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Abstract

We present a new approach to robust pose-variant face

recognition, which exhibits excellent generalization ability

even across completely different datasets due to its weak

dependence on data. Most face recognition algorithms as-

sume that the face images are very well-aligned. This as-

sumption is often violated in real-life face recognition tasks,

in which face detection and rectification have to be per-

formed automatically prior to recognition. Although great

improvements have been made in face alignment recently,

significant pose variations may still occur in the aligned

faces. We propose a multiscale local descriptor-based face

representation to mitigate this issue. First, discriminative

local image descriptors are extracted from a dense set of

multiscale image patches. The descriptors are expanded by

their spatial locations. Each expanded descriptor is quan-

tized by a set of random projection trees. The final face rep-

resentation is a histogram of the quantized descriptors. The

location expansion constrains the quantization regions to be

localized not just in feature space but also in image space,

allowing us to achieve an implicit elastic matching for face

images. Our experiments on challenging face recognition

benchmarks demonstrate the advantages of the proposed

approach for handling large pose variations, as well as its

superb generalization ability.

1. Introduction

Human face recognition remains one of the most active

areas in computer vision, due to its many applications, both

in traditional security and surveillance scenarios as well as

in emerging online scenarios such as image tagging and im-

age search. While considerable algorithmic progress has

been made on well-aligned face images, pose variation re-
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Figure 1. Misalignment in real face images. Faces detected by

the Viola-Jones face detector and aligned using a neural-network

based eye detector. Even after these rectification steps, significant

local discrepancies due to pose variations still remain.

mains an obstacle to deployable robust face recognition in

real-life photos. Figure 1 illustrates the difficulty: while

popular face detectors such as the Viola-Jones algorithm

[26] produce rough localizations of the face, significant mis-

alignment remains even after aligning the eye locations us-

ing an automatic eye detection algorithm. When applied in

this setting, classical algorithms [25, 2] designed for well-

aligned face images break down.

The ability of different approaches to cope with face pose

and misalignment can be roughly determined by the amount

of explicit geometric information they use in the face repre-

sentations. At one end of the spectrum are methods based

on full three-dimensional face representations [3]. Such

representations allow recognition across the widest possi-

ble range of poses, at the cost of system and computational

complexity. Deformable two-dimensional models such as

active appearance models [5, 9] offer an intermediate rep-

resentation, as a deformable mesh plus texture. The elastic

bunch graph matching (EBGM) approach of [29] utilizes

a similar representation of face geometry and deformation,

but restricts the texture representation to a small set of high-

dimensional feature vectors, such as Gabor jets, located at

the vertices of the mesh. In testing, the mesh is deformed so

that these features best match the input face image, subject

to a penalty on deformation complexity.

Speed improvements over EBGM can be realized by

dropping the geometric constraint and instead matching

1



Face detection

→

Eye detection

→

Geometric

rectification

→

Illumination

compensation

→ ∗

Dense multiscale

feature extraction

→ {f1 . . .fK} ⊂ R
D

→











f1

x1

y1



 . . .





fK

xK

yK











⊂ R
D+2

Adjoin spatial locations

→

Feature quantization by

random projection trees

→ h

Histogram

→

Recognition: Nearest

training histogram

Figure 2. Our pipeline.

approximately-invariant feature descriptors such as SIFT

keys [16] between the test image and each image in the

database [17]. The smoothness of the face makes it a some-

what unnatural candidate for feature matching, however,

since it limits the number of repeatable feature points that

can be reliably extracted. Finally, fully 2D methods such

as Laplacian Eigenmaps [11] can be applied to learn lin-

ear projections that respect any manifold structure present

in the training data. While these algorithms are extremely

fast in testing, characterizing the nonlinear structure of face

images under pose and misalignment is difficult when only

a few training samples are available. Moreover, the per-

formance of such discriminative linear embedding meth-

ods [2, 11] is highly dependent on the specific dataset used

for training: the learned feature transformation does not

generalize to new faces or new datasets.

As demonstrated in Figure 1, even the best 2D or 2.5D

alignment algorithms are intrinsically imperfect, due to

pose, self-occlusion, ect. The difficulty of coping with such

variations directly from 2D data is one of the factors be-

hind the popularity of high-dimensional near-invariant fea-

tures in image classification [16, 19, 28]. Unlike the explicit

deformable matching performed by EBGM, these methods

perform an implicit feature matching by quantizing the fea-

tures and comparing statistics of the quantizations (e.g., his-

tograms). A number of quantizer architectures have been

investigated, including K-means trees [19] and randomized

K-D tree variants [22, 15]. More recently, efforts have been

made to couple the learning of the quantization scheme and

the subsequent classifier [31].

However, intuition from high-dimensional geometry [14,

1] suggests that as long as the feature dimension is large

enough, randomized quantization schemes with only very

weak data dependence may already be sufficient to achieve

good performance. For example, Dasgupta and Freund [6]

prove that for data with low-dimensional structure embed-

ded in a high-dimensional ambient space, inducing a tree

by splitting along randomly chosen directions yields an ef-

ficient quantizer: the expected cell diameter is controlled

by the intrinsic dimension of the data, irrespective of the

ambient dimension.1 This property is especially appealing

for the high-dimensional feature vectors common in com-

puter vision, which often exhibit intrinsically sparse or low-

dimensional structure.

In light of the above developments, this paper proposes a

very simple, efficient algorithm for recognizing misaligned

and pose-varying faces. Like bunch graph matching, the al-

gorithm works with a set of high-dimensional image fea-

tures, although our image features are more discrimina-

tive and invariant for matching [28]. In contrast to bunch

graph matching, rather than searching for a globally opti-

mal matching, the algorithm instead performs a “soft” or

“implicit” matching by jointly quantizing feature values and

the spatial locations from which they were extracted. The

quantizer consists of a forest of randomized decision trees,

in which each node acts on a random projection of the data.

Because the trees are only weakly data-dependent, they ex-

hibit good generalization in practice, even across very dif-

ferent datasets. This nice property is in contrast to many

previous methods which perform strong supervised learn-

ing, such as SVM [30] or LDA [2], to obtain a distance

1For a d-dimensional submanifold of R
D , the cell diameter at level L

drops as e
−O(L/d), rather than e

−O(L/D).



metric from the training data, which do not generalize well

to new face datasets.

In the rest of the paper, we begin with an overview of our

face recognition pipeline in Section 2. Core components

in our pipeline, such as local feature representation, joint

feature and spatial location quantization using random pro-

jection trees, as well as our face recognition distance metric

are discussed in details in Section 3, Section 4, and Sec-

tion 5, respectively. In Section 6 we perform a number of

simulations to investigate the effects of various parameters,

and then perform large-scale experimental comparisons to a

number of recent algorithms, across publicly available face

datasets. Section 7 summarizes other possible extensions

and some of our key observations of the proposed work. Fi-

nally, Section 8 concludes.

2. Face Recognition Pipeline

Figure 2 gives an overview of our system as a whole.

The system takes as its input an image containing a human

face, and begins by applying a standard face detector (such

as Viola-Jones [26]). Eye detection is performed based on

the approximate bounding box provided by the face detec-

tor. Our eye detector is a neural network based regressor

whose input is the detected face patches. Geometric recti-

fication is then performed by mapping the detected eyes to

a pair of canonical locations using a similarity transforma-

tion. Finally, we perform a photometric rectification step

that uses the self-quotient image [27] to eliminate smooth

variations due to illumination.

In our pipeline, the resulting face image after geomet-

ric and photometric rectification has size 32 pixels × 32

pixels. From this small image, we extract an overcomplete

set of high-dimensional near-invariant features, computed

at dense locations in image space and scale. These fea-

tures are augmented with their locations in the image plan

and are then fed into a quantizer based on a set of random-

ized decision trees. The final representation of the face is

just a sparse histogram of the quantized features. An IDF-

weighted ℓ1 norm is adopted as the final distance metric for

the task of recognition. The entire pipeline is implemented

in C++, and requires less than a second per test image on

a standard PC. The following sections give more extensive

implementation details for the critical steps: feature extrac-

tion, learning the quantizer for building representation for

faces, and recognition.

3. Local Feature Representation

We extract a dense set of features at regular intervals in

space and scale. Dense features allow us to guarantee that

most features in the test image will have an (approximate)

match in the corresponding gallery image, without having

to rely on keypoint detection. In practice, we find it suffi-

Figure 3. Dense, multiscale patches.

cient to form a Gaussian pyramid of images (properly rec-

tified and illumination-normalized as described above) of

size 32 × 32, 31 × 31, and 30 × 30. Within each of these

images, we compute feature descriptors at intervals of two

pixels. The descriptors are computed from 8 × 8 patches,

upsampled to 64×64. The set of feature patches for a given

input face image is visualized in Figure 3.

We compute a feature descriptor f ∈ R
D for each

patch. For most of the experiments in this paper, we use

a D = 400-dimensional feature descriptor proposed in

[28], and shown there to outperform a number of com-

petitors on matching tasks. This descriptor, denoted T3h-

S4-25 in [28], aggregates responses to quadrature pairs of

steerable fourth-order Gaussian derivatives. The responses

to the two quadrature filters are binned by parity and sign

(i.e., even-positive, ect.), giving four responses (two of

which are nonzero) at each pixel.2 Four steering direc-

tions are used, for a total of 16 dimensions at each pixel.

These 16-dimensional responses are aggregated spatially, in

a Gaussian-weighted log-polar arrangement of 25 bins for

an overall feature vector dimension of 400.

To incorporate loose spatial information into the subse-

quent feature quantization process, we concatenate the pixel

coordinates of the center of the patch onto its feature de-

scriptor, for a combined feature dimension of 402. Notice

that we do not include scale information; we wish to be as

invariant as possible to local scalings and it is perhaps in-

appropriate to treat such a coarse quantization of scale as a

continuous quantity in the feature vector.

The total number of feature vectors extracted from each

image is 457. Notice that this is a highly overcomplete

representation of the fairly small (32 × 32) detection out-

put. This expansion is conceptually similar to kernel tricks

in machine learning, in which lifting low dimensional data

into a high dimensional space allows very simple decision

architectures such as linear separators (or here, even random

linear separators) to perform very accurately.

In our current implementation, the vast majority of the

computation is spent on this feature extraction step. This

computational effort could be dramatically reduced by ex-

ploiting overlap between spatially adjacent feature loca-

2This thresholding tends to lead to sparse vectors f , in which many

bins are identically zero. Random projections are an especially appropri-

ate tool for quantizing such vectors, since they are incoherent with the

standard basis. In fact, one of the simplest theoretical examples in which

random projections outperform standard k-d trees occurs when the data

consist only of the standard basis vectors and their negatives [6].



tions, using ideas similar to [24].

4. Joint Feature and Spatial Quantization

The training phase of our algorithm begins with the set of

all (augmented) features extracted from a set of training face

images. We induce a forest of randomized trees, T1 . . . Tk.

Each tree is generated independently, and each has a fixed

maximum depth h. At each node v of the tree, we generate

a random vector wv ∈ R
D+2 and a threshold

τv = median{〈wv, f̃〉 | f̃ ∈ X},

corresponding to the binary decision rule

〈wv, · 〉 ≷ τv. (1)

The training procedure then recurses on the left- and right-

subsets XL
.
= {f̃ | 〈wv, f̃〉 ≤ τv} and XR

.
= {f̃ |

〈wv, f̃〉 > τv}. The random projection wv is sampled from

an anisotropic Gaussian

wv ∼ N

(

0,

[

σ−2
f ID×D

σ−2
x I2×2

])

, (2)

where σ2
f = trace Σ̂(f) and σx = trace Σ̂(x, y), and Σ̂ de-

notes the empirical covariance across the entire dataset. No-

tice that this choice of distribution is equivalent to reweight-

ing the vectors f̃ so that each segment (feature and location)

has unit squared-ℓ2-norm on average, and balances the fact

that the feature vector is much higher-dimensional than the

appended coordinates.

While the theoretical properties of randomized trees are

appealing, in practice the performance can often be im-

proved by sampling a number of random projections, and

then choosing the one that optimizes a task-specific objec-

tive function, e.g., the average cell diameter [7]. Moreover,

it is neither necessary nor feasible to save a unique D + 2-

dimensional vector wv at each node v. Instead, we choose

a dictionary of W = {w(1) . . .w(k)} ahead of time, and

at each node v set wv to be a random element of W . This

allows us to store only the index of wv in W , and does

not break the sample-path guarantees of [6]. For extremely

large face databases, further computational gains can be re-

alized via an inverted file structure, in which each leaf of

the forest contains the indices of a list of training images

for which the corresponding histogram bin is nonempty.

While it may seem like a minor implementation detail,

the expansion of the features by x, y is actually critical

in ensuring that the quantization remains as discriminative

as possible while also maintaining robustness to local de-

formations. Because the quantizer acts in the joint space

(f , x, y) it captures both deformations in feature value and

domain, generating a set of linear decision boundaries in

this space. Figure 4 (left) visualizes these quantization re-

gions in the following manner: a feature descriptor f is

Figure 4. Joint feature-spatial quantization. Left: one bin 10

tree forest learned from the CMU PIE dataset. A feature f is ex-

tracted from the subject’s left eye corner (x, y), and translated to

various locations (x′
, y

′). At each location, the blue intensity in-

dicates the number of trees for which (f , x, y) and (f , x
′
, y

′) are

implicitly matched. Right: at top, a subset of patches that quantize

to the same bin in least 3 trees. At bottom, number of bins. Notice

that the quantizer restricts itself (softly) to the area around the left

eye corner, and that most of the patches are eye corners.

extracted near the corner of the eye, at point x, y. This de-

scriptor is translated to every point x′, y′ on the image plane.

The intensity of the blue shading on the image (duplicated

at bottom right) indicates the number of trees in the forest

for which (f , x, y) and (f ′, x′, y′) are implicitly matched.

Notice that the strongest implicit matches are all near the

corner of the eye space, and also correspond in (feature)

value to patches sampled near eye corners.

This example also highlights the importance of having

a forest rather than just a single tree: aggregating multiple

trees creates a smoothing of the region boundary that better

fits the structure of the data. We will further examine the

effect of quantizer architecture in Section 6.

Algorithm 1: Tree induction (rptree)

1: Input: Augmented features X = {f̃1 . . . f̃m},
f̃ i = (f i, xi, yi) ∈ R

D+2.

2: Compute feature and coordinate variances σ2
f and σ2

x.

3: Generate p ≥ D + 2 random projections

W ∼iid N (0,diag(σ−2
f . . . σ−2

f , σ−2
x , σ−2

x )).

4: repeat k times

5: Sample i ∼ uni({1 . . . p}).
6: τi ← median{〈wi, f̃〉 | f ∈ X}
7: XL ← {f̃ | 〈wi, f̃〉 < τi}, XR ← X \ XL.

8: ri ← |XL|diameter2(XL) + |XR|diameter2(XR)
9: end

10: Select the (w∗, τ∗) with minimal r.

11: root(T )← (w∗, τ∗).
12: XL ← {f̃ | 〈w

∗, f̃〉 < τ∗}, XR ← X \ XL.

13: leftchild(T )← rptree(XL)
14: rightchild(T )← rptree(XR)
15: Output: T .



5. Recognition Distance Metric

The recognition stage of our algorithm is extremely sim-

ple. Each gallery and probe face image is represented

by a histogram h whose entries correspond to leaves in

T1 . . . Tk. The entry of h corresponding to a leaf L in Ti

simply counts the number of features f̃ of the image for

which Ti(f) = L. Notice that each feature f contributes to

k bins of h; similar concatenation is used in [18].

There are many possible norms or distance measures for

comparing histograms. We find consistently good perfor-

mance using a weighted ℓ1-norm with weightings corre-

sponding to the inverse document frequencies (the so-called

TF-IDF scheme [19]). More formally let X = {Xi} be the

set of all the training faces, and hi be the quantization his-

togram of Xi, we have

d(h1,h2)
.
=

∑

j

wj |h1(j)− h2(j)|

wj
.
= log

|X |

|{Xm : hm(j) 6= 0}|
(3)

where | · | denotes the cardinality of the corresponding set.

The intuition of this IDF weighting is that quantization

bins whose values appear in many face images should be

down-weighted because they are less discriminative. Sec-

tion 6 further investigates the appropriateness of this dis-

tance measure. Notice that this matching scheme has the

ability to scale to large face dataset using similar inverted

file architecture as in [19].

6. Simulations and experiments

In this section, we first investigate the effect of vari-

ous free parameters on the performance of the system. We

then fix the parameters and perform large-scale evaluations

across several publicly available datasets.3

6.1. Effect of tree structure

Before performing large-scale recognition experiments,

we first investigate the effect of various parameter choices

on the algorithm performance. For these experiments, we

use a subset of the CMU PIE [23] database, containing a

total of 11,554 images of 68 subjects under varying pose

(views C05,C07,C09,C27,C29).4 A random subset of

30 images of each subject’s images are used for training

(inducing the forest) and the remainder for testing.

3Fixing the parameters helps avoid overfitting; however, further im-

provements in performance may be possible by tuning the algorithm for

larger datasets.
4We use the standard cropped version available at

www.cs.uiuc.edu/homes/dengcai2/Data/data.html.

Each image has size 64× 64 pixels before illumination compensation, the

feature extraction is performed on a downsampled (32 × 32) version of

the illumination-compensated images.

Norm Rec, rate

ℓ2 unweighted 86.3%

ℓ2 IDF-weighted 86.7%

ℓ1 unweighted 89.3%

ℓ1 IDF-weighted 89.4%
Table 1. Recognition rate for various classifier norms.
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Figure 5. Classification error vs. tree height for the PIE database.

While this dataset has relatively few subjects, its small

size allows us to extensively investigate the effect of vari-

ous algorithm parameters. Moreover, the variability present

in the database, due to moderate pose and expression, is a

good proxy for the conditions our algorithm is designed to

handle.

Histogram distance metric. We consider four distance

metrics between histograms, corresponding to the ℓ1 and

ℓ2 norms, with and without IDF weighting. Table 1 gives

the recognition rate in this scenario. In this example, the

IDF-weighted versions of the norms always slightly outper-

form the unweighted versions, and ℓ1 is clearly better than

ℓ2. Based on its good performance here, we adopt the IDF-

weighted ℓ1 norm for the rest of our experiments.

Tree depth. We next investigate the appropriate tree

height h for recognition. Motivated by the result of the pre-

vious experiment, use the IDF-weighted ℓ1-norm as a his-

togram distance measure. We again use the PIE database,

and induce a single randomized tree. We compare the ef-

fect of binning at different levels of the tree. Figure 5 plots

the misclassification error as a function of height. Notice

that the error initially decreases monotonically, with a fairly

large stable region from heights 8 to 18. The minimum er-

ror, 9.2%, occurs at h = 16.

Forest size. We next fix the height h, and vary the number

of trees in the forest, from k = 1 to k = 15. Table 2 gives

the recognition rates for this range of k. While performance

is already quite good (89.4%) with k = 1, it improves with

increasing k, due to the smoothing effect seen in Figure 4.

As the time and space complexity of our algorithm is linear

in the size of the forest, even larger k may be practical for

some problems. Here, though, we fix k = 10, to keep our

online computation time less than 1 second per image.



Forest size 1 5 10 15

Rec. rate 89.4% 92.4% 93.1% 93.6%
Table 2. Recognition rate vs number of trees.

6.2. Large­scale recognition experiments

Based on the observations from the previous section, we

next perform a series of increasingly challenging large-scale

recognition experiments. To reduce the risk of overfitting

each individual dataset, we fix the tree parameters as fol-

lows: the number of trees in the forest is k = 10. Recog-

nition is performed at depth 16, using the IDF-weighted ℓ1-

distance between histograms.

Standard datasets. We test our algorithm on a number of

public datasets. The first, the ORL database [21] contains

400 images of 40 subjects, taken with varying pose and ex-

pression. We partition the dataset by randomly choosing 5

images per subject as training and the rest as testing. The

next, the Extended Yale B database [8], mostly tests illu-

mination robustness of face recognition algorithms. This

dataset contains 38 subjects, with 64 frontal images per

subject take with strong directional illuminations. For this

dataset, we use a random subset of 20 images per subject as

training and the rest as testing. We also again test on CMU

PIE [23], with the same random partition described in the

above experiments.

Finally, we test on the challenging Multi-PIE database

[10]. This dataset consists of images of 337 subjects at

a number of controlled poses, illuminations, and expres-

sions, taken over 4 sessions. Of these, we select a subset

of 250 subjects present in Session 1. We use images from

all expressions, poses 04_1,05_0,05_1,13_0,14_0,

and illuminations 4,8,10. We use the Session 1 images

as training, and Sessions 2-4 as testing. We apply the de-

tection and geometric rectification stages of our algorithm

to all 30, 054 images in this set. The rectified images are

used as input both to the remainder of our pipeline and to

the other standard algorithms we compare against.

To facilitate comparison against standard baselines, for

the first three datasets we use standard, rectified versions5.

For MultiPIE, no such rectification is available. Here, we

instead run our full pipeline, from face and eye detection to

classification. For comparison purposes, the output of the

geometric normalization is fed into each algorithm. In ad-

dition to being far more extensive than the other datasets

considered, MultiPIE provides a more realistic setting for

our algorithm (and its competitors), in which it must cope

with real misalignment due to imprecise face and eye local-

ization.

Table 3 presents the result of our algorithm, as well as

several standard baselines (PCA, LDA, LPP), based on lin-

5www.cs.uiuc.edu/homes/dengcai2/Data/data.html

ORL Ext. Yale B PIE MultiPIE

PCA 88.1% 65.4% 62.1% 32.6%

LDA 93.9% 81.3% 89.1% 37.0%

LPP 93.7% 86.4% 89.2% 21.9%

This work 96.5% 91.4% 94.3% 67.6%
Table 3. Recognition rates across various datasets.

ear projection. As expected, our method significantly out-

performs these baseline algorithms. Moreover, the perfor-

mance approaches the best reported on these splits (e.g.,

97.0% for ORL and 94.6% for PIE, both with orthogonal

rank one projections [12], and 94.3% for Ext. Yale B with

orthogonal LPP [4]). For the newer MultiPIE dataset, our

system performs over twice as well as baseline algorithms.

This is not surprising, since these algorithms have no intrin-

sic mechanism for coping with misalignment6. The overall

recognition rate of all the algorithms is lower on MultiPIE

though, confirming the challenging nature of this dataset.

Uncontrolled data: Labeled faces in the wild. While the

above results are encouraging, performance on such well-

controlled datasets is not necessarily indicative of good per-

formance in real web applications such as image search

and image tagging. We therefore further test our algorithm

on the more challenging Labeled Faces in the Wild dataset

[13]. This database contains 13,233 uncontrolled images of

5,749 public figures collected from the internet.

To facilitate comparison with the state of the art, we fol-

low the training and testing procedure suggested in [13].

Here, rather than recognition, the goal is to determine if

a given pair of test faces belong to the same subject. We

therefore dispense with the nearest-histogram classification

step, and simply record the IDF-weighted ℓ1 distance be-

tween each pair of test histograms. Different thresholds

on this distance give different tradeoffs between true pos-

itive rate and false positive rate, summarized in the re-

ceiver operating characteristic (ROC) curve in Figure 6. In

this setting, our algorithm achieves an equal error rate of

32%. This significantly surpasses baseline algorithms such

as PCA [25], and approaches the performance of more so-

phisticated algorithms in the low false-positive-rate regime.

One additional advantage of our algorithm is the weak de-

pendence on the training data. In particular, we can ob-

tain similar performance using randomized trees trained on

completely different datasets. We demonstrate this using

the PIE database as training and the LFW as testing. Fig-

ure 6 plots the result. In this scenario, performance ac-

tually improves: the equal error rate decreases to 28%,

the ROC strictly dominates that generated by training on

the LFW data itself. The performance equals that of su-

pervised methods such as [20] (denoted Nowak in Figure

6), and falls within of the current best result on this data,

6Although LPP can adapt to nonlinear structure in the data.
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Figure 6. Receiver Operating Characteristic for Labeled Faces in

the Wild. “Nowak” refers to [20]. “Hybrid descriptor based” refers

to [30].

PIE→ ORL ORL→ PIE PIE→MultiPIE

PCA 85.0% 55.7% 26.5%

LDA 58.5% 72.8% 8.5%

LPP 17.0% 69.1% 17.1%

This work 92.5% 89.7% 67.2%
Table 4. Recognition rates for transfer across datasets.

due to [30] (denoted Hybrid descriptor based;

for a description of the remaining methods, please see

vis-www.cs.umass.edu/lfw/results.html).

Generalization across datasets. One advantage of using

a weakly supervised or even random classification scheme

is that it provides some protection against overfitting. We

demonstrate this advantage quantitatively by training on one

dataset and then testing on completely different datasets.

Methods which are prone to overfitting are likely to fail

here. Table 4 reports the recognition rates for several com-

binations of training and test database. Comparing to Ta-

ble 3, notice that our algorithm’s performance decreases

less than 5% when trained and tested on completely differ-

ent datasets. The performance of PCA degrades similarly,

but remains substantially lower. The performance of more

complicated, supervised algorithms such as LDA and LPP

drops much more significantly. For example, when trained

on ORL and tested on ORL, LDA achieves a 94% recog-

nition rate, which drops to 58% when trained on PIE and

tested on ORL.

7. Extensions and Some Remarks

The approach outlined above can be extended and mod-

ified in several ways. First, if the number of training exam-

ples per subject is large, rather than retaining one histogram

per subject it may instead be appropriate to retain a single

histogram per class. We find that this degrades performance

only moderately, for example, reducing performance on the

ORL database from 96.5% to 92.5%.

In would also be interesting to investigate other classi-

fiers besides nearest neighbor for the histogram matching

step. For example, as is popular in histogram-based image

categorization, one could learn a support vector machine

classifier in the histogram space. Simple linear classifiers

such as LDA or supervised LPP could also be applied7 to

the histogram, effectively treating the quantization process

as a feature extraction step.

The proposed approach demonstrated superb perfor-

mance in our experiments, especially when training and

testing are performed on distinct datasets. Here we sum-

marize some of the key observations obtained from our ex-

periments, as well as our best interpretation of them.

1. We have seen that the recognition rate tends to increase

as the height of the forest increases. This naturally

raises questions about overfitting with excessively tall

trees. While we have not observed this, we have ob-

served that for transferring between databases, recog-

nition performance can be improved by considering

the top L levels of the tree (say, L = 10). Thus overfit-

ting is a much larger problem in transfer experiments

than in recognition experiments. This suggests that the

top L levels of the tree actually adapt to structures that

are common to all human faces, while the remaining

(lower) levels fit much more specific aspects of the

training database.

2. In all examples we have tried, increasing the number of

trees improves (or at least does not decrease) recogni-

tion performance. Figure 4 suggests that this may be at

least partially because aggregating the spatial bound-

aries of the bins produces a shape that is much more

tightly tuned to the type of patch being quantized (e.g.,

eye corners). If the performance is indeed guaranteed

to improve with more trees, it is interesting to ask if

there is any sense in which the quantization regions or

soft similarities are converging. If the limiting shapes

have simple forms, this might lead to even faster clas-

sifiers with equally good performance.

3. In experiments with the Extended Yale B database,

which explicitly tests illumination robustness, we find

that removing the self-quotient normalization step re-

duces the recognition rate by over 9%, from 91.4% in

Table 3 to 83.2%. Nevertheless, it may be that for

less extreme illuminations present in real-world im-

ages, some invariance is already conferred by the fea-

ture descriptor itself. In the other direction, it would be

interesting to better understand when one can get away

7In limited trials, we did not see significant improvement with this ap-

proach, suggesting that the histogram distance metric used here is already

quite appropriate for recognition.



with simple image-based rectification, and when more

complicated illumination models are required.

4. We have argued that forming random projection trees

in the expanded (feature + coordinate) space yields a

spatially varying implicit matching scheme. Our vi-

sualized examples and good recognition performance

give indirect evidence that this is indeed the case.

8. Conclusion

We have introduced a new approach to face recogni-

tion in semi-constrained environments, based on at implicit

matching of spatial and feature information. The proposed

method performs competitively with existing linear projec-

tion approaches. Because of its weakly supervised nature,

it also performs well in transfer tasks across datasets.
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