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Abstract� The Arnoldi process is a well known technique for approximating a few eigenvalues and

corresponding eigenvectors of a general square matrix� Numerical di�culties such as loss of orthogonality

and assessment of the numerical quality of the approximations as well as a potential for unbounded growth

in storage have limited the applicability of the method� These issues are addressed by �xing the number of

steps in the Arnoldi process at a prescribed value k and then treating the residual vector as a function of the

initial Arnoldi vector� This starting vector is then updated through an iterative scheme that is designed to

force convergence of the residual to zero� The iterative scheme is shown to be a truncation of the standard

implicitly shifted QR�iteration for dense problems and it avoids the need to explicitly restart the Arnoldi

sequence� The main emphasis of this paper is on the derivation and analysis of this scheme� However� there

are obvious ways to exploit parallelism through the matrix�vector operations that comprise the majority of

the work in the algorithm� Preliminary computational results are given for a few problems on some parallel

and vector computers�
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�� Introduction� Large scale eigenvalue problems arise in a variety of settings� Often
these very large problems arise through the discretization of a linear di�erential operator in
an attempt to approximate some of the spectral properties of the operator� However� there
are a considerable number of sources other than PDE� Saad gives a number of examples in
�����

The Lanczos method �	
� is a popular algorithm for solving large symmetric eigenvalue
problems � The Arnoldi process �	� is a generalization of the Lanczos method which is
appropriate for �nding a few eigenvalues and corresponding eigenvectors of a large non�
symmetric matrix� These methods only require one to compute action of the matrix on a
vector through a matrix vector product� Often this may be accomplished without explicit
storage of the matrix and this property along with a number of theoretical and compu�
tational features have contributed to the widespread appeal of these methods� However�
both of these share some inherent numerical di
culties which have been the subject of
considerable research over the last two decades � �� 	�� ��� ����

In this paper these methods will be discussed from a new perspective� The goal is
to address the non�symmetric problem and thus the focus is on the Arnoldi algorithm�
However� since the Arnoldi method reduces to the Lanczos method when the matrix is
symmetric� everything that is developed here is applicable to the symmetric case as well
with obvious savings in computational e�ort available through the exploitation of symmetry�
Traditionally� the point of view has been to let the Arnoldi or the Lanczos sequence develop
without bound while monitoring error estimates associated with the Ritz vectors to identify
converged eigenvalues� However� if one explores the relation with the QR�iteration it is
apparent that the Arnoldi �Lanczos� method is really a truncated reduction of the given
matrix into upper Hessenberg �tridiagonal� form� The iterative phase of the QR�method
does not have an analogy within the traditional treatment of these algorithms�

A variant of the Arnoldi method which includes such an iterative phase is developed
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IMPLICITLY RESTARTED ARNOLDI METHODS �

here by analogy to the well�known implicitly shifted Q�R iteration � 	�� ��� ��� for dense
matrices� Such an analogy may be developed if one treats the residual vector as a function
of the initial Arnoldi �Lanczos� vector� and then attempts to iteratively improve this vector
in a way to force the residual vector to zero�

In Section � we develop the Arnoldi factorization� expose the functional dependence of
the residual on the starting vector� and give necessary and su
cient conditions for a starting
vector to produce a zero residual� In Section � we show how to update the starting vector
through implicit application of a polynomial �lter to this vector on each iteration� The
implicit application of this polynomial �lter is accomplished through a truncated version of
the implicitly shifted Q�R iteration� Within this context� an updating scheme is developed
which preserves an Arnoldi �Lanczos� factorization of predetermined size� The method
generalizes explicit restart methods and as shown in Section �� it is possible to implement a
mathematically equivalent implicit method corresponding to all of the explicitly restarted
methods that this author is aware of� Convergence results for speci�c restart strategies
are given in Section �� Extension to the generalized problem is discussed in Section � and
prelimiary computational results are presented in Section��

The idea of iteratively forcing the residual to zero is not new� Variants of this idea were
introduced early by Karush in �	��� Cullum and her colleagues have investigated explicit
restart methods for the symmetric case ��� �� ��� Most recently the idea has been explored by
Saad in �����
� by Chatelin and Ho in ��� and by Chronopoulos in ��� for the nonsymmetric
case� All of these techniques use eigensystem information from the projected matrix to
construct an updated starting vector for the Arnoldi �Lanczos� process� and then restart
this process from scratch� Here� a computational framework is developed which updates
the Arnoldi factorization instead of re�starting it�

This approach has several advantages over more traditional approaches� The number
of eigenvalues that are sought is prespeci�ed� This �xes the storage requirements instead of
allowing them to become arbitrarily large� It is expected that the number of eigenvalues that
are sought will be modest� and in this situation� orthogonality of the Arnoldi �Lanczos� basis
for the Krylov subspace can be maintained� Therefore� the questions of spurious eigenvalues
and selective re�orthogonalization do not enter� Finally� the well understood de�ation rules
associated with the QR iteration may be carried over directly to the technique�

�� The Arnoldi Factorization� The Arnoldi factorization may be viewed as a trun�
cated reduction of an n � n matrix A to upper Hessenberg form� After k steps of the
factorization one has

AV � VH � reTk���	�

where V � Rn�k � V TV � Ik � H � Rk�k is upper Hessenberg� r � Rn with � � V T r� An
alternative way to write ���	� is

AV � �V� v�

�
H

�eTk

�
where � � krk and v �

	

�
r ������

From this representation� it is apparent that ����� is just a truncation of the complete
reduction

A�V� �V � � �V� �V �

�
H M

�e�e
T
k

�H

�
�����
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where �V� �V � is an orthogonal n� n matrix and �H is an upper Hessenberg matrix of order
n � k� Equation ����� and hence ���	� may be derived from ����� by equating the �rst k
columns of both sides and setting v � �V e��

Approximate eigenvalues and eigenvectors are readily available through this factoriza�
tion� If Hy � y� is an eigenpair for H then the vector x � V y satis�es

kAx� x�k � k�AV � VH�yk � j�eTk yj�

We call the vector x a Ritz vector and the approximate eigenvalue � a Ritz value and note
that the smaller j�eTk yj is the better these approxmatations are�

The factorization ���	� may be advanced one step through the following recursion for�
mulas�

�����	� � � krk � v � �
�
r �

������� V� � �V� v� �

������� w � Av �

�
h

�

�
� V�

Tw �

������� H� �

�
H h

�eTk �

�
�

������� r� � w � V�

�
h

�

�
� �I � V�V

T
� �w �

From this development it is easily seen that

AV� � V�H� � r�e
T
k�� � V T

� V� � Ik�� � V
T
� r� � � �

In a certain sense� computation of the projection indicated at Step ������� has been the
main source of research activity in this topic� The computational di
culty stems from
the fact that krk � � if and only if the columns of V span an invariant subspace of A�
When V �nearly� spans such a subspace krk will be small� Typically� in this situation�
a loss of signi�cant digits will take place at Step ������� through numerical cancellation
unless special care is taken� On the one hand� it is a delightful situation when krk be�
comes small because this indicates that the eigenvalues of H are accurate approximations
to the eigenvalues of A� On the other hand� this �convergence� will indicate a probable
loss of numerical orthogonality in V � The identi�cation of this phenomenon in the sym�
metric case and the �rst rigorous numerical treatment is due to Paige�������� There have
been several approaches to overcome this problem in the symmetric case� They include�
�	� complete re�orthogonalization which may be accomplished through maintaining V in
product Householder form �	�� ��� or through the Modi�ed Gram�Schmidt processes with
re�orthogonalization �
� ���� ��� Selective re�orthogonalization which has been proposed by
Parlett and has been heavily researched by him and his students� Most notably� the thesis
and subsequent papers and computer codes of Scott have developed this idea ���� ��� �	��
��� No re�orthogonalization which has been developed by Cullum and her collegues� This
last option introduces the almost certain possibility of introducing spurious eigenvalues�
Various techniques have been developed to detect and deal with the presence of spurious
eigenvalues ��� ���
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The appearance of spurious eigenvalues may be avoided through complete re�orthogonalization
of the Arnoldi �or Lanczos� vectors� Computational cost has been cited as the reason for
not employing this option � However� the cost will be reasonable if one is able to �x k

at a modest size and then update the starting vector v� � V e� while repeatedly doing
k�Arnoldi steps� This approach has been explored to some extent in ��� ���� In the sym�
metric case Cullum ��� relates a variant of this approach �which has been termed an s�Step
method� to applying a �xed number of conjugate gradient steps to a minimize �maximize�
hV V T � Ai where hB�Ai � trace�BTA� is the Frobenius product functional with V restricted
to the generalized block Krylov subspace� However� while this argument gives considerable
credence to the restart procedure� it does not establish convergence�

Throughout the remainder of this paper� the k�step approach will be developed from
a di�erent point of view� An attempt will be made to iteratively update v� in order to
force the residual vector r�v�� to zero� In order to make sense of this it will be necessary to
understand when r is indeed a function of v� and also to determine its functional form and
characterize the zeros of this function�

The classic simple result that explains when r is a function of v� is the Implicit Q�
Theorem�

Theorem ���� Suppose

AV � V H � reTk

AQ � QG� feTk

where Q� V have orthonormal columns and G�H are both upper Hessenberg with positive
subdiagonal elements�

If Qe� � V e� and QTf � V Tr � �� then Q � V � G � H� and f � r�
Proof� There is a straightforward inductive proof �or see �	��p������ �

Of course the Krylov space

Kk�A� v�� � Span fv�� Av�� A
�v�� � � � � A

k��v�g

plays an important role along with the Krylov matrix

K � �v�� Av�� � � � � A
k��v�� �

An alternate derivation of the Arnoldi process is to consider the companion �or Frobenius�
matrix

F �

�
� ��
I �g

�
�

�
BBBB�

� ��
	 ��

	 �� �
���

	 �k��

�
CCCCA

and to observe that

AK �KF � �reTk�����

where �r � Akv� � Kg with gT � ��o� �g
T�� Note that �r � �p�A�v� where �p��� � �k �Pk��

j�� �j�
j� and also that �p��� is the characteristic polynomial of F � If g is chosen to solve
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min kAkv� � Kgk� then �r is orthogonal to all vectors in Kk�A� v��� Moreover� �p solves
min

p�PMk

fkp�A�v�kg where PMk is the set of all monic polynomials of degree k�

To solve the minimization problem in ������ one would factor K � QR where Q is
orthogonal� R is upper triangular� Note that R is nonsingular if and only if K has linearly
independent columns and that Q may be constructed so that 	jj � eTj Rej 
 �� One then
solves

g � R��QTAkv� �

This choice of g will minimize the residual and also will assure that � � QT �r� Multi�
plying ����� on the right by R�� gives

A�KR���� �KR���RFR�� � �reTkR
�� �

i�e�

AQ� QG � feTk�����

where Q � KR��� G � RFR�� is upper Hessenberg with the same characteristic polyno�
mial as F � and f � �

�kk
�r� It is easily veri�ed that v� � Qe� � V e� � and � � QTf � Thus�

the Implicit Q�Theorem will imply that Q � V � G � H � and f � r� Putting H � G yields

�j � eTj��Hej � eTj��RFR
��ej �

	j���j��
	jj

�

Moreover�

	

	jj
k�pj�A�v�k � �j �

	j���j��
	jj

�

gives

	j���j�� � k�rjk � k�pj�A�v�k �

This discussion establishes the following�
Theorem ���� Let AVj � VjHj � rje

T
j be a sequence of successive Arnoldi steps

	 � j � k and suppose that dim�Kk�A� v��� � k� Then

�	� rj �
	

k�pj���A�v�k
�pj�A�v� � �j �

k�pj�A�v�k

k�pj���A�v�k

where �pj��� is the characteristic polynomial of Hj� Moreover�

��� �pj solves min
p�PMj

fkp�A�v�kg

for 	 � j � k�
The development leading to Theorem ����� follows and builds upon the development

by Ruhe in ����� The fact that k�pk�A�v�k �the characteristic polynomial of Hk acting on
v� � will minimize kp�A�v�k over all monic polynomials of degree k was proved by Saad in
��
�� Theorem ����� points out that that the structure of �j is a somewhat complicated
function of A and v�� This theorem will provide the foundation for a convergence result to
be presented later in Section ��

The �nal result of this section will develop necessary and su
cient conditions for a
particular starting vector to generate a k�dimensional invariant subspace�
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Theorem ���� Let AVk � VkHk � rke
T
k be a k�step Arnoldi factorization of A� with

H unreduced �i�e� rj �� �� 	 � j � k � 	�� Then rk � � if and only if v� � Xy where
AX � XJ with rank�X� � k and J a Jordan matrix of order k �i�e� the direct sum of
Jordan blocks� �

Proof� If rk � �� let H �X � �XJ be the Jordan canonical form of H and put X � Vk �X�
Then AX � XJ � rank�X� � k and

v� � Vke� � Vk �X �X��e� � Xy� with y � �X��e��

Suppose now that AX � XJ � rank�X� � k� and v� � Xy� Then AmX � XJm for any
non�negative integer m and it follows that

Amv� � AmXy � XJmy � Range�X�

for allm� Hence� dimKk���A� v�� � rank�X� � k� Now�H unreduced implies dimKj�A� v�� �
j for 	 � j � k � 	 and it follows from Theorem ����� that rk � �� �

A similar result may be formulated in terms of Schur vectors instead of generalized
eigenvectors� This result will be stated without its proof which is very similar to the proof
of the previous result�

Theorem ���� Let AVk �VkHk � rke
T
k be a k�step Arnoldi factorization of A� with H

unreduced � Then rk � � if and only if v� � Qy where AQ � QR with QHQ � Ik and R

upper triangular of order k�

Theorem ����� provides the motivation for the algorithms we shall develop� It suggests
that one might �nd an invariant subspace by iteratively replacing the starting vector with
a linear combination of approximate eigenvectors corresponding to eigenvalues of interest�
Such approximations are readily available through the Arnoldi factorization� This theorem
also indicates that it will be impossible to force the residual to zero if v� has a component of a
generator of a cyclic subspace of dimension greater than k� Theorem���
� indicates that our
computations can be carried out within the framework of a truncated Schur decomposition
and this leads to the development of an implicit restart method that is analogous to the
implicitly shifted QR iteration�

�� Updating the Arnoldi Factorization via QR Iterations� In this section a
direct analogue of the implicitly shifted QR iteration will be derived in the context of the
k step Arnoldi factorization� This will lead to an updating formula that may be used to
implement iterative techniques designed to drive the residual rk to zero by iteratively forcing
v� into a subspace spanned by k Schur vectors of A�

Throughout this discussion� the integer k should be thought of as a �xed pre�speci�ed
integer of modest size� Let p be another positive integer� and consider the result of k � p
steps of the Arnoldi process applied to A which has resulted in the construction of an
orthogonal matrix Vk�p such that

AVk�p � Vk�pHk�p � rk�pe
T
k�p���	�

� �Vk�p� vk�p���

�
Hk�p

�k�pe
T
k�p

�
�

An analogy of the explicitly shifted QR algorithm may be applied to this truncated factor�
ization of A� It consists of the following four steps� Let � be a shift and let �H��I� � QR



� D� C� SORENSEN

with Q orthogonal and R upper triangular� Then �putting V � Vk�p� H � Hk�p�

���	�	� �A� �I�V � V �H � �I� � rk�pe
T
k�p

���	��� �A� �I�V � V QR � rk�pe
T
k�p

���	��� �A� �I��VQ�� �VQ��RQ� � rk�pe
T
k�pQ

���	��� A�VQ�� �V Q��RQ� �I� � rk�pe
T
k�pQ

Let V� � V Q and H� � RQ��I � Then H� is upper Hessenberg and applying the matrices
in ���	��� to the vector e� to expose the relationship of their �rst columns gives

�A� �I�v� � v�� 	��

where 	�� � eT�Re�� v
�
� � V�e��

This idea may be extended for up to p shifts being applied successively� The devel�
opment will continue using the implicit shift strategy� The application of a QR iteration
corresponding to an implicit shift � produces an upper Hessenberg orthogonal Q � Rk�p

such that

AVk�pQ � �Vk�pQ � vk�p���

�
QTHk�pQ

�k�pe
T
k�pQ

�
�

An application of p implicit shifts therefore results in

AV �
k�p � �V �

k�p � vk�p���

�
H�
k�p

�k�pe
T
k�p

�Q

�
�����

where V �
k�p � Vk�p �Q� H

�
k�p �

�QTHk�p
�Q� and �Q � Q�Q� � � �Qp� with Qj the orthogonal

matrix associated with the shift �j �
Now� partition

V �
k�p � �V �

k � �Vp� � H�
k�p �

�
H�
k M

��ke�eTk
�Hp

�
������

and note

�k�pe
T
k�p

�Q � ��� �� � � � � ��k�p� �z �
k

� bT��z�
p

� �

Substituting into ����� gives

A�V �
k � �Vp� � �V �

k �
�Vp� vk�p���

	

� H�

k M
��ke�eTk

�Hp

��k�pe
T
k bT

�

� ������

Equating the �rst k columns on both sides of ����� gives

AV �
k
� V �

k
H�
k
� r�

k
eTk�����

so that

AV �
k � �V �

k � v�k���

�
H�
k

��k e
T
k

�
�����
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where v�k�� �
�
�
�

k

r�k � r
�
k � � �Vpe� ��k�vk�p�� ��k�p� and �

�
k � kr�k k� Note that �V

�
k �

T �Vpe� � �

and �V �
k �

Tvk�p�� � � so �V �
k �

T v�k�� � �� Thus ����� is a legitimate Arnoldi factorization
of A� Using this as a starting point it is possible to use p additional steps of the Arnoldi
recursions �����	� � ������� to return to the original form ���	�� This requires only p evalu�
ations of a matrix�vector products involving the matrix A and the p�new Arnoldi vectors�
This is to be contrasted with the Tchebyshev�Arnoldi method of Saad ���� where the entire
Arnoldi sequence is restarted� From the standpoint of numerical stability this updating
scheme has several advantages�

�	� Orthogonality can be maintained since the value of k is modest�
��� There is no question of spurious eigenvalues�
��� There is a �xed storage requirement�
��� De�ation techniques similar to those associated with the QR�iteration for dealing with

numerically small subdiagonal elements of Hk may be taken advantage of directly�

For the sake of clarity� the Arnoldi iteration and the updating procedure will be de�ned�

Algorithm ����

function �H� V� r� � Arnoldi �A�H� V� r� k� p�

Input� AV � V H � reTk with V TV � Ik� V
T r � ��

Output� AV � VH � rek�p
T with V TV � Ik�p� V

T r � ��

�	� For j � 	� �� � � � � p
�	� � � krk
 if � � tol then stop


��� H �

�
H

�eTk�j��

�

 v � �

�
r
 V � �V� v�


��� w� Av

�
� h� V Tw
 H � �H� h�

��� r� w � V h

��� while ksk 
 
krk


�	� s � V T r

��� r � r � V s

��� h� h � s


Remark 	� Step �	��� is Gram Schmidt with iterative re�nement to assure orthogonality
�
�� For details of implementation see Reichel and Gragg ����� Computational experience
with this device indicates that it is su
cient to do just one step of iterative re�nement�

With the basic Arnoldi factorization de�ned� it is possible to describe the complete
iteration�

Algorithm ����

function �V�H� r� � Arnupd �A� k� p� tol��

�	� initialize V ��� 	� � v�
 H � �v�
TAv��
 r � Av� � v�H 


��� �H� V� r�� Arnoldi �A�H� V� r� 	� k�
��� For m � 	� �� � � �

�	� if �krk � tol� then stop

��� �V�H� r�� Arnoldi �A�H� V� r� k� p��
��� u � Shifts �H� p�� �defined below�
�
� Q� Ik�p �
��� for j � 	� �� � � � � p

�	� H � QT
j HQj � �Bulge�Chase corresponding to shift �j � u�j��

��� Q� QQj �
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��� v � �V Q�ek�� � V � �VQ�
�
Ik�
�
�

��� r� �v�k � r�k� � where �k � eTk��Hek � �k � eTk�pQek

Remark �� The Bulge Chase at step �����	� is de�ned implicitly as usual so that H��jI �
QjRj � if the shifts are in complex conjugate pairs then the implicit double shift can be
implemented to avoid complex arithmetic�
Remark �� During a Bulge Chase sweep at step �����	�� it may happen that a sub�diagonal
element �j becomes small� The de�ation strategies associated with the QR algorithm are
then employed� In this case� the matrix H is split giving

H �

�
Hj M

�je�ej
T �Hj

�
	

�
Hj M

� �Hj

�
� V Q � �Vj � �Vj� �

Thus� an invariant subspace of dimension j has been found� If j 
 k and all the shifts
have been applied then the iteration is halted� Otherwise Hj � Vj are retained and the
iteration proceeds with �Vj � �Hj �lling the role of V�H respectively� However� Hj continues
to participate in the shift selection strategy on subsequent iterations� That is� all of the
eigenvalues of H are considered in the selection process� If some of the eigenvalues of
Hj are selected as shifts then these are applied implicitly to Hj to split this matrix and
the unwanted portion is discarded to form a submatrix of smaller size� If the matrix is
non�symmetric the factorization must be explicitly restarted at the j � 	 position with a
vector that is orthogonal to the �rst j basis vectors� If the matrix A is symmetric then the
corresponding columns of the �updated� matrix Vj are discarded and then �Vj and �Hj are
moved �concatinated� to left� The remaining shifts are applied implicitly to �Hj and then
the Arnoldi factorization is completed to �ll out the remainder of the k � p columns of V �
In this way the iteration is not terminated by de�ation until the appropriate approximation
to the wanted spectrum has appeared�

As discussed at the beginning of this section� each application of an implicit shift �j
will replace the starting vector v� with �A� �jI�v�� Thus after completion of each cycle of
the loop at Step � in Algorithm ������

V e� � v� � ��A�v� �

where ���� � �
�

Qp
j������j� with � a normalization factor� Numerous choices are possible

for the selection of these p shifts� Some possibilities will be discussed in Section �� However�
there is one immediate possibility to discuss and that is the case of choosing p �exact� shifts
with respect to H � Thus the selection process might be

Algorithm ����

function �u� � Shifts �H� p�
�	� Compute ��H� �by QR for example�
��� Select p unwanted eigenvalues fu�j�� �j � 	 � j � pg � ��H�
Some obvious criterion for this selection might be
�i� Sort ��H� according to algebraically largest real part and select the p eigenvalues with

smallest real part as shifts�
�ii� Sort ��H� according to largest modulus the p eigenvalues with smallest modulus as

shifts�
Selecting these exact shifts has interesting consequences in the iteration�

-
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Lemma ��	
� Let ��H� � f��� � � � � �kg � f��� � � � � �pg be a disjoint partition of the
spectrum of H and let

H� � QTHQ

where Q � Q�Q� � � �Qp with Qj implicitly determined by the shift �j � If �j �� � 	 � j �
k � 	 then �k � � and

H� �

�
H�
k

M�

� Rp

�

where ��H�
k � � f��� � � � � �kg� ��Rp� � f��� ��� � � � � �pg� Moreover�

v�� � V Qe� �
X

xj

where each xj is a Ritz vector corresponding to the Ritz value �j i�e� xj � V yj where
Hyj � yj�j 	 � j � k�

Proof� After applying the p implicit shifts we have

HQ � QH�

with

q� � Qe� � ��H�e� � ���� �
	

�

pY
j��

��� �j� �

Therefore q� �
Pk

j�� yj�j where Hyj � yj�j since q� � ��H�e� has annihilated any com�
ponent of e� along an eigenvector of H associated with �j � 	 � j � p� As a consequence
of Theorem ������ �k � � must hold� Moreover� v�� � V Qe� � V q� �

Pk
j�� V yj�j �Pk

j�� xj�j � �

This lemma provides a very nice interpretation of the iteration when exact shifts are
chosen� Casting out the unwanted set of eigenvalues using exact shifts is mathematically
equivalent to restarting the Arnoldi Factorization from the beginning after updating v� �P
xj�j a linear combination of Ritz vectors associated with the �wanted� eigenvalues� Thus

the updated starting vector has been implicitly replaced by the sum of k approximate
eigenvectors�

If A is symmetric and the p algebraically smallest eigenvalues of H are selected for
deletion then this method is similar to the single vector s�step Lanczos process described
by Cullum and Donath in ��� and expanded on in ��� ��� The particular linear combination
is apparantly di�erent� This variant has the advantage that a restart of the entire Lanczos
sequence is not required� Approximate eigenvectors from a Krylov subspace of dimension
k� p are available at each iteration for a cost of p rather than k� p matrix vector products
per iteration�

�� Some Polynomial Filters� The previous discussion has indicated that it would
be advantageous to construct polynomials ���� of degree p which �lter out certain portions
of the spectrum of A� Several researchers have considered such schemes ��������� Related
ideas appear throughout the literature of iterative methods for linear systems �	���	�����

We have just described the use of exact shifts to construct such �lters� Another par�
ticularly appealing polynomial �lter may be constructed using Tchebychev polynomials� In

-
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this case� one constructs an ellipse containing the unwanted eigenvalues of H then at step
����� of Algorithm����� the shifts �j are taken to be the zeroes of the Tchebyshev polyno�
mial of degree p associated with this ellipse �i�e� the polynomial of degree p which gives
the best approximation to � in the max norm�� Construction of such an ellipse and the
associated polynomials is discussed by Saad ��
� and is based on Manteu�el�s scheme�����
Variants of this are presented and discussed by Chatelin and Ho in ���� Since each of these
schemes speci�es the �lter polynomials by their roots� they may all be implemented within
the framework of the algorithms developed in the previous section� At some point in the
iteration one might consider �xing the roots used as shifts and continuing with a stationary
iteration� The convergence of this strategy is analyized in the following section�

One may observe that these �lters each have the feature of weighting the eigenvalues
of the wanted spectrum quite unevenly� For example� in the symmetric case where the
wanted spectrum consists of the k largest eigenvalues� the eigenvalues closest to the right
end of the spectrum are weighted most heavily� An alternative is to construct polynomial
approximations to step functions which take the value zero in unwanted regions and one
in wanted regions of the complex plane� One also might construct polynomials which
produce an updated v�� which is a weighted linear combination of approximate eigenvectors
corresponding to the wanted eigenvalues�

In order to construct these sorts of �lters it is advantageous to be able to apply the �lter
polynomial which is speci�ed by its coe
cients when expanded in the basis of polynomials
constructed through the Arnoldi �Lanczos� process� To make this more precise� suppose �
is any polynomial of degree less than or equal to p� Then expand � in the form

���� �
p��X
j��

�jpj�����

where fpjg are the Arnoldi �Lanczos� polynomials� Observe that

��A�v� � V y

where yT � ���� ��� ���� �p��� �� �� ���� �� since

V y �
p��X
j��

vj�j �
p��X
j��

�jpj���A�v�� vj � pj���A�v��

The technique developed in Section � for the implicit application of ��A� to v� is not directly
applicable because the roots of � are unknown� One could perhaps compute these roots and
then apply the scheme of Section �� However� there is an alternative way to implicitly apply
this polynomial directly from it�s expansion in the Arnoldi basis� Assume that kyk � 	 and
construct a vector wo such that �

I � �wowo
T
�
e� � y����	�

Replace H by

�H �
�
I � �wowo

T
�
H
�
I � �wowo

T
�
������

Now� apply the Householder reduction of �H to upper Hessenberg form so that

�H � QTHQ
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where

Q �
�
I � �wowo

T
��

I � �w�w�
T
�
���
�
I � �wk�p��wk�p��

T
�

�����

with each
�
I � �wjwj

T
�
being a Householder transformation constructed to introduce zeros

below the �j � 	�� st element of the j � th column� Now� consider the application of Q to
the Arnoldi Factorization�

AVQ� V Q�QTHQ� � rek�p
TQ

In order to �t within the updating framework developed in Section �� the condition

ek�p
TQej � �� 	 � j � k�

must hold� This is established by the following
Lemma ���� The matrix Q displayed in �
��� satis�es ek�p

TQej � � � 	 � j � k �
Proof� Let Qj � I � �wjwj

T for � � j � k � p� �� and let H�j��� � Qj
TH�j�Qj with

H�o� � H � From ���	� it follows that wo � ��y� e��� with
�
�
� ky� e�k� Thus� eiTQo � ei

T

for i 
 p� 	� Since

QoH
��� � HQo

and since H is upper Hessenberg� it follows that

ei
TH��� � ei

THQo � ei
TH

for i 
 p��� From this one may conclude that eiTw� � � for i 
 p�� and thus eiTQ� � ei
T

for i 
 p � �� Now� suppose that ei
TQj � ei

T and that ei
TH�j� � ei

THfor i 
 p� j � 	�
Since QjH

�j��� � H�j�Qj it follows that

ei
TH�j��� � ei

TH�j�Qj � ei
TH

for i 
 p� j � �� and again� one may conclude that eiTwj�� � � so that eiTQj�� � ei
T for

i 
 p� j � �� This inductive argument continues to hold until j � k � 	� Hence�

ek�p
TQ � ek�p

TQk��Qk ���Qk�p��

Now� observe that Qiej � ej for k � 	 � i � k � p� � and for 	 � j � k to establish the
result� �

This observation allows the application of any polynomial �lter of degree p when the
polynomial is expanded in the Arnoldi basis� Moreover� it provides the means for implicit
application of all of the suggested restart methods known to this author which are not
speci�ed by roots of polynomials�

�� Some Convergence Results � In this section� we analyze the algorithm just de�
veloped with respect to two strategies for constructing the �lter polynomials� The �rst
analysis applies to general �nonsymmetric� matrices but the �lter polynomials are station�
ary� The second analyzes the �exact shift� polynomials but applies only to symmetric
matrices� In this sense� each of the two is incomplete� However� they both give insight to
the nature of the convergence of this method�

-



	� D� C� SORENSEN

Let us begin with an analysis of the stationary iteration� To this end we de�ne

��A� � �W �A� � �U�A�

where �W �A� � f��� ��� � � ��kg� and �U�A� � f�k��� �k��� � � ��ng� By a stationary itera�
tion� we mean that the set of shifts f��� ��� � � � � �pg used to construct the �lter polynomial
remains �xed� This means that the �lter polynomials are all multiples of a �xed �i�e� sta�
tionary � polynomial ���� �

Qk
i����� �i��

We de�ne

v
���
� � v and v

�j�
� � ��A�v

�j���
� �k��A�v

�j���
� k�

where v is an arbitrary starting vector of length one� We de�ne �j � ��
�j���

�j� � � ��k
�j�

where the �i
�j� are the subdiagonal elements of H in the Arnoldi factorization resulting

from the starting vector v
�j�
� �

Theorem ��	� Assume that the �xed polynomial � satis�es

j�����j 
 j�����j 
 � � �
 j���k�j 
 j���k���j 
 � � � 
 j���n�j �

with

� � j���k���j�j���k�j � 	 �

and assume that the starting vector v� is not a member of the invariant subspace corre�
sponding to f�k��� � � � � �ng� Then the sequence f�jg converges to zero� Moreover� there is
a �xed constant K and a positive integer J such that

� � �j � �jK

for all j 
 J�
Proof� Let

A�Q�� Q�� � �Q�� Q��

�
R� M

� R�

�
�����

be a Schur decomposition of A with ��R�� � �W �A�� The hypothesis on � assures �W �A�

�U�A� is empty and thus there is a unique k � �n � k� matrix solution  to the Sylvesters
equation

 R� �R� �M �

Since �
I  
� I

��
R� �
� R�

�
�

�
R� M
� R�

��
I  
� I

�
�

it follows that

��A��Q�� Q� �Q�� � �Q�� Q� �Q��

�
��R�� �
� ��R��

�



IMPLICITLY RESTARTED ARNOLDI METHODS 	�

for any polynomial � � Let �Q� � Q� � Q� and let v� � Q�y� � �Q�y�� Then�

�j�A�v � Q��
j�R��y� � �Q��

j�R��y� � Q�y�
�j� � �Q�y�

�j�

Recall that v
�j�
� � �j�A�v��k�

j�A�v�k and that from Theorem ������ one obtains �j �

minp�PMk
fkp�A�v

�j�
� kg� Thus� putting �p to be the characteristic polynomial of R� gives

�jk�
j�A�v�k � k�p�A��j�A�v�k � k�p�A�Q�y�

�j� � �p�A� �Q�y�
�j�k

� kQ��p�R��y�
�j� � �p�A� �Q�y�

�j�k � k�p�A� �Q�y�
�j�k

Dividing both sides byj�j��k�j gives

�j�k�
j�A�v�k�j�

j��k�j� � k�p�A� �Q�y�
�j�k�j�j��k�j� � k�p�A� �Q��

	

���k�
��R���

jy�k�

Note the spectral radius of �
���k�

��R�� is less than the number � according to the hypothesis�

Using the fact that there is a consistent matrix norm � such that ��� �
���k�

��R���
j� � �j

together with the equivalence of matrix norms implies the existence of a positive constant
Ko such that

k�p�A�Q��
	

���k�
��R���

jy�k � Ko�
jky�k �

Thus

�j �
Ko�

jky�k

�k�j�A�v�k�j�j��k�j�
�

Moreover� by hypothesis v� is not in the invariant subspace corresponding to f�k��� � � � � �ng�
and it follows that y� �� �� Since the spectral radius of ��R������k� is less than one and
since every eigenvalue �i�e� every diagonal element� of the triangular matrix ��R������k�
is greater than or equal to one� there is a J such that j 
 J implies

k�j�A�v�k�j�
j��k�j � kQ��

j�R��y� � �Q��
j�R��y�k�j�

j��k�j


 kQ��
j�R��y�k�j�

j��k�j � k �Q��
j�R��y��k�j�

j��k�j 
 j�j �
	

�
j� j�

where � is the last nonzero component of y�� Thus� the result is established with K �
�Ko�ky�k�j�j� � �

This result applies directly and generally to cases where there is apriori information
about the location of the spectrum and where a single polynomial might be constructed
�e�g� Tchebychev polynomials�� The analysis does not apply to the adaptive algorithms�
However� it does give an indication of how these might behave near the �nal stages of the
iteration where the �lter polynomials tend to become stationary�

Next� we analyze the �exact shift� �lter polynomials in the symmetric case� This
analysis makes heavy use of the interlace property of eigenvalues of symmetric matrices
modi�ed by low rank changes� The analysis relies on two technical lemmas which we must
establish �rst�
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Lemma ���� Let

M �

�
T �ek
�eTk �

�

be a symmetric tridiagonal matrix� Then the roots of the equation

��eTk �T � �I���ek � � � �������

are eigenvalues of M � See ���� for a proof�
If T � Y!Y T is the eigen�decomposition of T then Equation ����� becomes

��
kX
i��

��i
��i � ��

� �� ������

where ���� ��� � � � � �k� � eTk Y and ! � diag���� ��� � � � � �k�� It is easily veri�ed that this
equation has exactly one root in each of the intervals

���� ���� ���� ���� � � � ��k��� �k�� ��k���

and that the k largest roots ��i of this equation satisfy

�i � ��i for i � 	� � � � � k�����

Also� we note for the sequal that if the subdiagonals of T are all nonzero then none of the
�j are zero and the �j are distinct�

The next lemma shows that when the starting vector v� nears a subspace of dimension
less than k then de�ation must occur�

Lemma ���� Suppose AV � V H � reTk is an Arnoldi factorization of A and let �j be
the j � th subdiagonal element of H� If v� � q� � w� with �� � �� � 	� kqk � kwk � 	�
qTw � � � and q �

Pi
j�� qj�j � Aqj � qj�j �where f�jg are an arbitrary set of i eigenvalues

of A� then

iY
j��

�j � �k
iY

j��

�A� �jI�k

Proof� From Theorem����� and the fact that
Qi
j���A� �jI�q � �� we have

iY
j��

�j � min
p�PMi

kp�A�v�k

� k
iY

j��

�A� �jI��q� � w��k

� k
iY

j��

�A� �jI�w�k

� �k
iY

j��

�A� �jI�k
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�

With these technical lemmas established it will be possible to analyze the iterations
using polynomial �lters constructed from exact shifts in the symmetric case� We assume
throughout the remainder of this section that the matrix A is symmetric and hence that
H � T is tridiagonal� The selection rule to be analyzed is to retain the k largest eigenvalues

of Tk�p Let m denote the iteration number� Then v
�m�
� is the starting vector� and

AV
�m�
k�p � V

�m�
k�p T

�m�
k�p � r

�m�
k�p e

T
k�p �

Let

T
�m�
k�p �

�
T
�m�
k

�
�m�
k

eke
T
�

�
�m�
k e�e

T
k

�T �m�

�

have eigenvalues

���m�� � � � �� �p�m�� � ���m�� � � � � � �k�m��

and let T
�m�
k have eigenvalues

��m � ��m � � � � � �km

Then� the exact implicit shift strategy provides

Q�m�T T
�m�
k�p Q

�m� �

�
T
�m���
k �

� "
�m���
p

�

where Q�m� � Q�mQ�m � � �Qpm are the orthogonal matrices constructed to apply the im�
plicit shifts ��m� � � � � �pm at Step ����� of Algorithm����� And step ����� gives

V
�m���
k � �V

�m�
k�p Q

�m��

�
Ik
�

�
�

Lemma ���� Each f�j�m �m � 	� �� � � �g � is an increasing convergent sequence for each
j � 	� �� � � � � k

Proof� Since T
�m�
k�p is obtained through a succession of p borderings of T

�m�
k � it follows

from p successive applications of Lemma ����� that

�j�m � �j�m�� for j � 	� � � � � k

Since each �j�m is a Raleigh quotient with respect to A it follows that �� � �j�m � �n for
all j�m� Since bounded increasing sequences are convergent the lemma is established� �

We now establish that the limits of the convergent sequences �j�m are eigenvalues of the
matrix A�

Lemma ���� Let T
�m�
k � Y �m�!�m�Y �m�T where ��

�m�
� � �

�m�
� � � � � � �

�m�
k � � eTk Y

�m�� As�
sume �j are distinct� where �j�m � �j� Then

�
�m�
k �

�m�
j � � as m��� for j � 	� � � � � k
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and as a consequence

kAV �m�y
�m�
j � y

�m�
j �j�mk � j�

�m�
k �

�m�
j j � �

where y
�m�
j � Y �m�ej for j � 	� � � � � k�

Proof� Consider the leading �k � 	�� �k � 	� submatrix of T
�m�
k�p

M �m� �

�
T
�m�
k �

�m�
k ek

�
�m�
k eTk ��m�

�

From Lemma ����� it follows that the k largest eigenvalues ��j�m of M �m� satisfy

�j�m � ��j�m � �j�m���

Moreover� a straightforward algebraic manipulation of Equation����� gives

���j�
� � ��j � ��

	

���� ��� ��

Pk
i�j��

	�
i

��i���

	 �
Pj��

i��
	�
i
��j���

	�
j
��i���

�

�

for any root �� Substituting the appropriate quantities indexed bym from the matrixM �m�

and putting � � ��j�m gives

��
�m�
k �

�m�
j �� � j��j�m � ��j�m�jj��

�m� � ��j�m�� �
�m�
k

�
kX

i�j��

�
�m�
i

�

��i�m � ��j�m�
j �

The assumption that the limits �j are distinct implies that the quantities

j���m� � ��j�m�� �
�m�
k

� kX
i�j��

�
�m�
i

�

��i�m � ��j�m�
j�

have �nite limits for each j� Hence� for m su
ciently large there is a positive constant K
such that

��
�m�
k �

�m�
j �� � Kj�j�m � ��j�mj � Kj�j�m � �j�m��j � �

as m��� �

The �nal task is to show that not only will the limits �j be eigenvalues of A but that
they will be the k eigenvalues of interest� To do this� we shall show that if de�ation does

not occur� then the coe
cients �
�m�
j � qTj v

�m�
� must converge to zero for j � 	� � � � � n � k

where qj is the eigenvector of A corresponding to the eigenvalue �j and v
�m�
� is the Arnoldi

starting vector for the m� th iteration�
De�ne� �
��� �

Qp
i����� �i�
� and #m��� �

Qm
i���i�A��

Then note that v
�m�
� � �m�A�v�

k�m�A�v�k
�
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Theorem ��	
� Suppose that the initial starting vector v� satis�es qTj v� � �j �� � for
j � n�k�	� � � � � n where qj is the eigenvector of A corresponding to the eigenvalue �j with

the eigenvalues of A listed in increasing order� Let �
�m�
i be the i� th subdiagonal element

of T
�m�
k and assume that �

�m�
i 
 
 
 � for all i�m� Then the sequences

�j�m � �j � �n�k�j as m� ��

Proof� The assumption �
�m�
i 
 
 
 � assures that separation of the �j�m is uniform over

all m so that the limits �j are distinct� This implies that each �j is an eigenvalue of A �

Moreover� the assumption implies a uniform lower bound on the quantities j�
�m�
j j and thus

�
�m�
k � �� �All due to remarks following Lemma �������
Let �m��� �

Qk
i����� �j�m�� and let ���� �

Qk
i���� � �j� be the limit polynomial of

the �m� Then

k�m�A�v
�m�
� k �

kY
j��

�
�m�
j � �

and thus

�m��j��
�m�
j � qTj �m�A�v

�m�
� � ��

Hence� either

���j� � � or �
�m�
j � �

for j � 	� � � � � n� This means that n � k of the expansion coe
cients �
�m�
j tend to � as

m��� Moreover� Lemma����� implies that the k expansion coe
cients corresponding to

the eigenvalues �j must all be bounded away from zero due to the assumption �
�m�
j 
 
 
 �

for all j�m�
Now� suppose that �jk � �k � �n� Then the expansion coe
cient

�
�m�
jk

� qTjkv
�m�
� � qTjk

#m�A�v�
k#m�A�v�k

�
�jk#m��k�qPn
i�� �

�
i#

�
m��i�

�

Hence

��
�m�
jk

�� �
��jk#m��k��#m��n��

�

��n �
Pn��

i�� �
�
i#

�
m��i��#

�
m��n�

� �
�jk
�n

#m��k�

#m��n�
��

where the �i are the expansion coe
cients of v
�o�
� � Now� the roots �i�m of the �lter polyno�

mials all satsify �� � �i�m � �k�m � �k � �n so that

� �
#m��k�

#m��n�
�

mY

��

�
pY
i��

�
�k � �i

�n � �i


��
�

�
�k � ��
�n � ��

�mp

� ��

since �k���
�n���

� 	� This is a contradiction� We conclude that �k � �n �
A similar argument may be carried out for each j in turn for the cases �j � �n�k�j and

this concludes the proof� �
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	� The Generalized Eigenvalue Problem� In this section the generalized eigen�
value problem will brie�y be discussed� The generalized problem is to �nd �x� �� such
that

Ax � �Mx �

In many cases the matrix M is symmetric and positive de�nite� and this condition shall be
assumed in this section� The basic iterative method will carry over to this setting with very
little modi�cation� In this setting we maintain and update a factorization of the form

AV �MVH � reTk���	�

where

V TMV � I � and V T r � � �

It is easily seen that one may apply the algorithm for the standard case to the matrix
M��A in place of A� Of course this would be implemented through factorization of M at
the outset and solution of the appropriate linear system instead of applying M���

There are two key consequences of maintaining the form ���	��
	� QTV TMVQ � I is preserved so the implicit Q�R shift strategy may be applied�
�� If A � AT is symmetric� then

H � V TAV

follows from V TMV � I � V Tr � � so that H � HT will be symmetric and
tridiagonal when A is symmetric�

With these observations� it is straightforward to adapt the algorithms previously dis�
cussed to solve the generalized eigenproblem� Some limited computational experience with
this approach is the subject of the following section�


� Computational Results and Conclusions� Computational results for this tech�
nique are quite promising but are certainly preliminary� There is a Fortran implementation
of the algorithms developed here� Two versions of the code have been produced� One
of these implements the strategy for the generalized symmetric eigenvalue problem as de�
scribed in Section �� The other implements the algorithm for the standard nonsymmetric
eigenproblem� In addition to exhibiting behavior on some test problems� two experiences
with applications will be discussed� Finally� some very interesting illustrations of the shapes
of the �lter polynomials that are constructed through exact shifts shall be reported�

There are some important details of the Fortran implementation of Algorithm ������
Step � requires a user supplied matrix vector product� Steps � and � are implemented
through calls to the level � BLAS �		�	�� routine DGEMV� One step of iterative re�nement
is carried out at Step � of Algorithm ����� rather than iterating until the test ksk � 
krk
is passed� Steps ��	 and ��� of Algorithm ����� were also implemented through calls to
DGEMV� In all of the computations observed there was never a loss of orthogonality in the
columns of V � In all cases kV TV � Ik was on the order of unit roundo� error� Eigenvalue
calculations used a slight modi�cation of EISPACK ���� subroutines TQL in the symmetric
case and HQR in the nonsymmetric case� These may be replaced by the corresponding
block routines from LAPACK �	�� to enhance performance in the future�
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Expressing the algorithm in terms of the level � BLAS has provided the means to achieve
high performance portable Fortran code� The code has been run on SUN SPARC� CONVEX
C	� Stardent Titan� CRAY �� and CRAY YMP computers� The cost of operations were
clearly dominated by the user supplied matrix vector products �and system solves in the
generalized problem�� The time spent in the user supplied portion was orders of magnitude
over the time spent in the other parts of the eigenvalue calculations� This performance
characteristic is a direct consequence of the performance of DGEMV on the architectures
of the machines listed above� The crucial point for improving the algorithm is to better
understand the construction of the �lter polynomials in order to reduce the required number
of user supplied matrix vector products � Parallelism may be invoked through the level �
BLAS and also through the user supplied matrix vector product�

In all of the results reported below� exact shifts were used as described in Section ��
The iteration was halted when k�eTk yj�rkk � 	��	� 	 � j � k � � where yj is the j � th
Ritz vector corresponding to Ritz values approximating the wanted spectrum� This ad hoc
stopping rule allowed the iteration to halt quite early in cases where it was di
cult to make
a clean separation between the wanted and unwanted spectrum� This ad hoc criterion will
have to be replaced with a more rigorous one in the future�

In the �rst set of test problems the matrixA arises from a standard ��point discretization
of the convection�di�usion operator on the unit square "� The PDE is

�$u� 	ux � �u� in "� uj�
 � �

When 	 � � the matrix A is the discrete Laplacian and for 	 
 � A has distinct complex
eigenvalues which appear in a rectangular grid in the complex plane when the cell size
h � 	��n � 	� is large enough with respect to the parameter 	� However� the boundary
conditions of the continuous problem do not admit eigenfunctions corresponding to complex
eigenvalues� so the eigenvalues of the matrix A become real when the mesh size becomes
small enough� The order of the discrete operator A is N � n� and since it�s eigenvalues are
distinct� it is diagonalizable� These problems allowed testing of the algorithm for accuracy
and performance in some interesting but well understood cases� In both of the tables below�
the values k � 	� and p � 	� were used� The two columns on the right of the tables give
the norm of the residual vector r and the norm of the true residual kAx� x�k for the sixth
eigenvalue� Typically� the eigenvalues of smaller index had residuals that were smaller than
this one� For the symmetric problems the residual estimates were uniformly small for the
eight smallest eigenvalues�

Table ��	

Discrete Laplacian
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Dimension Niters krk kAx� x�k

	�� 	� 	����� �D�	�
��� �� ������ �D�	�
��� �
 ������ �D�	�
��� �� ��	��� �D�	�

�� �
 ������ �D�	�
	��� �� ��
��� �D�	�
���� �� 	�	��� 
D�	�
���� �� 
�
��� �D�		
�
�� 
� ��
��� 	D�		
�	�� ��� 	�	��� 	D�		
	���� 	�� 	�	��� �D�	�

In Table ��� below� the problems of order ��� and ��� did not satisfy the convergence
test before the maximum number of iterations allowed had been reached� In all cases the
ten eigenvalues of smallest real part were sought� In both of the problems just mentioned�
�ve or more eigenvalues had been determined to high accuracy� In all cases the iterations
could have halted much earlier if a better stopping criterion were devised�

Table ���
Convection Di�usion

Dimension Niters krk kAx� x�k

	�� �	 ������ 	D�	�
��� 	�� ��� 	D��
��� 	�� ������ �D�	�
��� �� ������ �D�	�

�� 	�� ��
��� �D�	�
	��� 	�� ������ �D�	�

The second set of results will brie�y describe two problems that arise in the context
of solving partial di�erential equations� The �rst of these involves a discretization of a
membrane problem in which the membrane is composed of two materials� On an open
bounded connected set " � R� we consider

�$u � �	u� in "� uj�
 � �

where the density 	 is of the form

	 � ��S � ��	� �S�

where �S is the characteristic function of a subset S � " with area �� The problem is
to determine the density function 	 which minimizes the lowest eigenvalue ���	� of this
PDE� Here � and � are the known �constant� densities of two given materials in respective
volume fractions ��j"j and 	���j"j and the set S is occupied by the material with density
�� Cox ��� has formulated an algorithm to solve this minimization problem� The algorithm
generates a sequence of symmetric generalized eigenvalue problems

Av � �M�	�v

which arise through a bi�linear �nite element discretization of the PDE� The density function
	 is modi�ed at each iteration with the set S determined through level sets of the corre�
sponding eigenfunction� The matrix A is positive de�nite and independent of the density
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function 	 so the problem was cast in the form

M�	�v �
	

�
Av�

Since only matrix vector products are required of M the dependence on 	 presented no
additional computational burden� The matrix A was factored once and this factorization
was subsequently used repeatedly to compute A��M�	�v for all 	� The eigenvalue iteration
also bene�ted from the re�use of the converged starting vector from the previous problem
but this did not appear to be of great consequence in this case� The following table gives
results for the same sub�problem on a variety of machines�

Table ���
Membrane Problem on Various Machines

Sun Convex Titan Y�MP

Time �secs� ��� �	 ���
 ���
matrix vector �� �� �� ��
kV TW � Ik 	���� 	���� 	���� 	����

The overall performance was excellent on this problem� Grid sizes of of �� by ��� 	��
by 	��� and ��� by ��� were used� Both minimization of ���	� and ���	� were done� The
number of matrix vector products was typically around ����� regardless of the dimension
of the matrix� That is� with k � � and p � � the eigenvalue solver required � to � iterations
with � being the usual number� The Ritz estimates for kAx�M�	�x�k were on the order
of 	�D� 	� for the lowest six eigenvalues�

The second application leads to a nonsymmetric eigenvalue problem� The PDE arises
in a study of bifurcations in a Couette�Taylor wavy vortex instability calculation� This
work described in �	�� is based upon a method of W�S� Edwards and L�S Tuckerman which
is designed to study these bifurcations from Taylor vortices to wavy vortices� The discrete
problem is obtained by �rst linearizing the Navier�Stokes equations about a �numerically�
known steady state solution U corresponding to Taylor vortices� The perturbation u corre�
sponding to wavy vortices is found by solving the linearized Navier�Stokes problem

�u

�t
� ��U � r�u� �u � r�U �rp� �r�u

with

r � u � �and uj�
 � �

where " is the annular region between two concentric rotating cylinders� This PDE is
discretized to then yield a nonsymmetric eigenvalue problem

A���v � �v

Since a pseudo�spectral method is used� the discrete matrix is dense rather than sparse�
However� matrix vector products can still be performed rapidly using Fourier transforms�
The discrete problem involved a matrix of order ���� � The eigenvalue code with k � 	� and
p � �� required �� iterations to produce eight eigenvalues and corresponding eigenvectors
with largest real part� This entailed about ���� matrix vector products� The accuracy of
these were con�rmed to be at least �ve signi�cant digits�
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This behavior of the algorithm on these two problems seems to be typical on more
di
cult problems� The number of matrix vector products tends to be near n for di
cult
nonsymmetric problems� Symmetric generalized eigenvalue problems from �nite element
analysis of structures or membranes seem to be solved very rapidly if posed in terms of
�nding the largest eigenvalues�

To close this section� the interesting behavior of �ltering polynomials associated with
the choice of exact shifts will be presented� Two problems will be discussed� The �rst
example arises from the convection di�usion above with 	 � �� � The grid size was 	���
leading to a nonsymmetric matrix of order 
�� � The results for this problem are displayed
in Figures ��	 and ���� The second example is the banded Toeplitz matrix used for test
purposes by Grcar �	��� This matrix is non�normal and has a nontrivial pseudo�spectrum as
discussed in ��	�� �The 
 pseudo�spectrum of a matrix A is f� � C � k��I�A���k 
 
��g ��
The matrix is a ��diagonal matrix with the value �	 on the �rst sub�diagonal and the value
	 on the main diagonal and the next three super diagonals� The results for this problem
are displayed in Figures ��� and ����

The graphs shown below depict the �lter polynomial ���� for values of � over a region
containing the eigenvalues of A� The surface plot is of j�j and the contour plots are of
log�j�j� The � symbols show the location of the true eigenvalues of A The o symbols mark
the location of the eigenvalues of H that are �wanted�� These will eventually converge to
eigenvalues of A� The � symbols show the roots of the polynomial ��

Figure ��	

Convection Di�usion� iteration 	

Figure ���

Convection Di�usion� at convergence

In Figures ��	 and ��� the values k � 	�� p � 	� were used� One may observe convergence
by looking at the 	� leftmost o symbols enclosing the � symbols� The interesting features
of these �lter polynomials is that they are remarkably well behaved in terms of being very
�at in the region that is to be damped and very steep outside that region� The reason for
this desirable behavior is not completely understood at the moment�

Figure ��� Grcar matrix� iteration 	

Figure ���

Grcar matrix � iteration 	

Figure ���

Grcar matrix � at convergence

In Figures ��� and ��� the corresponding behavior of the �lter polynomials is shown�
In these �gures only the upper half�plane is shown� The dotted line shows the boundary
of the practical spectrum ��	� for this matrix� It is interesting to note how the contours of
the �lter polynomial obtained through the exact shifts mimic the shape of this boundary�
The algorithm claimed convergence of the leftmost eigenvalues �ie� the ten eigenvalues of
smallest real part�� However� as demonstrated in the �gure� these are pseudo�eigenvalues�
Interestingly enough� HQR from Eispack will give the same behavior if applied to the
transpose of the Grcar matrix� HQR will give the correct eigenvalues when applied to the
Grcar matrix directly and it was used to calculate the values of the �true� spectrum shown
above�
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In conclusion� it seems that this is quite a promising approach� A direct relationship
to the implicitly shifted QR iteration has been established and several problems inherent
to the traditional Arnoldi method have been addressed through this new approach� The
most important of these are the �xed storage� maintenance of orthogonality� and avoidance
of spurious eigenvalues� The computational results are clearly preliminary� The limited
experience indicates research is needed in constructing �lter polynomials which have better
properties with respect to the wanted part of the spectrum� Moreover� a better understand�
ing of the Ritz convergence estimates in the nonsymmetric case would be helpful� These
estimates have been very important in terminating the iteration early �ie� before the resid�
ual is very small� in the symmetric �generalized� eigenproblem� A criterion for choosing
the values of k and p is also required� At present� ad hoc choices are made and there is
little understanding of the relation of these two parameters to each other and to the given
problem� They have been chosen through experimentation for these results�

Future research on this topic might include a blocked variant to better deal with multiple
eigenvalues� Investigations of the use of a preconditioner would also be interesting� Finally�
extensions of this idea to other settings such as the solution of linear systems would seem
to be a promising area of research as well� These investigations are underway and will be
the topic of subsequent papers�
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