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Abstract. The blood flow in arterial trees in the cardiovascular system can be simulated
with the help of different models, depending on the outputs of interest and the desired degree
of accuracy. In particular, one-dimensional fluid-structure interaction models for arteries are very
effective in reproducing physiological pressure wave propagation and in providing quantities like
pressure and velocity, averaged on the cross section of the arterial lumen. In locations where one-
dimensional models cannot capture the complete flow dynamics, e.g., in the presence of stenoses
and aneurysms or other strong geometric perturbations, three-dimensional coupled fluid-structure
interaction models are necessary to evaluate more accurately, for instance, critical factors responsible
for pathologies which are associated with hemodynamics, such as wall shear stress. In this work we
formalize and investigate the geometrical multiscale problem, where heterogeneous fluid-structure
interaction models for arteries are implicitly coupled. We introduce new coupling algorithms, describe
their implementation, and investigate on simple geometries the numerical reflections that occur at
the interface between the heterogeneous models. We also simulate on a supercomputer a three-
dimensional abdominal aorta under physiological conditions, coupled with up to six one-dimensional
models representing the surrounding arterial branches. Finally, we compare CPU times and number
of coupling iterations for different algorithms and time discretizations.
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1. Introduction. Research in the field of hemodynamics is essential in order to
understand, predict, and treat very common and dangerous cardiovascular patholo-
gies, such as aneurysm formation, atherosclerosis, and congenital defects. Numerical
simulations of blood flow dynamics are constantly improving in terms of reliability,
efficiency, and model complexity. In this work we address the problem of accurately
and efficiently simulating blood flow in the large arteries of the systemic circulation.

Since some of the main indicators for vascular pathologies are consequences of the
vessel wall compliance (e.g., the pulse wave velocity), the deformation of the vessel
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Brazil, and Instituto Nacional de Ciência e Tecnologia em Medicina Assistida por Computação
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has to be taken into account to obtain reliable simulations and to draw meaning-
ful conclusions. Modeling the corresponding fluid-structure interaction (FSI) can be
achieved in several ways, e.g., using a one-dimensional (1-D) model that integrates the
blood and the arterial wall (see, e.g., [4, 6, 17, 42]); performing a three-dimensional
(3-D) simulation for the fluid inside the deformable lumen, where the deformation of
the wall is accounted for at the variational level by a proper boundary condition on
the endothelial wall (see, e.g., [26, 35, 44]); or considering the full interaction between
the 3-D blood flow and a 3-D vessel wall by coupling the equations for the fluid flow
with those for a solid structure (see [2, 10, 12, 27, 33, 43] and the references therein).

Since the time constraint is important in a medical environment, a compromise
between model complexity and computational cost is mandatory. For this reason only
a few specific arterial regions of the system are represented by 3-D models, while the
remaining parts are in general accounted for through reduced models. More precisely,
1-D models are used to represent the network of arteries (see, e.g., [31, 41]), while the
heart and its valves, the veins, and the peripheral circulation are in general accounted
for through lumped models (see [21, 36] and the references therein). The coupling of
these heterogeneous models is what we call the geometrical multiscale problem. Its
efficient solution is a challenging task which has been addressed by several research
groups with the final goal of accounting for the whole circulation and autoregulation
(see, e.g., [5, 18, 24, 26]). The identification of the most convenient model represen-
tation is, evidently, problem-dependent. For example, when studying hemodynamics
in cerebral aneurysms, it is necessary to employ 3-D representations of such geomet-
rical perturbations to accurately model blood flow in the intra-aneurysmal region,
but at the same time it is interesting, and in some cases mandatory, to consider the
effect of the surrounding upstream and downstream vasculature through 1-D models.
Other target applications are related to the performance of the cardiac muscle. In
such situations, a 3-D model of the heart is needed to understand, for instance, the
impact of arterial stiffening on the growth and remodeling of the left ventricle. This
analysis can be done by coupling a 1-D model of the entire vasculature to the aortic
valve. A third application we could think of is the study of tumor blood supply, in
which, due to the high tortuosity and complex interconnectivity of blood vessels, a
3-D simulation may be required to characterize the oxygen supply to the tumor cells,
as well as the interaction of tumor cells with the blood flow to understand the mech-
anisms that are responsible for their migration to other parts of the body through
the arterial circulation. In such a case, the 3-D model of the tumor blood vessels
could be coupled to 1-D models representing the proximal healthy vasculature, the
latter feeding the 3-D model of the tumor blood flow with an adequate hemodynamic
environment according to the location within the human body.

In this work we propose different methods to handle the coupling of the hetero-
geneous FSI models. More precisely, first we address the coupling of the fluid part
of the problem, which can be set up by imposing different types of quantities at the
coupling interfaces [32]. Then we focus on the solid part: here, the 3-D solid problem
requires an additional set of boundary conditions on the interface rings, while the
1-D problem is already closed thanks to the local relation between the pressure and
the area of the vessel. To close the 3-D solid problem we propose several approaches.
Among them, we also devise a technique to impose the continuity of the area with
the surrounding reduced models, extending the work done in [19]. These conditions
are often neglected in the literature, also due to their nontrivial implementation.

One of the main concerns when dealing with geometrical multiscale problems is
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the need to avoid, or reduce, numerical spurious reflections at the interface separating
the two models (see [3, 15]). Therefore, we study the influence of the proposed inter-
face conditions on the amplitude of the spurious backward reflections that eventually
arise at the coupling interfaces between two dimensionally heterogeneous pipes. In or-
der to have a full overview of the phenomenon, we analyze both the case of a 1-D wave
flow that enters in a 3-D pipe, and the inverse one, i.e., a 3-D wave flow that enters
in a 1-D pipe. The former case is considered here for the first time, to the best of our
knowledge. In fact, our goal is not only to devise a set of boundary conditions that
absorb the numerical reflections in a 3-D simulation, but more generally to embed 3-D
pieces in a 1-D network in order to be able to perform 3-D simulations within a con-
sistent hemodynamics environment, in terms of upstream and downstream vascular
impedances, provided by a proper 1-D model.

In addition, we also study the computational efficiency of the solution of the
global coupled problem. Into a network composed of 1-D models we insert a real 3-D
geometry of the abdominal aorta. This results in six coupling interfaces between 1-D
FSI models and one 3-D FSI model. For this physiological test case we consider two
different time discretizations for the 3-D FSI problem and two different methods for
solving the coupling between the models. We compare the CPU time for all these
options, and we investigate its dependence on the number of 1-D pieces considered
for the coupling.

The methodology described in this work for the coupling of the heterogeneous
models has been implemented as part of the C++ finite elements library LifeV [29],
which is distributed under LGPL licence. Efficient and parallel solvers for 3-D FSI
[10, 11] and 1-D FSI [31] problems have been exploited and coupled within a single
general and extensible framework. In addition, the parallel implementation allows us
to tackle large problems and to profitably use scalable supercomputers. The results
of this work have been later used in [22] for the study of the physical consistency of
the coupling between 3-D and 1-D FSI models for cardiovascular applications.

This work is organized as follows. Section 2 presents the governing equations, in
continuous and discrete forms, of the 3-D and 1-D FSI models. Section 3 describes the
fluid interface equations and the numerical algorithms used to solve the heterogeneous
network of FSI problems. The interface conditions for the solid part of the FSI
problems are addressed in section 4; more precisely, three different sets of boundary
conditions are proposed to close the 3-D solid problem. These conditions are then
used and tested in section 5 on some benchmark problems, with the aim of analyzing
and comparing the number of iterations and the impact of the spurious backward
reflections at the coupling interfaces. In section 6 the performance of the different
numerical techniques is analyzed in the context of a physiological scenario. Finally,
our conclusions are reported in section 7.

2. Fluid-structure interaction models. As previously stated, the interaction
between blood flow and arterial wall deformation (compression and dilatation) has to
be taken into account to correctly reconstruct the behavior of the arterial pulse. In
fact, blood flow is characterized by traveling waves, generated by the interaction
between the fluid pressure and the wall deformation. In this section we recall the
3-D and the 1-D FSI models for the cardiovascular setting. For both models we then
provide the numerical approximation techniques employed to solve the problems at
the discrete level.

2.1. 3-D FSI model. In a geometrical multiscale setting, 3-D FSI models are
used to simulate the hemodynamics in complex geometrical situations such as those



IMPLICIT COUPLING OF 1-D AND 3-D BLOOD FLOW MODELS 477

Γ0
F,j Γ0

S,ext

Γ0
S,j Γ0

I

Γt
F,j Γt

S,ext

Γt
S,j Γt

I

Mt

Ω0

Ω0
F Ω0

S

Ωt

Ωt
F Ωt

S

Fig. 2.1. Reference and current configurations with ALE mapping. The color map in the
scheme indicates the computed blood pressure field.

occurring at bifurcations, aneurysms, and stenoses, among others. In addition, when
aiming at patient-specific analyses, the correct characterization of the local arterial
flow has to be carried out by using patient-specific data obtained from 3-D medical
images.

2.1.1. Equations. Despite the complexity of blood rheology, a Newtonian in-
compressible fluid is a suitable model for blood at the scale of larger arteries [21].
The arterial blood flow is therefore modeled with the incompressible Navier–Stokes
equations in the case of a moving fluid domain, resulting in the so-called arbitrary
Lagrangian Eulerian (ALE) formulation [20]. This approach is motivated by the need
to impose the boundary conditions for the fluid equations on a moving domain.

Let Ω0 ⊂ R
3 be a 3-D bounded domain with Lipschitz continuous boundary ∂Ω0,

where Ω̄0 = Ω̄0
F ∪ Ω̄0

S denotes the reference configuration of the fluid-solid problem,
Ω0

F and Ω0
S being the fluid and solid reference domains, respectively (see Figure 2.1).

In addition, we denote by Γ0
I the reference fluid-solid interface ∂Ω0

F ∩ ∂Ω0
S. The ALE

formulation leads to an arbitrary choice of the geometrical problem. In this work we
describe the fluid domain displacement dF as the harmonic extension of the solid
displacement dS at the fluid-solid interface Γ0

I to the interior of the fluid reference
domain Ω0

F, i.e.,

(2.1)

⎧⎪⎨
⎪⎩

−ΔdF = 0 in Ω0
F,

dF − dS = 0 on Γ0
I ,

∇dF · nF = 0 on ∂Ω0
F\Γ0

I ,

with nF being the outgoing normal direction on the fluid domain boundary. The
solid displacement dS changes with time, and therefore the harmonic extension (2.1)
defines the current configuration of the fluid domain Ωt

F, which is parametrized by
the ALE map

Mt : Ω0
F → Ωt

F ⊂ R
3,

x0 �→ Mt
(
x0

)
= x0 + dF

(
x0

)
,

such that Ωt
F = Mt

(
Ω0

F

)
, with x0 ∈ Ω0

F a fluid point in the reference configura-
tion. This approach is very convenient in the description of deforming arteries, since
it allows us to preserve the mesh topology during the simulations, just moving its
vertices.

The fluid problem is modeled by the incompressible Navier–Stokes equations writ-
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ten in the ALE formulation

(2.2)

⎧⎪⎪⎨
⎪⎪⎩

ρF

(
∂uF

∂t

∣∣∣∣
x0

+ ((uF −wF) · ∇)uF

)
−∇ · σF = 0 in Ωt

F × (0, T ],

∇ · uF = 0 in Ωt
F × (0, T ],

uF − uF = 0 in Ωt
F × {0},

where (0, T ] is the time interval, ρF the fluid density, σF = −pFI + 2μF εF (uF) the

Cauchy stress tensor (with I the identity matrix), εF (uF) =
(∇uF +

(∇uF

)T)/
2 the

strain rate tensor, uF the fluid velocity vector field, uF the initial fluid velocity vector
field, pF the fluid hydrostatic pressure, μF the given fluid dynamic viscosity, and wF

the fluid domain velocity, which is defined as

wF =
∂Mt

∂t

∣∣∣∣
x0

=
∂dF

∂t

∣∣∣∣
x0

.

Problem (2.2) is closed by imposing an interface condition with the solid problem on
Γ0
I and inflow and outflow boundary conditions on Γt

F,j ⊂ ∂Ωt
F\Γt

I, j = 1, . . . , nΓ
FS. In

a geometrical multiscale setting, some of these inflow/outflow boundaries are coupling
interfaces with the nearby reduced dimensional model, where interface equations are
imposed, as we discuss in section 3. On the remaining boundaries we can impose
given data, such as inlet/outlet time flow/velocity profiles. Note that, for the sake of
simplicity and without a loss of generality, we assume that the number of boundaries
nΓ
FS is the same for both the fluid and the solid problems, and hence we use the double

subscript FS.
The solid problem is described in a purely Lagrangian frame of reference. A large

variety of materials can be chosen for modeling the arterial wall. The mechanical
response of the wall to a given strain is mainly due to the elastin and collagen com-
ponents. The former is responsible for the isotropic hyperelastic response, while the
latter incorporates anisotropy and constitutive nonlinearity into the strain-stress rela-
tion; it is activated only when the strains reach a certain critical value and in certain
directions (according to fiber orientation). In this regard, we consider a linear elastic
model for the elastin and neglect the nonlinearities due to fiber orientation and acti-
vation. In addition, we assume a quasi-incompressible behavior for the arterial tissue
and neglect its viscoelastic response. In fact, an equivalent viscoelastic effect is ac-
counted for through proper boundary conditions acting over the external wall surface
coming from a model of the surrounding tissues (see, e.g., [34]). As a result of these
considerations, in this work we consider a linear elastic isotropic St. Venant–Kirchhoff
model to describe the solid displacement:

(2.3)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ρS
∂2dS

∂t2
−∇ · σS = 0 in Ω0

S × (0, T ],

dS − dS = 0 in Ω0
S × {0},

∂dS

∂t
− vS = 0 in Ω0

S × {0},

where ρS is the solid density; σS = λStr (εS (dS)) I+2μSεS (dS) the first Piola–Kirchhoff
stress tensor, where εS (dS) = (∇dS + (∇dS)

T)/2; λS and μS are the first and second
Lamé parameters, respectively; dS is the initial solid displacement; and vS the initial
solid velocity. The St. Venant–Kirchhoff materials are usually characterized by the
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Young’s modulus ES and the Poisson ratio νS. The following relations hold between
the two sets of coefficients:

λS =
ESνS

(1− 2νS) (1 + νS)
, μS =

ES

2 (1 + νS)
.

Problem (2.3) is closed by imposing an interface condition with the fluid problem on
Γ0
I and a proper set of boundary conditions on ∂Ω0

S\Γ0
I . On the solid external wall

Γ0
S,ext we can apply either a Neumann boundary condition, to account for a distributed

pressure field, or a viscoelastic Robin boundary condition, to model the presence of
the external tissues on the arteries. In turn, in a geometrical multiscale setting, the
area of the nΓ

FS inlet/outlet solid rings Γ0
S,j, j = 1, . . . , nΓ

FS, can be related to that of
the surrounding models; in contrast, if there exists any uncoupled boundary interface,
a different approach must be followed. We defer this discussion to section 4.

2.1.2. Solution strategy for the FSI problem. The solution of the FSI prob-
lem can be obtained by using either a modular (segregated) or nonmodular (mono-
lithic) strategy. Depending on the choice of the boundary conditions applied to the
fluid and solid domains, the former approach may lead to Dirichlet–Neumann [12, 13],
Neumann–Dirichlet [8], Robin–Neumann [1], or Robin–Robin [23] approaches. In all
cases, the main drawback is that an additional subiteration algorithm is required to
achieve strong coupling between the fluid and the solid problems. To avoid fluid-solid
subiterations, we use a nonmodular strategy, where the fluid and the solid are treated
as a single problem. The solution algorithm relies on the parallel block preconditioner
developed in [11], which is based on an inexact block factorization, where each factor
is indeed an algebraic additive Schwarz preconditioner. The resulting preconditioner
has proven to be effective and scalable, since each different factor addresses a single
subproblem in a specific way.

Problems (2.2) and (2.3) are coupled through interface conditions on Γ0
I , which

comprise the continuity of the velocity field and that of the traction (the latter with
the use of a Lagrange multiplier). The interface problem reads

(2.4)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

uF ◦Mt − ∂dS

∂t
= 0 on Γ0

I × (0, T ],

σS · nS − λΓI = 0 on Γ0
I × (0, T ],

λΓI − JSG
−T
S (σF ◦Mt) · nS = 0 on Γ0

I × (0, T ],

where λΓI is the Lagrange multiplier, nS the outgoing normal direction on the solid
domain, GS = I +∇dS the solid deformation gradient, and JS = det (GS). For ease
of writing, let us formally denote problems (2.1), (2.2), (2.3), and (2.4) in their weak
form as G, F, S, and I, respectively. This allows us to write the global variational
formulation of the FSI problem in a compact form as follows: find (uF, pF) ∈ VF,
dS ∈ VS, λΓI ∈ VI, and dF ∈ VG such that

(2.5)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

F
(
(uF, pF,λΓI ,dF), (u

∗
F, p

∗
F)
)
= 0 ∀(u∗

F, p
∗
F) ∈ V∗

F,

S
(
(dS,λΓI),d

∗
S

)
= 0 ∀d∗

S ∈ V∗
S,

I
(
(uF,dS),λ

∗
ΓI

)
= 0 ∀λ∗

ΓI
∈ V∗

I ,

G
(
(dS,dF),d

∗
F

)
= 0 ∀d∗

F ∈ V∗
G.

VF, VS, VI, and VG are proper linear manifolds including the corresponding essential
conditions according to the boundary data; the superscript ∗ identifies test functions
and spaces.
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2.1.3. Numerical approximation. The fluid problem is discretized in space
by a P1–P1 finite element method, stabilized by an interior penalty technique [7].
The solid and the geometric problems are discretized in space by P1 finite elements.
These discretizations show a first order convergence in space. A large variety of time
discretizations for the incompressible Navier–Stokes equations on moving domains can
be found in the literature, depending on the target application. In this work we use a
first order Euler scheme. Regarding the solid problem, we use a second order midpoint
scheme, which can be interpreted as a Newmark scheme with a particular choice
of the coefficients. The extension of the proposed methodology to other space and
time discretizations is straightforward and not a matter of concern here. The global
time interval [0, T ] is split into several uniform subintervals [tn, tn+1], n = 0, 1, 2, . . . ,
such that tn = nΔt, with Δt being the time step. Regarding the notation in the
following we use the superscripts n and n + 1 to refer to quantities at time tn and
tn+1, respectively, and the h subscript for quantities discretized in space.

Problem (2.5) is highly nonlinear due to the Navier–Stokes convective term and to
the displacement of the fluid domain. Following [11], we use two time discretization
strategies to address such nonlinearities. In both cases, the solution of the non-
modular FSI problem is performed by using the Newton method [10, 11]. Several
approximations of the corresponding Jacobian matrix by finite difference methods are
reviewed in the literature (see, e.g., [27, 33, 43]). However, these schemes may lead to
a substantial increase of the number of iterations required for the convergence to the
solution of the FSI problem. For this reason, in this work we compute the Jacobian
blocks by an analytic formulation, which takes into account the shape derivatives,
i.e., the cross derivatives of the fluid problem with respect to the domain motion.
For a detailed description, including the derivation of the Jacobian blocks, see [10,
section 3.4] and [14].

Let uFSI be the vector of unknowns of the FSI problem. The pth iteration of the
Newton method reads

(2.6) up+1
FSI,h = up

FSI,h + δup
FSI,h,

where the update δup
FSI,h is computed by solving

(2.7) JFSI

(
up
FSI,h

)
δup

FSI,h = −RFSI

(
up
FSI,h

)
.

This requires the computation of the Jacobian matrix JFSI

(
up
FSI,h

)
and the evaluation

of the residuals vector RFSI

(
up
FSI,h

)
at each iteration. The specific expression of these

two elements depends on the chosen time discretization strategy.
Fully implicit (FI) time discretization. In the FI time discretization scheme, the

geometric and convective terms in the equations are considered implicitly, such that

the unknowns vector is uFSI,h = (yT
F,h,d

T
S,h,λ

T
ΓI,h,d

T
F,h)

T
, with yF,h = (uT

F,h, p
T
F,h)

T
.

The FI formulation reads: given un
FSI,h, find un+1

FSI,h such that

AFSI

(
un+1
FSI,h

)
un+1
FSI,h = bFSI

(
un+1
FSI,h

)
,
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where the finite element matrix AFSI depends on the solution vector un+1
FSI,h and can

be written in a block form as

AFSI

(
un+1
FSI,h

)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

FFF

(
yn+1
F,h ,d

n+1
F,h

)
FFΓI

(
yn+1
F,h ,d

n+1
F,h

)
0 0 0 0 0

FΓIF

(
yn+1
F,h ,d

n+1
F,h

)
FΓIΓI

(
yn+1
F,h ,d

n+1
F,h

)
0 0 ΛF 0 0

0 0 SSS SSΓI 0 0 0

0 0 SΓIS SΓIΓI −I 0 0

0 ΛT
F 0 −I/Δt 0 0 0

0 0 0 0 0 GFF GFΓI

0 0 0 −I 0 0 I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

while

un+1
FSI,h =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

yn+1
FF,h

yn+1
FΓI,h

dn+1
SS,h

dn+1
SΓI,h

λn+1
ΓI,h

dn+1
FF,h

dn+1
FΓI,h

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, bFSI

(
un+1
FSI,h

)
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

bFF

(
dn+1
F,h

)
bFΓI

(
dn+1
F,h

)
bSS

bSΓI

−dn
SΓI,h/Δt

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

In the algebraic form, for the sake of clarity, we distinguish between the degrees of free-
dom lying on the fluid-solid interface (adding the subscript ΓI to the blocks) and those
that are internal to the domains Ωt

F and Ω0
S (for which we keep the same subscripts as

for the continuous case). In particular, yF,h = (yT
FF,h,y

T
FΓI,h

)T, dS = (dT
SS,h,d

T
SΓI,h)

T,

and dF,h = (dT
FF,h,d

T
FΓI,h)

T. Blocks (1,1), (2,2), and (4,4) represent the discrete fluid,
solid, and geometric problems, respectively. The off-diagonal entries enforce the cou-
pling conditions between the three fields. The rectangular block matrix ΛF coincides
with [I, 0]

T
such that it selects the fluid velocity degrees of freedom of yFΓI,h to apply

the fluid-solid interface conditions. Note that in this discrete formulation we suppose
a first order time discretization of the velocity continuity condition. The nonlinear-
ities, i.e., the dependence of the fluid blocks from the fluid displacement and from
the fluid velocity and pressure fields, are explicitly indicated in the matrix entries.
The fluid and solid right-hand sides including the terms generated by the time dis-
cretization of the momentum conservation equations are denoted by bF = (bTFF, b

T
FΓI

)T

and bS = (bTSS, b
T
SΓI

)T, respectively. We remark that, due to the implicit formulation
adopted for the fluid domain, also the fluid right-hand side depends on the fluid
domain displacement.

The residual of the Newton method is defined as

RFSI

(
un+1
FSI,h

)
= AFSI

(
un+1
FSI,h

)
un+1
FSI,h − bFSI

(
un+1
FSI,h

)
,
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while the Jacobian matrix assumes the form

JFSI

(
un+1
FSI,h

)
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

DyFF
FF DyFΓI

FF 0 0 0 DdFF
(FF − bF) DdFΓI

(FF − bF)

DyFF
FΓI DyFΓI

FΓI 0 0 ΛF DdFF
(FΓI − bΓI) DdFΓI

(FΓI − bΓI)

0 0 SSS SSΓI 0 0 0

0 0 SΓIS SΓIΓI −I 0 0

0 ΛT
F 0 −I/Δt 0 0 0

0 0 0 0 0 GFF GFΓI

0 0 0 −I 0 0 I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Note that in the Jacobian matrix we have used the abridged notation

DxFF = DxFFF

(
yn+1
F,h ,d

n+1
F,h

)
+DxFFΓI

(
yn+1
F,h ,d

n+1
F,h

)
,

DxFΓI = DxFΓIF

(
yn+1
F,h ,d

n+1
F,h

)
+DxFΓIΓI

(
yn+1
F,h ,d

n+1
F,h

)
,

DxbF = DxbFF

(
dn+1
F,h

)
+DxbFΓI

(
dn+1
F,h

)
,

DxbΓI = DxbΓIF

(
dn+1
F,h

)
+DxbΓIΓI

(
dn+1
F,h

)
,

Dx being the total derivative of a given functional with respect to a variable x.
Geometric convective explicit (GCE) time discretization. In the GCE time dis-

cretization scheme, at each new time iteration we define appropriate extrapolations
d�
SΓI,h and u�

F,h of the geometric and convective terms, respectively. In particular,
we choose the simple approximation d�

SΓI,h = dn
SΓI,h and u�

F,h = un
F,h such that the

geometric and the fluid-solid parts of the problem can then be split. Hence, at each
time step, first we compute the fluid displacement dn+1

F,h by solving the linear system
associated with the geometric problem, i.e.,

(2.8)

[
GFF GFΓI

0 I

](
dn+1
FF,h

dn+1
FΓI,h

)
−
(

0

d�
SΓI

)
= 0,

and we move the fluid mesh accordingly. Then, by computing the resulting fluid
domain velocity as

wn+1
F,h =

dn+1
F,h − dn

F,h

Δt
,

we can replace the convective term in the fluid momentum equation by the quan-
tity ((u�

F,h − wn+1
F,h ) · ∇)un+1

F,h . Hence, the unknowns vector is reduced to uFSI,h =

(yT
F,h,d

T
S,h,λ

T
ΓI,h)

T
, and the second step reads: given un

FSI,h, find un+1
FSI,h such that

AFSIu
n+1
FSI,h = bFSI,
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where now the finite element matrix AFSI does not depend on un+1
FSI,h such that its

block form reads

AFSI =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

FFF FFΓI 0 0 0

FΓIF FΓIΓI 0 0 ΛF

0 0 SSS SSΓI 0

0 0 SΓIS SΓIΓI −I

0 ΛT
F 0 −I/Δt 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

while

un+1
FSI,h =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

yn+1
FF,h

yn+1
FΓI,h

dn+1
SS,h

dn+1
SΓI,h

λn+1
ΓI,h

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
, bFSI =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

bFF

bFΓI

bSS

bSΓI

−dn
SΓI
/Δt

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The residual of the Newton method is defined as

RFSI

(
un+1
FSI,h

)
= AFSIu

n+1
FSI,h − bFSI,

and, since the problem is linear, the Jacobian matrix is equal to the system matrix,
and the Newton method converges in one iteration.

2.2. 1-D FSI model. In a geometrical multiscale setting, the global arterial
circulation can be modeled by a network of 1-D FSI segments, each characterized by a
circular cross section (eventually narrowed along the axial direction) and a viscoelastic
arterial wall (see, e.g., [17, 31, 41]). Despite the fact that the 1-D FSI model provides
a simple axial symmetric representation of blood flow, it has proven to be able to
accurately describe the behavior of the principal physiological quantities in a mean
sense with respect to the transversal area of the vessel.

2.2.1. Equations. The 1-D FSI model is derived from the incompressible Navier–
Stokes equations by making some simplifying assumptions and integrating over the
cross section of the artery Σ (t, z), where t ∈ (0, T ] is the time and z ∈ [0, L] the axial
coordinate, with L the length of the vessel. The fluid equations are coupled with
a structural model for the vessel wall. The vessel is assumed to be axisymmetric,
and only radial displacements are considered. The pressure is assumed to be con-
stant on each transversal section, while an axial velocity profile is imposed through a
given power-law relation [31, 40], following the Womersley theory. The resulting state
variables are

A (t, z) =

∫
Σ(t,z)

dΣ, Q (t, z) =

∫
Σ(t,z)

[uF]z (t, z) dΣ, P (t, z) =
1

A (t, z)

∫
Σ(t,z)

pF (t, z) dΣ,

where A is the cross-sectional area, Q the volumetric flow rate, [uF]z the fluid axial
velocity, and P the average pressure. A derivation of the 1-D FSI model can be found
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in [39]. The resulting governing equations for continuity of mass and momentum are

(2.9)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂A

∂t
+
∂Q

∂z
= 0 in (0, L)× (0, T ],

∂Q

∂t
+

∂

∂z

(
αF

Q2

A

)
+
A

ρF

∂P

∂z
+ κF

Q

A
= 0 in (0, L)× (0, T ],

A−A = 0, Q−Q = 0 in (0, L)× {0},
where αF and κF are the Coriolis and friction coefficients, respectively, whose defini-
tions are given in [31]. In (2.9) we also provide the initial values for the area A and
for the volumetric flow rate Q.

The fluid problem (2.9) is coupled with the 1-D structural model through the
pressure-area relation, which may account for several terms [17]. In this work we
consider the elastic and viscoelastic responses of the vessel wall, since the other terms
provide a negligible contribution in the cardiovascular 1-D modeling context (see,
e.g., [3, 31, 41]),

(2.10) P = ψ (A) = Pext + βS

(√
A

A0
− 1

)
+ γS

(
1

A
√
A

∂A

∂t

)
in (0, L)× (0, T ],

where Pext is a reference external pressure (i.e., the pressure exerted by the tissues
over the external wall), A0 the reference value for the vessel area, and

βS =

√
π

A0

hSES

1− ν2S
, γS =

TS tanφS
4
√
π

hSES

1− ν2S
,

where hS is the wall thickness, TS the wave characteristic time, and φS the viscoelastic
angle. In cardiovascular applications TS is usually taken equal to the systolic period,
while the viscoelastic angle is a parameter which provides a measure of the magni-
tude of the parietal viscosity force relative to the elastic one. Note that the initial
condition for the average pressure can be computed by plugging A and its time deriva-
tive into (2.10). The 1-D FSI problem is finally closed by providing a proper set of
boundary conditions on both sides of the model. As for the 3-D counterpart, these
conditions can be either given data (for instance, expressing either a time-dependent
heart flow [41] or a terminal absorbing condition [42]) or coupling conditions relat-
ing the 1-D problem with the surrounding models. We postpone the discussion of
the latter case to section 3. For further details about the 1-D FSI model equations,
see [31].

2.2.2. Numerical approximation. By plugging (2.10) into (2.9), we get a
closed system of differential equations. On the one hand, the elastic component of
the pressure-area relation is an algebraic expression and can be easily manipulated.
On the other hand, the viscoelastic term depends on the temporal derivative of the
area and requires a special treatment.

In the literature, several approaches have been proposed for the numerical approx-
imation of the 1-D FSI problem, ranging from explicit discontinuous Galerkin [42] to
implicit finite difference [41] or implicit finite element [3] methods. Following [17, 31,
37], in this work we use an operator splitting technique based on an explicit second
order Taylor–Galerkin discretization, where the volumetric flow rate is split into two
components such that Q = Q̂+ Q̃, with Q̂ being the solution of the pure elastic prob-
lem and Q̃ the viscoelastic correction. On each time subinterval [tn, tn+1], we solve
the 1-D FSI problem by performing two steps.
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First step (elastic response). By removing the viscoelastic component from the
formulation, we can write the closed system of equations in the classical conservative
form as

(2.11)
∂Û

∂t
+
∂F (U)

∂z
+ S (U) = 0 in (0, L)× (0, T ],

where U = [A,Q]T and Û = [A, Q̂]T are the total and elastic conservative variables,
respectively, F = [Q,F2]

T the corresponding fluxes, and S = [0, S2]
T accounts for

the friction and the nonuniformity of the geometry and the material (see [31] for the
detailed expression of F2 and S2). The flux F is algebraic, since it includes only the
elastic part of (2.10).

Let Uh be the discrete counterpart of U . In addition, let VA and VQ̂ be two sets
of piecewise linear finite element functions with adequate boundary conditions, and
V∗
A and V∗

Q̂
be the associated linear spaces of admissible variations. From (2.11) the

Taylor–Galerkin formulation for the elastic problem reads: given Un
h = [An

h , Q
n
h]

T,

find Ûn+1
h = [An+1

h , Q̂n+1
h ]T ∈ VA ⊗ VQ̂ such that

(2.12)(
Ûn+1

h , ϕh

)
=
(
Ûn

h, ϕh

)
+Δt

[
F (Un

h)−
Δt

2

∂F (Un
h)

∂U

(
S (Un

h) +
∂F (Un

h)

∂z

)
,
∂ϕh

∂z

]

−Δt

[
S (Un

h)−
Δt

2

∂S (Un
h)

∂U

(
S (Un

h) +
∂F (Un

h)

∂z

)
, ϕh

]
∀ϕh ∈ V∗

A ⊗ V∗
Q̂
.

The discrete problem is finally closed by introducing two compatibility conditions [31].
The main advantage of this approach resides in its very low computational cost

in view of the explicit nature of the numerical method (2.12). Moreover, the solution
of the problem for the area (mass conservation equation) is decoupled from that for
the volumetric flow rate (momentum conservation equation). However, the explicit
time discretization entails a limitation on the time step related to the CFL number.
In particular, the result of the von Neumann stability analysis, in the presence of a
consistent mass matrix, is (see, e.g., [38])

Δt

h
<

√
3

3
.

This is, as a matter of fact, a central issue when coupling 1-D and 3-D FSI problems,
as we will see in section 3.3.2.

Second step (viscoelastic correction). By using the mass conservation equation, we
remove the time dependence from the viscoelastic wall term. The resulting problem
is

1

A

∂Q̃

∂t
− ∂

∂z

(
γS

ρFA3/2

∂Q

∂z

)
= 0 in (0, L)× (0, T ],

which is closed by a proper set of homogeneous boundary conditions for Q̃. The
corresponding finite element formulation reads: given (An+1

h , Q̂n+1
h ) ∈ VA ⊗ VQ̂, find

Q̃n+1
h ∈ VQ̃ such that
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(2.13) (
Q̃n+1

h

An+1
h

, ϕh

)
+Δt

(
γS

ρF
(
An+1

h

)3/2 ∂Q̃
n+1
h

∂z
,
∂ϕh

∂z

)
=

(
Q̃n

h

An+1
h

, ϕh

)

−Δt

(
γS

ρF
(
An+1

h

)3/2 ∂Q̂
n+1
h

∂z
,
∂ϕh

∂z

)
+Δt

[
γS

ρF
(
An+1

h

)3/2 ∂Q̂
n+1
h

∂z
ϕh

]L

0

∀ϕh ∈ V∗
Q̃
,

where VQ̃ is a set of piecewise linear finite element functions with adequate boundary
conditions and V∗

Q̃
is the associated linear space of admissible variations. In (2.13) we

impose either homogeneous Dirichlet or homogeneous Neumann boundary conditions,
depending on the physical boundary condition types enforced at the first step. More
details about the boundary conditions of the viscoelastic problem are given in [31].

3. Coupling algorithm. In this section we briefly recall from [32] the interface
equations and the numerical algorithms for the partitioned solution of a geometrical
multiscale problem. Then, we focus on the computation or approximation of the
Jacobian entries of the interface problem. For the 3-D FSI model we devise the exact
tangent problem, while for the 1-D FSI model we briefly summarize the results of [31].
The methodology presented here is devised for the coupling of the fluid part of the
FSI problems. The extension to the solid part is discussed in section 4.

3.1. Fluid interface equations. In a geometrical multiscale approach the aim
is to couple several heterogeneous models without losing abstraction and generality.
In particular, in section 2 we introduced two FSI models characterized by different
geometrical dimensions and governed by different kinds of partial differential equa-
tions. The coupling of such different models can be set by imposing the conservation
of averaged/integrated quantities over the interfaces, removing any dependency from
the geometrical nature and the mathematical formulation of each model [32]. More
specifically, for the fluid part of the problem these boundary quantities are the volu-
metric flow rate Q and the averaged normal component of the traction vector (mean
normal stress) S, hereafter referred to as the coupling flow and the coupling stress,
respectively. On the jth coupling interface of the 3-D FSI model these quantities are
computed as

Q3-D
j =

∫
Γt
F,j

uF · nF dΓ, S3-Dj =
1

|Γt
F,j|

∫
Γt
F,j

(σF · nF) · nF dΓ,

where we assume that each coupling surface Γt
F,j, j = 1, . . . , nΓ

FS, is planar.
Remark 3.1. In the present work we consider the quantity (σF · nF) ·nF constant

over Γt
F,j , j = 1, . . . , nΓ

FS, such that we can rewrite the coupling stress as S3-Dj =

(σF · nF) · nF. Indeed, as we explain in the next remark, S3-Dj has the meaning of

the Lagrange multiplier responsible for enforcing the imposition of the flow rate Q3-D
j

through Γt
F,j, j = 1, . . . , nΓ

FS.
Remark 3.2. Following the approach in [16], the imposition of the coupling flow

on a coupling interface of the 3-D FSI fluid problem is addressed in a weak sense
through a Lagrange multiplier. This choice leads to a uniform value of the normal
component of the traction vector [25] on the same boundary interface. Moreover, it
is coherent with the other chosen fluid coupling condition, i.e., the coupling stress.
Note, however, that the same methodology holds when imposing the coupling flow
through a given normal velocity profile.
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Remark 3.3. The 3-D FSI fluid problem needs an additional set of boundary
conditions on the two tangential directions lying on Γt

F,j , j = 1, . . . , nΓ
FS. Since,

for modeling reasons, we assume that at these coupling interfaces the flow is fully
developed and orthogonal to the plane, we impose (σF ·nF) · τ 1F = 0 and (σF ·nF) ·
τ 2F = 0, where τ 1F and τ 2F are the two tangential directions.

Regarding the 1-D FSI model we have

Q1-D
L = −QL, S1-DL = −PL, on ΓL,

Q1-D
R = QR, S1-DR = −PR, on ΓR,

where the subscripts L and R stand for left- and right-hand sides, respectively.
By using the approach described in [32], we write a set of conservation equations.

More precisely, we consider a general network of models connected by C coupling
nodes: at the cth coupling node we impose the conservation of mass and the continuity
of normal stresses as

(3.1)

⎧⎪⎪⎨
⎪⎪⎩

Ic∑
i=1

Qc,i = 0,

Sc,1 − Sc,i = 0, i = 2, . . . , Ic,

where Ic is the number of interfaces connected by the cth coupling node, c = 1, . . . , C.

3.2. Numerical approach. For the sake of generality, the interface problem at
the cth coupling node is written in a residual form. Since χc is the local vector of
unknowns, the corresponding local residual form at the cth coupling node is

Rc (χc, ·) = 0,

with c = 1, . . . , C, while the dot in the parentheses expresses a possible dependence
of the local residual on nonlocal unknowns, i.e., quantities defined at other coupling
nodes of the underlying models. The set of equations (3.1) holds independently from
the type of boundary data imposed at each coupling interface, leading to an arbitrary
choice of the coupling conditions to be applied on the models. Among the several
possible combinations, in [32, section 2.5] three significant cases are addressed. We
briefly recall two of them, the imposition of the coupling stress on all the coupling
interfaces,

(3.2) Rc (χc, ·) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Qc,1 (Sc, ·) +
Ic∑
i=2

Qc,i

Qc,2 (Sc, ·) − Qc,2

Qc,3 (Sc, ·) − Qc,3

...
Qc,Ic (Sc, ·) − Qc,Ic

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

for c ∈ LS,
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and its dual case (coupling flow imposed on all the coupling interfaces),

(3.3) Rc (χc, ·) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ic∑
i=1

Qc,i

Sc,1 (Qc,1, ·) − Sc,2 (Qc,2, ·)
Sc,1 (Qc,1, ·) − Sc,3 (Qc,3, ·)

...
Sc,1 (Qc,1, ·) − Sc,Ic (Qc,Ic , ·)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

for c ∈ LQ,

where LS and LQ denote the sets of coupling nodes where coupling stress and coupling
flow conditions, respectively, are imposed on the coupling interfaces, while Qc,i (Sc, ·)
and Sc,i (Qc,i, ·) are two boundary operators that, given a proper set of coupling
conditions, return the flow rate and the mean normal stress, respectively, at the ith
coupling interface of the cth coupling node. Note that in (3.2) and (3.3) the operators
are global, as they may depend also on nonlocal coupling quantities, i.e., quantities
introduced at other coupling nodes. The two strategies result in the following local
vectors of unknowns:

χc = (Sc,Qc,2, . . . ,Qc,Ic)
T

for c ∈ LS, χc = (Qc,1,Qc,2, . . . ,Qc,Ic)
T

for c ∈ LQ.

Let χG = (χT
1 ,χ

T
2 , . . . ,χ

T
C )

T be the global vector of unknowns of all the coupling
interfaces; more generally, in the following we use the subscript G to refer to quan-
tities of the global interface problem. The solution of the global coupled problem is
addressed by using a nonlinear Richardson strategy,

(3.4) χk+1
G = χk

G + δχk
G ,

until convergence within a suitable tolerance has been achieved. The initial guess χ0
G

is assigned by performing a linear extrapolation of the solution of the previous time
steps. Since

RG
(
χG

)
=

(R1(χ1, ·)T,R2(χ2, ·)T, . . . ,RC(χC , ·)T
)T

are the global residuals vector of the interface problem, the update δχk
G is computed

by using either a Newton or an inexact-Newton method,

JG
(
χk

G
)
δχk

G = −RG
(
χk

G
)
,

depending on the fact that the Jacobian matrix JG(χG) is either exact or approxi-
mated. In both cases, the Jacobian matrix can be filled in two steps. In the first
one, the Jacobian graph is built, and the required type of entries (flow rate or mean
normal stress partial derivatives) are identified. This is done by using the methodol-
ogy described in [32, section 3.2.1], which is devised for the most general case. Then,
during the second step, the matrix entries can be either computed by solving the
tangent problems associated with the coupled models [31, 32], or approximated by
using a simpler finite difference approach, which may lead to a good approximation
at a reasonable cost [4, 31]. We further discuss this topic in section 3.3.

Since in the presence of 3-D FSI models the assembling of the Jacobian matrix
of the interface problem may be too expensive, some further approximations can
be introduced. For example, it is possible to reuse the same Jacobian matrix for
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more than one iteration and eventually more than one time step. However, a better
solution in the same direction is to use a Broyden approach for the update of the
Jacobian matrix at each nonlinear Richardson iteration. Indeed, this approach has
been proven to perform successfully for cardiovascular applications made of networks
of 1-D models [4, 31] and for heterogeneous networks of rigid fluid problems [28],
requiring just a cheap evaluation of the global residuals vector of the interface problem.

3.3. Jacobian entries computation. By definition, the exact Jacobian matrix
of the global interface problem is given by the derivative of the residuals vector with
respect to the coupling unknowns, i.e.,

JG
(
χG

)
=
∂RG

(
χG

)
∂χG

.

The residuals and the unknowns vectors depend on the type of coupling conditions
imposed at each node of the network. Therefore, the block structure of the Jacobian
and the type of matrix entries are problem dependent. From (3.2) and (3.3) we
observe that, beside the constant entries in general, there are no more than four
possible coefficient types, corresponding to the partial derivatives of the two boundary
operators with respect to the coupling flow and to the coupling stress, i.e.,

∂Qc1,i1 (Sc1 , ·)
∂Qc2,i2

, i1 = 1, . . . , Ic1 , i2 = 1, . . . , Ic2 , for c1 ∈ LS and c2 ∈ LQ,

∂Qc1,i1 (Sc1 , ·)
∂Sc2

, i1 = 1, . . . , Ic1 , for c1 ∈ LS and c2 ∈ LS,

∂Sc1,i1 (Qc1,i1 , ·)
∂Qc2,i2

, i1 = 1, . . . , Ic1 , i2 = 1, . . . , Ic2 , for c1 ∈ LQ and c2 ∈ LQ,

∂Sc1,i1 (Qc1,i1 , ·)
∂Sc2

, i1 = 1, . . . , Ic1 , for c1 ∈ LQ and c2 ∈ LS,

where c1 and c2 are two coupling nodes inside the network. In the following, for both
FSI models described in section 2 we provide a suitable numerical approach for the
computation or approximation of these Jacobian entries.

3.3.1. 3-D FSI Jacobian entries. In section 2.1.3 we described a Newton
method for the solution of the 3-D FSI problem with the exact computation of the
FSI Jacobian matrix JFSI in both the GCE and FI approaches. No matter which time
discretization scheme is used, the Jacobian matrix of the FSI problem serves also for
the computation of the Jacobian entries of the interface problems. More precisely, the
discrete matrix form of the tangent problem associated with the 3-D FSI model reads

JFSI

(
uk
FSI,h

)
δuFSI,h = bFSI,j2 ,

where uk
FSI,h is the solution of the FSI problem obtained during the computation of

the residuals vector of the kth nonlinear Richardson iteration of the interface problem.
The entries of bFSI,j2 are null apart from the contribution given by the unitary per-
turbation of the interface quantity applied on Γt

F,j2
such that δuFSI,h is the resulting

variation of the global FSI solution vector due to that unitary perturbation. Note
that this is equivalent to solving problem (2.7) with a different right-hand side that
takes into account the local network topology.
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Remark 3.4. From the computational viewpoint, it is necessary to solve one
tangent problem for each coupling interface of the 3-D FSI model. However, the
Jacobian matrix is the same for all the cases. Moreover, it is already available from
the previous Newton iterations of the FSI problem (see (2.6)), where it has been
computed by using the second-to-last state variables, i.e., the state variables at the
iteration before the convergence.

Remark 3.5. In the GCE time discretization approach, problem (2.8) is solved
just once per time step, at the first nonlinear Richardson iteration of the interface
problem. Indeed, it does not depend on any fluid coupling quantity.

The values of the Jacobian entries are then retrieved from the solution of the FSI
tangent problem. More precisely, they are computed from δuFSI,h as the resulting
flow rate and mean normal stress on Γt

F,j1
.

3.3.2. 1-D FSI Jacobian entries. In section 2.2.2 we briefly discussed the lim-
itation imposed on the time step by the CFL condition. This limitation is particularly
severe when coupling the 1-D FSI model with computationally expensive 3-D models,
e.g., the 3-D FSI model described in section 2.1. In fact, to perform the nonlinear
Richardson iterations on the global coupled problem, all the elements in the network
must use the same time step; thus the element that requires the smallest time step
forces the entire system to advance the computations at its own time step. This goes
in the opposite direction with respect to the need for a large time step for the coupled
3-D FSI problem, in order to minimize the computational cost. For instance, when
solving the blood flow in an arterial network, the time step required for the solution
of the 1-D FSI segments in the circle of Willis may be around two orders of magnitude
smaller than the one needed by a 3-D FSI vessel embedded in the arterial tree.

This problem is addressed in [31] by introducing a two-level time step technique.
More precisely, the inner time step meets the local 1-D CFL requirements, being
different for each 1-D FSI model, while the outer time step is used for the global
coupling between the models; i.e., (3.1) is satisfied just at this outer level. At the
inner time level, the boundary conditions for the 1-D problems are provided by using
a Lagrange polynomial interpolation of the coupling conditions. This approach allows
us to choose the outer global time step according to the requirement of any 3-D FSI
problem in the network.

The computation of the Jacobian coefficients of the 1-D FSI problem can be ad-
dressed by solving the associated exact tangent problem, as described in [31]. However,
in the presence of inner time steps, the recursion of the problem creates an obstacle
that prevents reaching an analytical expression of these entries. A possible alternative
is to devise an approximated version of the tangent problem. Nevertheless, as shown
in [31], a finite difference approach is more effective in this case. By following this
latter strategy, the derivative of the mean normal stress on the left-hand side of the
1-D model with respect to the coupling flow on the same side is given by

∂SL (QL, ·)
∂QL

∼= SL

(
Qn+1
L + δQL, ·

)− SL

(
Qn+1
L , ·)

δQL
,

where δQL is a properly chosen volumetric flow rate perturbation parameter and the
dot represents the nonlocal coupling condition, i.e., the coupling condition on the
right-hand side of the 1-D segment. The other entry types are addressed similarly.
For more details, see [31].

4. Interface conditions for the 3-D solid problem. As discussed in sec-
tion 2.1, problem (2.3) requires nΓ

FS boundary conditions on the inlet and outlet solid
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rings Γ0
S,j, j = 1, . . . , nΓ

FS. These boundary conditions can be either provided from
data, or computed by using information related to the surrounding models. In this
section, we propose three different approaches to closing the solid problem. For each
approach we highlight the main pros and cons. The analysis of the numerically in-
duced wave reflections in a geometrical multiscale setting is deferred until section 5.

4.1. Fixed solid ring boundary condition. A first approach, widely used in
the literature, consists of fixing the solid rings of the 3-D FSI model by imposing a
homogeneous Dirichlet boundary condition on the solid displacement, i.e.,

(4.1) dS = 0 on Γ0
S,j × (0, T ],

with j = 1, . . . , nΓ
FS. This approach is very easy to implement, since no additional

equations are required. However, this type of boundary condition is far from rep-
resenting the behavior of the arterial wall at those locations. First of all, the value
of the solid displacement near the fixed rings cannot be considered reliable; neither
are the values of other physical quantities such as the wall stress state. In addition,
spurious backward reflections may be generated at the outlets of the 3-D domain; in
a geometrical multiscale setting, this problem can also affect the surrounding 1-D FSI
models.

4.2. Free solid ring boundary condition. More realistic behavior of the ar-
terial wall at the inlet/outlet rings is in principle obtained by imposing homogeneous
Neumann boundary conditions on the normal component of the first Piola–Kirchhoff
stress tensor, i.e.,

(4.2) σS · nS = 0 on Γ0
S,j × (0, T ],

with j = 1, . . . , nΓ
FS. However, this approach may lead to an ill-posed problem, since

the six rigid-body modes of the vessel are not all constrained. In addition, from
the physical viewpoint, the continuation of the vessel beyond the boundaries is not
represented; in particular, the solid rings are free to move along the longitudinal
direction. To address these issues, we devise a different approach, i.e.,

(4.3)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dS · nS = 0 on Γ0
S,j × (0, T ],∫

Γ0
S,j

dS · τ 1S dΓ = 0,

∫
Γ0
S,j

dS · τ 2S dΓ = 0 on Γ0
S,j × (0, T ],∫

Γ0
S,j

(
∇Γ ∧ [0, dS · τ 1S, dS · τ 2S]

T
)
· nS dΓ = 0 on Γ0

S,j × (0, T ],

where τ 1S and τ 2S are the two tangential directions lying on Γ0
S,j , j = 1, . . . , nΓ

FS. The
first restriction prevents the normal displacement of the solid ring (in the longitudinal
direction), representing the continuation of the vessel beyond the domain boundaries.
In addition, it removes three rigid-body modes: the normal translation and the two
nonplanar rotations. The second restriction removes the two planar translation rigid-
body modes without imposing any constraint on the area of the vessel. More precisely,
the boundary rings can enlarge or reduce their size around a fixed geometric center.
This restriction can be rewritten in the following form:∫

Γ0
S,j

PdS dΓ = 0 on Γ0
S,j × (0, T ],
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with P = I−nS ·nT
S the local projection operator over the tangential plane where each

solid ring lies. Finally, the third restriction removes the planar rotation rigid-body
mode. Indeed, it can also be rewritten as

∫
Γ0
S,j

(∇Γ ∧ PdS) · nS dΓ = 0 on Γ0
S,j × (0, T ].

Note that PdS is a vector lying on the two-dimensional plane defined by its normal nS,
while ∇Γ∧ denotes the curl operator defined in terms of the tangential coordinates
and applied to such a tangent vector, whose action yields a vector aligned with nS.
Furthermore, we can use a variant of the Green theorem to change the last restriction
into the following:

∫
C0

S,j

PdS · τC dC = 0 on C0
S,j × (0, T ],

where C0
S,j denotes the internal and external curves that define the ring Γ0

S,j, j =

1, . . . , nΓ
FS, and τC is the tangent vector to these curves.

Remark 4.1. In [9] evidence of a significant longitudinal component of the motion
of the arterial wall in some vessels (e.g., the carotid artery) was provided. In contrast
to the current conjecture, they observed a distinct longitudinal movement of the
arterial wall which is of the same magnitude as the local diameter change for a healthy
patient. In view of this result, the first restriction in (4.3) can be either modified
to prescribe a given longitudinal displacement field obtained from, e.g., a lumped
parameters model, or relaxed through a Robin boundary condition.

Remark 4.2. In the most general case, where there exists at least one solid ring
whose normal is not aligned with one of the Cartesian axes, it is convenient to impose
the three restrictions by introducing different Lagrange multipliers in the weak form
of the solid problem.

Remark 4.3. If there exist at least three boundary solid rings equipped with a
different normal (as, e.g., in the case of a bifurcating artery), all the six rigid-body
modes can be removed by imposing just the first restriction in (4.3). However, from
the physical point of view, the other two restrictions are still relevant.

The main advantage of this approach compared to (4.1) is the very general
way of addressing the boundary conditions for the 3-D solid problem, without over-
constraining the structure displacement at the coupling interfaces. In particular, it
suits both stand-alone 3-D FSI problems and geometrical multiscale strategies, where
the 3-D domain is coupled with 1-D problems although the continuity of the area is
not guaranteed.

4.3. Scaled area solid ring boundary condition. A third different strategy is
to prescribe the value of the boundary area of each fluid coupling interface. Following
the approach devised in [19], this can be done by prescribing a radial displacement of
the internal contour of the jth 3-D solid ring, j = 1, . . . , nΓ

FS, i.e.,

(4.4)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dS · nS = 0 on Γ0
I ∩ Γ0

S,j × (0, T ],[
dS −Ψt

j

(
x0 − x0

G,j

)] · τ 1S = 0 on Γ0
I ∩ Γ0

S,j × (0, T ],[
dS −Ψt

j

(
x0 − x0

G,j

)] · τ 2S = 0 on Γ0
I ∩ Γ0

S,j × (0, T ],
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which corresponds to a geometric rescaling of the surface, where the radial scale factor
is defined as

(4.5) Ψt
j =

√
At

j

A0
j

− 1,

with A0
j and x0

G,j being the reference area of the jth coupling interface of the 3-D fluid
problem and its geometric center, respectively. This approach preserves the original
shape of each 3-D solid ring, whose size is scaled by the value of the given boundary
area At

j . Note that in (4.4) the normal and tangent vectors are defined on the jth

solid ring Γ0
S,j.

Remark 4.4. As (4.3) does, (4.4) constrains all the rigid-body modes of the 3-D
FSI problem. However, this condition is applied only to the inner contour of the
boundary rings, i.e., Γ0

I ∩ Γ0
S,j , j = 1, . . . , nΓ

FS. To close the 3-D FSI solid problem,

we need to impose an additional boundary condition on Γ0
S,j\Γ0

I ∩ Γ0
S,j × (0, T ], j =

1, . . . , nΓ
FS, which can be either (4.2) or (4.3). The former leaves some degrees of

freedom to the displacement of the boundary solid rings; e.g., the external contour of
the rings can move in the longitudinal direction or rotate on itself. However, if the
thickness of the solid wall is small with respect to the vessel area, these movements
are negligible.

Since, in general, boundary data of the vessel area are not available for cardio-
vascular simulations, the value of the area can be obtained either by modeling its
dynamic through a local simple model, or, in a geometrical multiscale setting, by im-
posing the continuity of the boundary area with the surrounding models. The latter
case is explored in the next section. Regarding the former, the dynamic of the local
boundary area can be expressed as a function of the time and of some local boundary
quantities, e.g., volumetric flow rate and average pressure. Among the several possi-
bilities, a straightforward choice is to use the inverse of the 1-D pressure-area relation
described in (2.10), eventually adding some further contributions, such as the inertia
of the wall, in order to match the physics of the 3-D solid problem given in (2.3).

4.3.1. Continuity of the vessel area. In a geometrical multiscale setting, the
interfaces of the 3-D FSI model are generally connected with those of reduced models,
such as the 1-D FSI model. In this case, it is possible to write an additional relation at
the coupling interfaces of the two heterogeneous FSI models to impose the continuity
of the area of the connected vessels. To do this, let us first introduce a new averaged
quantity on each boundary interface, i.e, the area of the fluid section A, hereafter
referred to as the coupling area. On the jth coupling interface of the 3-D FSI this
quantity is computed as

A3-D
j =

∣∣Γt
F,j

∣∣ ,
with j = 1, . . . , nΓ

FS. Regarding the 1-D FSI model it is given by

A1-D
L = AL, on ΓL, A1-D

R = AR, on ΓR.

Let LA be the set of coupling nodes where the continuity of the area between the two
heterogeneous FSI models is imposed. There, (3.1) becomes

(4.6)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Q1-D
c,1 + Q3-D

c,2 = 0,

S1-Dc,1 − S3-Dc,2 = 0,

A1-D
c,1 − A3-D

c,2 = 0,
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Fig. 4.1. Algorithm flow diagram for the coupling of two geometrically heterogeneous FSI
models, using the explicit time discretization scheme for the continuity of the vessel area. In
the diagram χG includes only fluid quantities, i.e., χc = (Sc,Qc,2)

T for c ∈ LS ∩ LA and

χc = (Qc,1,Qc,2)
T for c ∈ LQ ∩ LA.

where c ∈ LA and, for the sake of clarity, the model to which each quantity belongs is
indicated in the superscript. We remark that (4.6) is written for the specific case of a
3-D FSI interface coupled with a single 1-D FSI model. In the case of a generalization
to two or more 1-D models connected to the same 3-D FSI interface setting, the
continuity of the area does not make sense, and for this reason we do not address
this case. Indeed, one of the two sets of interface equations proposed in section 3.2
should be employed in these situations, together with one of the proposed solid ring
boundary conditions (i.e., (4.1), (4.3), and (4.4)) applied to the corresponding 3-D
FSI interface. However, to avoid this problem, we suggest treating bifurcations or
similar topologies as either single 3-D geometries or networks of 1-D segments.

As described in section 2.2, the 1-D FSI problem needs just one physical boundary
condition on each side of the segment; by imposing either the coupling flow or the
coupling stress, the value of the coupling area of the 1-D segment is already determined
by the solution of the 1-D problem. From the numerical viewpoint, this creates the
opportunity to use three different time discretization schemes to solve the problem at
the coupling interfaces.

Explicit. In cardiovascular simulations the area of the vessel at the boundaries
changes very smoothly in time. We can therefore treat it explicitly, in which case the
area of each interface of the 3-D FSI model at time tn+1 is imposed equal to that
of the nearby 1-D interface at the previous time step. By using this approach, each
radial scale factor Ψt

j, j = 1, . . . , nΓ
FS, is computed explicitly at the beginning of each

time step. Therefore, the residual form at the coupling interfaces is still written just
in terms of flow rate and mean normal stress, as in (3.2) and (3.3). The flow diagram
of this scheme is shown in Figure 4.1.

Implicit with hierarchy. A different strategy for preserving the implicit coupling
of the area of the vessel without adding an equation in the residual form is to introduce
a hierarchy among the models such that at each nonlinear Richardson iteration first
we solve the 1-D FSI models by computing the boundary area of each 1-D segment,
and then we use these values to close and solve the nearby 3-D FSI models. As in
the explicit case, the residual form at the coupling interfaces is written in terms of
the coupling flow and the coupling stress or the coupling total stress. However, the
radial scale factor Ψt

j, j = 1, . . . , nΓ
FS, is updated with the new value of the area of the

1-D problem at each iteration of the interface problem. Since the dependence on the
varying area is not taken into account in the 3-D boundary operators, the resulting
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Fig. 4.2. Algorithm flow diagram for the coupling of two geometrically heterogeneous FSI
models, using the implicit-with-hierarchy time discretization scheme for the continuity of the vessel
area. In the diagram χG includes only fluid quantities, i.e., χc = (Sc,Qc,2)

T for c ∈ LS ∩ LA and

χc = (Qc,1,Qc,2)
T for c ∈ LQ ∩ LA.

Jacobian matrix is inexact and might lead to an increase in the number of iterations.
Another drawback is that, due to the introduced hierarchy, the models cannot be
solved at the same time on different machines. Nevertheless, if convergence is achieved,
both this and the original nonsimplified approaches yield the same solution. The flow
diagram of this scheme is shown in Figure 4.2.

Implicit without hierarchy. As in the previous case, the area of each interface of
the 3-D FSI model at time tn+1 is imposed equal to that of the nearby 1-D interface at
the same time step. However, instead of introducing a hierarchy among the models, we
impose the continuity of the area in the residual formulation such that (3.2) becomes

(4.7) Rc (χc, ·) =
⎛
⎝ Q1-D

c,1 (Sc, ·) + Qc

Q3-D
c,2 (Sc,Ac, ·) − Qc

A1-D
c,1 (Sc, ·) − Ac

⎞
⎠ for c ∈ LS ∩LA,

and (3.3) becomes

(4.8) Rc (χc, ·) =
⎛
⎝ Qc,1 + Qc,2

S1-D
c,1 (Qc,1, ·) − S3-D

c,2 (Qc,2,Ac, ·)
A1-D

c,1 (Qc,1, ·) − Ac

⎞
⎠ for c ∈ LQ ∩ LA,

where Ac,i (·, ·) is a boundary operator that, given a proper set of coupling conditions,
returns the coupling area at the ith coupling interface of the cth coupling node.

Remark 4.5. In the development discussed in section 3 the conservation equations
do not imply any specific choice of the coupling conditions, leaving the flexibility to
impose either the coupling flow or the coupling stress on each coupling interface. In
contrast, the set of equations (4.6) requires particular care due to the presence of the
coupling area. More precisely, the coupling area can be imposed only on the 3-D FSI
problem, since the 1-D FSI model needs just one physical boundary condition on each
side of the segment. Therefore, the third row in (4.7) and (4.8) cannot be replaced
with an equivalent version written by replacing the 1-D boundary area operator with
the 3-D one. For instance, in terms of components, in (4.7) notice that, at the cth
interface, the 3-D model receives as input (Sc,Ac) and yields as output Q3-D

c,2 , while

the 1-D model receives Sc and gives back (Q1-D
c,1 ,A1-D

c,1 ).
The two implicit coupling strategies result in the following local vectors of un-

knowns:

χc = (Sc,Qc,Ac)
T

for c ∈ LS ∩ LA, χc = (Qc,1,Qc,2,Ac)
T

for c ∈ LQ ∩ LA
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Fig. 4.3. Algorithm flow diagram for the coupling of two geometrically heterogeneous FSI
models, using the implicit-without-hierarchy time discretization scheme for the continuity of the
vessel area. In the diagram, χG includes both the fluid quantities and the vessel area, i.e., χc =

(Sc,Qc,2,Ac)
T for c ∈ LS ∩ LA and χc = (Qc,1,Qc,2,Ac)

T for c ∈ LQ ∩ LA.

such that the solution of the global interface problem can again be addressed by
using a nonlinear Richardson approach, as in (3.4). With respect to the develop-
ment presented in section 3.3, the only difference consists of the dependence of the
residual on the coupling area, such that four new Jacobian entry types need to be
computed/approximated to fill the Jacobian matrix in the most general case:

• ∂Qc1(Sc1 ,Ac1 ,·)
∂Ac2

and
∂Sc1(Qc1 ,Ac1 ,·)

∂Ac2
belong just to the 3-D FSI model and can

be computed by solving the associated tangent problem;

• ∂Ac1(Sc1 ,·)
∂Sc2

and
∂Ac1(Qc1 ,·)

∂Qc2
belong just to the 1-D FSI model and can be

approximated by using a finite difference technique.
Remark 4.6. The assembling procedure of the Jacobian matrix and the detailed

description of the diagonal and off-diagonal blocks for the nodes where c ∈ LA are
extensively described in [30, Chapter 3] and not repeated here.

The flow diagram of this scheme is shown in Figure 4.3. One of the main advan-
tages of this approach over the previous one is that no hierarchy must be established
among the models such that, in a parallel framework, each model can be solved at the
same time on different machines. In addition, the Jacobian matrix of the interface
problem is still exact, except for other approximations introduced at the numerical
level, i.e., the finite difference approximation of the 1-D FSI entries.

Remark 4.7. If convergence is achieved, both the implicit-with-hierarchy and the
implicit-without-hierarchy approaches yield the same solution.

4.4. Qualitative comparison of the solid boundary conditions. Finally,
it is worthwhile to summarize the main pros and cons of the three methodologies
described above. This comparison is shown in Table 4.1. For the case of a geometrical
multiscale problem, a quantitative analysis of the wave reflections at the coupling
interfaces is addressed in section 5.

5. Wave reflection analysis in a series of heterogeneous FSI pipes. In
this section, we make use of simple benchmark examples to compare the behavior
of the three proposed interface conditions introduced in section 4 for the closure of
the 3-D solid problem. In particular, we focus our analysis on the spurious backward
wave reflections that might be generated at the coupling interfaces between two di-
mensionally heterogeneous pipes. In order to have a full overview of the phenomena
we analyze both the case of a 1-D wave flow that enters in a 3-D pipe and the inverse,
i.e., a 3-D wave flow that enters in a 1-D pipe. In both cases, on the leftmost inflow
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Table 4.1

Qualitative comparison of the main pros and cons of each proposed interface ring boundary
condition for the 3-D solid problem. Note that in the third column some comments depend on the
chosen approach (local model versus continuity of the vessel area).

Fixed Free Scaled area

Software implementation complexity Very low High Medium
Physics at the boundaries Unrealistic Realistic Realistic
Continuity of the vessel area No No No/Yes
Usable in stand-alone 3-D FSI problems Yes Yes Yes/No
Usable in geometrical multiscale problems Yes Yes Yes

we impose a single flow rate wave defined as

Q (t) =

⎧⎪⎨
⎪⎩

− sin

(
2πt

Tw

)2

, t <
Tw
2
,

0 otherwise,

where Tw = 0.005 is the chosen wave period. On the rightmost outflow, a proper
absorbing boundary condition is applied [35, 42]. The interface problem is defined
by imposing the coupling stress on the coupling interfaces. In the following, unless
otherwise specified, the reference dimensionless parameters that define the problem
are ρF = 1, μF = 0.035, αF = 1.1, A0 = π, hS = 0.1, ES = 3000000, ρS = 0, and
γS = 0. Note that with this choice of ρS and γS, the inertia and the viscoelastic
effects of the wall are neglected in both FSI models; indeed, we aim to study the
reflections generated by the dimensional heterogeneity of the models, and thus we
need to exclude other possible sources of reflections, such as heterogeneous physical
modeling features. The Poisson ratio νS is 0.5 for the 1-D FSI model and 0.475 for the
3-D FSI model. The length L of each pipe is equal to 3. On the solid external wall
Γ0
S,ext of the 3-D FSI problem we apply a homogeneous Neumann boundary condition,

while we set Pext = 0 in the 1-D FSI problem.
The imposed tolerance for the interface problem is 10−6, while that for the 3-D FSI

problem is 10−7. The mesh of the fluid part of the 3-D pipe consists of 137712 tetra-
hedral elements with 25077 vertices, while the solid part is made of 51984 tetrahedral
elements with 11856 vertices. The corresponding average space discretization for the
fluid and solid problems is 0.094 and 0.092, respectively. Regarding the 1-D FSI pipe,
we use a uniform space discretization of 0.1, corresponding to 31 vertices. For both
models the global time step is set equal to 10−5; since this is quite a small value, we
use the GCE time discretization scheme, introduced in section 2.1.3, to solve the 3-D
FSI problem. All the simulations last 1500 time steps (T = 0.0015), which is the time
needed by the flow wave to reach the rightmost side of the problems.

5.1. From 1-D to 3-D wave flow propagation. The first case we analyze is
described in Figure 5.1(a): a wave propagates from a 1-D FSI segment (on the left) to
a 3-D FSI pipe (on the right). As a reference case we consider the solution computed
by solving the problem with a single 1-D segment of length 6 (see Figure 5.1(b)).
By comparing the solution of the two problems we study the reflection amplitude
generated at the coupling interfaces due to the heterogeneity of the models.

The results are summarized in Figure 5.2. On the x-axis we represent the nor-
malized time, while on the y-axis we plot the difference between the volumetric flow
rate in the heterogeneous case (see Figure 5.1(a)) and the rate given by the reference
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1-D 3-D

(a)

1-D

(b)

Fig. 5.1. Schematic representation of the benchmark case. (a) The wave flow propagates from
the 1-D FSI model to the 3-D FSI one. The length of each pipe is equal to 3. (b) The reference
case: A single 1-D FSI pipe of length 6.
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Fig. 5.2. Volumetric flow rate wave reflection at the coupling interfaces for different values
of the main 3-D solid parameters. In all the figures, the black curve corresponds to the reference
parameters. (a,b,c) Varying Young’s modulus. (d,e,f) Varying Poisson’s ratio. (g,h,i) Varying solid
density. (a,d,g) Fixed area boundary condition on the 3-D solid ring. (b,e,h) Free area boundary
condition on the 3-D solid ring. (c,f,i) Continuity of the area at the coupling interfaces.

case (see Figure 5.1(b)), namely ΔQ, normalized over the maximum amplitude of the
inflow wave. This quantity coincides with the normalized reflection wave generated at
the coupling interface. Note that a similar analysis done in terms of pressure waves
(which for brevity is not presented here) leads to the same conclusions.

First we observe that, as expected, the amplitude of the reflection is always larger
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Fig. 5.3. Volumetric flow rate wave reflection at the coupling interfaces for different values of
the fluid mesh size (note that also the solid mesh size changes accordingly). As in Figure 5.2, the
black curve corresponds to the reference parameters. (a) Fixed area boundary condition on the 3-D
solid ring. (b) Free area boundary condition on the 3-D solid ring. (c) Continuity of the area at the
coupling interfaces. (d) h = 0.094. (e) h = 0.075. (f) h = 0.062.

when the 3-D solid ring is fixed. More precisely, the reflection generated by using
such a constraining boundary condition is around twice the size of that observed
when the other two approaches are employed, motivating the need for such more
relaxed conditions on the coupling interface. In contrast, there is no clear advantage
in prescribing the continuity of the area of the pipes, with respect to letting the
deformation of the 3-D boundary solid ring free. Indeed, such behavior depends upon
the specific case. (See Figure 5.2(b) and Figure 5.2(c) for varying Young’s modulus.)

Regarding the sensitivity analysis with respect to the main 3-D solid parameters,
we observe that the value of the Young’s modulus has an impact on the reflection,
even if the shape of the wave does not change significantly. More precisely, the vertical
difference between the subsequent peaks in the wave is nearly constant such that the
amplitude of the reflection is almost the same. In contrast, the Poisson ratio does
not have any effect on the reflection. Finally, we observe that modeling the inertia of
the 3-D solid wall leads to significant differences only in the presence of the free solid
ring boundary condition. More precisely, the reflection amplifies probably due to the
additional modeling heterogeneity introduced in this specific case. (We recall that our
1-D FSI model does not account for the inertia of the wall.) By applying the other
two solid ring boundary conditions, the displacement of the ring is controlled by the
boundary data such that the inertial effects at the boundary are smoothed out.

Last but not least, in Figure 5.3 we study the reflection amplitude as a function
of the 3-D mesh size. The first row of images shows opposite behavior between the
case where the continuity of the area is imposed and the other two types of boundary
conditions. More precisely, a refinement of the mesh leads to a progressive reduction
of the reflection amplitude in the former case and an increase in the latter. In the
second row of images we compare the reflection amplitude as a function of the interface
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3-D 1-D

(a)

3-D

(b)

Fig. 5.4. Schematic representation of the benchmark case. (a) The wave flow propagates from
the 3-D FSI model to the 1-D FSI one. The length of each pipe is equal to 3. (b) The reference
case: A single 3-D FSI pipe of length 6.
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Fig. 5.5. Volumetric flow rate wave reflection at different locations of the 3-D FSI pipe. (a)
Left inlet. (b) Half section. (c) Right outlet (coupling interface).

condition for fixed values of the 3-D mesh size. From the images it is evident that,
in contrast with the coarse mesh results, with the finer mesh the reflection amplitude
of the case where the continuity of the area is imposed is smaller with respect to
that obtained by using the other two interface conditions. By assuming that the
result provided by the finer mesh is the most accurate, we might conclude that the
continuity of the area represents the most suitable interface condition between the
considered heterogeneous models. Nevertheless, further analyses should be performed
to confirm this behavior in more general cases. Note also that a similar analysis with
respect to the 1-D mesh size does not produce any significant difference. In particular,
below a certain mesh size, the results in the 1-D segment are nearly the same.

5.2. From 3-D to 1-D wave flow propagation. In the second case, described
in Figure 5.4, we study the reflection amplitude generated at the coupling interfaces
when a wave propagates from a 3-D FSI pipe (on the left) to a 1-D FSI segment (on
the right); see Figure 5.4(a). As a reference case we consider the solution computed
by solving the problem with a single 3-D FSI pipe of length 6 (see Figure 5.4(b)).

Figure 5.5 shows the same quantities as in Figure 5.2, with the inverted con-
figuration. By comparing the reflection amplitude in Figure 5.2 with the results in
Figure 5.5(c), we observe that in the latter case the amplitude of the reflection is
much smaller, around one-third of the previous case. This can be explained by ob-
serving that the 1-D problem is hyperbolic, and at the coupling interface it behaves
as a passive element which absorbs the flow generated by the 3-D pipe. By way of
contrast, in the previous case, the flow generated by the 1-D segment is passed to a
nonhyperbolic model which reflects an active feedback to the connected 1-D segment.

Finally, a further comparison is presented in Figure 5.6, where on the y-axis we
show the radial scale factor (in percentage units), whose definition is given in (4.5).
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Fig. 5.6. Radial scale factor of the 3-D FSI pipe in Figure 5.4(a) at different locations. The
black line is the reference value (see Figure 5.4(b)). (a) Left inlet. (b) Half section. (c) Right outlet
(coupling interface).

This result leads to the same conclusions discussed in section 5.1. In particular, the
amplitude of the reflection is always larger when the 3-D solid ring is fixed, while the
other two approaches yield better results. Moreover, we notice that prescribing the
continuity of the area of the pipes produces a slightly better result than does letting
free the deformation of the 3-D boundary solid ring.

6. Computational cost analysis in abdominal aorta simulation. In order
to assess the efficiency of the methodology presented here, we compare the number of
iterations and the CPU time required to solve a realistic flow simulation as a function
of several parameters, i.e., the 3-D FSI time discretization scheme, the number of
coupling interfaces, and the algorithm for solving the interface problem. To perform
this analysis we select a 3-D geometry of an arterial abdominal aorta, equipped with
six coupling interfaces. At each boundary interface we connect a 1-D pipe featuring a
length of 1.5 cm and a uniform reference area equal to that of the nearby fluid interface
of the 3-D FSI abdominal aorta. The interface problem is defined by imposing the
coupling flow on all six coupling interfaces, while all the boundary rings of the 3-D solid
problem are fixed. The problem is finally closed by imposing six periodic volumetric
flow rate profiles on the other sides of the 1-D pipes, as shown in Figure 6.1. These
data have been taken from the solution of the full 1-D arterial tree described in [31,
section 5].

Regarding the wall parameters, we use the same values provided in [31]. On
the solid external wall Γ0

S,ext of the 3-D FSI abdominal aorta we apply a proper
Robin boundary condition, which also takes into account the viscoelastic effects of
the arterial wall, while we set φS = 10◦, TS = 0.24 s, and Pext = 100000 dyn/cm2 for
the 1-D FSI pipes. The Poisson ratio νS is 0.5 for the 1-D FSI pipes and 0.475 for
the 3-D FSI abdominal aorta. The thickness of the vessel walls has been set equal
to 10% of the local radius. Finally, the other parameters that define the problem
are ρF = 1.04 g/cm3, μF = 0.035 g/cm/s, αF = 1.1, ES = 3000000 dyn/cm2, and
ρS = 1.2 g/cm3.

The imposed tolerance for the interface problem is 10−6, while that for the 3-D
FSI problem is 10−7. The mesh of the fluid part of the 3-D abdominal aorta consists
of 361969 tetrahedral elements with 62741 vertices, while the solid part is made of
236004 tetrahedral elements with 49675 vertices. The corresponding average space
discretizations for the fluid and solid problems are 0.026 cm and 0.044 cm, respectively.
Regarding the 1-D FSI segments, we use a uniform space discretization of 0.1 cm,
corresponding to 16 vertices. The global time step is set equal to 10−3 s. All the
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Fig. 6.1. View of the 3-D FSI abdominal aorta (red, center) coupled with six 1-D FSI arterial
segments (other colors, rods). On the two sides of the image, the periodic inflow/outflow volumetric
flow rate profiles imposed on the six 1-D pipes are shown. More precisely, the flow imposed at the
top of the 1-D thoracic aorta segment (top-right figure) is incoming, while the other five flows are
outgoing.

simulations were performed on five cluster nodes with two Intel Xeon processors X5550
(quad core, 8 MB cache, 2.66 GHz CPU) each, for a total of 40 CPUs interconnected
by 20 Gb/s InfiniBand architecture.

To set up the comparison we first run three heart beats of the problem described
in Figure 6.1, to reach a quasi-periodic solution in the entire network. Then, starting
from this initial condition, we run twenty time steps (corresponding to 0.020 s) for
several configurations. Each of these configurations is set by removing one by one the
1-D segments from the initial problem. More precisely, from the initial configuration
in Figure 6.1, the 1-D pipes are removed in the following order: left renal (green,
lower-right), right renal (magenta, middle-left), superior mesenteric (cyan, top-left),
celiac A (yellow, middle-right), abdominal aorta D (black, lower-left), and, finally,
thoracic aorta B (blue, top-right). Note that, to preserve the same physics of the
problem, each removed 1-D pipe has been replaced with the corresponding boundary
volumetric flow rate profile of the fully coupled problem. Finally, we compute the
average number of iterations per time step required for the solution of the interface
problem and the CPU time of the entire simulation normalized over the CPU time
needed for the reference case, i.e., the 3-D FSI abdominal aorta discretized by a GCE
scheme and without any coupled 1-D segment. The results of this comparison are
summarized in Tables 6.1 and 6.2.

From the analysis of these results, we conclude that increasing the number of
coupling nodes, which yields an increase of the size of the interface problem, produces
a slight variation of the average number of iterations required to solve the coupled
problem. A similar consideration holds when comparing the results for the two solu-
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Table 6.1

Average number of coupling iterations required for the simulation of the 3-D FSI abdominal
aorta coupled with a progressively decreasing number of 1-D segments. The average number of
Newton iterations for the convergence of the FI 3-D FSI problem is 3.88.

GCE FI

1-D pipes Newton Broyden Newton Broyden

6 2.00 2.00 7.95 9.15
5 2.00 2.00 7.20 9.05
4 2.00 2.00 6.05 8.00
3 2.00 2.00 6.00 7.75
2 1.75 2.00 6.00 7.90
1 1.25 1.95 5.95 7.70

Table 6.2

Relative CPU time required for the simulation of the 3-D FSI abdominal aorta coupled with a
progressively decreasing number of 1-D segments. In the last two columns, the values in the braces
correspond to the same CPU times normalized over the CPU time needed by the FI reference case,
which is 5.13 times slower than the GCE one.

GCE FI

1-D pipes Newton Broyden Newton Broyden

6 9.91 2.33 120.20 [23.42] 45.46 [8.86]
5 8.58 2.30 94.09 [18.34] 44.93 [8.76]
4 7.20 2.26 67.77 [13.21] 40.22 [7.84]
3 6.00 2.23 57.08 [11.13] 39.04 [7.61]
2 4.29 2.20 47.99 [ 9.35] 39.64 [7.73]
1 2.27 2.15 36.33 [ 7.08] 38.65 [7.53]

tion algorithms. More precisely, the Newton method behaves as the Broyden one in
the case of a GCE time discretization, and slightly better than the Broyden method
in the FI approach. However, there is a visible increase in the average number of
iterations between the GCE and the FI time discretization schemes. This is due to
the strong nonlinearities of the FI approach.

Regarding CPU time, we observe quite different behavior. In particular, the
Newton method shows a strong dependence on the number of coupling nodes of the
problem. This is justified by the fact that, in this example, each coupling node re-
quires the computation of two additional Jacobian entries, which in turn requires the
additional solution of a 3-D FSI tangent problem and of a 1-D FSI model (to perform
the finite difference approximation), at each nonlinear Richardson iteration. In con-
trast, the CPU time required to solve the interface problem with the Broyden method
is almost the same. More precisely, by using the Broyden method the CPU time
required to solve the coupled problem is about 2.3 and 5 times that required to solve
the uncoupled 3-D FSI model discretized with the GCE and FI time discretization
approaches, respectively. Last but not least, it is interesting to notice that there is
an increase of more than one order of magnitude in the CPU time required for the
solution of the coupled problem when using the FI approach with respect to the GCE
case.

In view of these considerations, it is clear that from the computational viewpoint
the Broyden method performs much better than the Newton method. In addition, the
use of a GCE time discretization is recommended, unless other needs would support
the use of the more expensive FI approach. Further comparisons between these two
approaches, with a focus on the main physical quantities, are addressed in [10].
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7. Conclusions. In this work, we presented a numerical technique for the cou-
pling of 1-D and 3-D FSI models for arterial networks. A full description of the FSI
model equations has been provided, together with the strategies used to solve the
numerical problems.

The global network of elements is solved by using a partitioned approach, where
the models communicate only through the exchange of averaged/integrated quantities
across the boundary interfaces. In particular, the fluid coupling equations are based
on the conservation of the volumetric flow rate and on the continuity of the average
of the normal component of the traction vector. Regarding the solid part of the
problems, since the 1-D FSI model is already closed by the fluid coupling equations,
we mainly focus on the 3-D FSI one. More precisely, we devise three different sets
of boundary conditions to close the 3-D solid problem. All of them are stand-alone
boundary conditions, that can be employed with and without connected 1-D models.
Moreover the third one can be further extended to account for the continuity of the
vessel area between the 3-D and 1-D FSI problems.

The problem at the coupling interfaces is solved by a classical nonlinear Richard-
son approach. In particular, two different numerical strategies have been selected: the
Newton/inexact-Newton and the Broyden methods. The former requires the compu-
tation/approximation of the Jacobian matrix: for the 3-D FSI model this is done by
solving the associated tangent problem, while for the 1-D FSI problem a finite differ-
ence approximation scheme is used. Regarding the Broyden method, it is based just
on the evaluation of the residual, leading to a very cheap formulation. Note, however,
that the Broyden matrix needs to be initialized with a good approximation of the
Jacobian, which can be retrieved by using the former method.

The methodology presented here has been tested on several cases, ranging from
simple benchmark examples, consisting of serial connection of pipes, to a more physi-
ological example of the arterial network. The former case has been used to carry out
a sensitivity analysis of the spurious backward reflections that might be generated at
the coupling interfaces between the dimensionally heterogeneous models. The latter
served to set up a comparison in terms of number of iterations and CPU time be-
tween the different solution algorithms; indeed, it also proved the robustness of the
methodology devised here under physiological conditions.

The study presented in this work can be further extended, for instance, by per-
forming a sensitivity analysis with respect to other parameters, such as the viscoelastic
coefficient of the 1-D FSI model. However, the results are expected to be similar to
those presented in this work. Moreover, we remark that viscoelastic effects can be
included in the 3-D FSI model by considering, e.g., a Robin boundary condition on
the external wall. Indeed, the sensitivity analysis presented here showed that the
spurious reflections which appear when coupling dimensionally heterogeneous FSI
problems are mainly due to the heterogeneous nature of the models equations rather
than to possible physical inconsistencies.
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