IMPLICIT-EXPLICIT MULTISTEP METHODS
FOR QUASILINEAR PARABOLIC EQUATIONS

GEORGIOS AKRIVIS!, MICHEL CROUZEIX, AND CHARALAMBOS MAKRIDAKIS!?

ABSTRACT. Efficient combinations of implicit and explicit multistep methods for
nonlinear parabolic equations were recently studied in [I]. In this note we present a
refined analysis to allow more general nonlinearities. The abstract theory is applied
to a quasilinear parabolic equation.

Dedicated to Professor Vidar Thomée on the occasion of his 65 birthday, August
20, 1998

1. INTRODUCTION

In this paper we extend our study of implicit-explicit multistep finite element schemes
for parabolic problems to quasilinear equations. In particular, we establish abstract
convergence results for these methods under weaker stability and consistency condi-
tions. Thus the abstract theory can be applied to various nonlinear parabolic problems
yielding convergence under mild meshconditions.

We consider problems of the form: Given 7' > 0 and u° € H, find u : [0,7] — D(A)
such that

W(t) + Au(t) = B(t,u(t)), 0<t<T,

(1.1) u(0) = o
with A a positive definite, selfadjoint, linear operator on a Hilbert space (H, (-, -)) with
domain D(A) dense in H, and B(t,-) : D(A) — H, t € [0,T], a (possibly) nonlinear
operator. To motivate the construction of the fully discrete schemes, we first consider
the semidiscrete problem approximating (LI]): For a given finite dimensional subspace
Vi of V, V = D(AY2), we seek a function uy,, uy(t) € V,, defined by

(1.2) w) (t) + Apu(t) = Bu(t,un(t)), 0<t<T,

here u) € V}, is a given approximation to u°, and Ay, Bj, are appropriate operators on
Vi, with A, a positive definite, selfadjoint, linear operator.
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Following [I] and [5], we let (a, 3) be a strongly A(0)—stable g—step scheme and
(cr,y) be an explicit g—step scheme, characterized by three polynomials «, 5 and 7,

q q qg—1
alQ) =Y ', B =D B A=Y ¢
i=0 i=0 i=0

Letting N € N, k = % be the time step, and t" = nk,n = 0,..., N, we combine the
(ar, B) and (cv,7y) schemes to obtain an («, 3,7) scheme for discretizing (L2]) in time,
and define a sequence of approximations U, U™ € V},, to u™ := u(t"), by

q q q—1
(1.3) ST U + kY BAUTT = kY 3Byt U,
=0 =0 =0

Given U, ..., U in V,,,U4,...,U" are well defined by the (a, 3,7) scheme, see [1].
The scheme (L3)) is efficient, its implementation to advance in time requires solving a
linear system with the same matrix for all time levels.

Stability and consistency assumptions. Let |- | denote the norm of H, and introduce
in V the norm |- || by |lv|| := | A?v|. We identify H with its dual, and denote by V' the
dual of V', again by (-, -) the duality pairing on V' and V, and by || - ||, the dual norm on
V’. Let T, be a tube around the solution u, T, := {v € V' : min, ||u(t) — v|| < 1}, say.
For stability purposes, we assume that B(t,-) can be extended to an operator from V'
into V', [1 and an estimate of the form

(1.4) |B(t,v) = B(t,w)]l. < Mv—wl|+ o —w|  Vo,weT,

holds, uniformly in ¢, with two constants A and pu. It is essential for our analysis that

zv(Q)
(1.5) A< 1/suwpmax [T S0

while the tube T}, is defined in terms of the norm of V for concreteness. Under these

B

conditions we will show convergence, provided that a mild meshcondition is satisfied,
see Theorem 2.1l The proof can be easily modified to yield convergence under condi-
tions analogous to (L4)) for v and w belonging to tubes defined in terms of other norms,
not necessarily the same for both arguments; milder or stronger meshconditions, re-
spectively, are required if the tubes are defined in terms of weaker or stronger norms,
cf. Remark and Section

We will assume in the sequel that (LI) possesses a solution which is sufficiently
regular for our results to hold. Local uniqueness of smooth solutions follows easily in
view of (I.4).

For the space discretization we use a family V},, 0 < h < 1, of finite dimensional
subspaces of V. In the sequel the following discrete operators will play an essential role:

Lthis is actually the condition needed, but for simplicity we have also assumed that B(-,t) : D(A) —
H
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Define P, : V' =V}, Ay : V. — Vj, and By(t,-) : V — V}, by
(Po,x) =(v,x) YxeW
(App,x) =(Ap,x) Yx €V,
(Br(t, @), x) =(B(t,¢),x) Vx € V.

Let B(t,-) : V. — V' be differentiable, and assume that the linear operator M (t),
M(t) := A— B'(t,u(t)) + o1, is uniformly positive definite, for an appropriate constant
0. We introduce the ‘elliptic’ projection Ry (t) : V — Vj,t € [0, T}, by

(1.6) P,M(t)Ry(t)v = P,M(t)o.

We will show consistency of the («, 3,7) scheme for Ry (t)u(t); to this end we shall
use approximation properties of the elliptic projection operator Ry,(t). We assume that
Ry, (t) satisfies the estimates

(1.7) u(t) — Ru(t)u(t)] + b [[u(t) — Ra(t)u(t)]| < Ch',
d T
(1.8) |5 [w(®) = Ba(t)u(®)]| < CR,
with two integers r and d, 2 < d < r. We further assume that
&’ .
(1.9) lZ5 B @u®l <€, j=1,....p+1,

p being the order of both multistep schemes.
For consistency purposes, we assume for the nonlinear part the estimate

(1.10) 1B(t,u(t)) — B(t, Ra(t)u(t)) — B'(t, u(t))(u(t) — Ru(t)u(t))|l. < Ch".

Then, under some mild meshconditions and for appropriate starting values U°, ...,
U?! we shall derive optimal order error estimates in | - |.

Implicit-explicit multistep methods for linear parabolic equations with time depen-
dent coefficients were first introduced and analyzed in [5]. Recently, [1], we analyzed
implicit-explicit multistep finite element methods for nonlinear parabolic problems, un-
der stronger conditions on the nonlinearity. More precisely, we took B independent of
t, and assumed for stability purposes the global condition

(1.4) |(B'(v)w, w)| < AMlw] lwll + p(v)wl |w] - Vv, w,w eV

with a sufficiently small constant A and a functional p(v) bounded for v bounded in V,
and for consistency purposes that

(1.10°) [B(u(t)) — B(Rpu(l))|l« < Ch"

with elliptic projection operator Ry defined, in terms of the linear operator A only, by
(ARpv, x) = (Av, x) Vx € V.

It is easily seen that (IL4) follows from (L4]). Besides the fact that (IL4) is local, in
contrast to the global condition (L47), the major difference between the two conditions
consists in the norm of w used in their last term: in (L4)) the H—norm while in (L4,
implicitly, the V' —norm is used.
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Condition (L10Q) restricts essentially the order of the derivatives contained in B to
d/2, if A is a differential operator of order d. It was already mentioned in [I] that, for
some concrete differential equations, one can get by with a less stringent condition by
taking into account in the definition of the elliptic projection operator the terms of B
of order higher than d/2; an attempt in this direction is the definition of the elliptic
projection considered in this note. Condition (LI0) may be satisfied even if A and B
are differential operators of the same order.

To emphasize that the new stability and consistency conditions do indeed allow more
general nonlinearities than the corresponding conditions used in [I], we mention two
simple examples of initial and boundary value problems in one space variable in a
bounded interval. It is easily seen that condition (L.4) is satisfied for the equation

Ut — Ugy = (f(u))xa

provided that f’ is uniformly bounded by a small constant; condition (I.4]) on the other
hand is satisfied with A = 0 for any smooth function f. Next we consider the equation

Up — Upy = (a(T,t,U)Uy) 4.

It is easily seen in this case that condition (LI0) is not satisfied whereas condition
(LI0Q) is satisfied, cf. Section Bl These two examples are particular cases of the quasi-
linear equation

w = div(e(z, t,u)Vu+ g(z, t,u)) + f(x, t,u)

which will be considered in Section [

An outline of the paper is as follows: Section 2] is devoted to the abstract analysis
of the implicit-explicit multistep schemes. Explicit bounds for A are derived for some
implicit-explicit schemes of order up to 6. In the last section, we apply our abstract
results to a quasilinear parabolic partial differential equation.

Acknowledgement. The authors would like to thank an anonymous referee for his
suggestions which motivated a revision of the stability analysis of [2] leading to a
substantial improvement of the condition on \.

2. MULTISTEP SCHEMES

In this section we shall analyze implicit-explicit multistep schemes for the abstract
parabolic initial value problem (LTI).

Let (o, ) be an implicit strongly A(0)—stable g—step scheme, and («,7) be an
explicit g—step scheme. We assume that both methods (o, 5) and (a,y) are of order

p, i.e.,

-1
i#ai = ei i1p; = eqz iy, 0=0,1,...,p.
=0 =0 =0

For examples of («a, 8,7) schemes satisfying these stability and consistency properties
we refer to [I] and the references therein; see also Remark 241
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Our main concern in this section is to analyze the approximation properties of the
sequence {U"}. As an intermediate step, we shall show consistency of the scheme (L3])

for the elliptic projection W of the solution u of (1), W (t) = Ry (t)u(t).

Consistency. The consistency error E™ of the scheme (L3) for W is given by

q q—1
(2.1) KE™ = (il + kB A)W™ — k> 3By (¢, W) |
=0 i=0

n =0,...,N — q. Using (@), the definition of A, and By, and (I.I]), and letting
Vg := 0, we split E" as E" = E}' + E3 + E§ + E}, with

q
(2.2i) KB} = ai[Ry(t") = PoJu",
=0
q . .
(2.2ii) KEY = P, lowu™ — by (£"1)]
=0
q .
(2.2ii) Ef = (B — ) AW
=0
and

q
(221V) EZ = Z %‘{AhWn-H _ POAun—I—i + POB(tn-i-i’ un-i—i) . Bh(tn+i, Wn_H)} '

1=0

First, we will estimate E}. Using (L8) and the fact that o + - - - + a, = 0, it is easily
seen that

(2.31) max |E7| < Ch".

0<n<N—q

Further, in view of the consistency properties of («, ),
q . .
‘ Z[aiu"“ — kyu/ (")) < CkPHE,
i=0

ie.,

(2.3ii) max |Ey| < CkP.

0<n<N—q
Now, using (L9) and the consistency properties of («, 5) and («, ), we have

(2.3iii) max || B« < CkP.

0<n<N—q

Finally, we will estimate EJ. First, from (L6) we deduce that

[An — By (t,u(t)) + oI]R,(t)u(t) = P,[A — By (t,u(t)) + olu(t)
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and rewrite (2.21v)) as

q
By = B, S o B ) — B W) — B ) (- W)

i=0
q . .
+0oP, Z Yi(u = W
=0
Then, in view of (LI0) and (L7), we obtain
(2.3iv) max ||E}|. < Ch".

0<n<N—q
Thus, we have the following estimate for the consistency error £E™,
(2.4) max ||E"|. < C(kP +h").

0<n<N—q

Convergence. In the sequel assume that we are given initial approximations U°, U1,
LU eV to .., u? ! such that
-
(2.5) (W7 — U7+ kY2 |\W7 = U7|) < C(KP + h").
J
Let U™ € Vj,, n = q,..., N, be recursively defined by the («, 3,7) scheme (L3). Let
9" =W"—-U"n=0,...,N. Then (21]) and (3] yield the error equation for 9"

—_

Il
o

q q—1
(2 6) Z(O‘i—] + k‘ﬁiAh)ﬁn—’—i —k Z %{Bh(tn—i-i’ Wn—i—z‘) _ Bh(tn—i—z” Un—l—i)}
: i=0 i=0

+kE", n=0,...,N—q.

The rational functions e(¢,-) and f(¢,-) defined from the expansions

(a(Q)+aB(Q) " =Y elt,x) ¢,

LeZ

(a(Q) +2B(0)) Q) =" flt.w) ¢,

LeZ

(2.7)

will play an important role in the stability analysis. Due to the strong A(0)—stability,
for all = € (0, o0], the modulus of all roots of a(-) + x/3(-) is less than one. Therefore,
the expansions are valid for all || > 1 and we have e(¢,-) = 0 for £ < g — 1 and
f(,-) =0 for £ < 0. We also note that the only pole of these rational functions is
—oy /By < 0 and that they vanish at co. Thus, we can define e(¢, kAy) and f(¢, kAp).
We let b* := B, (t°, W*) — B, (t*,U*), and set

(=0
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Then, in view of (2.7)), we have

q q—1
D (el + kBiA) 0T + 95T ) = kY 7 b+ EE", n=0,...,N—q,
=0 =0

cf., e.g., [9, pp. 242-244]. Therefore, the sequence 9%, ¥§ = 9™ — 97 — 94, satisfies the

relation
q

> (I +kBA)T =0, n>0,

and, consequently, with g;(n,z) = ZLHI e(n+0—j,z) (g + z5),
q—1
95 =Y gi(n. kALY, n >0,
=0
It is easily seen that 19% =0, for j < q — 1; therefore 93, . .. ,19%71, and thus all V%,
depend only on the initial entries W°, ... Wt U° . .. UL
Using a spectral expansion in terms of the eigenvectors of A; and Parseval’s identity
we prove the following result. Similar techniques are used in [10] and [11].

Lemma 2.1. There exist positive constants K1, Ko, My, My, Ny and Ns, depending
only on a, B and vy, such that for anyn, 0 < n < N, the following estimates are valid

n n—1
(2.8) ES I < K2 RS I
(=0 =0
n—1
(2.8ii) 07 < Ko kY |I)12,
=0
n n—q
(2.91) B I051° < M7 kD NES,
£=0 £=0
n—q
(2.9ii) 052 < My k> |IE,
=0
and
n q—1
(2101 IO < aN (AR + RIIP).
£=0 Jj=0
-1l
(2.10i1) 05 < Ny > [0
=0
In particular, with my(z,() = W and ki(z, ) = my(z, ¢)y(C),

1

1 ,

K| =supmax |ki(z, ()], Ky, =su / — Ky (z, e 2|2 dt,
! $>IO) K‘:l | 1( §)| ? $>IO) 0 |\/5 1( )|
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1
1 ,
M, = supmax |mq(x, My = su / —mq(x, e ™) 2de,
1 a:>1([))\<\ 1‘ 1(z, Q)1 2 DI?O) ; ‘\/E 1 )|

1 — 2t 2
0 ,
N{ = max sup/ T 10;(e z) dt,
0

0<j<g—1 z>0 1+2x

Ny = max sup sup |gj(n,z)],
0<j<q-1 n>q x>0

where

Zz’zm(az + $5£)§£
ZZ:O(O‘Z + 26,)Ct

Proof. 1t suffices to show the estimates for b* =0 for £ > n, E* =0for { > n —q+ 1,

and n replaced by oo on the right-hand sides. The proof now consists of two parts:

First we derive the bounds as stated and then show that K;,..., Ny are indeed finite.
We introduce

6;(C, ) =

ZEZ 2imlt and 19 Zﬁ[ 2z7r€t7 ,] _ 2 3

=0
from the definition of ¥, and (2.7), we deduce
Dy(t) = k(e ™) + Ble 2™k A)

-1

E(t).

Therefore, we have H@Q(t)H < MlHE(t)H*, and, using Parseval’s identity,

> lIosl :/o [92(8)]* dtSMf/O IE@F de = M7 Yy | B,
=0 =0

i.e. (291 holds. Using similar arguments we prove (Z.81). In order to prove (2101, we
first note that, in view of (271),

Z Z (0+s—j,kAp)e i (+s—j)t (s + ﬁskAh>€f2i7rstﬁée2i7rjt
s=j+1

||
.Q <
L OMH

q

Z g ]{ZA 2@7th Z <&S _i_ﬁskAh)ef%ﬂst,ﬁ%e%ﬂjt

€7 s=j+1

[
Q S
. OM

5]( —2qmt kA )19] 2@7rjt

<.
Il
o

Further
1
k/ 16; (e, kAp)He®™ |2 dt < Ny (|94)7 + k|| 9%5]1%),
0

and, therefore,
q—1

1
b ITOI de< av Y QP+ R,
0

Jj=0
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which immediately yields (2.101). For the estimate (2.91), let {w,,} be an H—orthono-
rmal basis of V}, consisting of eigenfunctions of Ay, Apw,, = Apw,,. Then E(t) can be
expressed as

E(t) = ém(t)wn;

with x,, = k\,,, we have

1
= / Do (t)e™ 2™ dt
0

_ ]‘ ! \/'T_Z A —2imnt
VR 75 | a0

Therefore, we conclude, using the Cauchy—-Schwarz inequality,
I Vi 4

9 2 _ k . / : é t€f2z7rnt dt 2

! ; )‘é" o (a+xB)(e?imt) () |

1 bos
<t [ jelor d=kn [ IE@E
l

and (2.911) follows. Using similar arguments we prove (2.8i).

To complete the proof it remains to verify that Ky, Ko, My, My, N; and N are finite.
For Ny we refer to [7]. Let us next consider the map k; which is continuous from the
compact set [0, +00] x Sy into C, except if 2 = 0 and ( is a root of . Therefore, in order
to prove boundedness of K7, it suffices to show that k; is bounded in a neighborhood of
these points. From the Dahlquist 0—stability condition, i.e., “a(0) = 1 and the roots
of modulus 1 of « are simple”, we deduce that there exist r analytic functions (, ..., ¢,
from [0, 7] into C, such that (;(x) are roots of o+ x5, and (; = (;(0), j =1,...,r, are
the unimodular roots of . Then, we can write

—~ wa;(z)
ki, Q) Z o T
where the functions a; as well as the coefficients of the rational function b(x,-) are
analytic on [0,7]. We observe that, for ¢ € 5,

/!
— . B (0
C- 6@, 1-16@] GO
T x ¢;(0)
The strong A(0)—stability means that, for all z € (0, oc], the modulus of all roots of
a + xf3 is less than one, and the “growth factors” Re 2 Eg; of the principal roots (j,

j =1,...,r of a satisfy Re ? Eg; < 0. Therefore, K7 is bounded. Similarly, we can
J
show that M; is finite. For K5, we note that, in view of Minkowski’s inequality, it

suffices to verify that, for z € [0,n] and j =1,...,r,

1 2 2
L ee@P )
=), e GEE T TGO

(as z — 0).
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is bounded; this follows from the proof for K. In a similar way, one can see that My
and N; are finite as well. O

In our main result, Theorem 2.1l we will need to estimate 9". Part of it, namely 95 +

V%, can be estimated in terms of ¥°, ..., 99! and the consistency errors E°, ..., EN79,
Lemma 2.2. There exists a constant C such that, forn =20,..., N,

n q—1 n—q
(11) =9I kY 9 = 92 < O Y0P+ IR + kD B2

(=0 =0 =0

Proof. Since 19% =0for7=0,...,9— 1, we have

7j—1
B=0 kYD FG= LR, =0, 1.

=0
Therefore
Jj—1 Jj—1
] < [+ VEY myo|tlle,  and (5] < 197+ )yl
=0 =0
with

me = sup vz f((, )], and  ny =sup |zf(l, )|

>0 x>0
Then (2.I7]) follows from the relation 9" — 97 = 95 + 9%, and from (2.9) and (2.10). O
The main result in this paper is given in the following theorem:

Theorem 2.1. Let k and h*"k=! be sufficiently small. Then, we have the local stability
estimate

n q—1 n—q
(212) PR P < O LS (0 4 k) + kY B

£=0 j=0 £=0
n=q—1,...,N, and the error estimate

ny __ rn D r
(2.13) o?i%v'u(t )—=U"| < C(kP+h").
Proof. Let p" =u" —W" n=0,...,N. Then, according to (L7),
T < T

(2.14) Orgr}laS)%\Ap | < Ch

and, for sufficiently small h,

. <
(2.15) Jmax "l <1/2,

i.e., in particular, W" € T,,,n = 0, ..., N. Now, assuming for the time being that ([2.12)
holds, using (2.5) and (2.4)), we obtain

(2.16) max_|J"| < C(kP +h"),

0<n<N
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and (2.13) follows immediately from (2.14]) and (2.16]). Thus, it remains to prove (2.12]).
According to (2.5) and (2.4)), there exists a constant C, such that the right-hand side

of [2.I2)) can be estimated by C?(k? + h")?,

q—1 N—q
(17)  Ce TSP+ k0N + kY I < C2R + )
j=0 =0

The estimate (2.12]) is obviously valid for n = ¢ — 1. Assume that it holds for ¢ —
1,...,n—1, g <n < N. Then, according to (2I7) and the induction hypothesis, we
have, for & and h?"k~! small enough,

max ||| < C (kP2 4+ kY207 < 1/2,

0<j<n—1

i.e., using also (Z.I7)),
(2.18) UveT, j=0,...,n—1

Therefore, in view of (IL4]) and Minkowski’s inequality,

n—1

= 7112 1/2 ¢ 1\2 1/2
(B2 002) ™ < (B SN0+ 9 D?) ™ <X s gt ds + e
=0 =0

with

n

1/2 n 1/2
an= (KD I9512) o= (B 1041)
=0

(=0

n 1/2
amewz@ijw—ﬂm+mM—ﬂmﬁ .
=0
Thus, ([2.81) and (2.81) yield, for n > 1,
(219) an, S Kl()\ p-1+ Hw dnfl + €n71> S K1<)\ an + % dnfl + €n71>7

and

d? — d?

Tnil S KZ()\ ap + H dn—l + 6n—1)2;
therefore, in view of (LH), we have AK; < 1 and

d2—d21 [Ld_1+6_12
el g (BT T RTINS < 96 (42 d? 2
2 = 2( 1 — \K; ) = C(:u n71+€n71)7
with ¢ = (1—15712(1)2 Hence, we deduce (note that dy = 0)
n—1 26M2tn 2 2tn
e (tn—1_¢t e -1 e“rr — 1
di S 2ck E 62 et ¢ )eg S 2¢ck m@i_l < ,u2 ei_l.

=0

Thus, we have ud, < e**t"¢,_; and

K

2.201 < —
(2.201) @ < T

cpt™
1+e H )en—h
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and
(2.20ii) 197 < Ve (pdp_1 + en1) < Ve (14 e e, .
Now, (2.20) and (Z.I1) yield

T+ kY 051 <
/=0
(2.21) "

1 n—q
Cer LN (0P + K IP) + k3 112}
=0 =0

<

From (2.2I)) and (ZI0)) it easily follows that (2.12) holds for n as well, and the proof
is complete. O]

Remark 2.1. Let 7 € R be such that A 4 71 is positive semidefinite. It is then easily
seen that the results of Theorem [2.1] hold also for the scheme

q q q—1
DU kY Bi(AUT +7U) = kY uBu(t", UM 47U,
=0 i=0 =0
Remark 2.2. The weak meshcondition “6~'h?" small” is used in the proof of Theorem
21 only to show that ||9"| < 1/2 which implies ([ZI8]). If the estimate (L4) holds in
tubes around u defined in terms of weaker norms, not necessarily the same for both
arguments v and w, one may get by with an even weaker meshcondition. Assume, for
instance, that (L)) holds for v,w € T := {w € V : min, ||u(t) — w|[* < 1} —or for
v eT,, cf. (2I0), and w € T;— and the norm || - ||* satisfies an inequality of the form

loll* < Jol + ol llvll?, v eV,

for some constant a,0 < a < 1. Then, a condition of the form “k and k~*h?*" sufficiently
small” suffices for (Z12) and (ZI3]) to hold.

Similarly, when the relation (L) is satisfied in tubes around u defined in terms of
stronger norms, not necessarily the same for both arguments, the convergence result
of Theorem 2.1 may still be valid but under stronger meshconditions, cf. [I]; this fact
will be used in the next section.

Remark 2.3. The condition (LI) is sharp. Indeed, assume that AK; > 1. Since
lim¢| 50 27(€)/[(¢) + 2B(¢)] = 0, we can find x > 0 and ¢ € C with || > 1 satisfying

| Azy(€) =1,
a(@)+2p(¢)
thus, there exists a © € R such that
a(¢) + 2 (B(¢) — A (Q)) = 0.

Choosing then B(t,u) = A\e'® Au, condition (L4) is satisfied. According to the von
Neumann criterion, a necessary stability condition is that, if v is an eigenvalue of A,
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the solutions of
q

Z[ai +kv(B — Ao =0,

i=0
are bounded; for kv = x this is not the case, since the root condition is not satisfied;
therefore, the scheme is not unconditionally stable.

Remark 2.4. The (a, ,7) methods given by the polynomials
0O = Do Z¢C= 1Y, BO = and 90 == (=1
j=1

satisfy our assumptions with the order p = ¢. The corresponding implicit («, 5) schemes
are the well-known B.D.F. methods which are strongly A(0)—stable for 1 < ¢ < 6. In
this case, K; = 29 — 1. First, clearly,

29 —1 = lim |]{Z1<.§U, —1)| S Kl-

Tr—00
Further, with d(¢) := 3:1 jl(l — ¢y,

Ly
1+d(Q)/z

k1<l’,<) =

Then, for ¢ € S; such that Red({) > 0,
ka2, Q) < 1 - (1= <27~ 1.

Thus, K7 < 29— 1, for ¢ = 1 and 2, since Red(() is nonnegative in this case. For
Red(¢) < 0,
(<) L
sup |k1(x, ()| = ———=—= 1 — (1 — q,
and, for ¢ = 3,4,5,6, we have computationally checked that the right-hand side is
bounded by 27 — 5. Thus K; < 27 — 1. Consequently, in this case condition (L3 reads

1
A< 5

Remark 2.5. Assume we discretize problem (LI) by an implicit A(©)—stable («, /)
scheme, which corresponds to taking v = 8 in our framework. Then, it easily follows
from our analysis that the resulting scheme is stable and our estimates hold, provided
that A <1 —cos 6.

3. APPLICATION TO A QUASILINEAR EQUATION

In this section we shall apply our results to a class of quasilinear equations: Let
2 C R”, v <3, be a bounded domain with smooth boundary 0f2. For T > 0 we seek
a real-valued function u, defined on {2 x [0, T, satisfying

up — div(a(z)Vu) = div(b(z, t,u)Vu + g(z, t,u)) + f(x,t,u) in 2 x[0,T],
(3.1) u=0 on 912 x [0,T],
u(-,0) = u’ in (2
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with a: 2 — (0,00), b, f: 2x[0,T]xR =R, g: 2x[0,T]xR — R, and u’: 2 — R
given smooth functions. We are interested in approximating smooth solutions of this
problem, and assume therefore that the data are smooth and compatible such that (3.1)
gives rise to a sufficiently regular solution. We assume that —div([a(x) + b(z, t,u)]V")
is an elliptic operator.

Let H® = H*(§2) be the usual Sobolev space of order s, and || - ||z= be the norm of
H?. The inner product in H := L?(2) is denoted by (-,-), and the induced norm by
| - |; the norm of L*(£2), 1 < s < o0, is denoted by || - ||1s. Let Av := —div(aVv) and
B(t,v) := div(b(-, t,v)Vv) + divg(-, t,v) + f(-,t,v). Obviously, V = H} = H}(2) and
the norm || - || in V, |jv|| = |v/aVu], is equivalent to the H'—norm.

Let

T,={veVnL>: mtin |lu(t) — v||pe < 1},

T, ={veVnwl: min [|u(t) = vflwy, < 1},
and
A= sup{|b(z,t,y)|/a(z) :x € 2,t €[0,T],y e U}

with U := [—1 + min, ; u, 1 + max, ; u|.
Now, for v,w,p € V,

(B(tv U) - B(t7 w)a ()0) = = (b(a t w)V(v - w)a VSO) - ([b(a t 'U) - b(a t w)]vva VQP)
- (g(’ t) ’U) - g() ta U}), VQO) + (f(7 ta U) - f(a t) w)a 90) 5

and we easily see that
(3.2) |B(t,v) — B(t,w)|lx < Al|[v —wl|| + plv —w| veT,weT,.
Thus, a stability condition of the form (IL4]) is satisfied for v € T, and w € T,.

Further,

B'(t,v)w = div(b(+, t,v)Vw) 4+ div(95b(-, t, v)wVv)
+ div(059(-, t, v)w) + 05 f (-, ¢, v)w,

and, therefore, A— B'(t,u(t))+ ol is, for an appropriate constant ¢, uniformly positive
definite in H}.

Let Vj, be the subspace of V' defined on a regular finite element partition 7, of (2,
and consisting of piecewise polynomial functions of degree at most r — 1, r > 2. Let

hx denote the diameter of an element K € 7, and h := maxge7;, hix. We define the
elliptic projection operator Ry (t), Ry(t) : V — Vj, t € [0,T], by

([a(-) +b(- 2, u(-,1)]V(v = Ru(t)v), V)
+ ([0s0(-, 8, ul- 1) Vul-,t) + 939 (-, £, u(-, 1))| (v — Ra(t)v), Vx)
— ([0 (. tul 1) — ol(v = Ru(t)v),x) =0 Vx € Vi
It is well known from the error analysis for elliptic problems that

(3.3) |v — Ry(t)v] + hllv — Rp(t)v]| < CR"||v||gr, v € H™N H&,
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i.e., the estimate (7)) is satisfied with d = 2. Further,

(3.4) Clut 1)~ Bultyul-, 0] < CW

and

a’ d’ ‘
(3.5) |=—=Rp(t)v|+ h||ﬁRh(t)v|| <Ch|vllg-, vEH NHy, j=1,....p+1,

dt?
cf., e.g., []; thus (L) and (LI) are valid. We further assume, cf. [12], [15], that
1
(3.6) sup [Ju(:, £) — Ba(t)u(, t)llwy, < 5.

Next, we will verify (LI0). We have
B(t, u(t)) — B(t, Ru(t)u(t)) — B'(t, u(t)) (Ra(t)u(t) — u(t)) =

3.71 1

( ) _ _/0 TB//(t, Ru(t)u(t) — 7[Rp(t)u(t) — u(t)])dT[Rh(t)u(t) _ u(t)]2
and

(3.7i) B"(t,v)w’ = div(95b(-, t,v)w*Vv) + 2div(d3b(, t, v)wVw)

+ div(93g(-, t,v)w?) + 93 f (-, t,v)w?.

It easily follows from (3.7) and ([B.3]), in view of (B.6]), that

(3-8)  B(t,u(t)) — B, Ru(t)u(t)) — B'(t, u(t))(u(t) = Ra(@)u(t))|lz- < CI,
i.e., (LIO) is satisfied.

Now, let W (t) := Ry,(t)u(t), and assume that we are given approximations U°, ...,
U=t €V, tou?, ..., u?! such that

q—1
(3.9) DW= U+ B2 W7 = U7|) < c(k” + R7).
=0
Then, we define U™ € V,,, n = q,..., N, recursively by the («, 3,7) scheme

q
> (U x +k2@ IVU™ Vy) =
i=0

3.10 , , , , ,
( ) — Lk Z’V@'{_ (b(, tn—}—z’ Un—f—z)VUn—i—z 4 g(.’ tn—i—z’ Un—H)’ VX)
+<f<.7tn+z7 Un+l)7X>}7 vX E Vh7 n:O7"'7N_q7

with («, 8) and (a,7) multistep schemes of order p, and («, ) strongly A(0)—stable.
Then, Theorem 211 yields, in view of (3.6), for sufficiently small & and provided that
the approximate solutions U™ are in T,,, the error estimate

(3.11) max [u" — U"| < c(kP + h").

To ensure that U™ € Tu, n=20,...,N,wedefine h := mingc7, hx and will distinguish
three cases: v =1, v =2 and v = 3.
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i. v=1. First, since the H'—norm dominates the L>—norm in one space dimension,
we have

max Hﬁ‘jHLoogC max HﬂjH,
0<j<n+q—1 0<j<n+g-—1

and thus, according to (Z.I6),

max ||| < C(KP7YV2 4+ k1207,
0<j<n+q—1

Therefore, for k and k~'h?" sufficiently small, in view of ([B.6)), U’ € Tu,j =0,...,n+
q — 1. We easily conclude that the convergence result holds.

ii. v =2.  First, we note that
Il < Cllog)|"?|Ixllar VX € Vi,

cf. [14, p. 68]. It is then easily seen that the convergence result holds, if k£ and h are
chosen such that |log(h)|k**~! and |log(h)|k~*h?" are sufficiently small.

iii. v=3.  In this case,
Ixllz= < CE™ Xl Yx € Vi,
and the result (ZI1)) holds, provided that b k%! and k~'h~*h*" are sufficiently small.

Remark 3.1. Let the quasilinear equation be given in the form
up = div(c(z, t,u)Vu + g(z, t,u)) + f(x,t,u).

It can then be written in the form used in ([B.1I) by letting, say, a(z) := c(z,0,u°) and
b(x,t,u) = c(x,t,u) — a(z).

Different splittings might be used on a finite number of subintervals of [0, T']. Assume,
for instance, that an approximation U to u(-, t,) has been computed. Then, the splitting
a(z) = c(x,t,, U) and b(x, t,u) := ¢(x,t,u)—a(x) may be used on a time interval [¢,, tp].

Remark 3.2. As mentioned in the introduction, the stability assumption (L4) is
weaker than (L4) which was used in [1]. For smooth B, (I4) implies

(1.47) (B'(v)w, w)| < AMlwll[lw]l + p()w {lw]| - Vo, w,weV.

The use of (L4”) may lead to improvements in the analysis of the applications in [I]
Section 4]. In particular, the convergence results of [I, Section 4.2] for the Cahn-
Hilliard equation in one space dimension will now hold without any meshconditions.
Also, in [I, Section 4.3] a reaction diffusion equation with power nonlinearities that
grow no faster than |£]°, p < 4, in R3 was considered. A more refined analysis shows
that the stability hypothesis (L.4")) is now satisfied for p < 5 in R3.
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