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Abstract. Users are increasingly dependent on mobile devices. However, current

authentication methods like password entry are significantly more frustrating and

difficult to perform on these devices, leading users to create and reuse shorter

passwords and pins, or no authentication at all. We present implicit authentication

- authenticating users based on behavior patterns. We describe our model for

performing implicit authentication and assess our techniques using more than

two weeks of collected data from over 50 subjects.
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1 Introduction

As mobile devices quickly gain in usage and popularity [20], more consumers are re-

lying on these devices, particularly smartphones, as their primary source of Internet

access [18, 22]. At the same time, continued and rapid increase of online applications

and services results in an increase in demand for authentication. Traditional authenti-

cation via password input and higher-assurance authentication through use of a second

factor (e.g., a SecurID token) both fall short in the context of authentication on mo-

bile devices, where device limitations and consumer attitude demand a more integrated,

convenient, yet secure experience [8].

Password-only authentication has been under attack for years from phishing scams

and keyloggers. Using a second factor as part of the authentication process provides

higher assurance. This practice is already mainstream within enterprises and is slowly

entering the consumer market, but still has issues with usability and cost to overcome.

Moreover, tokens like SecurID are primarily a desktop computing paradigm. The trend

of separate devices like media players, Internet devices, e-readers, and phones consoli-

dated into one device comes from a growing desire to carry fewer devices and is at odds

with the idea of carrying a separate device specifically for authentication.

We propose implicit authentication, an approach that uses observations of user be-

havior for authentication. Most people are creatures of habit - a person goes to work in

the morning, perhaps with a stop at the coffee shop, but almost always using the same

route. Once at work, she might remain in the general vicinity of her office building until

lunch time. In the afternoon, perhaps she calls home and picks up her child from school.



In the evening, she goes home. Throughout the day, she checks her various email ac-

counts. Perhaps she also uses online banking and sometimes relies on her smartphone

for access away from home. Weekly visits to the grocery store, regular calls to fam-

ily members, etc. are all rich information that could be gathered and recorded almost

entirely using smartphones.

For the reasons above, implicit authentication is particularly suited for mobile de-

vices and portable computers, although it could be implemented for any computer.

These devices are capable of collecting a rich set of information, such as location,

motion, communication, and usage of applications and would benefit from implicit au-

thentication because of their text input constraints. Furthermore, usage of the device

varies from person to person [7] measured through battery and network activity. This

information could be used to create an even more detailed profile for each user.

Implicit authentication could be used on medical devices, which sometimes share

the input constraints of mobile devices, used to access and manipulate patient records.

Account sharing is common on these devices, which could violate HIPAA requirements

for patient privacy. Implicit authentication can help protect the privacy of patient records

by authenticating users conveniently and in a timely manner under stressful situations.

Military personnel, whose daily habits are more routine than the average user, can also

benefit from the application of implicit authentication towards their equipment.

For general authentication needs, implicit authentication 1) acts as a second factor

and supplements passwords for higher assurance authentication in a cost-effective and

user-friendly manner; 2) acts as a primary method of authentication to replace pass-

words entirely; 3) provides additional assurance for financial transactions such as credit

card purchases by acting as a fraud indicator. We note that in the latter scenario, the act

of making the transaction may not require any user action on the device.

In this paper, we focus on mobile devices and present and evaluate techniques for the

computation of an authentication score based on a user’s recent activities as observed by

the device in her possession. We also describe an architecture for implicit authentication

and discuss our findings from tracking habits of over 50 users for at least two weeks

each. Our experimental results demonstrate the power of combining multiple features

for authentication. We also compile a taxonomy of adversarial models, and show that

our system is robust against an informed adversary who tries to game the system by

polluting a feature.

Our method for scoring is based on identification of positive events and boosting the

score when a ”good“ or habitual event is observed (e.g., buying coffee at the same shop

in a similar time every day) and lowering the score upon detection of negative events.

Negative events could include those not commonly observed for a user, such as calling

an unknown number, or an event commonly associated with abuse or device theft, such

as sudden changes in expected location. The passage of time is treated as a negative

event in that scores gradually degrade. When the score falls below a threshold, the user

must explicitly authenticate, perhaps by entering a passcode, before she can continue.

Successfully authenticating explicitly will boost the score once more. The threshold

may vary for different applications depending on security needs.



1.1 Related Work

Two common approaches to addressing user management of an increasing number of

service credentials exist: 1) reducing the number of times the user needs to authenticate

and 2) biometrics.

Solutions such as Single Sign-On (SSO) and password managers may reduce the

problem of frequent authentication, but they do not identify the user but rather the de-

vice. Therefore, SSO does not defend well against theft and compromise of devices, nor

does it address voluntary account sharing.

According to a study on user perception of authentication on mobile devices, Furnell

et al. [8] found that users want a transparent authentication experience that increases

security and “authenticates the user continuously/periodically throughout the day in

order to maintain confidence in the identity of the user”. These users were receptive to

biometrics and behavior indicators, but not to security tokens.

Some form of implicit authentication exists already in the form of location-based ac-

cess control [19, 5], or biometrics, notably keystroke dynamics and typing patterns [15,

14, 17]. However, these methods are not easily translatable to mobile devices which

possess significantly different keyboards and often provide auto-correction or auto-

complete features. More recently, accelerometers in devices have been used to profile

and identify users. Chang et al. [4] used accelerometers in television remote controls

to identify individuals. Kale et al. [13] and Gafurov et al. [9] used gait recognition to

detect whether a device is being used by the owner.

These biometrics and location-based approaches are complementary to our work,

as implicit authentication can potentially utilize biometrics as features in computing the

authentication score.

The convergence of multiple sources of data is another approach. Combination of

multiple biometric factors was used to generate the authentication decision or score [3,

2]. Greenstadt and Beale [10] noted a need for “cognitive security” in personal de-

vices. Specifically, they proposed a multi-modal approach “in which many different

low-fidelity streams of biometric information are combined to produce an ongoing pos-

itive recognition of a user”. Our efforts are a step forward in the direction of realizing

the vision laid out in [10] and expand our preliminary work [12].

2 Adversarial Models

Adversaries vary in terms of roles, incentives, and capabilities.

Roles. Strangers may steal the legitimate user’s device or find it in a public place.

Friends or co-workers may happen to get hold of the legitimate user’s device. Similarly,

family members may get hold of the legitimate user’s device. Enemies or competitors

may try to reap information from the victim’s device, e.g., in the case of political or

industrial espionage.

Incentives. A financially-driven adversary may wish to use resources associated with

the captured device. Such an adversary can benefit in the following ways:



(a) She can make free phone calls or browse the web for free (but at the owner’s ex-

pense) or simply use the device as a free recreational device.

(b) She may try to gain access to sensitive information such as the user’s SSN and bank

account, and reap benefits through means of identity theft or stealing money from

the user’s bank account.

(c) She can derive benefit from resale of the device or hardware components.

An adversary may be driven by curiosity. Nosy friends, co-workers or family mem-

bers may try to read the legitimate user’s emails or SMS messages, or examine her

browsing or phone call history. In the case of espionage, the adversary may try to ob-

tain sensitive information from the device or through the ability to access the owner’s

accounts. We refer to such an adversary as the curious adversary.

An adversary may be motivated by the desire to perform sabotage, in which the

adversary does not reap any financial gain directly, but causes harm to the victim. For

example, the adversary can log onto a social network as the legitimate owner, and pub-

lish embarrassing remarks.

An adversary may wish to use the device to protect her anonymity, for example, if

the adversary is involved in drug dealing, terrorist or other illegal activities.

Capabilities. The uninformed adversary is unaware of the existence of implicit authen-

tication. After capturing the device, an uninformed adversary is likely to use the device

as her own, or use it in a straightforward way to achieve various incentives as described

in Section 2.

The informed adversary is aware of the existence of implicit authentication, and may

try to game the system. For example, the adversary can try to immitate the legitimate

user’s behavior. It may be easier for the adversary to immitate the legitimate user’s

behavior is she is a friend or family member of the legitimate user. The same task is

harder for a stranger who steals the user’s device or picks it up in a public place. The

informed adversary’s power depends on how many features she can pollute.

A more powerful adversary may infect the device with malware. Persistent malware

is able to control and observe all events over time and could potentially mimic the

victim’s behavioral patterns. It is also possible for the malware to log keystrokes to gain

access to sensitive account information, such as login credentials for banks. Malware

defense is outside the scope of this paper, and should be seen as an orthogonal issue.

We refer readers to [11] for a treatment of mobile malware defenses.

3 Data Sources and Architecture

Implicit authentication can potentially employ a wide variety of data sources to make

authentication decisions. For instance, modern smartphones provide rich sources of

behavioral data, such as: 1) Location and (potentially) co-location. 2) Accelerometer

measurements. 3) WiFi, Bluetooth or USB connections. 4) Application usage, such as

browsing patterns and software installations. 5) Biometric-style measurements, such

as typing patterns and voice data. 6) Contextual data, such as the content of calendar



entries. 7) Phone call patterns. Also, auxiliary information about the user might be an-

other source of data for implicit authentication. For instance, a user’s calendar held in

the cloud could be used to corroborate mobile phone data.

The system architecture determines whether part or all data collected is saved on

the device, in the cloud, or held by the service provider or carrier. We explain some

possible architectural choices and discuss their pros and cons.

The mobile device itself can make authentication decisions to decide whether a

password is necessary to unlock the device or use a certain application. In this case, data

can be stored locally, advantageous for privacy. One can also use local authentication

to access a remote service, for instance by using the SIM card to sign and send an

authentication decision (or score) to the service provider. While this approach protects

the user’s privacy, it is not safe against theft and corruption of devices. If the device is

captured, an attacker may be able to obtain the data stored in the memory and learn the

user’s behavioral patterns. As mobile devices are battery- and storage-constrained, the

authentication score must be efficient to compute.

Another possibility is that a trusted third party be in charge of making authentica-

tion inferences and communicating trust statements to qualified service providers. For

example, a carrier, who has access to much of the data needed for implicit authentica-

tion and has already established a trust relationship with the consumer, could naturally

serve in the trusted third party role. It is also possible for carriers to provide data to third

parties entrusted with the analysis of data and the making of authentication decisions.

In all approaches, even with data held locally, there is potential for a privacy breach.

Some mitigating measures would be: 1) removing identifying information (such as

names or phone numbers) from the data being reported; 2) use a pseudonym approach,

e.g., “phone number A, location B, area code D”; 3) use coarse-grained or aggregate

data, e.g., reporting a rough geographic location rather than precise coordinates, and

reporting aggregate statistics rather than full traces. We will see later that one can adopt

measures like these and yet still retain utility for implicit authentication purposes. It

would also be interesting to investigate how to apply differential privacy techniques [6].

4 Algorithm

Learning
Algorithm

Recent
Behavior

Score

Past
Behavior

User
Model

Fig. 1: Architecture.

Figure 1 outlines the framework of the machine learning algorithm. We first learn a

user model from a user’s past behavior which characterizes an individual’s behavioral

patterns. Given a user model and some recently observed behavior, we can compute the

probability that the device is in the hands of the legitimate user. We use this probabil-

ity as an authentication score. The score is used to make an authentication decision:



typically, we can use a threshold to decide whether to accept or reject the user, and the

threshold can vary for different applications, depending on whether the application is

security sensitive. The score may also be used as a second-factor indicator to augment

traditional password-based authentication.

4.1 Modelling User Behavior

The user model should characterize the user’s behavioral patterns. For example, how

frequently the user typically makes phone calls to numbers in the phone book, where

the user typically spends time, etc.

Modelling independent features. We consider an independent feature model by assum-

ing independence between features such as phone calls, location, browser usage, etc.

In general, the user model may also consider combinations of different indicators.

For example, given that the user is in her office and has received a call from number A,

then with 90% probability, she will send an email to address B in the next 10 minutes.

Dependency between these features is left to future work because we have only

1 ∼ 2 weeks of training data for each user, and this is insufficient to model complex

dependencies between features – an attempt to do this may easily result in overfitting.

A user’s behavior typically depends on the time of day and day of week. For exam-

ple, one user might place and receive frequent phone calls in the afternoon, but she may

not have much phone activity at night, e.g., between 11pm and 8am. People are gener-

ally at work in the same location on weekdays, but their locations vary on weekends.

In our experiments, we only model the time-of-day effect, as the scale of data ( 1 ∼ 2

weeks for each user) is insufficient for us to model the day-of-week effect.

In our approach we study k independent features. Each feature can be represented

by a random variable, V1, V2, . . . , Vk. Example of features include:

V1 := time elapsed since last good call

V2 := number of times bad calls occur per day

V3 := GPS coordinates

In the above example, a good call is a call made to or received from a known number

such as a number from the contact list. By contrast, a bad call is a call made to an

unknown number.

A user model is the combination of k probability density functions conditioned on

the variable T = (time of day, day of week):

user model :=
[

p(V1|T ), p(V2|T ), . . . , p(Vk|T )
]

The learning algorithm in Figure 1 basically estimates the density functions for each

feature conditioned on the time-of-day and day-of-week, thereby forming a user model.

4.2 Scoring Recent Behavior

Given a user model and reported recent behavior, the scoring algorithm outputs a score

indicating the likelihood that the device is in the hands of the rightful owner.



Scoring independent features. A user’s recent behavior may be described by a tuple

(t, v1, v2, . . . , vk)

where t denotes the current time, and v1, . . . , vk denote the values of variables (V1, . . . , Vk)
at time t. Assume features V1, . . . , Vk are independent, then we define the score to be

probability (or probability density function) of observing recent behavior v1, . . . , vk at

time t. As we assume independence between features, the probability can be computed

by multiplying the probabilities for each individual feature:

score := p(v1|t) · p(v2|t) · . . . · p(vk|t)

For convenience, we overload the variable t above to denote the time-of-day and day-

of-week pair corresponding to the current time t.

4.3 Selection of Features

We extract several features from the data collected. These features fall within three cat-

egories: 1) frequency of good events; 2) frequency of bad events; 3) location. Note that

although not studied in this paper, one can also incorporate numerous other features

into our implicit authentication system, such as the user’s typing patterns, calendar,

accelerometer patterns, etc. We now explain how we model the above-mentioned cate-

gories of features.

Frequency of good events. Good events are events that positively indicate that the de-

vice is in the hands of the legitimate user, for example, making a phone call to a family

member, or browsing a familiar website.

To model the frequency of good events, we consider the feature G := time elapsed

since last good event. Within this category, we consider three sub-features,

Gphone := time elapsed since last good phone call

Gsms := time elapsed since last good SMS sent

Gbrowser := time elapsed since last good website visited

The above features allow us to implement the idea that the authentication score

should decay over time if no good events occur. Moreover, the rate of decay depends

on the time of day and day of week. If a user typically makes frequent phone calls in

the afternoon, then the score should decrease faster in the afternoon during periods of

inactivity. By contrast, if the user typically makes no phone calls between 12am and

8am, then the score should decrease more slowly over this period of time.

In the training phase, we learn the distribution of the variables Gphone, Gsms, Gbrowser

conditioned on the time-of-day. During the scoring phase, suppose that at time t, the

lapse since the last good event is x minutes. Then the score for this feature at time t can

be computed as below:

SG(x, t) := Pr[G ≥ x|T = t] (1)

Basically, the score for this feature is the likelihood that one sees a lapse of x or longer

since the last good event around time t of the day. In our implementation, we use the

empirical distribution and a piecewise linear function to estimate probabilities.



Frequency of bad events. Bad events are those that negatively indicate that the legiti-

mate owner is using the device. For example, making a call to an unknown number or

visiting an unknown URL is a bad event. We consider the feature B := number of bad

events within the past k hours, for example,

Bphone := number of bad phone calls in the past k hours

Bsms := number of bad SMS msgs sent in the past k hours

Bbrowser := number of bad URLs visited in the past k hours

In the training phase, we learn the distribution of the variables Bphone, Bsms and Bbrowser.

In the scoring phase, suppose the number of bad events within the past k hours is x at

time t. We compute a score for this feature as below, indicating the likelihood of seeing

at least x bad events within the past k hours.

SB(x, t) := Pr[B ≥ x|T = t]

As bad events occur less frequently in the training data than good events, and their

correlation with time-of-day is also less significant, we did not model the time-of-day

effect for bad events. In the implementation, we let k = 24 hours, that is, 1 day.

Location. We model a user’s location using GPS coordinates collected. We also col-

lected the user’s wifi connections and cellular tower IDs which approximate the user’s

location. However, these features are sporadic and less fine-grained than GPS coordi-

nates, and represent a subset of information provided by GPS. Therefore, we only use

GPS coordinates as part of our user model.

We use a Gaussian Mixture Model (GMM) [16] to model a user’s location around

a certain time-of-day. We divide the day into 6 hour time epochs, and use the standard

Expectation Maximization (EM) algorithm [1] to train a GMM model for a user during

each 6-hour epoch. The GMM algorithm is able to output directional clusters, for ex-

ample, when the user is traveling on a road or highway. Figure 2 shows an example of

the results produced by the clustering algorithm. The traces plotted represent one user’s

GPS trace between 7pm-9pm each day over the entire training period. We obliterated

the concrete coordinates to protect privacy of the user.

We use the notation L to denote the random variable corresponding to a user’s GPS

location. Given the trained GMM model, we can compute the score SL if the user

appears at location x at time t.

SL(x, t) := GMM pdft(x)

where GMM pdft denotes the probability density function of the user’s GMM model

around time t of the day.

5 Experiment Design

5.1 Data Collection

As mentioned in Section 3, data used for implicit authentication can come from diverse

sources in a real deployment. To study the feasibility of this approach, we developed a

data collection application which we posted in the Android Marketplace. We recorded

the following types of activities from each user:



Fig. 2 Clusters of a user’s GPS trace. The blue dots represent the user’s traces in a

two-hour epoch over multiple days, and the red ellipses represent the clusters fitted.

The major two directional clusters correspond to the user’s trajectory on a highway.

SMS: We recorded the time and direction (incoming or outgoing) of the message and

the obfuscated phone number.

Phone Calls: We recorded the obfuscated phone number in contact, whether the call

was incoming or outgoing, the time the call started, and the duration of the call.

Browser History: We pulled browser history and recorded the obfuscated domain name

of each URL and the number of visits to this URL done previously.

Location: We recorded the GPS coordinates if available, only if users enabled it. For

this reason, we also collected coarse location calculated and provided by the An-

droid OS. We also recorded the obfuscated SSID if a user is connected to a WiFi

network and IDs of cellular base stations as backups.

Ethics. To protect user privacy, we obfuscated phone numbers, SSIDs, and URLs using

a keyed hash. The key for each device was randomly generated at install time and stored

only on the device. All hashing was performed on the device. As a result of the obfus-

cation, we can identify instances of the same phone number or URL on each user’s log,

but we are unable to determine whether two users have overlapping contacts or URLs.

We did not collect the user’s contact list. In our analysis, we use numbers seen before

as an approximation of “good” numbers for both phone and SMS. Similarly, we regard

websites visited before as “good” URLs. We also allowed users to specify intervals of

time and the data to delete for those intervals.

5.2 Modelling Adversary Behavior

Uninformed Stranger An uninformed stranger would typically use the captured de-

vice as her own. To simulate such an adversary, we use a splicing approach – we choose

a user to be the legitimate user, and another user to be the adversary. We splice a seg-

ment of the legitimate user’s trace with a segment of the adversary’s trace. We use the



term splicing moment to refer to the point at which the two traces are concatenated. In

practice, the splicing moment can be regarded as the time of device capture.

Splicing browser history. As mentioned before, whenever a phone call, SMS or brows-

ing event occurs, our system needs to judge whether the event is good or bad. We deem

phone numbers or URLs seen earlier to be good, and otherwise bad. As mentioned ear-

lier, the phone numbers and URLs collected are anonymized using a keyed hash, where

the key is randomly selected and different (with high probability) for each user. We

can safely assume that a stranger would make calls and send SMS messages to a set

of numbers disjoint from the legitimate user. Therefore, we consider all calls and SMS

messages after the splicing moment to be bad. However, for browsing history, it may

not be realistic to do so, as many users visit a common set of popular websites, such as

Google or New York Times.

To address this issue, we use a lower-bound and upper-bound approach. We lower-

bound the adversary’s advantage by assuming that all websites visited after the splicing

moment are bad. We then upper-bound the adversary’s advantage by assuming that all

websites visited after the splicing moment are good.

Splicing location. The users we recruited in the study come from all over the world. It

would not make sense to splice the location trace of a user in San Francisco with that

of a user in Chicago. In particular, at the time of device capture, the adversary and the

legitimate user are likely to be in the vicinity of each other.

To address this issue, we model an adversary who lives and works in the vicinity

of the legitimate user. At the splicing moment, we compute the delta between the loca-

tion of the the legitimate user and that of the adversary. We then add this delta to the

adversary’s traces after the splicing moment. This ensures that the adversary and the le-

gitimate user are in the same location at the time of the device capture. We also assume

that the adversary starts to move within 1 hour after the capturing the device. If the ad-

versary’s trace remains stationary after the splice, we look ahead into the future to find

a point when the adversary starts moving, and we shift that part of the trace forward, so

that the adversary starts moving 1 hour after the device capture.

One possible objection is that the nature of the location would change after adding

a delta. For example, a hypothetical user could be walking in the bay after the splice.

This is not a problem for us, as our GMM model only utilizes GPS coordinates and is

agnostic to any auxiliary information such as whether a pair of coordinates corresponds

to a highway, a residential area or a business. Indeed, harvesting such auxiliary infor-

mation may help improve the performance of implicit authentication. We leave this as

one interesting direction for future work.

Informed Stranger An informed adversary may try to imitate the behavior of the

legitimate user. The adversary’s power largely depends on how many features she can

pollute. Consider an adversary who can pollute the feature Gbrowser, as mimicking the

legitimate user’s browsing history seems to be easier than mimicking other features we

selected. For example, the adversary may hesitate to call or SMS the legitimate user’s

contacts for fear of being exposed. The adversary may also find it difficult to fake the

GPS trace to be consistent with the legitimate user’s behavior.



Specifically, suppose the adversary can examine the legitimate user’s browser his-

tory, and generate good browsing events regularly to keep herself alive with the device.

Typically, the adversary’s goal is to evade detection as long as possible so she can con-

sume the resources associated with the device. So we assume that on top of the keep-

alive work, the adversary uses the device following her regular patterns through which

she achieves utility.

We model a mild and an aggressive adversary against the Gbrowser feature. The

mild adversary issues a good browser event with every usage of the device. Basically,

we splice the legitimate user and the adversary’s traces, and add a good browser event

for every event in the adversary’s trace. The aggressive adversary can maximally pollute

the Gbrowser feature. Suppose that the adversary can perform such keep-alive work with

sufficient frequency, then she can always obtain full score for the Gbrowser dimension.

Note that while we choose the Gbrowser feature for the adversary to tamper with,

this study can in general shed light on the robustness of our system against an adversary

capable of polluting one feature, even when she can maximally pollute that feature.

5.3 Detailed Experimental Design

Among the 276 users who downloaded our data collection program, we select roughly

50 users who participated over a period of 12 days or longer, and contributed at least

two categories of data among phone, SMS, GPS, and browsing history. We use this set

of roughly 50 users to model legitimate users.

We are able to leverage more users’ data when modelling the adversary. Since we

need not train on the adversary’s data, the requirement on the length of the participation

is less stringent. Specifically, we select users who have participated over a duration of

3 days or longer, and contributed at least 2 categories of activities.

For each legitimate user selected, we use the first 60% (approximately) for training,

and the remaining for testing. We train the user’s behavioral model using the training

set. We select various thresholds and use the testing set to study how long the legitimate

user can continue using the device before a failed authentication. Then we splice each

legitimate user’s data with each adversary’s data, and we study how long the adversary

can use the device before a failed authentication (i.e., the adversary is locked out.)

In our experiments, we use the features Gphone, Gbrowser, Gsms, Bphone, Bbrowser,

Bsms and L, representing the time elapsed since the previous good phone/browser/SMS

events, number of bad phone/browser/SMS events within the past 24 hours, and the GPS

location respectively.

6 Results

We evaluate our algorithm using the following metrics. Define the following variables:

X:= number of times the legitimate user used the device before a failed authentication

Y := number of times the adversary used the device before detection

If two consecutive events are at least 1 minute apart from each other, we regard

them as two different usages. Depending on policy settings, the user may be asked to

enter her password when implicit authentication fails to authenticate the user.



We plot X against Y to demonstrate the effectiveness of implicit authentication in

distinguishing the legitimate user from the adversary.

An alternative metric is time till a failed authentication (or detection). However, our

system computes scores only when the authentication decision is needed – we assume

that an authentication decision is needed whenever the user tries to use the device.

Therefore, the metric “time till a failed authentication” depends heavily on when and

how often the user uses the device, and this varies significantly for different users. We

use the metric “number of usages till a failed authentication” as it is independent of how

frequently the user uses the device, and thus a more informative and uniform measure

for different users.

6.1 Power of Fusing Multiple Features

Figure 3 shows the power of combining multiple features. The four sub-figures plot the

median, 75, 90, and 95 percentiles of the variable Y . Note that the x-axis is sparse,

namely, not every integer value for x has a data point. As the x-axis becomes sparser

as x grows, we group the points on the x-axis into bins centered at x = 5 × 1.2k for

k = {0, 1, . . . , 19}. Values x ≥ 5 × 1.219 ≃ 160 are grouped into the last bin. We then

evaluate the median and various percentiles of each bin.

The five different curves represent using each feature alone, and combining all fea-

tures. Taking the “all features” curves as an example, one can interpret the curves as

below: if we set the threshold such that the legitimate user can use the device roughly

100 times before a failed authentication, then with 50% probability, the adversary will

be locked out after using the device at most twice. With 75% probability, the adversary

will be locked out after 6 or fewer usages of the device. With 90% probability, the ad-

versary will be locked out after 10 or fewer usages of the device. With 95% probability,

the adversary will be locked out after 16 or fewer usages of the device. Note that the

curves are not monotonic due to the fact the x-axis is sparse.

It is not hard to see that combining different features is more powerful than using

each single feature alone. Among all features considered, the GPS feature is the most

interesting: while it performs better than all features combined in the median and 75
percentile plots, it has higher variance as demonstrated by the 90 and 95-percentile

plots. This is expected for the following reasons. In the experiments, we assume that

the adversary make phone calls and sends SMS messages to a set of numbers distinct

from the legitimate user. Similarly, the adversary visits a different set of websites than

the legitimate user. (In the paragraph below, we will explain how to correct for potential

bias introduced by the browser feature.) Therefore, these features exhibit lower variance

in how well they distinguish the legitimate user from the adversary. As for the GPS

feature, however, the adversary remains in the vicinity of where the device is captured.

If the legitimate user usually appears in very few places, e.g., work and home, then the

clusters generated typically will tightly fit around these locations, and the adversary is

likely to have a lower score. By contrast, if the legitimate user’s trace is more disperse,

then the clusters generated typically fit more loosely – and if the adversary is in the

vicinity, her score will be relatively high.
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(b) 75 percentile
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(c) 90 percentile

10 30 50 70 90 110 130 150 170
# of times the legitimate user used the device before failed authentication

0

10

20

30

40

50

60

70

80

90

100

110

120

130

#
 o

f t
im

es
 a

n 
ad

ve
rs

ar
y 

us
ed

 th
e 

de
vi

ce
 

 b
ef

or
e 

de
te

ct
io

n 
(9

5 
pe

rc
en

til
e)

all features
phone only
browser only
sms only
gps only

(d) 95 percentile

Fig. 3: Fusion of multiple features. The combination of multiple features allows us to

better distinguish a legitimate user from an adversary. Please refer to the first paragraph

of Section 6.1 for details on how the percentiles are computed.
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Fig. 4: Informed stranger. The figure demonstrates that our system is robust against an

adversary capable of polluting one feature.



Correcting for bias from the browser feature. As mentioned in Section 2, it is more

tricky to splice browser traces than other traces, as there exists a set of popular websites

which everyone visits. In Figure 3, we assume that the adversary visits sites distinct

from the legitimate user. This may not be realistic in practice, so we correct for the bias

using a lower and upper bound approach. Due to space constraints, we defer the results

to the full online version [21].

6.2 Stronger Adversarial Models

So far we have assumed that our adversary is an uninformed stranger who uses the

device as her own after capturing it. We now consider stronger adversarial models, in

particular, an informed stranger, who is aware of the existence of implicit authentica-

tion and tries to game it. As explained in Section 5.2, we study an adversary who can

pollute the Gbrowser feature by mimicking the legitimate user’s browser patterns. One

realistic attack is to generate a good event with every usage of the device – we refer to

this adversary as the mild adversary. We also consider an adversary who aggressively

generates good browser events such that she can maximally pollute the Gbrowser feature

and always obtain full score on that feature – we refer to this adversary as the aggres-

sive adversary. Such an adversary can shed light on how robust our system is against

adversaries that can optimally pollute a single feature. Section 2 contains more details

on how we model such adversaries.

Figure 4 demonstrates the respective advantages of the mild and the aggressive ad-

versaries. On the y-axis we plot the number of times the adversary can use the device

before she is locked out. This number of usages does not include the keep-alive browser

events generated by the adversary, as these events are regarded as “work” that the adver-

sary must perform to keep herself alive, and do not create utility for the adversary. For

comparison, we also plot the curve for the uninformed adversary. This figure demon-

strates that our algorithm is fairly robust to the pollution of a single feature. The aggres-

sive adversary performs only marginally better than the mild adversary, as the Gbrowser

score is typically quite high already for the mild adversary.

7 Future Work

We dealt primarily with adversarial models of strangers in our experiments. An impor-

tant future task is to develop models for other types of adversaries, including friends and

family members. To get the data necessary, we can recruit the help of family members

and friends to study how to game and defend the implicit authentication system.

Another interesting direction is to incorporate more features into implicit authenti-

cation. The following are promising candidates: 1) Contextual information, either avail-

able from the phone itself or available in the cloud, such as emails, calendars and ad-

dress books. Mining such contextual information can allow us to predict the legitimate

user’s whereabouts and activities. For example, if a user living in California has previ-

ously booked a flight to New York, then showing up in New York at the expected time

should not be treated as an anomaly. If a user’s calendar suggests that she has an im-

portant meeting with a client, then showing up in a grocery store instead at that time in-

dicates an anomaly. 2) Biometrics. We are particularly interested in biometrics that can



be utilized without involving explicit actions from the user. For example, accelerome-

ter or touch-screen biometrics can be collected from the user’s normal activities, and

are thereby more desirable than asking the user to explicitly swipe her fingerprint for

authentication. 3) Other data available from the device, such as application installation

and usage patterns, airplane mode, and synchronization patterns with a computer.
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