches also based on Newton’s method for related problems. A popular tech-
nique is based on deriving iterative methods from a geometric perspective, [12], often
with optimization techniques as in [36]. Our algorithms are not derived from an
optimization method, and more importantly, our implicit construction directly pro-
vides features which are not directly available from a geometry perspective, e.g., the
attractive property illustrated in Section 5.3.

We note that in the context of some applications, the methods of this paper are
naturally viewed as the second stage in a two-stage approach outlined as follows:

1. Obtain an approximation of the solution of interest with a method which has
attractive global convergence properties.

2. Improve the solution with a fast locally convergent method.

For example, in the context of the Gross-Pitaevskii equation, the popular gradient
flow methods [5] often converge to the solution of interest (the ground state) but can
be slow if a small step-length is required in the time-stepping scheme. A gradient flow
method can be used in the first stage, followed by a fast locally convergent method in
the second stage to obtain an accurate solution. The method in the second stage can
be initialized with the solution from the first stage. Some NEPv problems are easier
to solve, in the sense that there exist algorithms based on a companion linearization
[10], which is another example of a method to be used in the first stage.

The contributions of the paper can be summarized as follows. In Section 2.1, we
introduce the concept of basis invariance. This allows us to derive an alternate char-
acterization of (1) in terms of an associated Jacobian. We introduce our implicit
algorithms in Section 3 motivated by this result. Explicit procedures to carry out these
algorithms are derived and studied in Section 4. In Section 5, we provide convergence
results for these algorithms and Section 6 contains numerical examples, illustrating
advantages of our approach.

We will extensively use vectorization and devectorization and introduce the
following shorthand. Small letters denote the vectorization of capital letters. For
example,

x = vec(X), v(k) = vec(V (k)), s(k) = vec(S(k)), ip = vec(Ip).

For any H : R
n → R

n, the operator dH
dv

denotes forming the Jacobian of H

with respect to v, where v denotes vectors in R
n. Also,

(
dH(v)

dv
v̂
)

v̂=v
denotes the

directional derivative of H evaluated at v in the direction of v.
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2 Preliminaries

2.1 Notion of invariant subspace

In order to appropriately generalize the concept of invariant pairs, we will throughout
the paper make the following assumption on A.

Assumption 1 (Basis invariance) We consider A : R
n×p → M such that it is a

function of the outer product of W , i.e.,

A(W) = B(WWT ) (3)

for some B : M → M . Moreover, we assume that

B(X) = B(h(X)) (4)

for any X ∈ M , where h : R → R denotes the heaviside function

h(x) =
{
1, if x > 0

0, if x ≤ 0
. (5)

Note that h is defined in a matrix function sense, for example, using diagonaliza-
tion in [14, Definition 1.2]. Assumption 1 is a generalization of the scaling invariance
property for the case p = 1 in [16]. If p = 1 and v ∈ R

n, then for any α ∈ R,

A(αv) = B(α2vvT ) = B(h(α2vvT )) = B(h(vvT )) = A(v).

Moreover, Assumption 1 leads to the fact that A(W) = A(WP) for invertible P , as
we shall illustrate in the following theorem. This is important in our context, since
it allows us to interpret the columns of W as a basis of an invariant subspace, and A

can be viewed as a function of a subspace, i.e., it is a function of a vector space, and
independent of the basis.

Theorem 1 If A satisfies the basis invariant conditions (3) and (4) then A(W) =
A(WP) for any non-singular matrix P ∈ R

p×p and W ∈ R
n×p where n ≥ p and

rank(W) = p.

Proof Let W = QU for some invertible matrix U and Q ∈ R
n×p orthogonal. Let

V, �+ be a diagonalization of UUT , i.e., UUT = V �+V T , where V is orthogonal
and �+ is a positive diagonal matrix. Then,

h(WWT ) = h(QUUT QT ) = h(QV �+V T QT ) = QV h(�+)V T QT = QQT .

This along with (3) and (4) gives us

A(W) = B
(
h(WWT )

)
= B(QQT ) = A(Q).

If we let W = QR be a QR factorization of W , we see that A(W) = A(Q) with
U = R, and A(WP) = A(Q) with U = RP . This shows that A(W) = A(WP),
which concludes the proof.
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Since S is symmetric, it can be diagonalized as S = Qs�sQ
T
s where Qs is

orthogonal. Problem (1) can be reformulated using Theorem 1 as

A(V )V = V Qs�QT
s =⇒ A(V Qs)V Qs = V Qs�s . (6)

showing that a solution to (1) can be diagonalized.

Example 1 (Transformation to basis invariant form) The heaviside function usually
does not appear directly in the standard formulation in NEPv applications, e.g., those
mentioned in the introduction, but can be obtained easily. In the context of the self-
consistent field iteration for a simplified version of a quantum chemistry problem,
we want to solve the equation

H(V )V = V S (7)

where, e.g., H(V ) = H0 + diag(V V T ), which does not satisfy (3) and (4). This can
be transformed to a problem satisfying (3) and (4) by defining

A(V ) := H0 + diag(h(V V T )). (8)

A pair (V , S) is a full rank solution to (7) if and only if it is a solution to (1)
with A defined as in (8). However, the similarity transformation of a solution, i.e.,
(V P, P −1SP ) is a solution to (1), but not (7).

2.2 Jacobian properties

We will denote the Jacobian as follows, and we directly characterize a theoretical
property as a consequence of Assumption 1.

Definition 1 (Left-hand side Jacobian) The Jacobian of the vectorization of the LHS
of (1a) is denoted as J : Rnp → R

np×np and given by

J (v) = Ip ⊗ A(V ) +
(

d

dv
(Ip ⊗ A(V ))v̂

)

v̂=v

(9)

In the analysis and derivation of our algorithms, we need an intermediate prob-
lem where the orthogonalization is done with respect to a constant C matrix. More
precisely, we study this problem:

A(W)W = WZ, (10a)

CT W = I . (10b)

Equivalence of (10) and (1) is discussed in Section 3. The vectorized form of (10)
can now be written as

F(W,Z) :=
(

(Ip ⊗ A(W))w − (Ip ⊗ W)z

(Ip ⊗ CT )w − ip

)
=

(
(Ip ⊗ A(W))w − (ZT ⊗ In)w

(Ip ⊗ CT )w − ip

)
= 0.

(11)

Numerical Algorithms (2022) 90:301–321 305



The methods we propose will work better for problems where the Jacobian eval-
uated in the solution is non-singular. The Jacobian of (11) in the fixed point is given
by [

J (w∗) − Z∗T ⊗ In −Ip ⊗ W∗
I ⊗ CT 0

]
. (12)

As a consequence of Assumption 1, we conclude the following generalization of
[16, Lemma 2.1], which shows a relationship between the eigenpairs of J and A. We
exploit this relationship later in Sections 3 and 4 where we formulate and derive our
algorithms respectively.

Theorem 2 (Eigenproblem equivalence) For any v ∈ R
np, we have

J (v)v = (Ip ⊗ A(V ))v.

Proof From (9), we have

(
J (v) − (Ip ⊗ A(V ))

)
v =

(
d

dv
(Ip ⊗ A(V ))v̂

)

v̂=v

v.

Interpreting
(

d
dv

(Ip ⊗ A(V ))v̂
)
v̂=v

as a directional derivative at v in the direction of
v and evaluated at v, we have

(
d
dv

(Ip ⊗ A(V ))v̂
)
v̂=v

v = lim
ε→0

(
Ip⊗B

(
(V +εV )(V +εV )T

)−Ip⊗B
(
V V T

))
v

ε

= lim
ε→0

(
Ip⊗B

(
h
(
(ε+1)2V V T

))−Ip⊗B
(
V V T

))
v

ε

= lim
ε→0

(
Ip⊗B

(
V V T

)−Ip⊗B
(
V V T

))
v

ε

= 0.

This completes the proof.

3 Implicit algorithms

3.1 Constant orthogonalization Newton’s method

The basis of our derivation is a variation of the nonlinear system of (1). The prop-
erty that A(V P ) = A(V ) implies that we can view V as a basis of a subspace, and
therefore we can consider an equivalent formulation with a different orthogonality
condition (10) where Cn×p is any fixed vector (and is typically chosen as an approx-
imation of W ). The problems (10) and (1) are equivalent for any W with full column
rank since if we let WT W = RT R be a Cholesky factorization of WT W we can
define V = WR−1 such that V T V = I and A(V ) = A(W). This is direct conse-
quence of the Grassman manifold description, as explained in the convergence theory
(of SCF) in [3].

The constant orthogonalization formulation (10) will be used to derive an algo-
rithm. Although (1) and (10) are equivalent, we use (10) in the analysis for simplicity.
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Note that for p > 1, (1) has a continuum of solutions because V is an orthogonal
basis of a subspace and any other orhogonal basis is also a solution (for different S).
The solutions to (10) are in general isolated.

Standard Newton’s method for the vectorized form (10) is

− F (k) =
[

J (w(k)) − Z(k)T ⊗ In −Ip ⊗ W(k)

Ip ⊗ CT 0

][
Δw(k)

Δz(k)

]
(13)

where the Δ-matrices are updates, w(k+1) = w(k) +Δw(k) and z(k+1) = z(k) +Δz(k),
with where

F (k) := F(W(k), Z(k)).

Lemma 1 Let w(k), z(k), k = 1, . . ., be a sequence of vectors that satisfy (13). Then,

(a) CT W(k) = Ip for k = 2, 3, . . .
(b) If the Jacobian evaluated in (W∗, Z∗) (given by (12)) is invertible, then the

convergence is quadratic.

Proof If CT W(k) = Ip then the second subequation of (12) gives

(Ip ⊗ CT )Δw(k) = ip − (Ip ⊗ CT )w(k) =⇒ CT W(k+1) = Ip,

which proves (a). The statement (b) is a standard result about the convergence of
Newton’s method

In this work, we consider two modifications of Newton’s method as formulated
in (13). Both lead either to new methods (which have some attractive properties) or
well-established methods suggesting that the methods can be viewed as Newton-like
methods.

– We modify the (1,2) block of the Jacobian to Ip ⊗ W(k+1).

− F (k) =
[

J (w(k)) − Z(k)T ⊗ In −Ip ⊗ W(k+1)

Ip ⊗ CT 0

][
Δw(k)

Δz(k)

]
(14)

This is analogous to the modification [15, Equation (1.10)] which directly leads
to the method of successive linear problems [27]. With the techniques of the next
section, this leads to Algorithm 1.

– We modify the (1,1) block of the Newton’s method Jacobian from J (w(k)) to
Ip ⊗ A(Wk), in addition to the modification done to obtain Algorithm 1.

− F (k) =
[

Ip ⊗ A(W(k)) − Z(k)T ⊗ In −Ip ⊗ W(k+1)

Ip ⊗ CT 0

][
Δw(k)

Δz(k)

]
(15)

We will show that this leads to Algorithm 2, which is the well-known SCF
iteration.
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4 Reformulation for direct computation

Both updates (14) and (15) correspond to implicit methods. We will illustrate several
situations where we can generate iterates that satisfy the implicit algorithms update
equations in an explicit way.

4.1 Algorithm 2

Although Algorithm 2 is a modification of Algorithm 1, we start our discussion with
Algorithm 2 since it leads to a well-established method. We can obtain Algorithm 2
from (15) by multiplying out the first subequation of (15) as follows.
(
(Ip ⊗ A(W(k))) − (Z(k)T ⊗ In)

)
(w(k+1) − w(k)) − (Ip ⊗ W(k+1))(z(k+1) − z(k))

= −
(
(Ip ⊗ A(W(k))) − (Z(k)T ⊗ In)

)
w(k)

Cancellation of terms leads to(
Ip ⊗ A(W(k))

)
w(k+1) = (Z(k+1) ⊗ In)w

(k+1). (16)

Devectorizing this system gives the following result.

Theorem 3 Suppose CT W(k) = Ip. Then, the pair (W(k+1), Z(k+1)) satisfies the
update (15) if and only if it satisfies

A(W(k))W(k+1) = W(k+1)Z(k+1), (17)

and CT W(k+1) = Ip.

Equation (17) gives a practical way to compute the iterates from (15). Given W(k),
we compute (W(k+1), Z(k+1)) as an invariant pair ofA(W(k)). This is the well-known
SCF algorithm.

4.2 Algorithm 1

The first subequation in (15) implies that
(
J (Wk) − (Z(k)T ⊗ In)

)
(w(k+1) − w(k))

= (Ip ⊗ W(k+1))(z(k+1) − z(k)) + (Z(k)T ⊗ In)w
(k) − (Ip ⊗ A(W(k)))w(k)

=
((

Z(k+1)T − Z(k)T
)

⊗ In

)
w(k+1) + (Z(k)T ⊗ In)w

(k) − (Ip ⊗ A(W(k)))w(k).

(18)
From Theorem 2, we have J (w(k))w(k) = (

Ip ⊗ A(Wk)
)
w(k). Using this in (18)

leads to the following result.

Theorem 4 Suppose CT W(k) = Ip. Then, the pair (W(k+1), Z(k+1)) satisfies the
update (14) if and only if it satisfies

J (w(k))wk+1 = (Z(k+1)T ⊗ In)w
(k+1). (19)
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and CT W(k+1) = Ip.

Since J is not block diagonal, (19) cannot be easily devectorized as was done for
(16). For the special case p = 1, we directly identify that (19) reduces to

J (w(k))w(k+1) = λ(k+1)w(k+1). (20)

Similar to (17), (20) is a standard eigenvalue problem and we can compute a next
iterate with a solver for standard eigenvalue problem. It directly suggests that the
matrix A(w(k)) in the SCF iteration can be viewed as an approximation of the Jaco-
bian matrix, and in order to obtain faster convergence it can be better to use J (w(k)),
or approximations thereof. This in turn leads to quadratic convergence and in con-
trast to Newton’s method, the method converges in one step for a linear problem. It is
superior to Newton’s method for problems that are close to being linear, as we prove
in Section 5.3.

4.3 Further implementation aspects

Although the theory above provides us with explicit ways ((19) and (17)) to imple-
ment our implicitly formulated methods, they do not automatically enforce the
constraint CT W(k+1) = Ip. To this end, we compute an intermediate eigenvector
eigenpair (Y, Z) and add an additional step in our algorithms to enforce orthogonality
and compute V (k+1). Note that C can be chosen freely. Without substantial additional
computation, we can impose

V (k+1)T V (k+1) = Ip, (21)

that is, C = V (k+1). We compute a thin QR factorization of Y to obtain V (k+1) and
perform a similarity transformation using the R matrix to compute S(k+1). This need
not be performed in every step and can be done just once at the end, since only V (k+1)

is required for the algorithm to execute the next step. We prefer the normalization
condition (21) over a constant C because numerical linear algebra folklore tells us
that orthogonal matrices have better numerical stability properties. Combining (19)
and (17) with this normalization step leads to Algorithm 1 and Algorithm 2.

Remark 1 (Selection of eigenvectors) The iterates of both algorithms will depend
upon which of the p eigenvectors are used to construct V (k+1) in each step. The
best choice is usually application dependent. For example, in quantum chemistry,
one would select the eigenvectors corresponding to the p smallest eigenvalues. This
is because only the p smallest eigenvalues are of interest, which correspond to the
so-called occupied states [29].

In the the case p = 1, specifically when we apply the method to the Gross-
Pitaevskii equation, another strategy is natural. Suppose we use the algorithms in the
second stage, as part of the two-stage approach (outlined in Section 1), where the
first stage is done with a gradient flow method. We can use the eigenvector computed
in the first stage as an initial guess for the iteration, and the eigenvalue as a target
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in the selection procedure. More precisely, if the gradient flow returns x which is
an approximation of the ground state, we can compute the corresponding eigenvalue
approximation with the Rayleigh quotient σ = xT A(x)x. In each iteration of Algo-
rithm 1 or Algorithm 2, we can select the eigenvector corresponding to the eigenvalue
closest to σ .

Yet another application with p = 1 occurs in hierarchical spectral clustering using
the p-Laplacian [7]. However, in contrast to the Gross-Pitaevskii application, one is
interested in computing the eigenpair corresponding to the second smallest eigen-
value. By construction, the p-Laplacian always has a zero eigenvalue and hence, the
strategy in this case will be to select the smallest non-zero eigenpair.

In this setting, we only provide an exact direct computation formulation for (19)
when p = 1, which has many important applications, most notably in computing
numerical solutions to the Gross-Pitaevskii equation (see Section 6.2). When p > 1,
we are not aware of any exact direct computation formulation, but we illustrate that
if we resort to approximate solution methods, we do obtain similar attractive con-
vergence properties. The approximate solution approach is illustrated with a specific
example in the simulations section (Section 6.3).
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5 Convergence theory

5.1 Local convergence of Algorithm 2

Since Algorithm 2 is equivalent to SCF as shown in Theorem 3, the convergence can
be described in the setting of SCF. There has been extensive study of convergence of
SCF and its acceleration in the last fifty years. Several results exist in the literature,
as mentioned in Section 1. In general, SCF exhibits linear local convergence when
it converges. Convergence can be characterized in terms of gaps [35] (see also [34,
Theorem 3.1]). Rather than reviewing the details of the convergence results, we refer
the reader to the general characterizations, e.g., in [3, 19, 20, 35] and the references
therein.

5.2 Local convergence of Algorithm 1

Due to our inexact Newton viewpoint, the convergence of Algorithm 1 can be char-
acterized using results in the rich literature on inexact Newton methods. Quadratic
local convergence can be proved using theorems in [11].

Theorem 5 Let (W(k),Z(k)), k = 1, . . ., be a sequence of pairs satisfying (14). Then,
CT W(k) = Ip for k = 2, . . . ,. If the sequence converges monotonically to a solution
(W∗, Z∗) to (10), and the Jacobian given by (12) in invertible, then it converges with
the same convergence order as Newton’s method.

We refer the reader to the Appendix for the proof.

5.3 Single step analysis

As we illustrate in the examples, the implicit methods often work well in general
and in particular for close-to-linear problems. This is intuitively natural since both
implicit methods converge in one step if we apply it to linear problems.

This can be further characterized, by considering one step of the method applied
to a problem parameterized by a parameter α, where α = 0 corresponds to a linear
problem. For this analysis, we consider the model problem

A(v) = A0 + αK(v).

Let
[
v0, λ0

]T be an initial guess and
[
v+, λ+

]T be the result of (for the moment)
any of the two algorithms. We introduce three functions

Gβ

⎛
⎝

⎡
⎣

λ

v

α

⎤
⎦

⎞
⎠ =

[
(A0 + αPβ)v − λv

cT v − 1

]
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where β can be β = ∗, β = A, and β = J . The values of P (where we dropped the
parameters for notational convenience) denote the nonlinearity

P∗ = K(v∗) (22a)

PA = K(v0) (22b)

PJ =
(

d

dv
(K(v)v)

)

v=v0

. (22c)

These functions correspond to the residual for the exact solution (β = ∗), one
step of Algorithm 1 (β = J ) and one step of Algorithm 2 (β = A). Note that
v+(0) = v∗(0) and λ+(0) = λ∗(0), since α = 0 corresponds to a linear eigenvalue
problem, respectively.

We can apply the implicit function theorem for all three functions, and express the
first n+1 variables in terms of the third variable α in a neighborhood of the solution,
if the associated Jacobian is non-singular. The Jacobian given (12) is now assumed
to be non-singular in the solution. The exact solution can then be expanded as

[
v∗(α)

λ∗(α)

]
=

[
v∗(0)
λ∗(0)

]
− α

[
A0 − λ∗(0)I −v∗(0)

cT 0

]−1 [
K(v∗(0))v∗(0)

0

]
+ O(α2)

(23)
whereas both β = A and β = J can be expanded as

[
v+(α)

λ+(α)

]
=

[
v+(0)
λ+(0)

]
− α

[
A0 − λ∗(0)I −v∗(0)

cT 0

]−1 [
cβ

0

]
+ O(α2) (24)

where cA = Pav∗(0) and cJ = Pjv∗(0).
The first terms in the Taylor expansion of the next iterate and the exact iterate as a

function of the parameterization of the nonlinearity are equal. Therefore,

[
v+(α)

λ+(α)

]
−

[
v∗(α)

λ∗(α)

]
= O(α)

meaning that the accuracy of one step is of the order of magnitude of the nonlinear
term. Moreover, the coefficient is proportional to ‖K(v∗(0))v∗(0) − Pβv∗(0)‖.

6 Simulations

6.1 Scalar nonlinearity

The theory and methods are first illustrated with a reproducible example where p =
1. We consider (2) with

A(v) = A0 + α sin

(
vT A2v

vT v

)
A1 (25)
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and

A0 = 1

10

⎛
⎜⎜⎝
10 21 13 16
21 −26 24 2
13 24 −26 37
16 2 37 −4

⎞
⎟⎟⎠ , A1 = 1

10

⎛
⎜⎜⎝
20 28 12 32
28 4 14 6
12 14 32 34
32 6 34 16

⎞
⎟⎟⎠ ,

A2 = 1

10

⎛
⎜⎜⎝

−14 16 −4 15
16 10 15 −9
−4 15 16 6
15 −9 6 −6

⎞
⎟⎟⎠

and α ∈ R. Note that A in (25) satisfies Assumption 1 if we select

B(X) = A0 + α sin

(
cT XBXc

cT Xc

)
A1

for essentially any c ∈ R
n. This specific example appears in [16, Section 3.3] and J

is explicitly given by

J (v) = A(v) + 2α
cos

(
vT A2v

vT v

)

(vT v)
2

A1v((vT v)vT A2 − (vT A2v)vT ).

We solve four instances of this problem generated by four different values of α,
that is α = 0, 0.5, 1, and 5, corresponding to four different weights of the nonlinear
term. To all of these instances, we apply Algorithm 1 (using (20)), Algorithm 2,
the J-Inverse iteration (from [16]), and Newton’s method with initial guess v0 =(
1, 1, 1, 1

)T . In Fig. 1, we see the error history of all three methods for all four
values of α. The error is computed as ‖vk − v∗‖, where v∗ is the reference solution.

We observe linear convergence for Algorithm 2 and quadratic convergence for
Algorithm 1 as predicted by the theory in Section 5. Both implicit methods are
competitive, at least for small values of α. For higher values of α, the number
of iterations required to enter the regime of quadratic convergence increases for
both Algorithm 1 and Newton’s method. This example illustrates a simple case
when Algorithm 1 is a better choice than Newton’s method, although both meth-
ods converge quadratically. We observe linear convergence for J-Inverse iteration as
predicted by [16, Theorem 3.1].

In Fig. 2, we visualize the implications of the theory in Section 5.3 by plotting the
single step errors for all four methods. It is clear that the single step error is linear in
α, as expected from (23) and (24). The predicted line is plotted using the coefficent
‖C(v∗(0))v∗(0) − Pβv∗(0)‖. This illustrates an advantage of the proposed methods
for small α.

The implicit algorithms derived in this paper may be used in combination with
an additional globalization strategy to make them more robust with respect to the
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Fig. 1 Algorithm 1, Algorithm 2, J-Inverse iteration, and Newton’s method for different α

choice of initial guess. For example, in many applications, it is common to use the
Armijo rule [2] to find a suitable step size along the update direction computed by a
Newton-based method. Figure 3 is an illustration of how the convergence basin can
be enlarged when we use the Armijo rule. More precisely, we apply Algorithm 1 with
many different initial guesses which are obtained by perturbing the second and third
components (represented by the horizontal and vertical axes of the plots) of the ref-
erence eigenvector v∗ ≈ (

0.2107 −0.6730 −0.3909 0.5915
)T . The figure contains

two separate contour plots of the natural logarithm of the residual after ten iterations.
The plot on the left is obtained without using any globalization strategy. The one on
the right is obtained by combining Algorithm 1 with one sub-step that implements
the Armijo rule. The addition of the Armijo rule clearly benefits Algorithm 1 by
enlarging the set of initial guesses that lead to convergence.

6.2 Computing the ground state of bosons

The Gross-Pitaevskii equation (GPE) is a nonlinear PDE obtained by a Hartree-Fock
approximation (see [28]) of the Schrödinger equation. It describes the ground state
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of identical bosons in a quantum system. We consider the case of a rotating Bose-
Einstein condensate on the domain D = (−L, L) × (−L, L). In this case, the GPE
for the wave function Ψ : R2 → C under an external potential V : R2 → R is

(
−1

2
Δ − iΩ

∂

∂φ
Ψ (x, y) + V (x, y)

)
+ b|Ψ (x, y)|2Ψ (x, y) = λΨ (x, y), (x, y) ∈ D.

(26)

Here, ∂
∂φ

= y ∂
∂x

− x ∂
∂y
. The scalar b is a constant indicating the strength of

interaction between the bosons and Ω is the angular velocity of rotation. We choose
the boundary condition Ψ (x, y) = 0 for (x, y) ∈ ∂D.

Fig. 3 Convergence basin for Algorithm 1, without (left) and with application of the Armijo rule (exact
solution marked with a red “*”)
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We perform a central difference discretization of (26) using a uniform grid ofN+2
points along each dimension with grid spacing Δx. Details are in [16, Section 5.1].
This leads to a problem of size n = 2N2 with

A(v) =
(
Re Ã0 −Im Ã0

Im Ã0 Re Ã0

)
+ γ

vT v
B(v),

B(v) =
(
diag(v1) + diag(v2) 0

0 diag(v1) + diag(v2)

)2

,

v = (
v1, v2

),

where Ã0 is the discretization of the linear operator − 1
2Δ − iΩ

∂

∂φ
+ V (x, y) and

γ = b(Δx)−2. Note that both v1, v2 ∈ R
N2

and v1 + iv2 give the vectorization of Ψ

evaluated at the interior points. We have

J (v)=
(
Re Ã0 −Im Ã0

Im Ã0 Re Ã0

)

+ γ

vT v

[(
3diag(v1)2 + diag(v2)2 2diag(v1)diag(v2)

2diag(v1)diag(v2) diag(v1)2 + 3diag(v2)2

)
− 2

vT v
B(v)vvT

]
.

(27)
We now apply and compare the performance of Algorithm 1 and J-Inverse iteration
with J as defined by (27).

As seen from Fig. 4, Algorithm 1 converges in much fewer iterations as compared
to the J-Inverse iteration. Since each iteration of Algorithm 1 involves the solution
of a linear eigenvalue problem, we see that it performs worse when we measure
the cumulative computation times for each iteration. This is because the J-Inverse
iteration solves a linear system in each step (Fig. 5).

Since one step of both Algorithm 1 and Algorithm 2 requires the solution of a
standard eigenvalue problem, we need to select an appropriate eigenpair at each step.
Special attention is needed in the selection in this problem. We select a new iterate in
a way that minimizes the difference between two iterates. More precisely, we choose
δ ∈ (0, 1) and select all eigenpairs which correspond to eigenvalue within a radius δ

of a given target. We then do a least squares fitting to find the linear combination of
these eigenvectors which is closest to the previous iterate. This is needed due to the
fact that the problem has highly clustered eigenvalues.

6.3 Invariant subspace

We consider

A(V ) = A0 + α diag (A0
−1diag(h(V V T ))) (28)

where A0 is the discrete 1D Laplacian. This problem is a simplified version of prob-
lems that frequently occur in electronic structure calculations when we discretize the
Hartree-Fock approximation of the Schrödinger equation. See [35] for a discussion
of the problem type and convergence results of SCF applied to (28).
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If we let ei denote the the ith column of the identity matrix In and Ei,j = eie
T
j ,

then

A(V ) = A0 + α

n∑
i=1

(eT
i h(V V T )ei)diag(A

−1
0 Ei,i).

The derivation and some computational aspects of J (V ) are contained in the (pub-
licly available) extended technical report [17, Appendix B], which is omitted for
brevity.

The implementation of Algorithm 2 follows directly from (17). We also illustrate
the importance of the implicit formulation of Algorithm 1 by inexactly solving (19).
We do this with the optimization subroutine fminsearch. It provides us a way to test
Algorithm 1 for relatively small examples as a proof of concept. We use n = 10 and
p = 3 and apply Algorithm 1 and Algorithm 2 for two different values of α.

In Fig. 6, we observe that Algorithm 2 converges linearly and Algorithm 1 has
much faster convergence, with an initial quadratic phase. The number of iterations
required for convergence increases with increase in α, as expected from the single
step analysis of Section 5.3. The initial quadratic phase is succeeded by an asymptotic
slowdown, which can be attributed to the inexact solution of the update (19).

7 Conclusions and outlook

This paper shows that taking an inexact and implicit Newton approach towards deriv-
ing algorithms for problems with eigenvector nonlinearities leads to new algorithmic
insights. Using this approach, we derive two algorithms. Algorithm 2 is shown to be
the widely used SCF algorithm. This result shows a connection between Newton’s
method and the SCF algorithm which was previously unknown. Algorithm 1 is a new
algorithm, to the best of our knowledge.

We prove that Algorithm 1 exhibits quadratic local convergence. Both Algorithm 1
and Algorithm 2 have favorable convergence properties for problems that are close
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to being linear, as shown by the single step analysis of Section 5.3. Numerical sim-
ulations for the Gross-Pitaevskii equation in Section 6.2 show that Algorithm 1 is a
competitive algorithm for the p = 1 case. The p > 1 example in Section 6.3 shows
that Algorithm 1 converges faster than Algorithm 2 even when we solve the update
(19) inexactly.

There are several improvements of the SCF algorithm. Some of these techniques
may be interpretable from an implicit viewpoint as well. For instance, acceleration
schemes such as DIIS [25] might be seen as an inexact Newton algorithm. This could
be combined with other convergence theories to gain further understanding of DIIS.
Another direction that can be explored is to develop application-specific strategies to
solve the (19) for p > 1 or approximate solution techniques that lead to superlinear
convergence.

Appendix. Proof of Theorem 5

Proof Let F ′
k be the Jacobian of F evaluated in the iterate k. In the notation of

[11], we introduce a residual denoted rk , corresponding to the difference between a
Newton step and an inexact Newton step:

F ′
k

[
Δw(k)

Δz(k)

]
= −F (k) + rk . (29)

Then, subtracting (14) from (29) the residual becomes

rk =
[
0 −Ip ⊗ (W(k) − W(k+1))

0 0

] [
Δv(k)

Δs(k)

]

Using the Cauchy-Schwarz inequality, we have

‖rk‖ ≤
∥∥∥∥
[
0 −Ip ⊗ (W(k) − W(k+1))

0 0

]∥∥∥∥
∥∥∥∥
[

Δw(k)

Δz(k)

]∥∥∥∥ ≤ O
(∥∥∥∥

[
Δw(k)

Δz(k)

]∥∥∥∥
2
)

(30)

By the assumption of monotonic convergence, we have,
∥∥∥∥
[

Δw(k)

Δz(k)

]∥∥∥∥ ≤ 2

∥∥∥∥
[

w(k) − w∗
z(k) − z∗

]∥∥∥∥ = O
(∥∥∥∥

[
w(k) − w∗
z(k) − z∗

]∥∥∥∥
)
. (31)

From the implicit function theorem (e.g., the formulation in [26, Theorem 9.28])
and the assumption about the invertibility of the Jacobian at the solution, we get that

[
w(k)

s(k)

]
=

[
w∗
s∗

]
+ (F ′∗)−1F (k) + O(‖F (k)‖2). (32)

where F ′∗ is the Jacobian of F evaluated in the solution. The combination of (30),
(31), and (32) leads to

‖rk‖ = O(‖F (k)‖2).
By [11, Theorem 3.3], the proof is complete.
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30. Tapia, R.A., Dennis, J.E., Schäfermeyer, J.P.: Inverse, shifted inverse, and Rayleigh quotient iteration

as Newton’s method. SIAM Rev. 60(1), 3–55 (2018). https://doi.org/10.1137/15M1049956
31. Tudisco, F., Higham, D.J.: A nonlinear spectral method for core–periphery detection in networks.

SIAM J. Math. Data. Sci. 1(2), 269–292 (2019). https://doi.org/10.1137/18M1183558
32. Unger, G.: Convergence orders of iterative methods for nonlinear eigenvalue problems. Springer,

Berlin. https://doi.org/10.1007/978-3-642-30316-6 10 (2013)
33. Unger, H.: Nichtlineare Behandlung von Eigenwertaufgaben. Z. Angew. Math. Mech. 30,

281–282 (1950). https://doi.org/10.1002/zamm.19500300839. English translation: http://www.math.
tu-dresden.de/∼schwetli/Unger.html

34. Upadhyaya, P., Jarlebring, E., Rubensson, E.H.: A density matrix approach to the convergence of the
self-consistent field iteration. Numer. Alg. Control Optimization, Accepted for publication (2020)

35. Yang, C., Gao, W., Meza, J.C.: On the convergence of the self-consistent field iteration for a
class of nonlinear eigenvalue problems. SIAM J. Matrix Anal. Appl. 30(4), 1773–1788 (2009).
https://doi.org/10.1137/080716293

36. Zhao, Z., Bai, Z.J., Jin, X.Q.: A Riemannian Newton algorithm for nonlinear eigenvalue problems.
SIAM J. Matrix Anal. Appl. 36(2), 752–774 (2015)

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Numerical Algorithms (2022) 90:301–321 321

https://doi.org/10.1137/130911032
https://doi.org/10.1137/130911032
https://doi.org/10.1137/140957962
https://doi.org/10.1137/140957962
https://doi.org/10.1137/1021052
https://doi.org/10.1016/0009-2614(80)80396-4
https://doi.org/10.1007/s10910-011-9863-y
https://doi.org/10.1007/s10910-011-9863-y
https://doi.org/10.1137/0710059
https://doi.org/10.1137/060651653
https://doi.org/10.1137/15M1049956
https://doi.org/10.1137/18M1183558
https://doi.org/10.1007/978-3-642-30316-6_10
https://doi.org/10.1002/zamm.19500300839
http://www.math.tu-dresden.de/~{}schwetli/Unger.html
http://www.math.tu-dresden.de/~{}schwetli/Unger.html
https://doi.org/10.1137/080716293

	Implicit algorithms for eigenvector nonlinearities
	Abstract
	Introduction
	Preliminaries
	Notion of invariant subspace
	Jacobian properties

	Implicit algorithms
	Constant orthogonalization Newton's method

	Reformulation for direct computation
	Algorithm 2
	Algorithm 1
	Further implementation aspects

	Convergence theory
	Local convergence of Algorithm 2
	Local convergence of Algorithm 1
	Single step analysis

	Simulations
	Scalar nonlinearity
	Computing the ground state of bosons
	Invariant subspace

	Conclusions and outlook
	Appendix A  Proof of Theorem 5
	References


