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Abstract

We investigate the problem of pedestrian detection in
still images. Sliding window classifiers, notably using the
Histogram-of-Gradient (HOG) features proposed by Dalal
and Triggs are the state-of-the-art for this task, and we base
our method on this approach. We propose a novel feature
extraction scheme which computes implicit ‘soft segmenta-
tions’ of image regions into foreground/background. The
method yields stronger object/background edges than gray-
scale gradient alone, suppresses textural and shading vari-
ations, and captures local coherence of object appearance.
The main contributions of our work are: (i) incorporation
of segmentation cues into object detection; (ii) integration
with classifier learning cf. a post-processing filter; (iii) high
computational efficiency.

We report results on the INRIA person detection dataset,
achieving state-of-the-art results considerably exceeding
those of the original HOG detector. Preliminary results for
generic object detection on the PASCAL VOC2006 dataset
also show substantial improvements in accuracy.

1. Introduction

Detection and localization of pedestrians in images has
attracted much recent attention [7, 12, 9, 4, 18, 16, 15,
6, 11] not least because of important applications in im-
age understanding and autonomous vehicles. One of
the most successful recent methods is that proposed by
Dalal & Triggs [4], which combines an image descriptor
capturing local gradient orientation with a linear support
vector machine (SVM) classifier in a sliding window frame-
work. We extend the method of Dalal & Triggs by propos-
ing a novel feature extraction scheme which incorporates
segmentation cues in the feature descriptor. The main idea
is to compute window-specific features which adapt to lo-
cal image characteristics — color of foreground (pedestrian)
and background. This differs from conventional feature
extraction methods e.g. Histogram of Oriented Gradients
(HOG) [4] which compute fixed descriptors independent
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Figure 1. Comparison of the proposed detector to other state-of-
the-art methods. DET curves are shown for our proposed method,
HOG [4], the method of Lin et al. [10] and Tuzel et al. [16].

of the local image statistics. Using local estimates of fore-
ground and background statistics, a ‘soft segmentation’ of
an image region is computed. Gradients in this segmenta-
tion image amplify edges between object and background,
while reducing clutter from variation in texture and shad-
ing. The soft segmentation is obtained in a computation-
ally efficient manner by local linear projections of the orig-
inal image, such that the approach is suitable for use in a
sliding window scheme. While exploiting color informa-
tion, the proposed method does not assume any class-level
color model, so it is applicable to object categories e.g. peo-
ple/vehicles which vary greatly in color. Compared to other
methods which have exploited color-based segmentation to
aid detection [14, 13], our method incorporates segmenta-
tion cues directly in the feature extraction and learning pro-
cess, rather than as a separate post-processing step.

Related work. Most, and indeed the most successful, ap-
proaches to pedestrian detection can be considered sliding
window classifiers or template matchers. A classifier is ap-
plied to every window of an image over multiple scales,
yielding a positive (pedestrian) or negative (non-pedestrian)
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output for each window. Early work by Papageorgiou and
Poggio [12] used a wavelet representation of a window
and a support vector machine classifier. Jones et al. [9]
applied AdaBoost learning and Haar-like features, adding
features computed over several frames to capture dynamic
cues. Gavrila’s pioneering work on chamfer matching [7]
can also be viewed as sliding window classification, using
a threshold on distance to a hierarchy of edge templates as
the classifier.

The Histogram of Oriented Gradients (HOG) feature de-
scriptor proposed by Dalal & Triggs [4] has proven particu-
larly successful, achieving perfect performance on the MIT
database used in earlier work [12], and this has sparked new
interest in the pedestrian detection problem. We review the
method fully in Section 2 since we build upon it. The com-
putational efficiency of the detector has been improved by
applying the cascade architecture [18] popularized in vision
by Viola & Jones [17]. Tuzel et al. [16] have reported im-
proved results using a method which describes an image
window in terms of the covariance of features within the
window. Lin & Davis [10] have recently proposed a scheme
which extracts instance-specific features based on edge tem-
plate matching. Okada & Soatto [11] proposed to divide the
pedestrian class into disjoint sub-classes by pose, and train
individual classifiers for each. They report modest improve-
ments on the detection problem, and apply the method to
improve regression-based pose estimation. Work by Tran
& Forsyth [15] incorporates detailed 2D pose estimation in
the detection process, estimating pose for every image win-
dow (positive or negative) to reach a classification decision.
McAllester et al. [6] also estimate the position of parts, but
use semi-automatically learnt parts rather than manually de-
fined limbs. This method gives very promising results on
the challenging PASCAL VOC database [5].

Motivation. The proposed method is inspired by two
pieces of work which incorporate segmentation cues for ob-
ject detection and tracking.

Ramanan [13] proposed a scheme for ‘verification’ of
detections from a sliding window detector by segmenting
the window and verifying if the segmentation resembles the
class of interest e.g. a pedestrian. A window is segmented
using a weak prior on object shape learnt from unsegmented
training images, representing foreground/background color
distributions using a color histogram, and applying a graph-
cut segmentation method [2]. A linear classifier is applied to
the resulting binary segmentation mask to verify the hypoth-
esized detections. The method works as a ‘post-processing’
filter on the detections — training of the sliding window de-
tector is performed independently of the segmentation pro-
cess. We use the idea of incorporating instance-specific ap-
pearance into the detection process, but integrate this into
the classifier learning.

Collins et al. [3] propose a method for extracting dis-
criminative features for tracking which are adapted to the
surroundings of the object to be tracked in each frame. The
approach is particularly elegant in its simplicity: given the
bounding box of the object and a larger bounding box cap-
turing the background appearance in its immediate neigh-
borhood, the method picks between a set of pre-defined lin-
ear transformations of the RGB color space, choosing the
transformation which maximizes discrimination between
the object and background region in the current frame. This
transformation is then applied to pixels in the next frame
(assuming some coherence across frames), obtaining better
foreground/background discrimination with which to drive
the tracker. We exploit this idea of using different trans-
formations of the color space to ‘pull out’ stronger fore-
ground/background features, applying the approach to im-
age windows.

Outline. Section 2 reviews the HOG descriptor on which
we base our method. Section 3 describes the proposed ap-
proach. We report experiment results in Section 4, and offer
conclusions and directions for future work in Section 5.

2. Histogram of Oriented Gradients approach

We first briefly review the HOG descriptor and detection
scheme proposed by Dalal & Triggs [4] since our method
builds on these.

HOG descriptor. At each pixel within the detection win-
dow the image gradient is computed, and accumulated into
bins over (i) orientation, and (ii) spatial regions (‘cells’).
Within each cell, a histogram of gradient orientation is com-
puted. Although many schemes for dividing the image into
cells e.g. log-polar schemes have been investigated [4], us-
ing simple square cells is shown to be effective and is com-
putationally efficient. The intuition to binning (quantizing)
orientation and spatial position is to introduce some invari-
ance to local image deformation.

A second stage of spatial accumulation groups contigu-
ous ranges of cells into ‘blocks’. The descriptor for each
block is then independently normalized to have constant
norm. The blocks typically overlap by one or more cells
such that each cell is represented multiple times (with dif-
ferent normalizations) in the final descriptor formed by con-
catenating all blocks. This gives some contrast invariance
over a larger scale than that of the individual cells.

Dalal & Triggs [4] investigated various schemes of cell
size and shape, spacing, block arrangement, orientation bin-
ning and normalization. For the task of pedestrian detection
in the INRIA dataset [4], image windows are 128 x 64 pix-
els, a reasonable scheme is to use blocks of 2 x 2 cells over-
lapping by one cell in each direction, square cells of width
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Figure 2. Overview of feature extraction. For each block of the window (center top) a HOG descriptor and CHOG descriptor is computed
(insets, right), each consisting of a histogram over orientation and spatial position. CHOG descriptors are computed on a soft segmentation
of pixels in the block into foreground and background (insets, bottom left). For each block, hypothesized foreground and background
samples are taken at reference points relative to the block (center top). Color normalization (center bottom) is used to enhance color edges
in the CHOG descriptor complementary to the intensity edges in the HOG descriptor. Note that the CHOG features emphasize the edges
of the pedestrian while attenuating shading on the clothing and clutter edges in the background.

6-8 pixels, 9 orientation bins (discarding gradient sign) and
L2 normalization with a constant term added to avoid am-
plifying noise in regions with very low variance. For more
detailed description of the HOG features we refer the reader
to [4].

Gradient computation. The HOG scheme can be applied
to gray-scale images since it makes use of the image gradi-
ent alone. However, when applying the descriptor to color
images, Dalal & Triggs’ implementation computes the gra-
dient at a pixel in each of the red, green and blue chan-
nels, and selects the response with greatest magnitude. This
can potentially increase the sensitivity to edges in color im-
ages which correspond to changes in color with no associ-
ated change in luminance. However, because the decision
is made independently at every pixel it can also have the
effect of increasing noise, and does not enforce any ‘coher-
ence’ in the edges. Additionally, because the unsigned gra-
dient is typically used, the method is agnostic to dark/light
vs. light/dark transitions, and again cannot capture the like-
lihood that nearby edges are likely to be of the same sign.
Our proposed method (Section 3) addresses some of these
limitations.

Classification. Dalal & Triggs [4] paired the HOG de-
scriptor with an SVM classifier in the sliding window
framework and investigated the use of nonlinear and lin-
ear kernels. Competitive results were obtained using a lin-
ear SVM which is appealing because of its computational

efficiency, and we adopt the same classifier. However, as
reported in Section 4, we found that results of both HOG
and our proposed method could be improved by use of a
quadratic kernel.

3. Method

This section describes the proposed feature extraction
scheme. The essence of the scheme is to extract a descriptor
which captures the shape of the foreground object (if any)
in a given window. There are two steps: (i) soft segmenta-
tion into foreground/background; (ii) describing edges in
the soft segmentation using a HOG descriptor. Figure 2
gives an overview of the method. We refer in the follow-
ing to our features as ‘CHOG’ to emphasize the extension
of the HOG descriptor with color information.

3.1. Soft segmentation by Fisher discriminant

Given an image region our aim is to segment pixels in
the region into foreground and background. We reason that
such a segmentation i.e. the object silhouette gives strong
cues to recognition [13].

Let us assume that we are given a sample of RGB pixel
values x; where ¢ € C; denotes background pixels and
i € Co denotes foreground pixels. Samples are taken from
a particular image window, so the foreground distribution
captures instance-specific properties (this person is wear-
ing blue trousers) rather than class-level properties (sheep
are white). We seek a linear projection of the pixel values
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y = w’x which maximizes the separation between fore-
ground and background.

Assuming that the distributions of foreground and back-
ground pixels are Gaussian, the Fisher criterion (see [1])
gives a suitable means for choosing w:

WTSBW

J(w) = ey

wl'Syyw
where Sp is the between-class covariance matrix, given by
Sp = (my — my)(my — my)” (2)

where m; and my are the sample means of the background
and foreground classes respectively, and Sy is the total
within-class covariance matrix, given by

Sw = D (e (xi—m) T ) (i) (xi—mg)”

1€Cy i€Ca
3)

The value w maximizing J(w) can readily be shown to
be:
W o Sy (mg — my) (4)

Projecting the original image pixels by y = wlx gives
an image which can be considered a ‘soft segmentation’ —
large values indicate high probability of foreground, and
small values high probability of background. Gradients in
this image give strong evidence for edges between fore-
ground and background.

Simplified model. Eqn. 4 could directly be applied to ob-
tain soft segmentations, but is somewhat computationally
expensive because of the need to compute and invert the co-
variance matrix Sy, for each window. If we assume that the
covariance of both foreground and background distributions
is isotropic i.e. Syy proportional to the identity matrix, then
the optimal w simplifies to the difference between the class
means:

W (mg —my) (5)

In the following we use this simplified model, and justify
its use in Section 3.2.

Projection of gradients. Given a soft segmentation, the
image is described by the distribution of gradient position
and orientation, in the same manner as the HOG descrip-
tor. This requires computation of gradient orientation and
magnitude at each pixel. Since computation of the gradient
is a linear operation, the gradient of the segmentation im-
age can simply be computed by linear transformation of the
original RGB gradients. Denoting the original image I and
the projected image S:

o, /0, a9, a9 \"
%S*W <8$IR78xIG’8xIB> (6)
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Figure 3. Potential reference points for a single block. The ‘fore-
ground’ color distribution is estimated from pixels in the neighbor-
hood of the +ve point, and ‘background’ from the -ve point. The
resulting projection is used for all pixels within the block.

CHOGH CHOG V

and similarly for the gradient in the y-direction.

The relevance of this identity is that the gradient of the
image under any projection can be computed without need-
ing to apply the convolution operator to the projected image.
Since, as described below, a large number of projections are
used for every image window, this enables the feature ex-
traction to be performed in a computationally efficient man-
ner. We refer to the CHOG features as using ‘implicit’ seg-
mentation since the gradients of the soft segmentation used
to construct the descriptor are computed without explicitly
computing the segmentation.

3.2. Semi-local segmentation

Thus far we have assumed that we are given a set of
sample pixels labeled as foreground or background. Such
samples could be obtained by using an average person
mask [13] to be applied to each window. However, for neg-
ative windows this can result in ‘hallucinating’ pedestrian
regions. Additionally, the Gaussian assumption made in the
Fisher discriminant will be a poor model when there is sig-
nificant variation in color within e.g. the background — Ra-
manan [13] uses a color histogram, which prevents applying
the method to every window because of computational ex-
pense.

We therefore use a number of semi-local projections
rather than a single global sample of foreground and back-
ground. For all HOG blocks, a set of reference pairs of
image points chosen at training time are defined as pos-
itive (potential foreground) and negative (potential back-
ground). For a given window the means of the ‘foreground’
and ‘background’ distributions are estimated from pixels in
the neighborhood of these reference points. Since a HOG
scheme is used to describe the soft segmentations, we base
the selection of reference points on HOG blocks. Figure 3
shows the selected potential reference points for a block.

For each block, the discriminant projection is computed
using Eqn. 5 and the gradients of the soft segmentation
within the block are computed using Eqn. 6. These gra-
dients are represented in the descriptor by a conventional
HOG block i.e. histograms over orientation in the 2 X 2
cells of the block.

Using semi-local projections in this way has two advan-
tages over attempting a global segmentation of the window:
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S
(a) HOG unsigned  (b) HOG signed  (c¢) CHOG (signed)
Figure 4. Additional modeling capacity of CHOG features. (a) Un-
signed HOG features give invariance to light object/dark back-
ground but cannot represent coherence of edge direction since
gradient sign is discarded; (b) Signed HOG features distinguish
between both cases but given unknown brightness relationship
between object and background the (linear) classifier must as-
sign equal weight to both gradient signs; (c¢) Signed CHOG gra-
dient consistently captures background-to-foreground transitions,
allowing coherence of gradients to be learnt by weights for a single

gradient sign.

(i) the Gaussian assumption is likely to be well-satisfied
given the local color measurements, enabling use of the sim-
ple linear projection scheme for implicit segmentation and
gradient computation; (ii) by choosing projections at train-
ing time the method can also capture selected salient inter-
nal gradients, e.g. between shirt and trousers, which is lost
in the object silhouette. Section 3.5 offers further discus-
sion.

3.3. Color normalization

When using RGB pixels to form the soft segmenta-
tion, a significant component of the discriminant projections
(Eqn. 5) is difference in intensity. We found that results
were improved by using intensity-invariant features, which
give complementary cues to the intensity gradients used by
the HOG descriptor. Prior to computation of projections
and gradients, the RGB image pixels x = (z,, x4, T3) are
normalized thus:

, X

X = (7

max(z,, Tg, Tp) + €

where € is a small constant, avoiding unstable results for
pixels of low intensity. Figure 5 shows the effect of color
normalization on two example images.

3.4. Feature selection

The computational expense of computing the CHOG
features is modest, and it is possible to compute features
for all block-wise pairs of reference points (Figure 3) for

Figure 5. Color normalization. Columns from left to right show:
(i) original image; (ii) gradient magnitude of original image;
(iii) color normalized image; (iv) gradient magnitude of normal-
ized image. Note how the color normalization is able to suppress
background clutter due to intensity invariance and ‘pull out’ the
different gradients of the pedestrian.

every block. However, improvements in speed (and reduc-
tion in dimensionality) can be obtained by selecting a subset
of salient reference points at training time. We found that a
simple feature selection scheme gave considerable speedup
with negligible loss of accuracy.

At training time, for each block the distance between the
means of the color distributions around the reference points
(Figure 3) is computed (Eqn. 4) for all four potential pairs of
reference points. Then for each block we count the number
of times a specific pair of reference points gives the largest
difference in color space (compared to the other three ref-
erence points) over all positive training images. We keep
those pairs of reference points in the feature set that give
the largest difference in means for more than 25% of the
positive images.

Empirically the selected projections are mainly diagonal
DI and D2 (see Figure 3) for the shoulder and lower-leg
regions, horizontal for the sides of the torso, and vertical
for the head and feet.

3.5. Discussion

Figure 2 shows example output of the feature extraction
method for both HOG and CHOG. We show the conven-
tional HOG descriptor using max-RGB gradient (see Sec-
tion 2), and the CHOG descriptor using the gradient com-
puted on the soft segmentation including max-norm color
normalization (Section 3.3). Note, for example, how in the
top left inset CHOG gives a strong response to the boundary
of the coat, and suppresses responses to shading and back-
ground clutter. In the top right inset CHOG substantially
attenuates the gradients introduced by background clutter
and emphasizes the pedestrian’s edge.

Figure 4 shows the modeling capacities of HOG and
CHOG descriptors for the common case where the fore-
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Figure 6. Visualization of the positive weights of the final SVM. For each cell the orientation of the bar shown denotes the orientation
bin with maximum weight. For CHOG cells, which use signed gradient, orthogonal lines indicate the sign (foreground/background vs.
background/foreground) of the orientation bin. The labels correspond to the choice of projection reference points (see Figure 3).

ground object may be brighter or darker than the back-
ground. By using consistent projection of the image gra-
dients in a foreground-to-background direction CHOG fea-
tures combine the invariance of HOG to the bright/dark re-
lationship between object and background with the ability
to capture coherence of gradient sign given locally coherent
background intensity. By use of consistent signed gradient
CHOG is also able to distinguish between noisy edges in
background regions and coherent gradients corresponding
to true object/background edges.

4. Experimental results

We have principally evaluated our proposed method for
pedestrian detection on the INRIA person dataset [4]. We
report results here, comparing HOG, CHOG, and published
results of other methods. Section 4.2 additionally reports
preliminary results of applying the method to generic object
detection on the PASCAL VOC2006 dataset.

4.1. Pedestrian detection on the INRIA dataset

Training. We adopt the dataset and training and test pro-
tocol used by Dalal & Triggs [4]. The SVMLight pack-
age [8] was used for SVM training. As in previous work
we perform several rounds of bootstrapping to collect false
positive examples during training.

Testing. Results on per-window classification accuracy
are reported using the conventional Detection Error Trade-
off (DET) curve [4]. The sliding window scheme in this
case uses a scale factor of 1.2 between pyramid levels [4].
We also report a comparison using the PASCAL VOC
methodology [5] — precision/recall curve with a bounding
box overlap threshold of 50%, as adopted by Ramanan [13].
In this case, as in previous work, a scale factor of 1.05 is
used. In both cases a window step of 8 pixels was used [4].

Implementation details. A composite descriptor is
formed by concatenating HOG and CHOG blocks (see Fig-
ure 2). Combining the two is effective since the gradient
information from the original and intensity-invariant soft
segmentation images is complementary. For HOG cells, 9
unsigned orientation bins were used. For CHOG cells, 18
signed orientation bins were used — as noted in Section 3.5
the gradient sign carries ‘inside/outside’ information for
CHOG. CHOG features were selected using the method de-
scribed in Section 3.4. For both descriptors we use a cell
size of 6 x 6 pixels and a block size of 2 x 2 cells, with
blocks overlapping by one cell in horizontal/vertical direc-
tions [4]. For CHOG the neighborhood around each refer-
ence point (Figure 3) is a 3 X 3 square — the means (Eqn. 5)
are efficiently computed using the integral image [17].

Learnt features. Figure 6 shows a visualization of the
positive SVM weights for a complete set of HOG+CHOG
features (no feature selection). For each cell the orienta-
tion with maximum weight is shown. It can be seen that the
HOG channel models the complete outline of a pedestrian
while the individual CHOG channels assign high weight to
the parts that are emphasized by the corresponding block-
specific projection. For CHOG D1 and D2 (diagonal ref-
erence points — see Figure 3) these are the shoulder re-
gions. CHOG H (horizontal reference points) assigns high
weights to the side regions of the pedestrian. Note that the
maximally-weighted orientations for the horizontal projec-
tions have the same sign — since the reference points for a
block are fixed this indicates learning of consistent inside-
to-outside gradient.

Comparison of descriptors. Figure 7 (a) shows a com-
parison of our proposed method (HOG+CHOG) to the orig-
inal HOG method (HOG). It is conventional to report results
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Figure 7. (a) Comparison of descriptors. DET curves are shown for HOG, HOG+CHOG without max color normalization (RGB),
HOG+CHOG with unsigned gradients, and the proposed method HOG+CHOG. Curves nearer to the southwest corner are better; (b) Com-
parison of linear/kernel SVM classifiers. DET curves are shown for HOG and HOG+CHOG descriptors with linear and quadratic kernels;
(c) Comparison of HOG and the proposed HOG+CHOG method using the PASCAL VOC methodology. Precision/recall curves are shown
for the two methods. Curves nearer the northeast corner are better. (d)-(f) Precision/recall curves for three PASCAL VOC2006 classes,
comparing HOG to HOG+CHOG (linear kernel) and HOG+CHOG using a quadratic kernel.

at a false positive per window (FPPW) rate of 10~* [4]; at
this FPPW rate our method decreases the miss rate from
0.115 to 0.065, a relative improvement of ~44%. Fig-
ure 7(c) shows the corresponding comparison of the two
methods using the PASCAL VOC methodology [5]. In
this case our method increases the average precision (AP)
from 0.664 to 0.757, a relative improvement of ~14%
(HOG+CHOG compared to HOG). As the curves show our
proposed method increases both recall and precision, with
no loss of precision at lower recall. Note that DET and
precision/recall curves are not directly correlated since the
latter requires suppression of multiple detections which are
counted as false positives [5].

Figure 7(a) also shows the effect of using subsets of
components in the proposed method. HOG+CHOG(RGB)
shows the combination of the original HOG descriptor with
CHOG descriptors using the un-normalized RGB image,
giving an improvement of 12% at 10~* FPPW. This es-
tablishes the effectiveness of the proposed color normal-
ization (Section 3.3). As can be seen, the use of the
normalized color gradients gives a substantial improve-
ment compared to HOG+CHOG on the standard RGB im-

age. HOG+CHOG((unsigned) shows results of the proposed
method using unsigned gradients for the CHOG descriptor
— this verifies the claim that the CHOG descriptor can ex-
ploit ‘inside/outside’ relations by use of signed gradients.
As expected, performance is worse than the signed gradi-
ents (HOG+CHOG), in contrast to the original HOG de-
scriptor, where comparable results for signed and unsigned
gradients have been reported [4]. The use of signed gradi-
ents accounts for ~30% of the overall reduction in miss rate
at 10~% FPPW (HOG+CHOG compared to HOG).

Comparison of classifiers. We also compared the per-
formance of the proposed descriptor using both linear and
kernel SVM classifiers. Dalal & Triggs [4] reported very
modest improvements in accuracy using a radial basis func-
tion (RBF) kernel. We ran comparisons using an inhomo-
geneous quadratic kernel K(x,y) = (xTy + 1)2. The
quadratic kernel is a natural choice here since it can rep-
resent dependencies between pairs of features; this is par-
ticularly relevant for the CHOG descriptor where gradient
sign is meaningful.

Figure 7(b) shows results for HOG and HOG+CHOG
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with linear and quadratic kernel. Use of the quadratic ker-
nel improved results for both descriptors — at 10~* FPPW
the miss rate decreased from 0.115 to 0.08 for HOG (rel-
ative improvement ~31%) and from 0.065 to 0.045 for
HOG+CHOG (relative improvement ~31%). On the preci-
sion/recall curve using the PASCAL VOC methodology [5]
(Figure 7(c)) using the kernel gives an additional 3.5% im-
provement in average precision. These are substantial im-
provements, suggesting it may be fruitful to re-consider us-
ing kernels with these descriptors if computational expense
of the kernel evaluation can be reduced.

Comparison to state-of-the-art. The combination of
HOG+CHOG descriptors with a quadratic kernel forms our
final method. Figure 1 compares the results obtained with
this method to the original HOG method and recent work by
Lin et al. [10] and Tuzel et al. [16]. As shown, our method
gives, to our knowledge, the best reported results on the IN-
RIA dataset. Comparing at the standard FPPW rate of 10~4
our method reduces the miss rate by ~30% compared to the
next best method [16]. For FPPW rates less than around
10~ our method gives consistently lower miss rate than all
other results reported.

4.2. Object detection on PASCAL VOC2006

We also present results of initial experiments on generic
object detection in the PASCAL VOC2006 dataset [5]. Pa-
rameters were unchanged from the INRIA tests, except a
cell size of 8 x 8 pixels is used, and the window size is set
to match the average object aspect ratio.

Figures 7(d)—(f) show precision/recall curves for three
classes — ‘bus’, ‘sheep’ and ‘person’ — having significant
differences in the level of intra-class appearance variation.
For the ‘bus’ class (d) using HOG+CHOG increases Aver-
age Precision (AP) from 0.243 (HOG) to 0.291; addition-
ally using a quadratic classifier further improves the results
to AP of 0.325, a total relative improvement over HOG
of ~34%. For the ‘sheep’ class (e) the relative improve-
ment using HOG+CHOG and a quadratic kernel is ~57%,
though in this case the linear kernel performs equivalently.
For the ‘person’ class (f) the total relative improvement is
~50% (AP of 0.153 vs. 0.102). These substantial improve-
ments demonstrate the applicability of the proposed method
to non-pedestrian classes.

5. Conclusions and future work

We have proposed a scheme for incorporating ‘soft’ seg-
mentation cues directly into sliding-window object detec-
tion, obtaining substantial improvements in accuracy on
pedestrian and object detection tasks. In future work we
intend to investigate further the incorporation of segmenta-
tion cues in the form of instance-specific models of appear-

ance. Both the proposed models of foreground and back-
ground, and the simple method for feature selection can
be improved. Challenges remain in incorporating more ad-
vanced models of segmentation without excessively com-
promising computational efficiency.
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