
Implicit Computation of
Minimum-Cost Feedback-Vertex Sets

for Partial Scan and Other Applications

Pranav Ashar
C&C Research Labs, NEC USA

Princeton, NJ

Sharad Malik
Dept. of EE, Princeton Univ.

Princeton, NJ

Abstract
The contribution of this paper is an implicit method for computing
the minimum cost feedback vertex set for a graph. For an arbitrary
graph, we efficiently derive a Boolean function whose satisfying as-
signments directly correspond to feedback vertex sets of the graph.
Importantly, cycles in the graph are never explicitly enumerated, but
rather, are captured implicitly in this Boolean function. This func-
tion is then used to determine the minimum cost feedbackvertex set.
Even though computing the minimum cost satisfying assignment for
a Boolean function remains an NP-hard problem, we can exploit the
advances made in the area of Boolean function representation in
logic synthesis to tackle this problem efficiently in practice for even
reasonably large sized graphs. The algorithm has obvious applica-
tion in flip-flop selection for partial scan. Our algorithm was the
first to obtain the MFVS solutions for many benchmark circuits.

1 Introduction
The approach of making only a subset of flip-flops scannable is
called partial scan [10]. With an intelligent choice of flip-flops
to scan, partial scan can result in mitigated area and performance
penalties and a reduced test application time compared to complete
scan without sacrificing testability. A number of flip-flop designs
and test application strategies have been proposed in the past [10,
1, 4] to demonstrate the feasibility of partial scan. Since the circuit
design aspects of partial scan are not the focus of this paper, we
will assume the feasibility of partial scan and not review the design
aspects in detail.

The topic of interest in this paper is the algorithm used for flip-
flop selection. An algorithm for flip-flop selection based on the
knowledge that it is the cyclical structure of sequential circuits that
leads to long test sequences was proposed in [4]. In this algorithm,
each flip-flop is characterized by the number of cycles containing
the flip-flop. Making a flip-flop scannable breaks all the cycles
containing that flip-flop. Flip-flops are selected so that a minimal
amount of feedback remains in the resulting circuit. Variations on
this basic approach have been proposed by other researchers. This
simple heuristic has received much practical success and to date con-
sistently out performs other competing scan-insertion algorithms.

We present an implicit method for computing exactly the mini-
mum cost feedback vertex set for a graph. Given a graph, a Boolean
function is derived such that satisfying assignments for the function
correspond to feedback vertex sets for the graph. The method is
implicit in that cycles in the graph are never explicitly enumerated
during the construction of the Boolean function. This function is
then used for determining the minimum cost feedback vertex set.
Even though computing the minimum cost satisfying assignment for
a Boolean function remains an NP-hard problem, we can exploit the
advances made in this area in logic synthesis to tackle this problem
efficiently in practice for even reasonably large sized graphs. We
believe that our algorithm was the first to compute the MFVS for a
number of circuits from the ISCAS89 benchmark set [2].

Other exact methods have been proposed recently and in the
past. An interesting algorithm for pruning the search space for the

minimum FVS selection problem was proposed by Smith and Wal-
ford [9]. Their contribution was the proposal of a simple sufficient
condition for one or more vertices to be a part of some minimum
FVS. In their algorithm, they tested one vertex at a time, two ver-
tices at a time and so on for satisfaction of this condition. If some
set of vertices was found to satisfy it, the graph was modified by
removing the selected set of vertices from the graph. The process
was then repeated on the resulting graph. The proposed condition
was the following: Consider a set of vertices A. Let B be the
set of vertices in all the loops containing A. A is a part of some
minimum FVS if removing A from the graph also breaks all loops
formed from vertices contained in B. In other words, A is a part
of some minimum FVS selection if there are no chords containing
vertices other than those in A in all the cycles containing A. There
are two problems with this algorithm: (1) Given that the test is only
a sufficient condition, the algorithm would end up enumerating the
exponentialnumber of all possible vertex combinations in the worst
case. (2) The algorithm is not useful if one is interested in enu-
merating all or a large subset of minimum FVS solutions. Another
interesting experiment was reported recently in [3]. They reported
results on a simple branch-and-boundalgorithm for vertex selection
with known graph reductions/partitioning applied after each selec-
tion. Interestingly, their implementation was able to compute the
MFVS for all the ISCAS89 benchmark circuits in very short amounts
of time pointing to the fact that the graphs corresponding to these
circuits are highly partitionable.

Among the various approximate algorithms proposed for com-
puting the MFVS, the algorithms of Lee and Reddy [6], and Park and
Akers [8] are notable. Both first pre-process the graph by applying
known reduction techniques. The contribution of Lee and Reddy
was to try a number of heuristics for minimum FVS selection on the
reduced graph. The heuristics select vertices with large in and out
degrees, and vertices with a large number of loops through them for
insertion into the FVS. They also showed how the path lengths in the
resulting acyclic graph could be reduced by transforming the path
length reduction problem into a minimum FVS selection problem.
To their credit, their heuristics result in FVS selections that are very
close to the minimum for the benchmark examples. The algorithm
proposed by Park and Akers is very similar to the Smith-Walford
algorithm. In fact, their algorithm works by identifying essential
cycles in the graph where their definition of essential cycles is in
direct correspondence with the sufficiency condition of Smith and
Walford. A cycle is defined as an essential cycle if no proper subset
of its vertices forms a cycle on its own. In their algorithm, one
essential cycle is identified for each vertex, and the vertex which
occurs in the maximum number of these essential cycles is inserted
in the FVS. This heuristic also results in FVS selections that are
very close to the minimum for the benchmark examples.

2 Minimum Cost Feedback Vertex Sets
Let G(V; E) be a directed graph, with V being the set of vertices,
andE being the set of directed edges. Each edge is an ordered pair,
(vi; vj),vi; vj 2 V . This edge is termed an in-edge for vertex vj

and an out-edge for vertex vi. A path in the graph is an alternating

1

dfs_initialize(G)
f

foreach vertex u 2 V f

status[u] = unvisited;
function[u] = 0;

g

foreach vertex u 2 V f

if(status[u] == unvisited)
dfs_initialize_visit(u);
g

g

dfs_initialize_visit(u)
f

status[u] = visiting;
foreach edge(u,v)f

if(status[u] == unvisited)
dfs_initialize_visit(v);

if(status[u] == visiting)f
/* back edge found */

add_to_set(B, u);
function[u] = 1;

g

status[u] = visited;
g

Figure 1: Algorithm: Initialization Phase

sequence of edges and vertices. If the first and last vertex in the
path are the same, the path is said to be cyclic. Let us assume that
we have a cost function that maps a set of vertices to a real number.
The minimum cost feedback vertex set (FVS) problem is defined
as follows: find a minimum cost set of vertices Vmin , such that
removal of these vertices from G eliminates all cyclic paths in G.
This problem has been shown to be NP-hard [5].

This problem is interesting for supporters of partial-scan since it
forms the basis of the popular Cheng-Agrawal heuristic for flip-flop
selection. This heuristic is as follows:

Given the circuit under consideration, construct a graph G with
one vertex for each flip-flop, and an edge between two vertices, vi
and vj, if and only if there exists a path through some gates from
the flip-flop corresponding to vi, to the one corresponding to vj .
Since there is a one-to-one correspondence between flip-flops and
vertices in G, we will refer to the vertices themselves as flip-flops
without ambiguity.

Cheng and Agrawal used the fact that it is easy to test circuits
which have an underlying graph that is acyclic. In this case the
testing problem is similar to that for combinational circuits, which
is what full-scan provides. Thus, for non-acyclic circuits, if a set of
flip-flops is selected that makes the graph acyclic, these flip-flops
are ideal candidates for use as scan flip-flops in partial scan. This set
is nothing but a FVS for G. In computing G, Cheng and Agrawal
ignored self loops, i.e., edges of the form (vi; vi), since these loops
did not cause much problems during test generation. Since the use of
partial scan was motivated by the need to reduce the area and delay
penalties associated with full scan, it is important that we keep these
measures in mind during the selection of the FVS. Thus, the real
problem that we need to solve is the minimum cost FVS problem.
The cost of the FVS now reflects the delay/area constraints.

Since the problem is NP-hard, they proposed a heuristic algo-
rithm for this purpose [4]. This algorithm selects a vertex that
lies on the most number of cycles, adds it to the FVS being con-
structed, and repeats this step till the graph is acyclic. Computing
the number of cycles through each vertex is obviously expensive.
To overcome this, only a fixed number of cycles are enumerated,
potentially compromising the quality of the final solution. In addi-
tion, the algorithm gives no indication about the optimality of the
final solution it computes.

In this paper, we present an algorithm for computing the
minimum-cost FVS that is exactbut is still practical for large graphs.

compute(G, B)
f

for i = 1 to |B| dof
foreach vertex v 2 V f

status = unvisited;
g

foreach vertex v 2 B f

compute_step(v);
g

g

f = 0;
foreach vertex v 2 B f

f = f [f[v];
g

g

compute_step(v)
f

status = visiting;
g = 0;
foreach edge(u, v)f

if(status[u] == unvisited)
compute_step(u);

g = g [f[u];
g

f[v] = v \ g;
status = visited;

g

Figure 2: Algorithm: Iterative Computation

The key idea behind this algorithm is to avoid the explicit enumera-
tion of cycles. This is accomplished by constructing in polynomial
time a Boolean formula, f(G), for a graph G, whose satisfying
assignments are in one to one correspondence with feedback vertex
sets of G. The construction of this formula implicitly accounts for
all cycles in the graph. Of course, we cannot guarantee that the
size of the Boolean representation will be polynomial in the size
of G. However, here we exploit the efficient Boolean represen-
tation/manipulation techniques recently developed for use in logic
synthesis, to make this problem tractable. In fact, with the repre-
sentation we use for f(G), the minimum-cost FVS can be obtained
in time linear in the size of this representation.

We will illustrate the algorithm on a simple example. Consider
the example shown in Figure 3 (a). We associate a logic variable
with each vertex in the graph, for convenience we use the same
identifier for this as the vertex name. In addition with each vertex,u,
we store a logic function, f(u), which we will compute iteratively.
We start by first doing a depth first search of G, as described in
algorithm, dfs initialize(G) which is described in Figure 1.
This reveals two back edges, i.e. edges that would result in cycles,
in the graph. The graph is redrawn in Figure 3 (b), to reflect the back
edgesand the topological ordering imposed by the depth first search.
Vertices c and d are added to the set B which contains all edges
from which we have back edges. Clearly, removing all vertices in
B will remove all cycles in the graph, however this is sub-optimal
in general, otherwise this problem would not be NP-hard. As part
of this initialization we assignf(c) = 1 and f(d) = 1, i.e. the logic
functions for all vertices in the set B are the constant 1 function.
With this initialization done, are ready for an iterative pass of the
graph as shown in algorithm compute(G, B) in Figure 2. The
new values for the logic functions for the vertices inB are computed
using the old values. This computation is done in a reverse depth
first order starting from the vertices in B as shown in the recursive
algorithm compute step. Thus the logic function for a vertex,
v, is computed only after all the logic functions for all vertices u,
(u; v) 2 E, have been computed. The logic function at a vertex v

is computed as:

f(v) = v \ ([(u;v)2Ef(u))

a b

cd
(a)

First Iteration:
f(a) = 1.a = a
f(b) = (1 + a).b = b
f(c) = b.c
f(d) = b.c.d

Second Iteration:
f(a) = b.c.a.
f(b) = (b.c.d + b.c.a).b = b.c.d + b.c.a
f(c) = (b.c.d + b.c.a) c = b.c.d + b.c.a
f(d) = (b.c.d + b.c.a).d = b.c.d

(c)

(b)

a

b

c

d

Figure 3: Example Graph

b

c

a

1

1

1 d
0

0

0

011 0

Figure 4: Example BDD

f(v) implicitly stores all paths that pass though v. The equation
above naturally expresses the fact that the set of paths through
a vertex are those that pass through some in-edge of this vertex
followed by this vertex. Figure 3 (c) shows the values of the logic
functions after the first iteration. Since the longest simple path can
possibly go through all of the vertices in B, we need k iterations to
catch all such paths, where k is the number of elements in B. This
is shown in algorithm compute(G,B) in Figure 2. In practice,
not all k iterations may be needed and the algorithm terminates as
soon as a fixed point is reached. After at most k iterations, the
functions at the k vertices of B capture information about all cycles
in the circuit. Let f be the union of these functions. Assuming
no simplification of any formulas is done, f is computed in time
proportional to k:jEj, where k is the number of elements of V and
jEj is the number of edges in the graph. Since is k is bounded by
jV j, the complexity of generating f is O(jV j:jEj). In practice it is
closer to O(jEj). In our example of Figure 3, f = bcd+ bca. This
directly provides bcd and bca, the two fundamental cycles (those
not contained in any other cycle). Of course, if we were to actually
write outf in a sum-of-products notation, we would be enumerating
all the fundamental cycles. Even though that is more manageable
than the set of all cycles, it is something what we would like to
avoid.

Luckily, Binary Decision Diagrams (BDDs) provide an alter-
native representation for logic functions that in practice is more
compact than the sum-of-product representation. This is the repre-
sentation that we have used in our implementation.

The BDD for the function f for our example is shown in Figure 4.
A BDD has two terminal vertices denoting the constant functions
1 and 0. Each non-terminal vertex has is labeled with a variable,
and has two branches. The 1 (0) branch points to the function to be
evaluated when the value of the variable is 1 (0). Evaluation of the

min_cost(f)
f

if(f == 1)f
f.cost = 1;
f.assignment = f g;

g

if(f == 0)f
f.cost = 1;
f.assignment = f g;

g

if(f->1branch.cost < f->0branch.cost)f
f.cost = f->1branch.cost;
f.assignment = f->1branch.assignment;

g else f

f.cost = f->0branch.cost +
cost(f.variable);

f.assignment =
f->0branch.assignment [f.variable;

g

g

Figure 5: Minimum Cost Satisfying Assignment with BDDs

vu z u
(a)

u
z

v
v

(b)

Figure 6: Example of Chain Collapsing

function for any given assignment of inputs proceeds by walking
down the BDD and taking the branch corresponding to the value of
the variable at each vertex. The terminal vertex reached is the value
of the function for that particular assignment.

The complement of f , denoted by f̄ is the function that interests
us most. The complemented variables in each satisfying assignment
to f̄ correspond to a feedback vertex set for the graph. For example,
for the example in case, b̄ is a satisfying assignment for f̄ , indicating
that removal of b will break all cycles in the graph. In general there
will be several satisfying assignments and hence several feedback
vertex sets, we are interested in directly determining the one with the
least cost. This is easily accomplished for most cost functions with
the BDD representation. A cost of 1 is assigned to the 0 terminal
vertex, there is no satisfying assignment for it. A cost of 1 is assigned
to the 1 terminal vertex. With this initial assignment Figure 5
shows how the minimum cost assignment can be obtained for an
additive cost function. Here f:variable indicated the variable at the
root of f , f:cost indicates the minimum cost satisfying assignment
for f , and f:assignment provides the minimum cost satisfying
assignment. cost(variable) is the cost of including this variable
in the satisfying assignment. The logic function in consideration
is a monotonically decreasing (negatively unate) function in all its
variables. Thus, none of the variables need to be assigned to 1.
This algorithm is linear in the size of the BDD since each edge is
traversed exactly once.

2.1 Graph Reduction Prior to MFVS Selection
Significant performance enhancements can be obtained by using
existing graph partitioning and graph compression techniques for
computing the MFVS [9, 7]. Firstly, the MFVS for a graph is the
union of the minimum cost feedback sets for its strongly connected
components. Thus, there is no loss of optimality in considering each
strongly connected component individually. This can potentially
lead to significant savings since a large graph may be broken up into

CKT #I #O #G #L
s13207 31 121 7875 669
s1423 17 5 635 74
s35932 35 320 15998 1728
s38417 28 106 22263 1636
s5378 35 49 2195 164
s838 35 2 390 32
s9234 19 22 5556 228
s953 16 23 395 29

Table 1: Statistics of Examples

several smaller strongly connectedcomponents that are individually
much easier to handle. Secondly, a vertex with a single fanin/fanout
vertex can be merged into its fanin/fanout vertex and the MFVS
algorithm can be applied on the compressed graph without loss of
optimality. This process can be applied repeteadly as shown in
Figure 6. A side effect of this is that if a self loop is introduced
during compression, the vertex in the self loop must occur in any
solution and can be deleted from the graph right away.

2.2 Handling Large Graphs
If the original graph is too large to handle, flip-flops should be
selected, applying graph partitioning and compression after each
selection, until the circuit has been partitioned enough that largest
strongly connected component is of manageable size. One could
either do this exactly in a branch-and-boundalgorithm, or by heuris-
tically picking the initial flip-flips. In the branch-and-bound ap-
proach, our algorithm is essentially used to bound the search.

Another heuristic is the following: The Boolean OR of the ex-
pressions at the back edge nodes always encapsulates enough in-
formation to find a (possibly suboptimal) solution to the feedback
vertex problem. If memory limits are reached at any time, one
could either pick the minimum cardinality complete solution from
the expressions computed thus far, or one could pick a part of the
solution and proceed from there on. Both these heuristics introduce
suboptimality in the final solution. In the second option, one could
possibly pick a partial solution of a certain cardinality which oc-
curs in the largest number of solutions from among the solutions
currently possible.

3 Experimental Results
In our experiments, we applied the algorithm to the circuits in the
ISCAS89 benchmark set [2]. It should be noted that the largest
examples in this set have more than 1500 flip-flops, making them
a good test for our approach. Some of the circuits in the ISCAS89
benchmark set are small enough that our algorithm handles them
trivially. Results for these examples are not reported here. From
among the larger examples, we only report the results for examples
for which the current implementation is able to find the MFVS. In
particular, results are not reported for s38584 and s15850 since
we were not able to obtain the optimum solutions for these two
circuits. The statistics of the examples are provided in Table 1. #I
is the number of primary inputs, #O the number of primary outputs,
#G the number of gates, and #L the number of flip-flops in the
circuit.

In Table 2, Heuristic Loop Cutting corresponds to the applica-
tion of the heuristic loop breaking algorithm proposed by Lee and
Reddy [6], and Implicit Approach corresponds to the application
of our approach. Also in able 2, # FF corresponds to the cardinality
of the solution obtained, CPU Time to the time required to compute
the solution. The CPU time required by the method of [6] for these
examples is generally very small.

An interesting aspect of our approach is that it enables the enu-
meration of all minimum cardinality solutions to the loop-breaking
problem. This is exciting for the following reason: It is well known

CKT # FF for Heur. Implicit Appr.
Loop Cutting # FF CPU Time (s)

s13207 59 59 31
s1423 22 21 3469
s35932 306 306 91
s38417 374 374 306
s5378 30 30 8
s838 0 0 1
s9234 53 53 1770
s953 5 5 1.5

Table 2: Results of the Application of the Implicit Loop-
Breaking Algorithm

that the relative cost of scanning a flip-flop depends on various fac-
tors. For example, since scanning a flip-flop adds delay to paths
going through it, if there was a choice between selecting two flip-
flops, one would always prefer to pick the flip-flop with shorter paths
through it. Given a circuit with relative costs associated with the
flip-flops, our algorithm can automatically pick for the user the mini-
mum weighted-cost solution from the millions of solutions possible.
The data provided in Table 2 is for the special case of all flip-flops
being assigned equal costs. The assignment of unequal costs does
not add any amount of complexity to the selection problem.

References
[1] V. Agrawal and K. Cheng. A complete solution to the partial

scan problem. In The Proceedings of the International Test
Conference, pages 44–51, September 1987.

[2] F. Brglez, D. Bryan, and K. Kozminski. Combinational Pro-
files of Sequential Benchmark Circuits. In Proceedings of the
International Symposium on Circuits and Systems, Portland,
Oregon, May 1989.

[3] S. T. Chakradhar, A. Balakrishnan, and V. D. Agrawal. An
exact algorithm for selecting partial scan flip-flops. In The
Proceedingsof the Design Automation Conference, June 1994.

[4] K-T. Cheng and V. D. Agrawal. An economical scan design
for sequential logic test generation. In The Proceedings of
the Fault Tolerant Comupting Symposium, pages 28–35, June
1989.

[5] M. R. Garey and D. S. Johnson. Computers and Intractability:
A Guide to the Theory of NP-complete ness. W. H. Freeman
and Company, 1979.

[6] D. Lee and M. Reddy.On determining scan flip-flops in partial-
scan designs. In Proceedings of the International Conference
on Computer-Aided Design, pages 322–325, November 1990.

[7] E. Lloyd and M. Soffa. On locating minimum feedback vertex
sets. In Journal of Computer and System Science, number 37,
pages 292–311, 1988.

[8] S. Park and S. Akers. A graph theoretic approach to partial
scan design by k-cycle elimination. In The Proceedings of the
International Test Conference, pages 303–311, October 1992.

[9] G. Smith and R. Walford. The identification of a minimal
feedback vertex set of a directed graph. In IEEE Transactions
on Circuits and Systems, volume CAS-22, 1, January 1975.

[10] E. Trischler. Incomplete scan design with an automatic test
generation methodology. In The Proceedings of the Interna-
tional Test Conference, pages 153–162, November 1980.

