IMPLICIT APPLICATION OF POLYNOMIAL FILTERS
IN A K-STEP ARNOLDI METHOD
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Abstract. The Arnoldi process is a well known technique for approximating a few eigenvalues and
corresponding eigenvectors of a general square matrix. Numerical difficulties such as loss of orthogonality
and assessment of the numerical quality of the approximations as well as a potential for unbounded growth
in storage have limited the applicability of the method. These issues are addressed by fixing the number of
steps in the Arnoldi process at a prescribed value k and then treating the residual vector as a function of the
initial Arnoldi vector. This starting vector is then updated through an iterative scheme that is designed to
force convergence of the residual to zero. The iterative scheme is shown to be a truncation of the standard
implicitly shifted QR-iteration for dense problems and it avoids the need to explicitly restart the Arnoldi
sequence. The main emphasis of this paper is on the derivation and analysis of this scheme. However, there
are obvious ways to exploit parallelism through the matrix-vector operations that comprise the majority of
the work in the algorithm. Preliminary computational results are given for a few problems on some parallel
and vector computers.
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1. Introduction. Large scale eigenvalue problems arise in a variety of settings. Often
these very large problems arise through the discretization of a linear differential operator in
an attempt to approximate some of the spectral properties of the operator. However, there
are a considerable number of sources other than PDE. Saad gives a number of examples in
[28].

The Lanczos method [19] is a popular algorithm for solving large symmetric eigenvalue
problems . The Arnoldi process [1] is a generalization of the Lanczos method which is
appropriate for finding a few eigenvalues and corresponding eigenvectors of a large non-
symmetric matrix. These methods only require one to compute action of the matrix on a
vector through a matrix vector product. Often this may be accomplished without explicit
storage of the matrix and this property along with a number of theoretical and compu-
tational features have contributed to the widespread appeal of these methods. However,
both of these share some inherent numerical difficulties which have been the subject of
considerable research over the last two decades [ 8, 16, 25, 27].

In this paper these methods will be discussed from a new perspective. The goal is
to address the non-symmetric problem and thus the focus is on the Arnoldi algorithm.
However, since the Arnoldi method reduces to the Lanczos method when the matrix is
symmetric, everything that is developed here is applicable to the symmetric case as well
with obvious savings in computational effort available through the exploitation of symmetry.
Traditionally, the point of view has been to let the Arnoldi or the Lanczos sequence develop
without bound while monitoring error estimates associated with the Ritz vectors to identify
converged eigenvalues. However, if one explores the relation with the QR-iteration it is
apparent that the Arnoldi (Lanczos) method is really a truncated reduction of the given
matrix into upper Hessenberg (tridiagonal) form. The iterative phase of the QR-method
does not have an analogy within the traditional treatment of these algorithms.

A variant of the Arnoldi method which includes such an iterative phase is developed
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IMPLICITLY RESTARTED ARNOLDI METHODS 3

here by analogy to the well-known implicitly shifted Q-R iteration [ 14, 33, 35] for dense
matrices. Such an analogy may be developed if one treats the residual vector as a function
of the initial Arnoldi (Lanczos) vector, and then attempts to iteratively improve this vector
in a way to force the residual vector to zero.

In Section 2 we develop the Arnoldi factorization, expose the functional dependence of
the residual on the starting vector, and give necessary and sufficient conditions for a starting
vector to produce a zero residual. In Section 3 we show how to update the starting vector
through implicit application of a polynomial filter to this vector on each iteration. The
implicit application of this polynomial filter is accomplished through a truncated version of
the implicitly shifted Q-R iteration. Within this context, an updating scheme is developed
which preserves an Arnoldi (Lanczos) factorization of predetermined size. The method
generalizes explicit restart methods and as shown in Section 4, it is possible to implement a
mathematically equivalent implicit method corresponding to all of the explicitly restarted
methods that this author is aware of. Convergence results for specific restart strategies
are given in Section 5. Extension to the generalized problem is discussed in Section 6 and
prelimiary computational results are presented in Section?7.

The idea of iteratively forcing the residual to zero is not new. Variants of this idea were
introduced early by Karush in [18]. Cullum and her colleagues have investigated explicit
restart methods for the symmetric case [5, 6, 8]. Most recently the idea has been explored by
Saad in [28,29] by Chatelin and Ho in [2] and by Chronopoulos in [3] for the nonsymmetric
case. All of these techniques use eigensystem information from the projected matrix to
construct an updated starting vector for the Arnoldi (Lanczos) process, and then restart
this process from scratch. Here, a computational framework is developed which updates
the Arnoldi factorization instead of re-starting it.

This approach has several advantages over more traditional approaches. The number
of eigenvalues that are sought is prespecified. This fixes the storage requirements instead of
allowing them to become arbitrarily large. It is expected that the number of eigenvalues that
are sought will be modest, and in this situation, orthogonality of the Arnoldi (Lanczos) basis
for the Krylov subspace can be maintained. Therefore, the questions of spurious eigenvalues
and selective re-orthogonalization do not enter. Finally, the well understood deflation rules
associated with the QR iteration may be carried over directly to the technique.

2. The Arnoldi Factorization. The Arnoldi factorization may be viewed as a trun-
cated reduction of an n x n matrix A to upper Hessenberg form. After k steps of the
factorization one has

(2.1) AV = VH + rel
where V € R™* VTV = [;: H € R**F is upper Hessenberg, » € R™ with 0 = V1r. An

alternative way to write (2.1) is

H 1
(2.2) AV = (V,v) ( BeT ) where 3= 7| and v = ET .

From this representation, it is apparent that (2.2) is just a truncation of the complete
reduction

(2.3) AV, ) = (V,T7) ( ﬁfe;{ o )
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where (V, V) is an orthogonal n X n matrix and His an upper Hessenberg matrix of order
n — k. Equation (2.2) and hence (2.1) may be derived from (2.3) by equating the first k
columns of both sides and setting v = Vey.

Approximate eigenvalues and eigenvectors are readily available through this factoriza-
tion. If Hy = yf is an eigenpair for H then the vector x = Vy satisfies

[Az — 28]l = I(AV = VH)y|| = |Bejy-

We call the vector z a Ritz vector and the approximate eigenvalue 6 a Ritz value and note
that the smaller |ﬁe;€y| is the better these approxmatations are.

The factorization (2.1) may be advanced one step through the following recursion for-
mulas:

(2.3.5) ry =w—Vy ( Z ) =(I-ViVihiw.

From this development it is easily seen that
_ T T _ T _
AV_|_ —V+H+—|—T+€k+1 5 V+ V_|_—Ik_|_1 ,V_|_7‘_|_—0.

In a certain sense, computation of the projection indicated at Step (2.3.5) has been the
main source of research activity in this topic. The computational difficulty stems from
the fact that ||r|| = 0 if and only if the columns of V' span an invariant subspace of A.
When V' “nearly” spans such a subspace [|7|| will be small. Typically, in this situation,
a loss of significant digits will take place at Step (2.3.5) through numerical cancellation
unless special care is taken. On the one hand, it is a delightful situation when ||r|| be-
comes small because this indicates that the eigenvalues of H are accurate approximations
to the eigenvalues of A. On the other hand, this “convergence” will indicate a probable
loss of numerical orthogonality in V. The identification of this phenomenon in the sym-
metric case and the first rigorous numerical treatment is due to Paige[22,23]. There have
been several approaches to overcome this problem in the symmetric case. They include:
(1) complete re-orthogonalization which may be accomplished through maintaining V' in
product Householder form [15, 34] or through the Modified Gram-Schmidt processes with
re-orthogonalization [9, 26]. (2) Selective re-orthogonalization which has been proposed by
Parlett and has been heavily researched by him and his students. Most notably, the thesis
and subsequent papers and computer codes of Scott have developed this idea [24, 25, 31].
(3) No re-orthogonalization which has been developed by Cullum and her collegues. This
last option introduces the almost certain possibility of introducing spurious eigenvalues.
Various techniques have been developed to detect and deal with the presence of spurious
eigenvalues [7, 8].
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The appearance of spurious eigenvalues may be avoided through complete re-orthogonalization

of the Arnoldi (or Lanczos) vectors. Computational cost has been cited as the reason for
not employing this option . However, the cost will be reasonable if one is able to fix &
at a modest size and then update the starting vector vy = Ve; while repeatedly doing
k-Arnoldi steps. This approach has been explored to some extent in [2, 28]. In the sym-
metric case Cullum [6] relates a variant of this approach (which has been termed an s-Step
method) to applying a fixed number of conjugate gradient steps to a minimize (maximize)
(VVT A) where (B, A) = trace(BT A) is the Frobenius product functional with V' restricted
to the generalized block Krylov subspace. However, while this argument gives considerable
credence to the restart procedure, it does not establish convergence.

Throughout the remainder of this paper, the k-step approach will be developed from
a different point of view. An attempt will be made to iteratively update vy in order to
force the residual vector r(v;) to zero. In order to make sense of this it will be necessary to
understand when r is indeed a function of v; and also to determine its functional form and
characterize the zeros of this function.

The classic simple result that explains when r is a function of vy is the Implicit @-
Theorem.

THEOREM 2.4. Suppose

AV
AQ

VH+ re;‘f
QG + fei

where QQ, V' have orthonormal columns and G, H are both upper Hessenberg with positive
subdiagonal elements.
IfQer =Ve, and QT f =VTr =0, then Q =V, G =H, and f = 7.
Proof. There is a straightforward inductive proof (or see [16,p367]). O
Of course the Krylov space

K%(val)::Spaﬂr{vlwAvlwA2vh---vAk_lvl}
plays an important role along with the Krylov matrix
K = (?Jl, A?Jl, ey Ak_lvl) .

An alternate derivation of the Arnoldi process is to consider the companion (or Frobenius)
matrix

0 70
1 71
_ {0 7 Y} _
r= ( I g ) N 1 :
T vk
and to observe that
(2.5) AK — KF = fel

where # = A%v; — Kg with g7 = (7,,¢7). Note that # = p(A)v; where p(A) = A +
Zf;é ’yjAj, and also that p(A) is the characteristic polynomial of F. If ¢ is chosen to solve
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min ||A¥v; — Kg||2 then 7 is orthogonal to all vectors in Kj(A,v;). Moreover, p solves

er%ijl\l/l {l|p(A)v1]]} where PMy, is the set of all monic polynomials of degree k.
P K

To solve the minimization problem in (2.5), one would factor K = QR where Q is
orthogonal, R is upper triangular. Note that R is nonsingular if and only if K has linearly
independent columns and that ¢) may be constructed so that p;; = e;FRej > 0. One then
solves

g=R'QTAFv, .

This choice of ¢ will minimize the residual and also will assure that 0 = Q7#. Multi-
plying (2.5) on the right by R™! gives

A(KR™) — (KR™Y)RFR™' = fef R,
i.e.
(2.6) AQ — QG = feT

where Q = KR™', ¢ = RFR™! is upper Hessenberg with the same characteristic polyno-
mial as F, and f = ﬁf‘. It is easily verified that v; = Qe; = Vey , and 0 = Q7 f . Thus,
the Implicit -Theorem will imply that Q@ =V, G = H, and f = r. Putting H = G yields

_ T _ T -1, _ Pi+1,+1
Bi=ejHej =€ 1RFR ej = ——— .

Pij
Moreover,
1. Pi+1,5+1
—||p;(A)mn]|| = B, = =—=——.
oy patAYerll = P = =2
gives
pirrirr = 17l = [15;(A)vll -

This discussion establishes the following.
THEOREM 2.7. Let AV; = V;H; + rjejT be a sequence of successive Arnoldi steps
1 < j <k and suppose that dim(Kr(A,v1)) = k. Then

1 . pi(A)od|
1 T =T P A)v ’ ﬁ = Aji
. P @ 2 5 e
where p;(N) is the characteristic polynomial of H;. Moreover,
2 h; sol i A
(2) by solves win {lp(A)ol)
for 1 <j <k,

The development leading to Theorem (2.7) follows and builds upon the development
by Ruhe in [27]. The fact that ||p(A)v1]| (the characteristic polynomial of H} acting on
vy ) will minimize ||p(A)vy|| over all monic polynomials of degree k was proved by Saad in
[29]. Theorem (2.7) points out that that the structure of 3; is a somewhat complicated
function of A and vy. This theorem will provide the foundation for a convergence result to
be presented later in Section 5.

The final result of this section will develop necessary and sufficient conditions for a

particular starting vector to generate a k-dimensional invariant subspace.
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THEOREM 2.8. Let AV, — Vi H = rkeg be a k-step Arnoldi factorization of A, with
H unreduced (i.e. r; #0,1 < j < k—1). Then r, = 0 if and only if vy = Xy where
AX = XJ with rank(X) = k and J a Jordan matriz of order k (i.e. the direct sum of
Jordan blocks) .

Proof. If 7, = 0, let HX = XJ be the Jordan canonical form of H and put X = V; X.
Then AX = XJ, rank(X) = k and

vy = Viey = ka(f(_lel = Xy, with y= X_lel.

Suppose now that AX = X.J, rank(X )=k, and v; = Xy. Then A X = X J™ for any
non-negative integer m and it follows that

A"y = A" Xy = XJ"y € Range(X)

for all m. Hence, dimKy11(A,v1) < rank(X) = k. Now, H unreduced implies dimK ;(A,v1) =
jfor1<j<k-—1and it follows from Theorem (2.7) that r; = 0. O

A similar result may be formulated in terms of Schur vectors instead of generalized
eigenvectors. This result will be stated without its proof which is very similar to the proof
of the previous result.

THEOREM 2.9. Let AV, — Vi, Hy = rke;‘f be a k-step Arnoldi factorization of A, with H
unreduced . Then 1, = 0 if and only if vi = Qy where AQ = QR with Q"Q = I, and R
upper triangular of order k.

Theorem (2.8) provides the motivation for the algorithms we shall develop. It suggests
that one might find an invariant subspace by iteratively replacing the starting vector with
a linear combination of approximate eigenvectors corresponding to eigenvalues of interest.
Such approximations are readily available through the Arnoldi factorization. This theorem
also indicates that it will be impossible to force the residual to zero if v; has a component of a
generator of a cyclic subspace of dimension greater than k. Theorem(2.9) indicates that our
computations can be carried out within the framework of a truncated Schur decomposition
and this leads to the development of an implicit restart method that is analogous to the
implicitly shifted QR iteration.

3. Updating the Arnoldi Factorization via QR Iterations. In this section a
direct analogue of the implicitly shifted QR iteration will be derived in the context of the
k step Arnoldi factorization. This will lead to an updating formula that may be used to
implement iterative techniques designed to drive the residual 7 to zero by iteratively forcing
v1 into a subspace spanned by k Schur vectors of A.

Throughout this discussion, the integer k£ should be thought of as a fixed pre-specified
integer of modest size. Let p be another positive integer, and consider the result of k + p
steps of the Arnoldi process applied to A which has resulted in the construction of an
orthogonal matrix V4, such that

(3.1) AVigp = VigpHryp + Tk-l—pe{ﬂ?

Hyy
= (Vk+pvvk+p+1) ( ﬁk—l—pei- :
P

An analogy of the explicitly shifted QR algorithm may be applied to this truncated factor-
ization of A. It consists of the following four steps. Let u be a shift and let (H —pl) = QR
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with @ orthogonal and R upper triangular. Then (putting V = Viy,, H = Hpyp)

(3.1.1) (A—u)V =V(H —pl) = reqpel,
(3.1.2) (A—ul)V —VQR = rpppef,,

(3.1.3) (A= puD)(VQ) = (VQ)(RQ) = rripefy,Q
(3.1.4) A(VQ) = (VQ)(RQ + ul) = rpef,,Q

Let Vi =V and Iy = RQ+pul. Then H is upper Hessenberg and applying the matrices
in (3.1.2) to the vector e to expose the relationship of their first columns gives

(A= pl)vy = vfp

where py; = e{Rel, vi" =Viey.

This idea may be extended for up to p shifts being applied successively. The devel-
opment will continue using the implicit shift strategy. The application of a QR iteration
corresponding to an implicit shift p produces an upper Hessenberg orthogonal € R*+?
such that

T
ﬂk+pek+pQ

T
AVip@ = (Vitp@ » Orgpt1) ( O ) :

An application of p implicit shifts therefore results in

;!
(3.2) AVL = (Vi s vespt) ( ﬁk+p6§ 0 )
P

where Vk‘:_p = Vk+p@, Hlj_—l—p = @THk+p@, and Q = Q1Q, - “Q)p, With @; the orthogonal

matrix associated with the shift p;.
Now, partition

. or M
3.3 Vil =whvy), BE =1 2 e o)
( ) k+p ( k p) k+p ﬁkﬁe;‘f H,
and note
ﬁk+p€£+p@ = (0707 .. '7Bk+p7 bT ) .
—————— YT
k p

Substituting into (3.2) gives

HY M
(3.4) AVE V) = (Vi Vs okgpin) | Brere] A,
ﬁk+p€£ b"

Equating the first & columns on both sides of (3.4) gives
(3.5) AV = ViIFHE 4 rfef
so that

+ + o+ ;!
(3.6) AV = (V v”k+1) ﬁ-l-];T
k €k
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where v}f, | = ér:, rF = (Voer e+ 0kipr1 Brap) and 8F = |||, Note that (V) V,er = 0

and (V;F ) opgpyr = 050 (VH) o) = 0. Thus (3.6) is a legitimate Arnoldi factorization
of A. Using this as a starting point it is possible to use p additional steps of the Arnoldi
recursions (2.3.1) - (2.3.5) to return to the original form (3.1). This requires only p evalu-
ations of a matrix-vector products involving the matrix A and the p-new Arnoldi vectors.
This is to be contrasted with the Tchebyshev-Arnoldi method of Saad [28] where the entire
Arnoldi sequence is restarted. From the standpoint of numerical stability this updating
scheme has several advantages:
(1) Orthogonality can be maintained since the value of k is modest.
(2) There is no question of spurious eigenvalues.
(3) There is a fixed storage requirement.
(4) Deflation techniques similar to those associated with the QR-iteration for dealing with
numerically small subdiagonal elements of Hy may be taken advantage of directly.
For the sake of clarity, the Arnoldi iteration and the updating procedure will be defined:
ALGORITHM 3.7.
function [H,V,r] = Arnoldi (A, H,V,r,k,p)
Input: AV —VH =rel with VIV = I, VIr = 0.
Output: AV —VH = repy,” with VIV = Iy, VIr=0.
(1) Forj=1,2,....p
(1) B —||r|l; if B < tol then stop;
H
-
(2) H ( sl
(3) w— Av;
(4) h —VTw; H — (H,h);
(5) r—w—Vh;
(6) while ||s|| > €||7]|;
(1) s =VTr;
(2) r—r—Vs;
(3) h — h+s;
Remark 1:  Step (1.6) is Gram Schmidt with iterative refinement to assure orthogonality
[9]. For details of implementation see Reichel and Gragg [26]. Computational experience
with this device indicates that it is sufficient to do just one step of iterative refinement.

HORS %7‘; V — (V,v);

With the basic Arnoldi factorization defined, it is possible to describe the complete
iteration:
ALGORITHM 3.8.
function [V, H,r] = Arnupd (A, k,p,tol).
(1) initialize V(:,1) = v1; H «— (0,7 Avy); v Avy — o H ;
(2) [H,V,r] — Arnoldi (A, H,V,r,1,k)
(3) Form=1,2,...
(1) if (||r|| < tol) then stop;
(2) [V,H,r] — Arnoldi (A, H,V,r, k,p);
(3) w = Shifts (H,p); (defined below)
(4) Q@ = Iitp;
(5) forj=1,2,....p
(1) H — Q]THQ] ; (Bulge-Chase corresponding to shift p; = u(j))
(2) Q —QQ;;
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(6) v = (VQersr: V—(VQ) (& ) ;

(7) 7 — (vBr + rog) ; where B, = e;{HHek , Op = e;{ﬂ)Qek;
Remark 2:  The Bulge Chase at step (3.5.1)is defined implicitly as usual so that H —p;I =
();R;; if the shifts are in complex conjugate pairs then the implicit double shift can be
implemented to avoid complex arithmetic.
Remark 3:  During a Bulge Chase sweep at step (3.5.1), it may happen that a sub-diagonal
element 3; becomes small. The deflation strategies associated with the QR algorithm are
then employed. In this case, the matrix H is split giving

" o M i M VQ = (V1)
C\ Bjere,” ;)\ 0 A ) I

Thus, an invariant subspace of dimension j has been found. If j > k and all the shifts
have been applied then the iteration is halted. Otherwise H;,V; are retained and the
iteration proceeds with Vj, f{j filling the role of V, H respectively. However, I; continues
to participate in the shift selection strategy on subsequent iterations. That is, all of the
eigenvalues of H are considered in the selection process. If some of the eigenvalues of
H; are selected as shifts then these are applied implicitly to H; to split this matrix and
the unwanted portion is discarded to form a submatrix of smaller size. If the matrix is
non-symmetric the factorization must be explicitly restarted at the 7 + 1 position with a
vector that is orthogonal to the first j basis vectors. If the matrix A is symmetric then the
corresponding columns of the (updated) matrix V; are discarded and then ‘A/] and f{j are
moved (concatinated) to left. The remaining shifts are applied implicitly to f{j and then
the Arnoldi factorization is completed to fill out the remainder of the k£ 4+ p columns of V.
In this way the iteration is not terminated by deflation until the appropriate approximation
to the wanted spectrum has appeared.

As discussed at the beginning of this section, each application of an implicit shift p;
will replace the starting vector vy with (A — p;I)vy. Thus after completion of each cycle of
the loop at Step 3 in Algorithm (3.8):

Vey=v — (A
where (\) = 1 _1(A—p;) with 7 a normalization factor. Numerous choices are possible
for the selection of these p shifts. Some possibilities will be discussed in Section 5. However,
there is one immediate possibility to discuss and that is the case of choosing p “exact” shifts
with respect to H. Thus the selection process might be

ALGORITHM 3.9.
function [u] = Shifts (H,p)

(1) Compute A\(H) (by QR for example)
(2) Select p unwanted eigenvalues {u(j) — p; : 1 < j<p} CAH)
Some obvious criterion for this selection might be
(i) Sort A(H) according to algebraically largest real part and select the p eigenvalues with
smallest real part as shifts;
(ii) Sort A(H) according to largest modulus the p eigenvalues with smallest modulus as
shifts;

Selecting these exact shifts has interesting consequences in the iteration.
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LemMMA 3.10. Let AM(H) = {61,...,0:} U {p1,...,pp} be a disjoint partition of the
spectrum of H and let

Hy=Q"HQ

where Q = Q1Q2 - Qp with Q; implicitly determined by the shift p;. If 3, #0 1< j <
k—1 then B =0 and
_ (B
Hy = ( 0 R, )

where N(H;F) = {61,...,05}, A(Rp) = {p1, iz, - ., fip}. Moreover,

vi" =VQe = Z T
where each x; is a Ritz vector corresponding to the Ritz value 8; i.e. x; = Vy; where

Hy;=y8; 1<j<k.
Proof. After applying the p implicit shifts we have

HQ)=QH4

with
12
@ =Qer =P(H)er, H(\)= - T =)
7=1

Therefore ¢; = Z?:l y;¢; where Hy; = y;0; since ¢; = (M )e; has annihilated any com-

ponent of e; along an eigenvector of H associated with p;, 1 <j <p. As a consequence
of Theorem (2.8), 85 = 0 must hold. Moreover, v] = VQe; = Vg = Z?:l Vy(; =
k

This lemma provides a very nice interpretation of the iteration when exact shifts are
chosen. Casting out the unwanted set of eigenvalues using exact shifts is mathematically
equivalent to restarting the Arnoldi Factorization from the beginning after updating vy —
> %;(; alinear combination of Ritz vectors associated with the “wanted” eigenvalues. Thus
the updated starting vector has been implicitly replaced by the sum of k& approximate
eigenvectors.

If A is symmetric and the p algebraically smallest eigenvalues of H are selected for
deletion then this method is similar to the single vector s-step Lanczos process described
by Cullum and Donath in [5] and expanded on in [6, 8]. The particular linear combination
is apparantly different. This variant has the advantage that a restart of the entire Lanczos
sequence is not required. Approximate eigenvectors from a Krylov subspace of dimension
k + p are available at each iteration for a cost of p rather than k 4 p matrix vector products
per iteration.

4. Some Polynomial Filters. The previous discussion has indicated that it would
be advantageous to construct polynomials 1(\) of degree p which filter out certain portions
of the spectrum of A. Several researchers have considered such schemes [5,8,28]. Related
ideas appear throughout the literature of iterative methods for linear systems [17,21,30].

We have just described the use of exact shifts to construct such filters. Another par-
ticularly appealing polynomial filter may be constructed using Tchebychev polynomials. In
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this case, one constructs an ellipse containing the unwanted eigenvalues of H then at step
(3.3) of Algorithm(3.8) the shifts p; are taken to be the zeroes of the Tchebyshev polyno-
mial of degree p associated with this ellipse (i.e. the polynomial of degree p which gives
the best approximation to 0 in the max norm). Construction of such an ellipse and the
associated polynomials is discussed by Saad [29] and is based on Manteuffel’s scheme[20].
Variants of this are presented and discussed by Chatelin and Ho in [2]. Since each of these
schemes specifies the filter polynomials by their roots, they may all be implemented within
the framework of the algorithms developed in the previous section. At some point in the
iteration one might consider fixing the roots used as shifts and continuing with a stationary
iteration. The convergence of this strategy is analyized in the following section.

One may observe that these filters each have the feature of weighting the eigenvalues
of the wanted spectrum quite unevenly. For example, in the symmetric case where the
wanted spectrum consists of the k largest eigenvalues, the eigenvalues closest to the right
end of the spectrum are weighted most heavily. An alternative is to construct polynomial
approximations to step functions which take the value zero in unwanted regions and one
in wanted regions of the complex plane. Omne also might construct polynomials which
produce an updated v;T which is a weighted linear combination of approximate eigenvectors
corresponding to the wanted eigenvalues.

In order to construct these sorts of filters it is advantageous to be able to apply the filter
polynomial which is specified by its coefficients when expanded in the basis of polynomials
constructed through the Arnoldi (Lanczos) process. To make this more precise, suppose
is any polynomial of degree less than or equal to p. Then expand v in the form

p+1

P(A) = Z n;pj—1(A)

where {p;} are the Arnoldi (Lanczos) polynomials. Observe that
Y(A)vr =Vy
where y* = (91,72, .oy 711, 0,0, ..., 0) since

p+1 p+1
Vy= Y v = 3 npima(Avr, v = pjoa(A)wy.
=1 j=1

The technique developed in Section 3 for the implicit application of 1/(A) to vy is not directly
applicable because the roots of 1 are unknown. One could perhaps compute these roots and
then apply the scheme of Section 3. However, there is an alternative way to implicitly apply

this polynomial directly from it’s expansion in the Arnoldi basis. Assume that ||y|| = 1 and
construct a vector w, such that
(4.1) (I — QwOwOT) e1 = v.

Replace H by
(4.2) o= (I— QwOwOT)H(I — QwOwOT).

Now, apply the Householder reduction of H to upper Hessenberg form so that
H—QTHQ
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where
(4.3) Q= (I - QwOwOT) (I - 2w1w1T) (I — 2wk+p_2wk+p_2T)

with each (I - ijij) being a Householder transformation constructed to introduce zeros

below the (j + 1) — st element of the j — th column. Now, consider the application of ¢ to
the Arnoldi Factorization:

AVQ -VQQTHQ) = reps, " Q
In order to fit within the updating framework developed in Section 3, the condition
ehiplQe; =0,1<j < k.

must hold. This is established by the following
LeMMa 4.4. The matriz Q displayed in (4.3) satisfies exy, Qe; =0, 1< j <k .
Proof. Let Q); =1 — ijij for 0 < j < k+p—2, and let FUTY = QjTH(j)Qj with
H© = H. From (4.1) it follows that w, = 6(y — e1), with § = ||y — e[]. Thus, ¢,7Q, = ;T
for 2+ > p+ 1. Since

QoH" = HQ,
and since H is upper Hessenberg, it follows that

eiTH(l) = eiTHQO = eiTH
for i > p+2. From this one may conclude that e;Twy = 0 for i > p+2 and thus ;,7Qq = e, 7
for ¢« > p 4+ 2. Now, suppose that eiTQj = ;7 and that ¢,ZHY) = ;T Hfor i > p+7+1.
Since Q; HU+Y) = HUQ, it follows that

e T ltt) = eiTH(])Qj —eTH

for ¢ > p+ 7 4+ 2, and again, one may conclude that 62'ij+1 = 0 so that eiTQj_H =¢; 1 for
t > p+ j+ 2. This inductive argument continues to hold until j = £ — 1. Hence,

T T
€ktp Q= €ktp Qk—1@k---@k+p—2

Now, observe that Q);e; = e; for k-1 <i <k +p—2and for 1 <j < k to establish the
result. a

This observation allows the application of any polynomial filter of degree p when the
polynomial is expanded in the Arnoldi basis. Moreover, it provides the means for implicit
application of all of the suggested restart methods known to this author which are not
specified by roots of polynomials.

5. Some Convergence Results . In this section, we analyze the algorithm just de-
veloped with respect to two strategies for constructing the filter polynomials. The first
analysis applies to general (nonsymmetric) matrices but the filter polynomials are station-
ary. The second analyzes the “exact shift” polynomials but applies only to symmetric
matrices. In this sense, each of the two is incomplete. However, they both give insight to
the nature of the convergence of this method.
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Let us begin with an analysis of the stationary iteration. To this end we define
AA) = Aw(A)U Ap(A)

where Aw(A) = {A, Ag, ... A}, and Au(A) = {Xet1, Aoz, - - - An}. By a stationary itera-
tion, we mean that the set of shifts {p1, g2, ..., fp} used to construct the filter polynomial
remains fixed. This means that the filter polynomials are all multiples of a fixed (i.e. sta-
tionary ) polynomial () = [T5; (A — ).

We define

o = v and of = (Al o))

where v is an arbitrary starting vector of length one. We define 7; = ﬁl(j)ﬁg(j) .. .ﬁk(j)
where the 3;/) are the subdiagonal elements of H in the Arnoldi factorization resulting
(7)

from the starting vector v;”’.
THEOREM b5.1. Assume that the fized polynomial ¢ satisfies

DO 0D = - WL > Bl . > O]
with
v = YAk /1P AR)] < 1.

and assume that the starting vector vy is not a member of the invariant subspace corre-
sponding to {Agt1,-- -, A\n}. Then the sequence {7;} converges to zero. Moreover, there is
a fized constant K and a positive integer J such that

0<7; < ’yjK
for all j > J.
Proof. Let
R M
(5.2) A(Q1,Q2) = (Q1,Q2) ( 01 R, )

be a Schur decomposition of A with A(R;) = Aw(A). The hypothesis on ¢ assures Ay (A)N
Au(A) is empty and thus there is a unique k X (n — k) matrix solution I' to the Sylvesters
equation

TRy— R{I'=M.

Since

it follows that

SN Q1 Q1T + Q2) = (Q1, QuT + Q) ( ok 0 )
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for any polynomial ¢ . Let ng =+ Q9 and let vy = Q1y1 + ngyg. Then,
P (Ao = Qui (Ri)yn + @2t (R2)yz = Qun™) + Q)

Recall that vy) = ¥I(A)v1/||9?(A)vy| and that from Theorem (2.7), one obtains 7; =
minpepMk{Hp(A)vy)H}. Thus, putting p to be the characteristic polynomial of R; gives

w3l (Aol | < IHAYE (Ao ] < [H(A)Q1wn Y + H(A) Q23|

= |Q1p(R)1 D + H(A)Q22 || = [|1H(A) Q2w
Dividing both sides by|¢7(,\k)| gives
1
(Ak)
1

Note the spectral radius of m¢(R2) is less than the number v according to the hypothesis.

T (17 (Aol /107 (A)]) < 1B(A)Q22 /107 (An)]) < 15(A)Qal V(R)Y p2|-

Using the fact that there is a consistent matrix norm v such that V([mzb(Rg)]]) < Al
together with the equivalence of matrix norms implies the existence of a positive constant
K, such that

1 , ,
H( A — J < K,/ .
p( )Q2[¢(Ak)¢(R2)] 2|l < Ko7 ||y2]]
Thus
4 Koy ||yl
m; < - - .
(17 (A)vul[ /197 (Ar)])
Moreover, by hypothesis vy is not in the invariant subspace corresponding to {Agy1,-- -, An},

and it follows that y; # 0. Since the spectral radius of (R2)/¥(Ag) is less than one and
since every eigenvalue (i.e. every diagonal element) of the triangular matrix (Rq)/¥(Ax)
is greater than or equal to one, there is a J such that j > J implies

97 (A)oal /197 (M| = 1Q1e (R + Qv (Ra)yall/ 147 (Ae)]

> Qe (Rl /14 )| = G (R I/ 19| 2 Il = 51 |

where 5 is the last nonzero component of 3. Thus, the result is established with K =
2K, (lyzll/ ) - 0

This result applies directly and generally to cases where there is apriori information
about the location of the spectrum and where a single polynomial might be constructed
(e.g. Tchebychev polynomials). The analysis does not apply to the adaptive algorithms.
However, it does give an indication of how these might behave near the final stages of the
iteration where the filter polynomials tend to become stationary.

Next, we analyze the “exact shift” filter polynomials in the symmetric case. This
analysis makes heavy use of the interlace property of eigenvalues of symmetric matrices
modified by low rank changes. The analysis relies on two technical lemmas which we must
establish first.
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LEMMA 5.3. Let

[ T Pe
M‘(ﬂe? )

be a symmetric tridiagonal matriz. Then the roots of the equation
(5.4) Brel(T —AD)7lep = a = A

are eigenvalues of M. See [25] for a proof.
If T=YOYT is the eigen-decomposition of T then Equation (5.4) becomes

k

(5.5) /?Z%%?A):a—A

where (71,72, -+,mk) = €LY and © = diag(6y,0y,---,0;). It is easily verified that this
equation has exactly one root in each of the intervals

(—OO, 01)7 (017 02)7 U (ek—lv 0k)7 (0k7 OO)
and that the k largest roots 6, of this equation satisfy
(5.6) 0; < 0; for i=1,---,k

Also, we note for the sequal that if the subdiagonals of T are all nonzero then none of the
n; are zero and the 6; are distinct.

The next lemma shows that when the starting vector v, nears a subspace of dimension
less than k then deflation must occur.

LEMMA 5.7. Suppose AV =V H + re% is an Arnoldi factorization of A and let [3; be
the j — th subdiagonal element of H. If vy = qy + wo with v? + o* = 1, ||¢|| = ||w| = 1,
¢'w =0, and ¢ = Z;:l 4;75. Ag; = ;A (where {X\;} are an arbitrary set of i eigenvalues
of A) then

II6; <ol TT(A- D)l
7=1 7=1

Proof. From Theorem(2.7) and the fact that H;Zl(A — A 1)g =0, we have

[18 = min [[p(A)w]
7=1

pEPM;

I TLA = MD(gy + wo)l

<
7=1

= [ITI(A = ADwal]
7=1

<

ol TLCA = A1)l
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O

With these technical lemmas established it will be possible to analyze the iterations
using polynomial filters constructed from exact shifts in the symmetric case. We assume
throughout the remainder of this section that the matrix A is symmetric and hence that
H = T is tridiagonal. The selection rule to be analyzed is to retain the k largest eigenvalues

(m)

of Ti4, Let m denote the iteration number. Then v, is the starting vector, and

AVIE) -V T = 47

Let

have eigenvalues
frmar <o < fpmtt < Ormgr <o <Opmp
and let T,gm) have eigenvalues
Orm < bom <+ < Orm

Then, the exact implicit shift strategy provides

(m+1)

P

where Q) = Q1,,Qa - - *Qpm are the orthogonal matrices constructed to apply the im-
plicit shifts pi1p,, ..., tpm at Step (3.5) of Algorithm(3.8) And step (3.6) gives

(m+1) _ ryr(m) o(m)y | Lk
LeMMA 5.8. Each {0;,, :m =1,2,...} , is an increasing convergent sequence for each
j=12,...,k
Proof. Since 7™ s obtained through a succession of p borderings of T,gm), it follows

k+p
from p successive applications of Lemma (5.3) that

O;m < Ojmyr for 7=1,---k

Since each 6; ., is a Raleigh quotient with respect to A it follows that Ay < 8;, < A, for
all 7, m. Since bounded increasing sequences are convergent the lemma is established. O
We now establish that the limits of the convergent sequences 6; ,,, are eigenvalues of the
matrix A.
LEMMA 5.9. Let T,gm) = Yy T yhere (77£m),77£m), X -,n,gm)) =elY (™), As-
sume 0; are distinct, where 0; ,, — 0;. Then

ﬁ(m) (m)

1, —0asm—oo, for j=1,---k
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and as a consequence

AV Imylm) g, = 180 — 0

where y](m) = Y(m)ej forj=1,--- k.

Proof. Consider the leading (k + 1) x (k4 1) submatrix of T,gf;

Bl alm)

From Lemma (5.3) it follows that the k largest eigenvalues éj,m of M{™) satisfy
Bjn < Bjm < Bjmr1-
Moreover, a straightforward algebraic manipulation of Equation(5.5) gives

2

(a—A)— 3230 m o
1 n2(0;—X)
1+ 1—77 =y

(Bn;)% = (6; = \)

for any root A. Substituting the appropriate quantities indexed by m from the matrix M)
and putting A = 0, ,,, gives

k (m

m m A m N m)2 7
B2 <10 = 05l [(00) = ) — BT ST T
i=j+1 (ei,m - ey‘,m)

The assumption that the limits #; are distinct implies that the quantities

i=j+1 (ei,m - ey‘,m) '

have finite limits for each j. Hence, for m sufficiently large there is a positive constant K
such that

(B < K16jm = O] < K18 = Bimga] = 0

as m — 0. O

The final task is to show that not only will the limits ; be eigenvalues of A but that

they will be the k eigenvalues of interest. To do this, we shall show that if deflation does
(m) _ _1..(m)

not occur, then the coefficients v, = ¢; v;"’ must converge to zero for j = 1,---,n — k

where ¢; is the eigenvector of A corresponding to the eigenvalue A; and v£m) is the Arnoldi
starting vector for the m — th iteration.
Define: e(A) = TTizy (A = pig) and W (A) = T2, i(A).

Then note that v£m) = m{Aor
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THEOREM 5.10. Suppose that the initial starting vector vy satisfies quvl =7; #0 for
Jj=n—k+1,...,n where q; is the eigenvector of A corresponding to the eigenvalue \; with
the eigenvalues of A listed in increasing order. Let ﬁz(m) be the 1 — th subdiagonal element
of T,gm) and assume that ﬁl(m) > € >0 for all i, m. Then the sequences
;.m

)

— 8, = Ay asm — oo.

Proof. The assumption ﬁl(m) > € > 0 assures that separation of the 6; ., is uniform over
all m so that the limits §; are distinct. This implies that each §; is an eigenvalue of A .

Moreover, the assumption implies a uniform lower bound on the quantities |n§m)| and thus

ﬁ,gm) — 0. (All due to remarks following Lemma (5.3).)
Let ¢p(A) =TT (A = 0;.,,), and let ¢(A) = [T, (A — 6;) be the limit polynomial of
the ¢,,. Then

ém(A)ol™] = T] 8™ — 0

and thus

S (A7 = ¢F b (A)el™ — 0.

Hence, either

&(A;)=0 or ’y](m) —0
for j = 1,---,n. This means that n — k& of the expansion coefficients ’y](m) tend to 0 as
m — oo. Moreover, Lemma(5.7) implies that the k expansion coefficients corresponding to
the eigenvalues 6; must all be bounded away from zero due to the assumption ﬁ](m) >e>0
for all j,m
Now, suppose that A\;, = 6, < A,. Then the expansion coefficient

(m) _ 1 m) _ 7 Ym(A)vy Vo (Ok)
A TV @1% o
Hence
(7{m)? = (73, ¥ (Ok)/ﬂ? () e Yn(0k) )

Vi TS L)/ (M) T e Y (Aa)
(c)

where the «; are the expansion coefficients of v;’. Now, the roots y; ,,, of the filter polyno-
mials all satsify Ay < pi;m < 0 < 81 < A, so that

v, (0 " (P 0 — 0, — A\ \7P
o< (/\k) -1 (H (/\k Mz)) < (/\k /\1) o

m( n) /=1 \i=1 n — Mt n — N
since ﬁi:ill < 1. This is a contradiction. We conclude that 8, = A,

A similar argument may be carried out for each j in turn for the cases 8; < A,_j4; and
this concludes the proof. a
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6. The Generalized Eigenvalue Problem. In this section the generalized eigen-
value problem will briefly be discussed. The generalized problem is to find (z,\) such
that

Ar = A\Mz .

In many cases the matrix M is symmetric and positive definite, and this condition shall be
assumed in this section. The basic iterative method will carry over to this setting with very
little modification. In this setting we maintain and update a factorization of the form

(6.1) AV — MV H = re}
where
VIMV =1, and VIr=0.

It is easily seen that one may apply the algorithm for the standard case to the matrix
M~1A in place of A. Of course this would be implemented through factorization of M at
the outset and solution of the appropriate linear system instead of applying M 1.
There are two key consequences of maintaining the form (6.1):
1. QTVTMVQ = I is preserved so the implicit Q-R shift strategy may be applied.
2. If A= AT is symmetric, then

H=vTay

follows from VIMV = I, VIr = 0 so that H = H' will be symmetric and
tridiagonal when A is symmetric.
With these observations, it is straightforward to adapt the algorithms previously dis-
cussed to solve the generalized eigenproblem. Some limited computational experience with
this approach is the subject of the following section.

7. Computational Results and Conclusions. Computational results for this tech-
nique are quite promising but are certainly preliminary. There is a Fortran implementation
of the algorithms developed here. Two versions of the code have been produced. One
of these implements the strategy for the generalized symmetric eigenvalue problem as de-
scribed in Section 6. The other implements the algorithm for the standard nonsymmetric
eigenproblem. In addition to exhibiting behavior on some test problems, two experiences
with applications will be discussed. Finally, some very interesting illustrations of the shapes
of the filter polynomials that are constructed through exact shifts shall be reported.

There are some important details of the Fortran implementation of Algorithm (3.7).
Step 3 requires a user supplied matrix vector product. Steps 4 and 5 are implemented
through calls to the level 2 BLAS [11,12] routine DGEMYV. One step of iterative refinement
is carried out at Step 6 of Algorithm (3.7) rather than iterating until the test ||s]| < ¢||r||
is passed. Steps 6.1 and 6.2 of Algorithm (3.7) were also implemented through calls to
DGEMV. In all of the computations observed there was never a loss of orthogonality in the
columns of V. In all cases ||VTV — I|| was on the order of unit roundoff error. Eigenvalue
calculations used a slight modification of EISPACK [32] subroutines TQL in the symmetric
case and HQR in the nonsymmetric case. These may be replaced by the corresponding
block routines from LAPACK [10] to enhance performance in the future.
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Expressing the algorithm in terms of the level 2 BLAS has provided the means to achieve
high performance portable Fortran code. The code has been run on SUN SPARC, CONVEX
C1, Stardent Titan, CRAY 2, and CRAY YMP computers. The cost of operations were
clearly dominated by the user supplied matrix vector products (and system solves in the
generalized problem). The time spent in the user supplied portion was orders of magnitude
over the time spent in the other parts of the eigenvalue calculations. This performance
characteristic is a direct consequence of the performance of DGEMYV on the architectures
of the machines listed above. The crucial point for improving the algorithm is to better
understand the construction of the filter polynomials in order to reduce the required number
of user supplied matrix vector products . Parallelism may be invoked through the level 2
BLAS and also through the user supplied matrix vector product.

In all of the results reported below, exact shifts were used as described in Section 3.
The iteration was halted when ||(ely;)ri|| < 1077,1 < j < k — 3 where y; is the j — th
Ritz vector corresponding to Ritz values approximating the wanted spectrum. This ad hoc
stopping rule allowed the iteration to halt quite early in cases where it was difficult to make
a clean separation between the wanted and unwanted spectrum. This ad hoc criterion will
have to be replaced with a more rigorous one in the future.

In the first set of test problems the matrix A arises from a standard 5-point discretization
of the convection-diffusion operator on the unit square . The PDE is

—Au+ puy = Au, in Q, u|sg =0

When p = 0 the matrix A is the discrete Laplacian and for p > 0 A has distinct complex
eigenvalues which appear in a rectangular grid in the complex plane when the cell size
h =1/(n+1) is large enough with respect to the parameter p. However, the boundary
conditions of the continuous problem do not admit eigenfunctions corresponding to complex
eigenvalues, so the eigenvalues of the matrix A become real when the mesh size becomes
small enough. The order of the discrete operator A is N = n? and since it’s eigenvalues are
distinct, it is diagonalizable. These problems allowed testing of the algorithm for accuracy
and performance in some interesting but well understood cases. In both of the tables below,
the values £ = 10 and p = 10 were used. The two columns on the right of the tables give
the norm of the residual vector r and the norm of the true residual ||Az — 2 A|| for the sixth
eigenvalue. Typically, the eigenvalues of smaller index had residuals that were smaller than
this one. For the symmetric problems the residual estimates were uniformly small for the
eight smallest eigenvalues.

Table 7.1

Discrete Laplacian
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Dimension Niters  ||r|| |4z — 2|
100 12 1.4-06 3D-15
256 23 3.4-06 5D-15
400 29 6.5-06 5D-15
625 25 7.1-06 3D-14
900 29 6.2-06 2D-14
1600 43 2.9-06 6D-14
2500 50 1.1-05 9D-13
3600 63 9.9-06 4D-11
4900 92 8.9-06 1D-11
8100 237 1.1-05 1D-11
10000 165  1.1-05 8D-12

In Table 7.2 below, the problems of order 256 and 400 did not satisfy the convergence
test before the maximum number of iterations allowed had been reached. In all cases the
ten eigenvalues of smallest real part were sought. In both of the problems just mentioned,
five or more eigenvalues had been determined to high accuracy. In all cases the iterations
could have halted much earlier if a better stopping criterion were devised.

Table 7.2
Convection Diffusion

Dimension Niters  ||r|| |4z — 2|
100 61 5.3-06 1D-12
256 100 .23 1D-5
400 100 5.2-03 2D-10
625 77 2.3-06 8D-12
900 153 8.9-06 2D-14
1600 103 7.4-06 6D-14
The second set of results will briefly describe two problems that arise in the context

of solving partial differential equations. The first of these involves a discretization of a
membrane problem in which the membrane is composed of two materials. On an open
bounded connected set @ C R? we consider

—Au = Apu, inQ, u|sg =0
where the density p is of the form

p=axs+p(l-xs)

where yg is the characteristic function of a subset § C  with area y. The problem is
to determine the density function p which minimizes the lowest eigenvalue Ai(p) of this
PDE. Here a and § are the known (constant) densities of two given materials in respective
volume fractions v/|€2| and 1 — /|| and the set S is occupied by the material with density
a. Cox [4] has formulated an algorithm to solve this minimization problem. The algorithm
generates a sequence of symmetric generalized eigenvalue problems

Av =AM (p)v

which arise through a bi-linear finite element discretization of the PDE. The density function
p is modified at each iteration with the set S determined through level sets of the corre-
sponding eigenfunction. The matrix A is positive definite and independent of the density
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function p so the problem was cast in the form

M(p)v = —Av.

1
A
Since only matrix vector products are required of M the dependence on p presented no
additional computational burden. The matrix A was factored once and this factorization
was subsequently used repeatedly to compute A7 M (p)v for all p. The eigenvalue iteration
also benefited from the re-use of the converged starting vector from the previous problem
but this did not appear to be of great consequence in this case. The following table gives
results for the same sub-problem on a variety of machines.
Table 7.3

Membrane Problem on Various Machines

Sun  Convex Titan Y-MP
Time (secs) 240 81 40.9 5.4
matrix vector 40 40 40 40
\VIW —1| |10~ 107 107 107
The overall performance was excellent on this problem. Grid sizes of of 64 by 64, 100
by 100, and 200 by 200 were used. Both minimization of A;(p) and Ag(p) were done. The
number of matrix vector products was typically around 32-40 regardless of the dimension

of the matrix. That is, with £ = 8 and p = 8 the eigenvalue solver required 3 to 4 iterations
with 3 being the usual number. The Ritz estimates for ||[Az — M (p)zA|| were on the order
of 10D — 14 for the lowest six eigenvalues.

The second application leads to a nonsymmetric eigenvalue problem. The PDE arises
in a study of bifurcations in a Couette-Taylor wavy vortex instability calculation. This
work described in [13] is based upon a method of W.S. Edwards and L.S Tuckerman which
is designed to study these bifurcations from Taylor vortices to wavy vortices. The discrete
problem is obtained by first linearizing the Navier-Stokes equations about a (numerically)
known steady state solution U corresponding to Taylor vortices. The perturbation u corre-
sponding to wavy vortices is found by solving the linearized Navier-Stokes problem

J
8_?; = —(U-V)u—(u-V)U—Vp—I—l/V2u
with

V-u=0and ulsg =0

where  is the annular region between two concentric rotating cylinders. This PDE is
discretized to then yield a nonsymmetric eigenvalue problem

A(v)v = v

Since a pseudo-spectral method is used, the discrete matrix is dense rather than sparse.
However, matrix vector products can still be performed rapidly using Fourier transforms.
The discrete problem involved a matrix of order 2380 . The eigenvalue code with & = 16 and
p = 40 required 60 iterations to produce eight eigenvalues and corresponding eigenvectors
with largest real part. This entailed about 2400 matrix vector products. The accuracy of
these were confirmed to be at least five significant digits.
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This behavior of the algorithm on these two problems seems to be typical on more
difficult problems. The number of matrix vector products tends to be near n for difficult
nonsymmetric problems. Symmetric generalized eigenvalue problems from finite element
analysis of structures or membranes seem to be solved very rapidly if posed in terms of
finding the largest eigenvalues.

To close this section, the interesting behavior of filtering polynomials associated with
the choice of exact shifts will be presented. Two problems will be discussed. The first
example arises from the convection diffusion above with p = 40 . The grid size was 1/30
leading to a nonsymmetric matrix of order 900 . The results for this problem are displayed
in Figures 7.1 and 7.2. The second example is the banded Toeplitz matrix used for test
purposes by Grear [17]. This matrix is non-normal and has a nontrivial pseudo-spectrum as
discussed in [21]. (The € pseudo-spectrum of a matrix Ais {A € C : ||[(AT—A)7Y|| > 1} ).
The matrix is a 5-diagonal matrix with the value -1 on the first sub-diagonal and the value
1 on the main diagonal and the next three super diagonals. The results for this problem
are displayed in Figures 7.3 and 7.4.

The graphs shown below depict the filter polynomial () for values of A over a region
containing the eigenvalues of A. The surface plot is of |¢/| and the contour plots are of
log(|®|) The + symbols show the location of the true eigenvalues of A The o symbols mark
the location of the eigenvalues of H that are “wanted”. These will eventually converge to
eigenvalues of A. The * symbols show the roots of the polynomial 2.

Figure 7.1
Convection Diffusion: iteration 1

Figure 7.2
Convection Diffusion: at convergence

In Figures 7.1 and 7.2 the values k = 10, p = 10 were used. One may observe convergence
by looking at the 10 leftmost o symbols enclosing the + symbols. The interesting features
of these filter polynomials is that they are remarkably well behaved in terms of being very
flat in the region that is to be damped and very steep outside that region. The reason for
this desirable behavior is not completely understood at the moment.

Figure 7.3 Grear matrix: iteration 1

Figure 7.3
Grear matrix : iteration 1

Figure 7.4
Grecar matrix : at convergence

In Figures 7.3 and 7.4 the corresponding behavior of the filter polynomials is shown.
In these figures only the upper half-plane is shown. The dotted line shows the boundary
of the practical spectrum [21] for this matrix. It is interesting to note how the contours of
the filter polynomial obtained through the exact shifts mimic the shape of this boundary.
The algorithm claimed convergence of the leftmost eigenvalues (ie. the ten eigenvalues of
smallest real part). However, as demonstrated in the figure, these are pseudo-eigenvalues.
Interestingly enough, HQR from Eispack will give the same behavior if applied to the
transpose of the Grear matrix. HQR will give the correct eigenvalues when applied to the
Grear matrix directly and it was used to calculate the values of the “true” spectrum shown
above.
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In conclusion, it seems that this is quite a promising approach. A direct relationship
to the implicitly shifted QR iteration has been established and several problems inherent
to the traditional Arnoldi method have been addressed through this new approach. The
most important of these are the fixed storage, maintenance of orthogonality, and avoidance
of spurious eigenvalues. The computational results are clearly preliminary. The limited
experience indicates research is needed in constructing filter polynomials which have better
properties with respect to the wanted part of the spectrum. Moreover, a better understand-
ing of the Ritz convergence estimates in the nonsymmetric case would be helpful. These
estimates have been very important in terminating the iteration early (ie. before the resid-
ual is very small) in the symmetric (generalized) eigenproblem. A criterion for choosing
the values of k& and p is also required. At present, ad hoc choices are made and there is
little understanding of the relation of these two parameters to each other and to the given
problem. They have been chosen through experimentation for these results.

Future research on this topic might include a blocked variant to better deal with multiple
eigenvalues. Investigations of the use of a preconditioner would also be interesting. Finally,
extensions of this idea to other settings such as the solution of linear systems would seem
to be a promising area of research as well. These investigations are underway and will be
the topic of subsequent papers.
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