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The first objective of this study was to compare the brain network engaged 
by preference classification and the standard grammaticality classification 
after implicit artificial syntax acquisition by re-analyzing previously repor-
ted event-related fMRI data. The results show that preference and gramma-
ticality classification engage virtually identical brain networks, including 
Broca’s region, consistent with previous behavioral findings. Moreover, the 
results showed that the effects related to artificial syntax in Broca’s region 
were essentially the same when masked with variability related to natural 
syntax processing in the same participants. The second objective was to 
explore CNTNAP2-related effects in implicit artificial syntax learning by 
analyzing behavioral and event-related fMRI data from a subsample. The 
CNTNAP2 gene has been linked to specific language impairment and is con-
trolled by the FOXP2 transcription factor. CNTNAP2 is expressed in lang-
uage related brain networks in the developing human brain and the FOXP2–
CNTNAP2 pathway provides a mechanistic link between clinically distinct 
syndromes involving disrupted language. Finally, we discuss the impli-
cation of taking natural language to be a neurobiological system in terms of 
bounded recursion and suggest that the left inferior frontal region is a 
generic on-line sequence processor that unifies information from various 
sources in an incremental and recursive manner. 
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1. Introduction 
 
Human languages are characterized by universal “design features” (Hockett 
1963, 1987): discreteness, arbitrariness, productivity, and the duality of patterning 
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(i.e. elements at one level are combined to construct elements at another). Some-
how these properties arise from the way the human brain processes, develops, 
and learns, in interaction with its environment. The human capacity for language 
and communication is subserved by a network of brain regions that collectively 
instantiate the phonological, syntactic, semantic, and pragmatic operations neces-
sary for adequate language production and comprehension. During normal lang-
uage processing, phonology, syntax, and semantics operate in close temporal and 
spatial contiguity in the human brain. Therefore the artificial grammar learning 
(AGL) paradigm has been used to create a relatively uncontaminated window 
onto the neurobiology of syntax. Artificial syntax learning paradigms thus makes 
it possible to investigate structured sequence processing relatively independent 
of, for example, semantics and phonology (Petersson et al. 2004, 2010). In ad-
dition, artificial syntax learning has been used for cross-species comparisons in 
an attempt to establish the uniquely human component of the language faculty 
(Hauser et al. 2002, Fitch & Hauser 2004, O’Donnell et al. 2005, Gentner et al. 2006, 
Saffran et al. 2008). 
 Artificial syntax learning paradigms have been widely employed to study 
different aspects of natural language acquisition (Gómez & Gerken 2000, Folia et 
al. 2010), though it was originally implemented to investigate the underlying 
implicit sequence learning mechanism, which is presumably shared with natural 
language learning (Reber 1967) as well as other situations in which new skills are 
acquired (e.g. Misyak et al. 2009, 2010a, 2010b). The neurobiology of implicit seq-
uence learning as assessed by artificial syntax acquisition have been investigated 
by means of functional neuroimaging (e.g. Petersson et al. 2004, 2010, Forkstam et 
al. 2006), brain stimulation (Uddén et al. 2008, 2011, de Vries et al. 2010), and 
agrammatic aphasics (Christiansen et al. 2010), and generally involve fronto-
striatal circuits (Packard & Knowlton 2002, Ullman 2004; note that implicit 
learning is sometimes referred to as procedural learning, and vice versa), which 
are also involved in the acquisition of natural syntax (Ullman 2004). More speci-
fically, recent functional neuroimaging (e.g. Petersson et al. 2004, 2010, Forkstam 
et al. 2006) and brain stimulation research (Uddén et al. 2008, 2011, de Vries et al. 
2010), have identified some of the brain regions involved, including repeatedly 
showing that Broca’s region, a brain region involved in natural syntax process-
sing, is also involved in artificial syntax processing. Indeed, the breakdown of 
syntax processing in agrammatic aphasia is associated with impairments in arti-
ficial syntax learning (Christiansen et al. 2010). Moreover, Conway & Pisoni 
(2008) found that individual variability in implicit sequence learning correlated 
with language processing. Supportive evidence also comes from a recent study 
by Misyak et al. (2010a), who found that individual differences in learning non-
adjacent dependencies, assessed by non-linguistic implicit sequence learning, 
correlate with the processing of natural language sentences containing complex 
non-adjacent dependencies. This supports the hypothesis that artificial grammar 
learning paradigm taps into implicit structured sequence learning and artificial 
syntax processing, and thus provides a useful way to investigate aspects of 
natural language processing. Thus, there is a growing body of evidence that 
language acquisition and language processing, both a natural and artificial set-
ting, is mediated by implicit sequence learning and structured sequence proces-
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sing mechanisms, respectively. 
 The implicit artificial syntax learning paradigm allows for a systematic 
investigation of aspects of structural acquisition from grammatical examples 
without providing explicit feedback, teaching instruction, or engaging the 
subjects in explicit problem solving (Forkstam et al. 2006, 2008, Folia et al. 2008). 
These acquisition conditions resemble, in certain important respects, those found 
in natural-language development with respect to syntax acquisition (Chomsky & 
Miller 1963: 275–276). Generally, artificial grammar learning paradigms consist of 
acquisition and test phases. In the acquisition phase, participants are exposed to 
an acquisition sample generated from a formal grammar. In the standard version, 
subjects are informed that the sequences were generated according to a complex 
set of rules after acquisition, and are asked to classify novel sequences as gram-
matical or not, based on their immediate intuitive impression (i.e. guessing based 
on gut-feeling). A well-replicated and robust finding in this paradigm is that 
subjects perform well above chance after several days of implicit acquisition; they 
do so on regular (e.g. Stadler & Frensch 1998, Folia et al. 2008, Forkstam et al. 
2008) as well as non-regular grammars, including those that generate context-free 
and context-sensitive non-adjacent dependencies (Uddén et al. 2009). 
 In this study, we investigate an implicit preference AGL paradigm with 
several days of acquisition. During the implicit acquisition period, participants 
were exposed to grammatical sequences only in a cover task based on the 
structural mere-exposure effect (Zajonc 1968, Zizak & Reber 2004, Folia et al. 2008, 
Forkstam et al. 2008). The structural mere-exposure effect refers to the finding 
that repeated exposure to a stimulus created by a certain rule system, induces an 
increased preference for novel stimuli conforming to the same underlying system 
(Zizak & Reber 2004). To this end, we exposed the participants to a simple right-
linear unification grammar — a grammar that generates right-linear phrase 
structures (Vosse & Kempen 2000, Hagoort 2005, Petersson et al. 2010). During 
the acquisition period, spanning five days, subjects were exposed to syntactically 
well-formed consonant sequences and no performance feedback was provided. 
On the last day a preference classification test was administered in which new 
sequences were presented. Previously, the implicit preference AGL paradigm has 
been characterized exclusively in behavioural terms (e.g. Manza & Bornstein 
1995, Zizak & Reber 2004, Folia et al. 2008, Forkstam et al. 2008). Here we first 
review the outcome of implicit artificial syntax acquisition from an event-related 
fMRI study (Folia et al. 2011). Then we compare the brain network engaged by 
preference classification and the standard grammaticality classification after 
implicit artificial syntax acquisition from a previously reported event-related 
fMRI results on the standard grammaticality classification paradigm in the same 
subjects (Petersson et al. 2010). In addition, we investigate the common overlap 
between artificial and natural syntax processing by masking the non-grammatical 
(NG) vs. grammatical (G) effect observed in preference classification with the 
natural-syntax-related variability in the same subjects (Folia et al. 2009). 
Consistent with the hypothesis of implicit utilization of acquired structural 
knowledge as well as previous behavioral results (Forkstam et al. 2008), which 
showed that subjects perform qualitatively identical on preference and gram-
maticality classification, we found that the brain network subserving preference 
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classification during artificial syntax processing engaged Broca’s region cantered 
on Brodmann’s areas (BA) 44 and 45, and did not differ from those observed 
during grammaticality classification. This strengthens the notion that preference 
and grammaticality classification in the implicit artificial syntax learning are 
essentially equivalent (Forkstam et al. 2008). Finally, based on these event-related 
fMRI data (Petersson et al. 2010, Folia et al. 2011), we took advantage of the fact 
that a subsample of our participants was part of the Brain Imaging Genetics (BIG) 
project at the Donders Centre for Cognitive Neuroimaging and the Department 
of Human Genetics of the Radboud University Nij-megen. This allowed us to 
explore the potential role of the CNTNAP2 gene in artificial syntax acquisition/ 
processing at the behavioral as well as the brain level. 
 Relatively recently, language research has started to investigate the role of 
genes in language (Enard et al. 2002, Vargha-Khadem et al. 2005, Bishop 2009, 
Konopka et al. 2009). For example, mutations in the FOXP2 gene result in a com-
plex symptomatology, called developmental verbal dyspraxia, which includes 
difficulties with learning and producing sequences of oral movements relevant 
for speech, as well as impairments in morphosyntactic aspects of language 
processing (Lai et al. 2001, Watkins et al. 2002, MacDermot et al. 2005). FOXP2 is a 
gene that codes for the transcription factor (a protein) foxp2 which regulates gene 
expression during development. This means that foxp2 controls the production 
of other proteins coded for by other genes. Transcription factors and their genes 
make up complex gene regulatory networks, which control many complex 
biological processes, including ontogenetic development (Davidson et al. 2002, 
Davidson 2006, Alberts et al. 2007). Moreover, functional neuroimaging studies of 
the KE family (with a protein-truncating FOXP2 mutation; Lai et al. 2001), have 
demonstrated structural and functional abnormalities in brain regions related to 
language (Vargha-Khadem et al. 2005). The CNTNAP2 gene has been linked to 
specific language impairment (SLI) and the FOXP2–CNTNAP2 pathway provides 
a mechanistic link between clinically distinct syndromes involving disrupted 
language (Vernes et al. 2008). The CNTNAP2 gene is controlled (down-regulated) 
by the foxp2 transcription factor (Vernes et al. 2008). CNTNAP2 codes for a 
neural trans-membrane protein, which belongs to neurexin superfamily (Poliak et 
al. 1999) and it has been shown that, in the developing human brain, the expres-
sion of CNTNAP2 is relatively increased in fronto-temporal-subcortical brain net-
works (Alarcón et al. 2008). In particular, the CNTNAP2 expression is enriched in 
frontal brain regions in humans, but not in mice or rats (Abrahams et al. 2007). A 
recent study investigated the effects of a common single nucleotide poly-
morphism (SNP) RS7794745 in the CNTNAP2 gene on the brain response during 
language comprehension (Snijders et al. 2011). This study found both structural 
and functional brain differences in language comprehension related to the same 
SNP sub-grouping used in this study. 
 Finally, we note that an artificial grammar represents a formal specification 
of the mechanism that generates, for example, specific structural or sequence 
regularities (e.g., various types of local or non-adjacent dependencies). From this 
point of view, an artificial syntax is a formal language (Davis et al. 1994) and 
artificial syntax learning is an experimental model to investigate various (any) 
generative mechanism independent of other aspects of a language (cf. the 
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introduction of Petersson et al. 2004). As noted above, artificial syntax learning 
can be used as an experimental tool to investigate the processing properties of 
Broca’s region, a central node in the brain network for natural syntax processing. 
In this context, we take the view that natural and artificial syntax processing 
share a common abstraction — structured sequence processing. Clearly, any par-
ticular artificial grammar cannot instantiate all phenomena found in natural 
syntax. Rather, in experimental work it is necessary to focus on some particular 
aspect of syntax, which is also the case for experimental work on natural lang-
uage syntax. Artificial syntax learning thus provides a window onto the neuro-
biology of syntax, in the sense that artificial syntax learning allows us to investi-
gate the computational properties of Broca’s region. In the Discussion section, we 
return to some issues related to the present the Chomsky hierarchy and recursive 
processing from the point of view that natural language is a neurobiological 
system. 
 
 
2. Materials and Methods 
 
2.1. Participants 
 
Here we briefly describe the relevant background of the material and methods 
used by Vasiliki Folia and colleagues (Folia et al. 2008, 2011, Petersson et al. 2010) 
as they apply to this study. Thirty-two healthy right-handed Dutch university 
students were recruited in the study (16 females, mean age ± SD = 22 ± 3 years; 
mean years of education ± SD = 16 ± 2). None of the subjects used any medi-
cation, had a history of drug abuse, head trauma, neurological or psychiatric ill-
ness, or a family history of neurological or psychiatric illness. All subjects had 
normal or corrected-to-normal vision. Written informed consent was obtained 
from all participants according to the Declaration of Helsinki as well as from the 
local medical ethics committee. Of the thirty-two participants, twelve were 
already included in the BIG database at the Donders Centre for Cognitive Neuro-
imaging and the Department of Human Genetics of the Radboud University 
Nijmegen (5 females, mean age ± SD = 22 ± 2 years; mean years of education ± SD 
= 16 ± 2) and typed for the single nucleotide poly-morphism (SNP) RS7794745 
(with a breakdown on AA:AT:TT of 4:6:2). Because of the few TT-carriers, we 
pooled all T-carriers into one group of TT- and AT-carriers and analyzed the data 
in the T (N = 8) and nonT (N = 4) groups. 

 
2.2. Stimulus Material 
 
We used a simple right-linear unification grammar (Petersson et al. 2010) with the 
following vocabulary of terminal symbols (M, S, V, R, X) and lexicon of primitive 
trees (treelets) {[s1, [M, s2]], [s2, [S, s2]], [s2, [V, s4]], [s3, [X, s2]], [s3, [X, s5]], [s4, [R, s3]], 
[s4, [S, s6]], [s4, #], [s5, [R, s5]], [s5, [M, s6]], [s5, #], [s6, #]}. For a given lexical item 
(e.g., [sj, [T, sk]]), sj, sk can be interpreted as syntactic control features and T as a 
surface feature. Within the unification framework (Vosse & Kempen 2000, Hagoort 
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2005, Petersson et al. 2010), an incoming sequence of surface symbols (e.g., MSV) 
initiates the retrieval of lexical items from the mental lexicon. As a result, they en-
ter a unification space for on-line processing: [s1, [M, s2]], [s2, [S, s2]], [s2, [V, s4]]…, 
where two lexical items (e.g., [si, [R, sj]], [sk, [Q, sl]]) unify (i.e. combine or merge) 
through a unification operation U if and only if sj = sk, or sl = si. This process is 
incremental and recursive. For example, if the structure U([s1, [M, s2]], [s2, [S, s2]]) = 
[s1, [M, [s2, [S, s2]]]] is already present in the unification space when the lexical 
item [s2, [V, s4]] is retrieved, a larger combinatorial structure can be formed by the 
unification operation U([s1, [M, [s2, [S, s2]]]], [s2, [V, s4]]) = [s1, [M, [s2, [S, [s2, [V, 
s4]]]]]], and so on. The Unification operator works in the same way in all 
unification grammars. However, the structures generated by the Unification 
operator depend on the structure of the lexical items in any given grammar. In 
the present case, our grammar yields right-linear structures. 
 Folia et al. (2011) used a 2 x 2 x 2 factorial design including the factors 
instruction type (preference/grammaticality instruction), grammaticality status 
(grammatically correct/incorrect), and local subsequence familiarity (high/low 
ACS). The local subsequence familiarity (cf. Knowlton & Squire 1996, Meulemans 
& van der Linden 1997, Forkstam et al. 2006 for technical descriptions) is an asso-
ciative measure of the superficial resemblance between classification sequences 
and the sequences in the acquisition set. The classification sequences with high 
ACS contain subsequences (bigrams and trigrams) that appear frequently in the 
acquisition set, while sequences with low ACS contain subsequences with a low 
frequency in the acquisition set. In total, 569 G sequences from the grammar, with 
a sequence length ranging from 5 to 12, were generated. For each item the 
frequency distribution of 2 and 3 letter chunks for both terminal and complete 
sequence positions was calculated. In this way, the associative chunk strength 
(ACS) was calculated for each item (cf. Knowlton & Squire 1996, Meulemans & 
van der Linden 1997, Forkstam et al. 2006). Next, for the acquisition set, 100 
sequences representative, in terms of letter chunks, for the complete sequence set 
were randomly selected in an iterative way. In the next step, the NG sequences 
were created, derived from non-selected G sequences, by switching letters in two 
non-terminal positions. The NG sequences matched the G sequences in terms of 
both terminal and complete-sequence ACS (Forkstam et al. 2006, 2008). Finally, in 
an iterative procedure, we randomly selected two sets of 56 sequences each from 
the remaining G sequences, to serve as classification sets. The classification sets 
thus consisted of 25% grammatical/high ACS (HG); 25% grammatical/low ACS 
(LG); 25% non-grammatical/high ACS (HNG); and 25% non-grammatical/low 
ACS (LNG) sequences. See Appendix A below for example stimuli. 
 
2.3. Experimental Procedures 
 
During the acquisition sessions, subjects were presented with the 100 acquisition 
sequences (presentation order randomized for each acquisition session) and the 
task was an immediate short-term memory task serving as a cover task. Each 
sequence was centrally presented letter-by-letter on a computer screen (3–7 s 
corresponding to 5–12 terminal symbols; 300 ms presentation, 300 ms inter-
symbol-interval) using the Presentation software (http://nbs.neuro-bs.com). 
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When the last letter in a sequence disappeared, subjects were instructed to recon-
struct the sequence from memory and type it on a keyboard. No performance 
feedback was given, and only grammatical sequences were presented. The acqui-
sition phase lasted approximately 20–40 minutes and took place over five conse-
cutive days. 
 After the acquisition session on the last (5th) day of the experiment, 
subjects participated in a preference and then a grammaticality classification 
session. During preference classification, subjects were presented with new 
sequences, which they have not seen before. They were instructed to classify the 
new sequences according to their immediate intuitive preference (i.e. guessing 
whether they liked the sequence, or not, based on gut-feeling; preference 
instruction). Subsequently, they were informed about the existence of a 
generating set of rules and the subjects were asked to classify new sequences as 
grammatical or not based on their gut-feeling (grammaticality instruction). fMRI 
data were acquired during both preference and grammaticality classification 
(Petersson et al. 2010, Folia et al. 2011). 
 The classification sequences were presented via an LCD-projector on semi-
transparent screen that the subject comfortably viewed through a mirror 
mounted on the head-coil. The classification sessions were split in two parts, in 
order to balance response finger within subjects (subjects indicated their decision 
by pushing the corresponding response key with their left/right index finger). 
Each part lasted approximately 20 minutes. After a 1 s pre-stimulus period, the 
sequences were presented sequentially, followed by a 3 s response window. A 
low-level baseline condition was also included; a sensorimotor decision task in 
which sequences of letters P or L (matched for sequence length to the classifi-
cation set) were presented in the same fashion as the classification sequences and 
subjects responded by pressing the right or left index finger, respectively. The 
different sequence types were presented in random order. 
 
 
3. Data Acquisition and Statistical Analysis 
 
Behavioral data were analyzed with repeated measures ANOVAs (SPSS 15.0) 
with non-sphericity correction. A significance level of P < .05 was used through-
out. Data analysis was carried out for the whole group and the sub-sample for 
which CNTNAP2 (SNP RS7794745) data were available (T-group: AT/TA/TT 
allele; nonT-group: AA allele). 
 
3.1. MR Data Acquisition 
 
Whole head T2*-weighted functional echo planar blood oxygenation level depen-
dent (EPI-BOLD) fMRI data were acquired with a Siemens Avanto 1.5T scanner 
using an ascending slice acquisition sequence (volume TR = 2.6s, TE = 40 ms, 90 
degree flip-angle, 33 axial slices, slice-matrix size = 64x64, slice thickness = 3 mm, 
slice gap = .5 mm, FOV = 224 mm, isotropic voxel size = 3.5x3.5x3.5 mm3) in a 
randomized event related fashion. For the structural MR image volume, a high-
resolution T1-weighted magnetization-prepared rapid gradient-echo pulse 
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sequence was used (MP-RAGE; volume TR = 2250 ms, TE = 3.93 ms, 15 degree 
flip-angle, 176 axial slices, slice-matrix size = 256x256, slice thickness = 1 mm, 
field of view = 256 mm, isotropic voxel-size = 1.0x1.0x1.0 mm3). 
 
3.2. MR Image Pre-Processing and Statistical analysis 
 
We used the SPM5 software for image pre-processing and statistical analysis. The 
EPI-BOLD volumes were re-aligned to correct for individual subject movement 
and were corrected for differences in slice acquisition time. The subject-mean 
EPI-BOLD images were subsequently spatially normalized to the functional EPI 
template provided by SPM5. The normalization transformations were generated 
from the subject-mean EPI-BOLD volumes and applied to the corresponding 
functional volumes. The functional EPI-BOLD volumes were transformed into 
the MNI space, an approximate Talairach space (Talairach & Tournoux 1988), 
defined by the SPM5 template, and spatially filtered with an isotropic 3D spatial 
Gaussian kernel (FWHM = 10 mm). The fMRI data were analyzed statistically, 
using the general linear model framework and statistical parametric mapping in 
a two-step random-effects summary-statistics procedure (Friston et al. 2007). We 
included the realignment parameters for movement artifact correction and a tem-
poral high-pass filter (cycle cut-off at 128 s), to account for various low-frequency 
effects. 
 At the first-level, single-subject analyses were conducted. The linear model 
included explanatory regressors modeling the sequence presentation period from 
the position of the anomaly in the HNG and LNG conditions and their correct 
counterparts in the HG and LG conditions. This was done separately for correct 
and incorrect responses. The initial part of the sequences was modeled sepa-
rately, as was the baseline and the inter-sequence-interval. The explanatory 
variables were temporally convolved with the canonical hemodynamic response 
function provided by SPM5. At the second-level, we generated single-subject 
contrast images for the correctly classified HG, LG, HNG, and LNG sequences, 
relative to the sensorimotor decision baseline. These were analyzed in a random-
effects repeated-measure ANOVA with non-sphericity correction for repeated 
measures and unequal variance between conditions. Statistical inference was 
based on the cluster-size test-statistic from the relevant second-level SPM[T] 
maps thresholded at P = .005 (uncorrected). Only clusters significant at PFWE < .05 
family-wise error (FWE) corrected for multiple non-independent comparisons, 
based on smooth random field theory (Adler 1981, Worsley et al. 1996, Adler & 
Taylor 2007, Friston et al. 2007) are described. In addition, we list the coordinates 
of local maxima and their corresponding P-values corrected for the false dis-
covery rate (Genovese et al. 2002) for descriptive purposes. 
 
 
4. Results 
 
4.1. Behavioural Results 
 
Here we start by giving a brief summary of the most important behavioral results 
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for the whole group reported in Folia et al. (2008) and then focus on the specifics 
for the sub-sample for which CNTNAP2 (SNP RS7794745) data were available. 
As in previous studies (Forkstam et al. 2008), the classification performance of the 
whole group was well above chance for both instruction types (preference 
classification: P < .001; grammaticality classification: P < .001). Standard signal 
detection analysis showed a robust d-prime effect in discriminating between G 
and NG sequences (preference: P < .001; grammaticality: P < .001). No significant 
response bias was found (preference and grammaticality classification P > .6). 
Participants did not discriminate between high and low ACS sequences (pre-
ference: P > .22; grammaticality: P > .66), and there was no significant response 
bias (preference P > .98; grammaticality: P > .8). 
 We then analyzed the performance data in terms of endorsement rate (i.e. 
item classified as grammatical independent of their actual grammaticality status). 
In other words, if the subjects acquire significant aspects of the grammar, then 
they should endorse grammatical items more often than non-grammatical items. 
Both grammaticality status and local subsequence familiarity influenced the 
endorsement rate. The endorsement rate was significantly affected by grammati-
cality status (preference: P < .001; grammaticality: P < .001), and by local sub-
sequence familiarity (preference: P < .001; grammaticality: P < .001), while the 
interaction between grammaticality status and local subsequence familiarity was 
non-significant (preference: P = .06; grammaticality: P = .11). These results show 
that grammaticality status is used for structural generalization in classifying no-
vel sequences and thus provide support for the notion that grammatical structure 
instead of subsequence, or fragment features, determine classification (Folia et al. 
2008). 
 The critical measure in the behavioral results was the preference of the par-
ticipants for grammatical, and relative aversion of non-grammatical, sequences. 
The participants only need to indicate whether they like or dislike a given 
sequence and therefore we do not need to inform them about the presence of a 
complex rule system before classification (or at any other point of the experi-
ment), which is the case in standard versions of the AGL paradigm, which uses 
grammaticality instead of preference classification. Therefore, from the subject’s 
point of view, there is no such thing as a correct or incorrect response and the 
motivation to use explicit strategies is thus minimized. The participants were also 
strongly encouraged to trust their gut-feeling in making their decisions. 
Consistent with this, the subjective reports from the structured post-experimental 
interview showed that the participants did not utilize an explicit strategy but that 
their classification decisions were based on gut-feeling. Moreover, the subjective 
ratings of perceived performance did not correlate with the actual classification 
performance (Folia et al. 2008). 
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Figure 1:  Grammaticality classification and CNTNAP2. The endorsement rates for grammatical 

and non-grammatical sequences in the T- and nonT-group. The interaction between 
grammaticality status and local subsequence familiarity was significant for the nonT-group 
(AA carriers) and not the T-group. The nonT-group thus shows greater dependence on 
local subsequence familiarity in making the grammaticality judgments than the T-group, 
despite the fact that local subsequence familiarity is not predictive for grammaticality 
status. Error bars corresponds to standard error of the mean. 

 
 Overall, the sub-sample for which CNTNAP2 data were available was 
found to behave essentially identical to the whole group and here we focus on 
their grammaticality classification performance. On the last day, the correct 
classification performance was well above chance on grammaticality classify-
cation (78 ± 19% correct, T(11) = 5.36, P < .001). Both grammaticality status and 
local subsequence familiarity influenced the endorsement rate. Repeated 
measures ANOVA showed significant main effects of grammaticality status 
(F(1,11) = 13.2, P = .004) and local subsequence familiarity (F(1,11) = 21.0, P = 
.001). We then analyzed the data with a repeated measure ANOVA with gram-
maticality status and local subsequence familiarity (ACS) as within-subject 
variables and allele (T/nonT) as between factors. Post-hoc analysis was con-
ducted where relevant. The correct classification performance was significantly 
greater than chance in both groups (T-group: T(7) = 3.34, P = .01; nonT-group: 
T(3) = 8.25, P = .004). For grammaticality classification, the three-way interaction 
between grammaticality status, local subsequence familiarity, and allele group 
was significant (F(1,10) = 4.86, P < .05) as well as the main effect of grammati-
cality status (F(1,10) = 20.5, P = .001) and local subsequence familiarity (F(1,10) = 
23.4, P = .001). No other interaction reached significance. Post-hoc analysis in the 
nonT-group revealed a main effect of grammaticality status (F(1,3) = 17.5, P = 
.02), and a significant interaction between grammaticality status and local sub-
sequence familiarity (F(1,3) = 22.6, P = .01). In the T-group, a significant main 
effect was found for both grammaticality status (F(1,7) = 11.66, P = .01) and local 
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subsequence familiarity (F(1,7) = 17.9, P = .004), while no interaction was signify-
cant (Figure 1). 
 These results show that the T- and the nonT-group behave similarly to the 
whole sample, including the development of a preference for grammaticality 
(Folia et al. 2008, Forkstam et al. 2008). However, the grammaticality classification 
performance of the T-group was independent of local subsequence familiarity 
(Figure 1), while this was not the case for the nonT-group. Thus, the absence of a 
T nucleotide in the CNTNAP2 SNP RS7794745 might be associated with a greater 
reliance on local subsequence familiarity (ACS) during classification. This, 
despite the fact that the grammaticality status is independent of local sub-
sequence familiarity, by the construction of the stimulus material, and therefore 
ACS has little, if any, predictive value with respect to grammaticality status. 
 
4.2. fMRI Results 
 
Here we briefly summarize the results reported in Folia et al. (2011). Preference 
classification compared to the sensorimotor decision baseline (Figure 2) activated 
a set of brain regions (cluster PFWE < .001) very similar to what has been observed 
in previous studies of grammaticality classification (Petersson et al. 2004, 2010, 
Forkstam et al. 2006). These activations included the inferior and middle frontal 
regions bilaterally (BA 44/45), extending into surrounding cortical regions, fron-
tal operculum, and the anterior insula. Additional prefrontal activations included 
the anterior cingulate and surrounding cortex. Bilateral posterior activations in-
cluded the inferior parietal cortex (BA 39/40, extending into the posterior superi-
or temporal (BA 22), bilaterally. Bilateral occipital activations were centered on 
the middle and inferior occipital gyri and extended into the fusiform and the pos-
terior mid-inferior temporal regions, as well as the cerebellum. Significant 
activations were also observed in the basal ganglia bilaterally, including the 
caudate nucleus, globus pallidus, and putamen. The results were similar for 
‘correctly’ preferred HG- and LG sequences (Figure 2). Large, and highly signi-
ficant, deactivations were found in the bilateral medial temporal lobe memory 
system, including the hippocampus proper (cluster PFWE < .001), replicating 
previous results for grammaticality classification (Petersson et al. 2010). 
 

 
Figure 2:  Preference classification. Brain regions engaged during ‘correct’ preference classification 

of grammatical sequences with high (HG) and low (LG) subsequence familiarity (ACS) 
relative the sensorimotor decision baseline. Adapted from Folia et al. (2011). 

HG LG 
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Figure 3:  Preference classification. Brain regions engaged by artificial syntactic anomalies (NG > 

G). Adapted from Folia et al. (2011). 
 
 In preference classification (Folia et al. 2011), as in previous studies of gram-
maticality classification (Petersson et al. 2004, 2010, Forkstam et al. 2006), artificial 
syntactic anomalies (NG > G; Figure 3) engaged a network of brain regions, 
including the left inferior and right inferior-middle frontal gyrus (left and right 
cluster PFWE < .001) centered on Broca’s region (BA 44/45). In the reverse contrast 
(G > NG), we observed no significant differences. There was no significant effect 
of local subsequence familiarity (cluster PFWE > .98), neither were there any signi-
ficant interaction (cluster PFWE > .83), consistent with our behavioral findings 
(Folia et al. 2008). 
 

 
Figure 4:  Brain regions engaged during both preference and grammaticality classification. Left: 

The NG > G effect of Folia et al. (2011) masked with the related effect observed in Petersson 
et al. (2010). Right: The overlap of the NG > G effect in preference classification (Folia et al. 
2011) masked with natural syntax related variability in the same subjects observed in 
(Folia et al. 2009). 

 
 Here, we examined the overlap between preference and grammaticality 
classification by masking the preference classification contrast (NG vs. G effect) 
from Folia et al. (2011) with the same contrast of grammaticality classification 
from Petersson et al. (2010; Figure 4 and Appendix B). We found a common 
overlap in the inferior frontal regions, centered on Broca’s region (BA 44/45) and 
extending into the frontal operculum/anterior insula, bilaterally, as well as the 
right middle frontal region (LIFG cluster PFWE = .003; RI/MFG cluster PFWE < .001). 
In addition, the anterior cingulate/supplementary motor regions were found to 
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be active in both the tasks (ACC/SMA cluster PFWE = .001; see Appendix B for 
details). Reversing the order of masking yielded identical results (LIFG cluster: 
PFWE = .003; RI/MFG cluster: PFWE < .001; ACC/SMA cluster PFWE = .001). More-
over, there was no significant difference between preference and grammaticality 
classification in any contrast, including the main effects of grammaticality status 
and local subsequence familiarity. Thus, artificial syntax processing engaged the 
same brain regions during preference and grammaticality classification, although 
there was a tendency that grammaticality classification yielded somewhat more 
robust results, highly consistent with the behavioral results (Folia et al. 2008, see 
also Forkstam et al. 2008). The same conclusion is reached when we examined the 
common overlap between artificial and natural syntax processing by masking the 
NG vs. G effect observed for preference classification with the natural-syntax-
related variability in the same subjects (Figure 4; LIFG cluster: PFWE = .001; RI/ 
MFG cluster: PFWE = .008; ACC/SMA cluster PFWE = .001), that is, the main effect 
of syntax in the 2x2 natural language experiment of Folia et al. (2009). 
 

 
Figure 5:  Brain regions differentiating the T- and the nonT-groups. Left: Group differences related 

to grammaticality classification (nonT > T). Right: Group differences related to grammati-
cal sequences of high local subsequence familiarity (nonT > T). 

 
 Finally, we explored the fMRI results of Petersson et al. (2010; Figure 4) 
with respect to differences between the T- and nonT-group. The results showed 
significantly greater activity for the nonT-group compared to the T-group in the 
left inferior frontal gyrus (BA 44/45, PFWE = .002), the left fronto-polar region (BA 
10, PFWE = .012), and the left ventral occipito-temporal region (BA 37, PFWE = .003) 
during grammaticality classification. The group difference found in Broca’s 
region was mainly related to differences between the T- and nonT-group when 
processing grammatical sequences, in particular grammatical sequences of high 
local subsequence familiarity (BA 44/45 centered on [–48, 16, –2], PFWE = .024; 
Figure 5). The results were almost identical for the preference classification data 
of Folia et al. (2011). 
 
 
5. Discussion 
 
One of the main objectives of this study was to compare the brain networks en-
gaged by preference classification and the standard grammaticality classification 



V. Folia, C. Forkstam, M. Ingvar, P. Hagoort & K.M. Petersson 
 

118 

task after implicit artificial syntax acquisition. The results show that preference 
and grammaticality classification engage virtually identical brain regions, 
consistent with previously reported behavioral findings (Folia et al. 2008, Fork-
stam et al. 2008). The theoretical advantage of preference compared to grammati-
cality classification is that there is no correct or incorrect response from the pers-
pective of the participant and at no point is there a need to inform the participant 
about the existence of an underlying generative grammar, as is the case of the 
standard grammaticality classification. Nevertheless, the results show that pre-
ference and grammaticality classification are (qualitatively) equivalent both at the 
behavioral and brain levels. In particular, Broca’s region, the left inferior frontal 
gyrus centred on BA 44/45, is active during the artificial syntax processing of 
well-formed (grammatical) sequence independent of local subsequence famili-
arity. Moreover, this region is engaged to a greater extent when a syntactic ano-
maly is present and the unification of structural treelets becomes difficult or im-
possible. The behavioral results of Folia et al. (2008) show that subjects implicitly 
acquired significant knowledge from being exposed to only grammatical 
examples and without receiving performance feedback at any stage of the experi-
ment. Moreover, the behavioral results show that participants apply implicitly 
acquired structural knowledge (independent of subsequence familiarity) and the 
corresponding fMRI results show that brain regions central to natural syntax 
processing are engaged (Folia et al. 2011), also when they are not explicitly 
instructed or receives any information concerning the existence of a generative 
grammar. The results of this study show that the participants do so at levels com-
parable to grammaticality classification. Thus, the structural mere-exposure effect 
is a robust phenomenon at the behavioral (Folia et al. 2008, Forkstam et al. 2008) 
and brain level (Folia et al. 2011). In other words, the effects related to artificial 
syntax processing in the left inferior frontal region (BA 44/45) were essentially 
identical when we masked these with activity related to grammatical classify-
cation in the same subjects, as well as when masked with activity related to 
natural syntax processing in the same participants. Our results are also highly 
consistent with functional localization of natural language syntax in the left 
inferior frontal gyrus (Bookheimer 2002, Petersson et al. 2004, Hagoort 2005). 
 We used a simple right-linear unification grammar with a finite vocabulary 
of terminal symbols and a finite lexicon of primitive trees (treelets, i.e. structured 
lexical items; see materials and methods section for details). From an abstract 
point of view, unification (Vosse & Kempen 2000) is a way to implement compu-
tational control in lexicalist grammars (Forkstam & Petersson 2005, Petersson et 
al. 2005). More specifically, for a given lexical item of the grammar used in this 
study, for example [sj, [T, sk]], the features sj, sk can be interpreted as control feat-
ures and T as a surface feature. Here, two lexical items, [si, [R, sj]] and [sk, [Q, sl]], 
unify (i.e. combine or merge) through a unification operation U if and only if sj = sk, 
or sl = si, a process which is incremental and recursive. For example, if the 
structure [s1, [M, [s2, [S, s2]]]] is already present in the unification space when the 
lexical item [s2, [V, s4]] is retrieved, a larger combinatorial structure can be formed 
by unification U([s1, [M, [s2, [S, s2]]]], [s2, [V, s4]]) = [s1, [M, [s2, [S, [s2, [V, s4]]]]]], 
and so on. We note that the control features have acquired a particular functional 
role in this picture, which can be described in terms of governing the unification 
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process based on selecting the structural arrangement that can be integrated. In a 
certain sense therefore, the finite-state control has been distributed over the 
lexicon among the lexical items in terms of control features. In essence, this re-
traces a major trend in theoretical linguistics in which more of the grammar is 
shifted into the lexicon and the distinction between lexical items and grammatical 
rules is beginning to vanish (cf. Joshi & Schabes 1997, Vosse & Kempen 2000, 
Jackendoff 2002, 2007). In this context, Broca’s region can be considered as a brain 
region that gradually controls the outcome of parsing or generation. A related, 
but different proposal has recently been put forward by Bornkessel-Schlesewsky 
et al. (2010), who argue that argue that the left inferior frontal region, including 
Broca’s region, can be described as a brain region that controls the outcome of 
different processes from general to specific along the anterior-posterior direction. 
Bornkessel-Schlesewsky et al. note that their proposal is partly compatible with 
Hagoort’s (2005) assumption of a unification gradient within the left inferior 
frontal gyrus. 
 
5.1. A Genetic Basis for Implicit Acquisition of Structured Sequence Knowledge 
 
Two facts about language learning seem indisputable: (i) only humans acquire 
language, no other species, and thus there must be some biological element that 
accounts for this ability; (ii) it is also clear that no matter how much of a head 
start the learner gains through innate constraints, language is learned. Both 
innate endowment and learning contribute to language acquisition, the result of 
which is a complex and sophisticated body of linguistic knowledge (Chomsky 
1963, Chomsky & Miller 1963). It is clear that unless restrictions are placed on the 
available “space of possible languages” (i.e. the model space) and/or the charac-
teristics of the acquisition mechanism (i.e. the learning dynamics), “learning” 
would simply reduce to storing experience (Petersson 2005a, Folia et al. 2010). 
Much of the current discussion of language acquisition concerning the nature of 
innate constraints is focused on whether these are linguistically specific or not 
(e.g. Chomsky 1986, 2005; however, see Nowak et al. 2002, Chomsky 2007, Chris-
tiansen & Chater 2008, Hornstein 2009). We think this is an empirical issue — 
however, what is clear is that no interesting, complex form of learning is possible 
without constraints (Vapnik 1998, Jain et al. 1999). In this context, Yang (2004) 
cites an interesting insight by Jerry Fodor (2001: 107–108), “Chomsky can with 
perfect coherence claim that innate, domain specific [constraints] mediate lang-
uage acquisition, while remaining entirely agnostic about the domain specificity 
of language acquisition mechanisms”. What can this possibly mean? Folia et al. 
(2010) outline several possibilities. For instance, the learning/developmental 
dynamics might be domain-general in form, but in the context of language 
acquisition, operate on a model space that is restricted by innate, language-
specific constraints. By language-specific constraints we mean constraints which 
play no role in cognition outside the language faculty. No one doubts the 
existence of innate constraints, rather the issue is whether the innate constraints 
are specific to language or not. In fact, Folia et al. argue that in order to rule out 
innate, language-specific constraints completely, it is necessary to establish that 
none of the following candidates carry such constraints: (1) the initial state of the 
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learner; (2) the model space; (3) the learning/developmental dynamics; (4) the re-
presentational space; or (5) the representational dynamics — a difficult empirical 
task. Alternatively, if sufficient non-language-specific constraints for language 
acquisition are discovered, the necessity of language-specific constraints recedes. 
 In this fMRI study we took advantage of the fact that a subsample of our 
participants (Petersson et al. 2010, Folia et al. 2011) was part of the BIG project at 
the Donders Centre for Cognitive Neuroimaging and the Department of Human 
Genetics of the Radboud University Nijmegen. This allowed us to explore the 
potential role of the CNTNAP2 gene in artificial syntax acquisition at both the 
behavioural and the brain level. This small scale investigation of possible 
CNTNAP2 related effects (more precisely, effects related to the common poly-
morphism observed at the single nucleotide polymorphism RS7794745) in the 
context of artificial syntax acquisition and structured sequence processing 
suggests that the T-group (AT- and TT-carriers) was sensitive to the grammati-
cality status of the sequences independent of local subsequence familiarity. This 
might mean that individuals with this genotype acquire structural knowledge 
more rapidly, utilize the acquired knowledge more effectively, or are better able 
to ignore cues related to local subsequence familiarity in comparison to the nonT-
group (AA carriers). This suggests differences in the implicit acquisition process 
between the two groups. Another possibility is that, if the two groups eventually 
achieve the same level of successful overall classification at the end acquisition, 
the nature of sequence processing might be different, since only the nonT-group 
is sensitive to local subsequence familiarity (which is not predictive of the gram-
maticality status). In contrast, the T-group relies only (or at least to a greater 
extent) on their implicitly acquired structural knowledge, which they successfully 
generalize to novel items. This suggests a qualitative, rather than a quantitative, 
processing difference between groups. Parallel to these behavioral findings, we 
observed significantly greater activation in Broca’s region centered on the left BA 
44/45 as well as the left frontopolar region (BA 10) in the nonT- compared to the 
T-group. The meaning of these fMRI differences between the two groups is un-
clear and requires further research for a full understanding. Nevertheless, these 
initial efforts suggest that it is worthwhile to investigate the genetic basis of the 
capacity for structured sequence processing in large-scale studies by investi-
gating the relevant biological pathway(s) (Konopka & Geschwind 2010, Newbury 
& Monaco 2010, Pezawas & Meyer-Lindenberg 2010, and references therein). 
However, given that CNTNAP2 has been linked to specific language impairment 
(SLI) and provides a mechanistic link between clinically distinct syndromes in-
volving disrupted language (Vernes et al. 2008), and assuming that the structured 
sequence learning mechanism investigated by artificial grammar learning is 
shared between artificial and natural syntax acquisition, the present behavioral 
and fMRI results might suggest that the FOXP2–CNTNAP2 pathway is somehow 
related to the acquisition of structured sequence knowledge as well as individual 
differences in artificial and natural syntax acquisition. 
 
5.2. Language as a Neurobiological System and Bounded Recursion 
 
Cognitive neuroscience approaches the brain as a computational system — a sys-
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tem conceptualized in terms of information processing. This entails the idea that 
a subclass of its physical states is viewed as representations and that transitions 
between states can be understood as a process implementing operations on the 
corresponding representational structures. It is uncontroversial that any 
physically realizable computational system is necessarily finite with respect to its 
memory organization and that it processes information with finite precision (e.g., 
due to the presence of internal noise or architectural imprecision; Turing 1936a, 
1936b, Minsky 1967, Savage 1998, Koch 1999). We have previously indicated why 
this state of affairs renders the Chomsky hierarchy for classical cognitive models 
(i.e. Church–Turing computational models) less relevant to neurobiological 
systems from a neurobiological processing perspective (Petersson 2005a, 2005b, 
2008, Petersson et al. 2010). The Chomsky hierarchy is in essence a memory 
hierarchy and it distinguishes between (a few) complexity classes (and corres-
ponding grammar classes) in the context of infinite (unbounded) memory. If we 
view the faculty of language as a neurobiological system, given its finite storage 
capacity and finite precision computation, the Chomsky hierarchy is less relevant 
— it does not make the relevant distinctions. However, bounded versions of the 
different memory architectures entailed by the hierarchy might be relevant 
(although we think these should not be taken too seriously). For example, the 
unbound push-down stack is a memory architecture corresponding to the class of 
context-free grammars, and it is conceivable that a bounded push-down stack is 
used in language processing, as suggested by Levelt (1974) as one possibility. Of 
course, this does not imply that the Chomsky hierarchy is irrelevant for compu-
tational theory (Davis et al. 1994, Pullum & Scholz 2010) or competence grammars 
in theoretical linguistics (Chomsky 1963). However, we note that modern com-
plexity theory, which is more closely related to processing complexity rather than 
the Chomsky hierarchy, makes fine-grained distinctions (Cutland 1980, Papadi-
mitriou 1993, Savage 1998, Hopcroft et al. 2000, Arora & Barak 2009) and might, 
perhaps, be useful from a neurobiological processing perspective (although this 
is unclear). 
 With the advent of generative grammar, recursion became key to achieving 
discrete infinity (e.g. Chomsky 1956, 1963). Accordingly, early psycholinguistics 
devoted considerable effort to the study of complex recursive constructions, 
especially in the form context-free or more general grammars (Chomsky 1963, 
Levelt 1974). However, it was theoretically suggested (e.g. Chomsky 1963: 329–
333, 390), and soon empirically confirmed, that unbound (i.e. infinite) recursive 
capacity is not realizable in human performance (~actual cognitive processing). 
Thus, it was found that sentences with more than two center-embeddings are 
read with the same intonation as a list of random words (Miller 1962), cannot 
easily be memorized (Miller & Isard 1964, Foss & Cairns 1970), are difficult to 
paraphrase (Hakes & Cairns 1970, Larkin & Burns 1977) and comprehend (Wang 
1970, Hamilton & Deese 1971, Blaubergs & Braine 1974, Hakes et al. 1976), and 
are, paradoxically, judged to be ungrammatical (Marks 1968). 
 Recursion is once again attracting attention as an hypothesized key feature 
of the language faculty, with the suggestion that unbounded recursion may be 
the only property of the language faculty that is both species-specific and 
domain-specific (Hauser et al. 2002). Nevertheless, in order to preserve the essen-
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tial feature of the notion of discrete infinity (unbounded “human creativity”), 
Chomsky introduced the notion of a competence grammar, “a device that enu-
merates […] an infinite class of sentences with structural descriptions” (Chomsky 
1963: 329–330, device A in Fig. 1). The competence grammar is distinct from the 
language acquisition and processing (“performance”) system (Chomsky 1963: 
329–330, devices C and B, respectively, in Fig. 1). One consequence of grammars 
or computational models that support unbounded recursion (and infinite 
precision processing), is that they overgeneralize, by generating arbitrarily long 
sequences (and correspondingly complex sequence structures) that are never 
used, and in fact, has never been observed. This might or might not be a problem, 
depending on ones perspective on these issues. However, this is not a problem 
for bounded recursive procedures (or equivalent analogues, Petersson 2005b, 
2008). As previously noted, one uncontroversial limitation on actual neurobio-
logical systems is their finiteness, both in terms of memory and processing 
precision. For instance, Chomsky remarks that both language processing and 
language acquisition, “which represents actual performance, must necessarily be 
strictly finite”, that is, a finite-state machine (Chomsky 1963: 331–333); and 
continues: “Nevertheless, the performance of the speaker or hearer must be 
representable by a finite automaton of some sort” (p. 390). However, he further 
argued that “any interesting realization of B [i.e. a finite-state processing system] 
that is not completely ad hoc will incorporate A [i.e. a competence grammar] as a 
fundamental component”. One example of this idea is a (e.g., universal) Turing 
machine with finite tape-memory (Petersson et al. 2010: fn. 3). Another example is 
a (e.g., universal) register machine with a finite number of registers (Petersson 
2005b). In both cases, it could be argued that the finite-state control unit, in a 
certain sense, represents unbounded ‘knowledge’ (or competence grammar) as 
well as unbounded recursive potential. However, this knowledge cannot be fully 
expressed, and the recursive potential not fully realized, because of memory 
limitations. But it could be argued, as Chomsky (1963) does, that if we imagine 
that hardware constraints can be disregarded (abstracted away), then the system 
instantiates the equivalent of a competence grammar, and thus unbounded 
‘knowledge’, in this sense. Perhaps one way to interpret this idea, when applied 
to the language faculty, is in analogy with frictionless mechanics in physics — it 
retains instrumental value, but is not a correct description of the underlying 
reality (e.g., a correct model of friction is an atomic, mainly electromagnetic phe-
nomenon). 
 Finite-state and finite-precision computation devices, including real neural 
networks, are sufficient to handle bounded recursion of general type, so there is 
no real problem here from the point of view of language processing 
(‘performance’). We think this opens the possibility for lateral thinking on 
matters related to the knowledge of language (‘competence’). We argue that more 
realistic neural models provide natural bounds on memory and on processing as 
well as architectural precision, and therefore, on the specification of the language 
faculty viewed as a neurobiological system (cf. Petersson et al. 2010). Generally, 
analog dynamical systems provide a non-classical information processing alter-
native to classical computational architectures (Siegelmann & Fishman 1998). In 
particular, network approaches offer possibilities to model cognition within a 
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non-classical dynamical systems framework that is natural from a neurobiolo-
gical perspective. It is known theoretically, that under the assumption of infinite 
precision processing, Church-Turing computable processes can be embedded in 
dynamical systems instantiated by neural networks (e.g. Siegelmann 1999). For 
example, the discrete-time recurrent network can be viewed as a simple network 
analogue of the finite-state architecture (Petersson 2005b, Petersson et al. 2005). In 
general, the recurrent neural network architecture can be viewed as an archi-
tecture with a finite number of dynamic, analog registers (e.g., the “membrane 
potential”) that processes information interactively. In the simplest case, compu-
tations are determined by the network topology and by the transfer functions of 
the processing units, as well as the set of dynamical variables associated with 
these processing units. Moreover, important aspects of both short-term and long-
term memory are co-localized with processing infrastructure (Petersson 2005a, 
Petersson et al. 2009). From a neurobiological perspective, therefore, it seems 
natural to try to understand language acquisition and language processing in 
terms of adaptive dynamical systems (Petersson 2005a, Petersson et al. 2009, 
2010). Thus, an important challenge in the neurobiology of syntax is to under-
stand syntax processing in terms of noisy spiking network processors. Similar, 
independent, accounts have been put forward by Culicover & Nowak (2003) in 
their Dynamical Grammar as well as others (Christiansen & Chater 1999, Rodri-
guez et al. 1999, Rodriguez 2001,). 
 What are the implications of this for theoretical models of language and 
grammar? The Chomsky hierarchy only has theoretical meaning in the context of 
infinite memory resources. Rather than giving unbounded recursion the centre 
stage, some of the important issues in the neurobiology of syntax, and language 
more generally, are related to the nature of the neural code (i.e. representation), 
the character of human on-line processing memory, and noisy neural finite 
precision computation (Koch 1999, Trappenberg 2010). Recurrent connectivity is 
a generic feature of brain network topology (Nieuwenhuys et al. 1988). Thus, 
recursive processing is a latent capacity in almost any neurobiological system and 
it would be surprising, indeed, if this feature would be unique to the faculty of 
language. We noted that one relevant issue from the point of view of natural 
language is the human capacity to process patterns of non-adjacent dependencies 
— not arbitrarily ‘long’ non-adjacent dependencies — there is a definite natural 
upper-bound set by the brain and its underlying neurophysiology. We can thus 
choose to work with any fruitful formal syntax framework as long as this serves 
its purpose, for example, to capture the presence of bounded relational patterns 
between lexical items in compositionally constructed sentences, to elaborate para-
meterized model of language acquisition or, if we are not interested in hardware 
constraints and implementation issues, abstract away the implementation level 
and explore ‘frictionless’ models of the language faculty. 
 
 
6. Conclusion 
 
One of the objectives of this study was to compare the brain networks engaged 
by artificial syntax processing during preference and grammaticality classifi-
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cation after implicit artificial syntax acquisition. The results show that preference 
and grammaticality classification engage virtually identical brain regions, consis-
tent with previously reported behavioral findings. In particular, the left inferior 
frontal region centered on BA 44/45 (Broca’s region) is active during artificial 
syntax processing of well-formed sequences independent of local subsequence 
familiarity. The effects related to artificial syntax in the left inferior frontal region 
(BA 44/45) were essentially identical when masked with activity related to 
natural syntax obtained in the same subjects. Thus, the current fMRI results show 
that artificial syntax processing engages brain regions central to natural syntax 
processing. We suggest, therefore, that the left inferior frontal region is a generic 
on-line sequence processor that unifies information from various sources in an 
incremental and recursive manner. Finally, we explored CNTNAP2 related 
effects in artificial syntax acquisition and structured sequence processing. The 
results suggest that AT- and TT-carriers (at the CNTNAP2 SNP RS7794745) were 
sensitive to the grammaticality status independent of local subsequence 
familiarity, while AA-carriers were sensitive to local subsequence familiarity. We 
observed significantly greater activation in Broca’s region and the left frontopolar 
region (BA 10) in the AA-carriers compared to AT- and TT-carriers. The meaning 
of these behavioural and fMRI findings is unclear and requires further investi-
gation. Nevertheless, these initial efforts suggest that it is worthwhile to try to 
understand the genetic basis for language as well as the capacity for structured 
sequence processing in large-scale studies by investigating the relevant biological 
pathway(s). 
 
 
 
 
Appendix A:  Example stimuli used for preference and grammaticality 

classification 
 

Stimulus Categories Classification Items 
High Grammatical (HG) VXVRXSVS 

MSSSVRXSV 
VXSSVRXVRXSV 
MVRXSSSSVS 

Low Grammatical (LG) VXSVS 
MSSSSSV 
VXSVRXRRRR 
MSSSVRXRRRRM 

High Non-Grammatical (HNG) VRVRXSSS 
MRXSSSV 
VRXRXSVRXRM 
MVXSVRXVRXRM 

Low Non-Grammatical (LNG) VRXRXRM 
VXVRXVXRM 
MSVRXSXRRM 
MSSVRSSSVS 



Artificial Syntax 
 

125 

Appendix B: Overlap between preference and grammaticality classification 
 
Anatomical region Brodmann’s area [x y z] Z-score P-value 
Left Inferior Frontal Cluster    .003 
L inferior frontal gyrus BA 44 –54 14 2 4.07 .013 
 BA 44/45 –60 20 16 3.90 .016 
 BA 44/45 –52 18 22 3.81 .019 
 BA 45 –60 20 10 3.54 .028 
 BA 45 –46 22 22 3.35 .039 
 BA 45/47 –56 18 2 4.02 .014 
 BA 47 –42 20 –10 3.90 .016 
L frontal operculum/anterior insula BA 49/13/15 –38 18 –10 4.02 .010 
Right Inferior-Middle Frontal Cluster    < .001 
R inferior frontal gyrus BA 44/45 50 24 18 3.65 .023 
 BA 45 56 30 12 3.54 .028 
 BA 45/47 58 32 0 3.42 .035 
 BA 47 46 32 –4 5.08 .010 
 BA 47/11 48 44 –14 3.58 .026 
R mid-anterior insula BA 13/15 40 20 –6 4.15 .011 
R frontal operculum/anterior insula BA 49/15 36 20 –10 3.87 .017 
 BA 49/13/15 32 26 0 3.57 .027 
R inferior-middle frontal gyrus BA 45/46 46 34 12 3.41 .036 
 BA 45/46 48 30 16 3.39 .037 
 BA 45/46 58 34 16 3.37 .038 
 BA 45/46 58 34 8 3.23 .047 
 BA 46 52 40 18 3.27 .044 
Medial Prefrontal-Frontopolar Cluster    .001 
Anterior cingulate/supplementary motor BA 8 0 26 52 4.41 .010 
 BA 8/32 6 30 44 4.60 .010 
 BA 8/32 14 16 48 3.38 .037 
 BA 6/8/32 –6 14 54 4.04 .013 
Anterior cingulate cortex BA 32 8 34 38 4.53 .010 
 BA 32 10 32 24 4.27 .010 
 
Local maxima observed for correctly classified non-grammatical vs. grammatical items. Cluster P-

values are family-wise error corrected and P-values of local maxima are corrected based on 
the false-discovery rate. 
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