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Abstract. Efficient combinations of implicit and explicit multistep methods for

nonlinear parabolic equations were recently studied in [1]. In this note we present a

refined analysis to allow more general nonlinearities. The abstract theory is applied

to a quasilinear parabolic equation.
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1. Introduction

In this paper we extend our study of implicit-explicit multistep finite element schemes

for parabolic problems to quasilinear equations. In particular, we establish abstract

convergence results for these methods under weaker stability and consistency condi-

tions. Thus the abstract theory can be applied to various nonlinear parabolic problems

yielding convergence under mild meshconditions.

We consider problems of the form: Given T > 0 and u0 ∈ H , find u : [0, T ] → D(A)

such that

u′(t) + Au(t) = B(t, u(t)), 0 < t < T,

u(0) = u0,
(1.1)

with A a positive definite, selfadjoint, linear operator on a Hilbert space (H, (·, ·)) with
domain D(A) dense in H, and B(t, ·) : D(A) → H, t ∈ [0, T ], a (possibly) nonlinear

operator. To motivate the construction of the fully discrete schemes, we first consider

the semidiscrete problem approximating (1.1): For a given finite dimensional subspace

Vh of V, V = D(A1/2), we seek a function uh, uh(t) ∈ Vh, defined by

u′
h(t) + Ahuh(t) = Bh(t, uh(t)), 0 < t < T,

uh(0) = u0
h;

(1.2)

here u0
h ∈ Vh is a given approximation to u0, and Ah, Bh are appropriate operators on

Vh with Ah a positive definite, selfadjoint, linear operator.
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Following [1] and [5], we let (α, β) be a strongly A(0)−stable q−step scheme and

(α, γ) be an explicit q−step scheme, characterized by three polynomials α, β and γ,

α(ζ) =

q∑

i=0

αiζ
i , β(ζ) =

q∑

i=0

βiζ
i , γ(ζ) =

q−1∑

i=0

γiζ
i .

Letting N ∈ N, k = T
N

be the time step, and tn = nk, n = 0, . . . , N, we combine the

(α, β) and (α, γ) schemes to obtain an (α, β, γ) scheme for discretizing (1.2) in time,

and define a sequence of approximations Un, Un ∈ Vh, to un := u(tn), by

(1.3)

q∑

i=0

αiU
n+i + k

q∑

i=0

βiAhU
n+i = k

q−1∑

i=0

γiBh(t
n+i, Un+i).

Given U0, . . . , U q−1 in Vh, U
q, . . . , UN are well defined by the (α, β, γ) scheme, see [1].

The scheme (1.3) is efficient, its implementation to advance in time requires solving a

linear system with the same matrix for all time levels.

Stability and consistency assumptions. Let | · | denote the norm of H, and introduce

in V the norm ‖·‖ by ‖v‖ := |A1/2v|. We identify H with its dual, and denote by V ′ the

dual of V , again by (·, ·) the duality pairing on V ′ and V, and by ‖·‖⋆ the dual norm on

V ′. Let Tu be a tube around the solution u, Tu := {v ∈ V : mint ‖u(t)− v‖ ≤ 1}, say.
For stability purposes, we assume that B(t, ·) can be extended to an operator from V

into V ′, 1 and an estimate of the form

(1.4) ‖B(t, v)−B(t, w)‖⋆ ≤ λ‖v − w‖+ µ|v − w| ∀v, w ∈ Tu

holds, uniformly in t, with two constants λ and µ. It is essential for our analysis that

(1.5) λ < 1/ sup
x>0

max
|ζ|=1

| xγ(ζ)

(α+ xβ)(ζ)
|,

while the tube Tu is defined in terms of the norm of V for concreteness. Under these

conditions we will show convergence, provided that a mild meshcondition is satisfied,

see Theorem 2.1. The proof can be easily modified to yield convergence under condi-

tions analogous to (1.4) for v and w belonging to tubes defined in terms of other norms,

not necessarily the same for both arguments; milder or stronger meshconditions, re-

spectively, are required if the tubes are defined in terms of weaker or stronger norms,

cf. Remark 2.2 and Section 3.

We will assume in the sequel that (1.1) possesses a solution which is sufficiently

regular for our results to hold. Local uniqueness of smooth solutions follows easily in

view of (1.4).

For the space discretization we use a family Vh, 0 < h < 1, of finite dimensional

subspaces of V. In the sequel the following discrete operators will play an essential role:

1this is actually the condition needed, but for simplicity we have also assumed that B(·, t) : D(A) →
H
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Define Po : V
′ → Vh, Ah : V → Vh and Bh(t, ·) : V → Vh by

(Pov, χ) = (v, χ) ∀χ ∈ Vh

(Ahϕ, χ) = (Aϕ, χ) ∀χ ∈ Vh

(Bh(t, ϕ), χ) = (B(t, ϕ), χ) ∀χ ∈ Vh.

Let B(t, ·) : V → V ′ be differentiable, and assume that the linear operator M(t),

M(t) := A−B′(t, u(t))+σI, is uniformly positive definite, for an appropriate constant

σ. We introduce the ‘elliptic’ projection Rh(t) : V → Vh, t ∈ [0, T ], by

(1.6) PoM(t)Rh(t)v = PoM(t)v.

We will show consistency of the (α, β, γ) scheme for Rh(t)u(t); to this end we shall

use approximation properties of the elliptic projection operator Rh(t). We assume that

Rh(t) satisfies the estimates

(1.7) |u(t)−Rh(t)u(t)|+ hd/2‖u(t)−Rh(t)u(t)‖ ≤ Chr,

(1.8) | d
dt
[u(t)−Rh(t)u(t)]| ≤ Chr,

with two integers r and d, 2 ≤ d ≤ r. We further assume that

(1.9) ‖ dj

dtj
[Rh(t)u(t)]‖ ≤ C, j = 1, . . . , p+ 1,

p being the order of both multistep schemes.

For consistency purposes, we assume for the nonlinear part the estimate

(1.10) ‖B(t, u(t))− B(t, Rh(t)u(t))− B′(t, u(t))(u(t)− Rh(t)u(t))‖⋆ ≤ Chr.

Then, under some mild meshconditions and for appropriate starting values U0, . . . ,

U q−1, we shall derive optimal order error estimates in | · |.
Implicit-explicit multistep methods for linear parabolic equations with time depen-

dent coefficients were first introduced and analyzed in [5]. Recently, [1], we analyzed

implicit-explicit multistep finite element methods for nonlinear parabolic problems, un-

der stronger conditions on the nonlinearity. More precisely, we took B independent of

t, and assumed for stability purposes the global condition

(1.4′) |(B′(v)w, ω)| ≤ λ‖w‖ ‖ω‖+ µ(v)|w| |ω| ∀v, w, ω ∈ V

with a sufficiently small constant λ and a functional µ(v) bounded for v bounded in V,

and for consistency purposes that

(1.10′) ‖B(u(t))− B(Rhu(t))‖⋆ ≤ Chr

with elliptic projection operator Rh defined, in terms of the linear operator A only, by

(ARhv, χ) = (Av, χ) ∀χ ∈ Vh.

It is easily seen that (1.4) follows from (1.4′). Besides the fact that (1.4) is local, in

contrast to the global condition (1.4′), the major difference between the two conditions

consists in the norm of ω used in their last term: in (1.4′) the H−norm while in (1.4),

implicitly, the V−norm is used.
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Condition (1.10′) restricts essentially the order of the derivatives contained in B to

d/2, if A is a differential operator of order d. It was already mentioned in [1] that, for

some concrete differential equations, one can get by with a less stringent condition by

taking into account in the definition of the elliptic projection operator the terms of B

of order higher than d/2; an attempt in this direction is the definition of the elliptic

projection considered in this note. Condition (1.10) may be satisfied even if A and B

are differential operators of the same order.

To emphasize that the new stability and consistency conditions do indeed allow more

general nonlinearities than the corresponding conditions used in [1], we mention two

simple examples of initial and boundary value problems in one space variable in a

bounded interval. It is easily seen that condition (1.4′) is satisfied for the equation

ut − uxx = (f(u))x,

provided that f ′ is uniformly bounded by a small constant; condition (1.4) on the other

hand is satisfied with λ = 0 for any smooth function f. Next we consider the equation

ut − uxx = (a(x, t, u)ux)x.

It is easily seen in this case that condition (1.10′) is not satisfied whereas condition

(1.10) is satisfied, cf. Section 3. These two examples are particular cases of the quasi-

linear equation

ut = div(c(x, t, u)∇u+ g(x, t, u)) + f(x, t, u)

which will be considered in Section 3.

An outline of the paper is as follows: Section 2 is devoted to the abstract analysis

of the implicit-explicit multistep schemes. Explicit bounds for λ are derived for some

implicit-explicit schemes of order up to 6. In the last section, we apply our abstract

results to a quasilinear parabolic partial differential equation.

Acknowledgement. The authors would like to thank an anonymous referee for his

suggestions which motivated a revision of the stability analysis of [2] leading to a

substantial improvement of the condition on λ.

2. Multistep schemes

In this section we shall analyze implicit-explicit multistep schemes for the abstract

parabolic initial value problem (1.1).

Let (α, β) be an implicit strongly A(0)−stable q−step scheme, and (α, γ) be an

explicit q−step scheme. We assume that both methods (α, β) and (α, γ) are of order

p, i.e.,
q∑

i=0

iℓαi = ℓ

q∑

i=0

iℓ−1βi = ℓ

q−1∑

i=0

iℓ−1γi, ℓ = 0, 1, . . . , p.

For examples of (α, β, γ) schemes satisfying these stability and consistency properties

we refer to [1] and the references therein; see also Remark 2.4.
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Our main concern in this section is to analyze the approximation properties of the

sequence {Un}. As an intermediate step, we shall show consistency of the scheme (1.3)

for the elliptic projection W of the solution u of (1.1), W (t) = Rh(t)u(t).

Consistency. The consistency error En of the scheme (1.3) for W is given by

(2.1) kEn =

q∑

i=0

(αiI + kβiAh)W
n+i − k

q−1∑

i=0

γiBh(t
n+i,W n+i) ,

n = 0, . . . , N − q. Using (1.6), the definition of Ah and Bh, and (1.1), and letting

γq := 0, we split En as En = En
1 + En

2 + En
3 + En

4 , with

(2.2i) kEn
1 =

q∑

i=0

αi[Rh(t
n+i)− Po]u

n+i ,

(2.2ii) kEn
2 = Po

q∑

i=0

[αiu
n+i − kγiu

′(tn+i)] ,

(2.2iii) En
3 :=

q∑

i=0

(βi − γi)AhW
n+i ,

and

(2.2iv) En
4 :=

q∑

i=0

γi{AhW
n+i − PoAu

n+i + PoB(tn+i, un+i)− Bh(t
n+i,W n+i)} .

First, we will estimate En
1 . Using (1.8) and the fact that α0 + · · ·+ αq = 0, it is easily

seen that

(2.3i) max
0≤n≤N−q

|En
1 | ≤ Chr .

Further, in view of the consistency properties of (α, γ),

∣∣∣
q∑

i=0

[αiu
n+i − kγiu

′(tn+i)]
∣∣∣ ≤ Ckp+1 ,

i.e.,

(2.3ii) max
0≤n≤N−q

|En
2 | ≤ Ckp .

Now, using (1.9) and the consistency properties of (α, β) and (α, γ), we have

(2.3iii) max
0≤n≤N−q

‖En
3 ‖⋆ ≤ Ckp .

Finally, we will estimate En
4 . First, from (1.6) we deduce that

[Ah −B′
h(t, u(t)) + σI]Rh(t)u(t) = Po[A− B′

h(t, u(t)) + σI]u(t)



6 GEORGIOS AKRIVIS, MICHEL CROUZEIX, AND CHARALAMBOS MAKRIDAKIS

and rewrite (2.2iv) as

En
4 = Po

q∑

i=0

γi{B(tn+i, un+i)−B(tn+i,W n+i)−B′(tn+i, un+i)(un+i −W n+i)}

+σPo

q∑

i=0

γi(u
n+i −W n+i) .

Then, in view of (1.10) and (1.7), we obtain

(2.3iv) max
0≤n≤N−q

‖En
4 ‖⋆ ≤ Chr .

Thus, we have the following estimate for the consistency error En,

(2.4) max
0≤n≤N−q

‖En‖⋆ ≤ C(kp + hr) .

Convergence. In the sequel assume that we are given initial approximations U0, U1,

. . . , U q−1 ∈ Vh to u0, . . . , uq−1 such that

(2.5)

q−1∑

j=0

(
|W j − U j |+ k1/2‖W j − U j‖

)
≤ C(kp + hr).

Let Un ∈ Vh, n = q, . . . , N, be recursively defined by the (α, β, γ) scheme (1.3). Let

ϑn = W n − Un, n = 0, . . . , N . Then (2.1) and (1.3) yield the error equation for ϑn

q∑

i=0

(αiI + kβiAh)ϑ
n+i =k

q−1∑

i=0

γi{Bh(t
n+i,W n+i)−Bh(t

n+i, Un+i)}

+ kEn, n = 0, . . . , N − q.

(2.6)

The rational functions e(ℓ, ·) and f(ℓ, ·) defined from the expansions
(
α(ζ) + xβ(ζ)

)−1
=

∑

ℓ∈Z

e(ℓ, x) ζ−ℓ,

(
α(ζ) + xβ(ζ)

)−1
γ(ζ) =

∑

ℓ∈Z

f(ℓ, x) ζ−ℓ,
(2.7)

will play an important role in the stability analysis. Due to the strong A(0)−stability,

for all x ∈ (0,∞], the modulus of all roots of α(·) + xβ(·) is less than one. Therefore,

the expansions are valid for all |ζ | ≥ 1 and we have e(ℓ, ·) = 0 for ℓ ≤ q − 1 and

f(ℓ, ·) = 0 for ℓ ≤ 0. We also note that the only pole of these rational functions is

−αq/βq < 0 and that they vanish at ∞. Thus, we can define e(ℓ, kAh) and f(ℓ, kAh).

We let bℓ := Bh(t
ℓ,W ℓ)−Bh(t

ℓ, U ℓ), and set

ϑ0
1 = 0, ϑn

1 = k
n−1∑

ℓ=0

f(n− ℓ, kAh)b
ℓ,

ϑn
2 = k

n−q∑

ℓ=0

e(n− ℓ, kAh)E
ℓ.
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Then, in view of (2.7), we have

q∑

i=0

(αiI + kβiAh)(ϑ
n+i
1 + ϑn+i

2 ) = k

q−1∑

i=0

γi b
n+i + kEn, n = 0, . . . , N − q,

cf., e.g., [9, pp. 242–244]. Therefore, the sequence ϑn
3 , ϑ

n
3 = ϑn − ϑn

1 − ϑn
2 , satisfies the

relation
q∑

i=0

(αiI + kβiAh)ϑ
n+i
3 = 0, n ≥ 0,

and, consequently, with gj(n, x) =
∑q

ℓ=j+1 e(n+ℓ−j, x)(αℓ + xβℓ),

ϑn
3 =

q−1∑

j=0

gj(n, kAh)ϑ
j
3, n ≥ 0.

It is easily seen that ϑj
2 = 0, for j ≤ q − 1; therefore ϑ0

3, . . . , ϑ
q−1
3 , and thus all ϑn

3 ,

depend only on the initial entries W 0, . . . ,W q−1, U0, . . . , U q−1.

Using a spectral expansion in terms of the eigenvectors of Ah and Parseval’s identity

we prove the following result. Similar techniques are used in [10] and [11].

Lemma 2.1. There exist positive constants K1, K2, M1, M2, N1 and N2, depending

only on α, β and γ, such that for any n, 0 ≤ n ≤ N , the following estimates are valid

(2.8i) k
n∑

ℓ=0

‖ϑℓ
1‖2 ≤ K2

1 k
n−1∑

ℓ=0

‖bℓ‖2⋆,

(2.8ii) |ϑn
1 |2 ≤ K2 k

n−1∑

ℓ=0

‖bℓ‖2⋆,

(2.9i) k

n∑

ℓ=0

‖ϑℓ
2‖2 ≤ M2

1 k

n−q∑

ℓ=0

‖Eℓ‖2⋆,

(2.9ii) |ϑn
2 |2 ≤ M2 k

n−q∑

ℓ=0

‖Eℓ‖2⋆,

and

(2.10i) k
n∑

ℓ=0

‖ϑℓ
3‖2 ≤ qN1

q−1∑

j=0

(|ϑj
3|2 + k‖ϑj

3‖2),

(2.10ii) |ϑn
3 | ≤ N2

q−1∑

j=0

|ϑj
3|.

In particular, with m1(x, ζ) =
x

(α+xβ)(ζ)
and k1(x, ζ) = m1(x, ζ)γ(ζ),

K1 = sup
x>0

max
|ζ|=1

|k1(x, ζ)|, K2 = sup
x>0

∫ 1

0

| 1√
x
k1(x, e

−2iπt)|2dt,
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M1 = sup
x>0

max
|ζ|=1

|m1(x, ζ)|, M2 = sup
x>0

∫ 1

0

| 1√
x
m1(x, e

−2iπt)|2dt,

N1 = max
0≤j≤q−1

sup
x>0

∫ 1

0

x |δj(e−2iπt, x)|2
1 + x

dt,

N2 = max
0≤j≤q−1

sup
n≥q

sup
x>0

|gj(n, x)|,

where

δj(ζ, x) =

∑q
ℓ=j+1(αℓ + xβℓ)ζ

ℓ

∑q
ℓ=0(αℓ + xβℓ)ζℓ

.

Proof. It suffices to show the estimates for bℓ = 0 for ℓ ≥ n, Eℓ = 0 for ℓ ≥ n− q + 1,

and n replaced by ∞ on the right-hand sides. The proof now consists of two parts:

First we derive the bounds as stated and then show that K1, . . . , N2 are indeed finite.

We introduce

Ê(t) =

∞∑

ℓ=0

Eℓ e2iπℓt and ϑ̂j(t) =

∞∑

ℓ=0

ϑℓ
j e

2iπℓt, j = 2, 3;

from the definition of ϑ2 and (2.7), we deduce

ϑ̂2(t) = k
(
α(e−2iπt)I + β(e−2iπt)kAh

)−1
Ê(t).

Therefore, we have ‖ϑ̂2(t)‖ ≤ M1‖Ê(t)‖⋆, and, using Parseval’s identity,

∞∑

ℓ=0

‖ϑℓ
2‖2 =

∫ 1

0

‖ϑ̂2(t)‖2 dt ≤ M2
1

∫ 1

0

‖Ê(t)‖2⋆ dt = M2
1

∞∑

ℓ=0

‖Eℓ‖2⋆,

i.e. (2.9i) holds. Using similar arguments we prove (2.8i). In order to prove (2.10i), we

first note that, in view of (2.7),

ϑ̂3(t) =

q−1∑

j=0

∞∑

ℓ=0

q∑

s=j+1

e(ℓ+ s− j, kAh)e
2iπ(ℓ+s−j)t (αs + βskAh)e

−2iπstϑj
3e

2iπjt

=

q−1∑

j=0

∑

ℓ∈Z

e(ℓ, kAh)e
2iπℓt

q∑

s=j+1

(αs + βskAh)e
−2iπstϑj

3e
2iπjt

=

q−1∑

j=0

δj(e
−2iπt, kAh)ϑ

j
3e

2iπjt.

Further

k

∫ 1

0

‖δj(e−2iπt, kAh)ϑ
j
3e

2iπjt‖2 dt ≤ N1 (|ϑj
3|2 + k‖ϑj

3‖2),

and, therefore,

k

∫ 1

0

‖ϑ̂3(t)‖2 dt ≤ qN1

q−1∑

j=0

(|ϑj
3|2 + k‖ϑj

3‖2),
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which immediately yields (2.10i). For the estimate (2.9ii), let {wm} be an H−orthono-

rmal basis of Vh consisting of eigenfunctions of Ah, Ahwm = λmwm. Then Ê(t) can be

expressed as

Ê(t) =
∑

m

êm(t)wm;

with xm = kλm, we have

ϑn
2 =

∫ 1

0

ϑ̂2(t)e
−2iπnt dt

=
√
k
∑

ℓ

1√
λℓ

∫ 1

0

√
xℓ

(α+ xℓβ)(e−2iπt)
êℓ(t)e

−2iπnt dt wℓ.

Therefore, we conclude, using the Cauchy–Schwarz inequality,

|ϑn
2 |2 = k

∑

ℓ

1

λℓ
|
∫ 1

0

√
xℓ

(α+ xℓβ)(e−2iπt)
êℓ(t)e

−2iπnt dt |2

≤ kM2

∑

ℓ

1

λℓ

∫ 1

0

|êℓ(t)|2 dt = kM2

∫ 1

0

‖Ê(t)‖2⋆ dt,

and (2.9ii) follows. Using similar arguments we prove (2.8ii).

To complete the proof it remains to verify that K1, K2,M1,M2, N1 and N2 are finite.

For N2 we refer to [7]. Let us next consider the map k1 which is continuous from the

compact set [0,+∞]×S1 into C, except if x = 0 and ζ is a root of α. Therefore, in order

to prove boundedness of K1, it suffices to show that k1 is bounded in a neighborhood of

these points. From the Dahlquist 0−stability condition, i.e., “α(0) = 1 and the roots

of modulus 1 of α are simple”, we deduce that there exist r analytic functions ζ1, . . . , ζr
from [0, η] into C, such that ζj(x) are roots of α+ xβ, and ζj = ζj(0), j = 1, . . . , r, are

the unimodular roots of α. Then, we can write

k1(x, ζ) =
r∑

j=1

xaj(x)

ζ − ζj(x)
+ b(x, ζ),

where the functions aj as well as the coefficients of the rational function b(x, ·) are

analytic on [0, η]. We observe that, for ζ ∈ S1,

|ζ − ζj(x)|
x

≥ 1− |ζj(x)|
x

→ −Re
ζ ′j(0)

ζj(0)
(as x → 0).

The strong A(0)−stability means that, for all x ∈ (0,∞], the modulus of all roots of

α + xβ is less than one, and the “growth factors” Re
ζ′j(0)

ζj(0)
of the principal roots ζj,

j = 1, . . . , r, of α satisfy Re
ζ′j(0)

ζj(0)
< 0. Therefore, K1 is bounded. Similarly, we can

show that M1 is finite. For K2, we note that, in view of Minkowski’s inequality, it

suffices to verify that, for x ∈ [0, η] and j = 1, . . . , r,

Aj =

∫ 1

0

x|aj(x)|2
|e−2iπt − ζj(x)|2

dt =
x|aj(x)|2

1− |ζj(x)|2
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is bounded; this follows from the proof for K1. In a similar way, one can see that M2

and N1 are finite as well. �

In our main result, Theorem 2.1, we will need to estimate ϑn. Part of it, namely ϑn
2 +

ϑn
3 , can be estimated in terms of ϑ0, . . . , ϑq−1 and the consistency errors E0, . . . , EN−q.

Lemma 2.2. There exists a constant C such that, for n = 0, . . . , N ,

(2.11) |ϑn − ϑn
1 |2 + k

n∑

ℓ=0

‖ϑℓ − ϑℓ
1‖2 ≤ C

{ q−1∑

j=0

(|ϑj |2 + k‖ϑj‖2) + k

n−q∑

ℓ=0

‖Eℓ‖2⋆
}
.

Proof. Since ϑj
2 = 0 for j = 0, . . . , q − 1, we have

ϑj
3 = ϑj − k

j−1∑

ℓ=0

f(j − ℓ, kAh)b
ℓ, j = 0, . . . , q − 1.

Therefore

|ϑj
3| ≤ |ϑj |+

√
k

j−1∑

ℓ=0

mj−ℓ‖bℓ‖⋆, and ‖ϑj
3‖ ≤ ‖ϑj‖+

j−1∑

ℓ=0

nj−ℓ‖bℓ‖⋆,

with

mℓ = sup
x>0

|
√
xf(ℓ, x)|, and nℓ = sup

x>0
|xf(ℓ, x)|.

Then (2.11) follows from the relation ϑn−ϑn
1 = ϑn

2 +ϑn
3 , and from (2.9) and (2.10). �

The main result in this paper is given in the following theorem:

Theorem 2.1. Let k and h2rk−1 be sufficiently small. Then, we have the local stability

estimate

|ϑn|2 + k

n∑

ℓ=0

‖ϑℓ‖2 ≤ Cecµ
2tn

{ q−1∑

j=0

(
|ϑj |2 + k‖ϑj‖2

)
+ k

n−q∑

ℓ=0

‖Eℓ‖2⋆
}
,(2.12)

n = q − 1, . . . , N, and the error estimate

(2.13) max
0≤n≤N

|u(tn)− Un| ≤ C(kp + hr).

Proof. Let ρn = un −W n, n = 0, . . . , N. Then, according to (1.7),

(2.14) max
0≤n≤N

|ρn| ≤ Chr

and, for sufficiently small h,

(2.15) max
0≤n≤N

‖ρn‖ ≤ 1/2,

i.e., in particular, W n ∈ Tu, n = 0, . . . , N. Now, assuming for the time being that (2.12)

holds, using (2.5) and (2.4), we obtain

(2.16) max
0≤n≤N

|ϑn| ≤ C(kp + hr) ,
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and (2.13) follows immediately from (2.14) and (2.16). Thus, it remains to prove (2.12).

According to (2.5) and (2.4), there exists a constant C⋆ such that the right-hand side

of (2.12) can be estimated by C2
⋆ (k

p + hr)2,

(2.17) Cecµ
2T
{ q−1∑

j=0

(|ϑj |2 + k‖ϑj‖2) + k

N−q∑

ℓ=0

‖Eℓ‖2⋆
}
≤ C2

⋆(k
p + hr)2.

The estimate (2.12) is obviously valid for n = q − 1. Assume that it holds for q −
1, . . . , n − 1, q ≤ n ≤ N. Then, according to (2.17) and the induction hypothesis, we

have, for k and h2rk−1 small enough,

max
0≤j≤n−1

‖ϑj‖ ≤ C⋆(k
p−1/2 + k−1/2hr) ≤ 1/2,

i.e., using also (2.15),

(2.18) U j ∈ Tu, j = 0, . . . , n− 1.

Therefore, in view of (1.4) and Minkowski’s inequality,

(
k

n−1∑

ℓ=0

‖bℓ‖2⋆
)1/2

≤
(
k

n−1∑

ℓ=0

(λ‖ϑℓ‖+ µ|ϑℓ|)2
)1/2

≤ λ an−1 + µ dn−1 + en−1

with

an =
(
k

n∑

ℓ=0

‖ϑℓ
1‖2

)1/2

, dn =
(
k

n∑

ℓ=0

|ϑℓ
1|2

)1/2

,

and en =
(
k

n∑

ℓ=0

(λ‖ϑℓ − ϑℓ
1‖+ µ|ϑℓ − ϑℓ

1|)2
)1/2

.

Thus, (2.8i) and (2.8ii) yield, for n ≥ 1,

(2.19) an ≤ K1(λ an−1 + µ dn−1 + en−1) ≤ K1(λ an + µ dn−1 + en−1),

and
d2n − d2n−1

k
≤ K2(λ an + µ dn−1 + en−1)

2;

therefore, in view of (1.5), we have λK1 < 1 and

d2n − d2n−1

k
≤ K2

(µdn−1 + en−1

1− λK1

)2 ≤ 2c(µ2d2n−1 + e2n−1),

with c = K2

(1−λK1)2
. Hence, we deduce (note that d0 = 0)

d2n ≤ 2ck

n−1∑

ℓ=0

e2cµ
2(tn−1−tℓ)e2ℓ ≤ 2ck

e2cµ
2tn − 1

e2cµ2k − 1
e2n−1 ≤

e2cµ
2tn − 1

µ2
e2n−1.

Thus, we have µdn ≤ ecµ
2tnen−1 and

(2.20i) an ≤ K1

1−K1λ
(1 + ecµ

2tn)en−1,
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and

(2.20ii) |ϑn
1 | ≤

√
c (µdn−1 + en−1) ≤

√
c (1 + ecµ

2tn)en−1.

Now, (2.20) and (2.11) yield

|ϑn
1 |2 + k

n∑

ℓ=0

‖ϑℓ
1‖2 ≤

Cecµ
2tn

{ q−1∑

j=0

(
|ϑj|2 + k‖ϑj‖2

)
+ k

n−q∑

ℓ=0

‖Eℓ‖2⋆
}
.

(2.21)

From (2.21) and (2.11) it easily follows that (2.12) holds for n as well, and the proof

is complete. �

Remark 2.1. Let τ ∈ R be such that A+ τI is positive semidefinite. It is then easily

seen that the results of Theorem 2.1 hold also for the scheme

q∑

i=0

αiU
n+i + k

q∑

i=0

βi(AhU
n+i + τUn+i) = k

q−1∑

i=0

γi[Bh(t
n+i, Un+i) + τUn+i].

Remark 2.2. The weak meshcondition “k−1h2r small” is used in the proof of Theorem

2.1 only to show that ‖ϑn‖ ≤ 1/2 which implies (2.18). If the estimate (1.4) holds in

tubes around u defined in terms of weaker norms, not necessarily the same for both

arguments v and w, one may get by with an even weaker meshcondition. Assume, for

instance, that (1.4) holds for v, w ∈ T ⋆
u := {ω ∈ V : mint ‖u(t) − ω‖⋆ ≤ 1} —or for

v ∈ Tu, cf. (2.15), and w ∈ T ⋆
u— and the norm ‖ · ‖⋆ satisfies an inequality of the form

‖v‖⋆ ≤ |v|+ |v|1−a‖v‖a, v ∈ V,

for some constant a, 0 ≤ a < 1. Then, a condition of the form “k and k−ah2r sufficiently

small” suffices for (2.12) and (2.13) to hold.

Similarly, when the relation (1.4) is satisfied in tubes around u defined in terms of

stronger norms, not necessarily the same for both arguments, the convergence result

of Theorem 2.1 may still be valid but under stronger meshconditions, cf. [1]; this fact

will be used in the next section.

Remark 2.3. The condition (1.5) is sharp. Indeed, assume that λK1 > 1. Since

lim|ζ|→∞ xγ(ζ)/[α(ζ) + xβ(ζ)] = 0, we can find x > 0 and ζ ∈ C with |ζ | > 1 satisfying

| λxγ(ζ)

α(ζ) + xβ(ζ)
| = 1;

thus, there exists a Θ ∈ R such that

α(ζ) + x
(
β(ζ)− λeiΘγ(ζ)

)
= 0.

Choosing then B(t, u) = λeiΘAu, condition (1.4) is satisfied. According to the von

Neumann criterion, a necessary stability condition is that, if ν is an eigenvalue of A,
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the solutions of
q∑

i=0

[αi + kν(βi − λeiΘγi)]v
n+i = 0,

are bounded; for kν = x this is not the case, since the root condition is not satisfied;

therefore, the scheme is not unconditionally stable.

Remark 2.4. The (α, β, γ) methods given by the polynomials

α(ζ) =

q∑

j=1

1

j
ζq−j(ζ − 1)j, β(ζ) = ζq, and γ(ζ) = ζq − (ζ − 1)q

satisfy our assumptions with the order p = q. The corresponding implicit (α, β) schemes

are the well-known B.D.F. methods which are strongly A(0)−stable for 1 ≤ q ≤ 6. In

this case, K1 = 2q − 1. First, clearly,

2q − 1 = lim
x→∞

|k1(x,−1)| ≤ K1.

Further, with d(ζ) :=
∑q

j=1
1
j
(1− ζ−1)j,

k1(x, ζ) =
1− (1− ζ−1)q

1 + d(ζ)/x
.

Then, for ζ ∈ S1 such that Re d(ζ) ≥ 0,

|k1(x, ζ)| ≤ |1− (1− ζ−1)q| ≤ 2q − 1.

Thus, K1 ≤ 2q − 1, for q = 1 and 2, since Re d(ζ) is nonnegative in this case. For

Re d(ζ) < 0,

sup
x>0

|k1(x, ζ)| =
|d(ζ)|

| Im d(ζ)| |1− (1− ζ−1)q|,

and, for q = 3, 4, 5, 6, we have computationally checked that the right-hand side is

bounded by 2q − 5. Thus K1 ≤ 2q − 1. Consequently, in this case condition (1.5) reads

λ < 1
2q−1

.

Remark 2.5. Assume we discretize problem (1.1) by an implicit A(Θ)−stable (α, β)

scheme, which corresponds to taking γ = β in our framework. Then, it easily follows

from our analysis that the resulting scheme is stable and our estimates hold, provided

that λ < 1− cosΘ.

3. Application to a quasilinear equation

In this section we shall apply our results to a class of quasilinear equations: Let

Ω ⊂ Rν , ν ≤ 3, be a bounded domain with smooth boundary ∂Ω. For T > 0 we seek

a real-valued function u, defined on Ω̄ × [0, T ], satisfying

(3.1)

ut − div(a(x)∇u) = div(b(x, t, u)∇u+ g(x, t, u)) + f(x, t, u) in Ω × [0, T ],

u = 0 on ∂Ω × [0, T ],

u(·, 0) = u0 in Ω,
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with a : Ω̄ → (0,∞), b, f : Ω̄× [0, T ]×R → R, g : Ω̄× [0, T ]×R → Rν , and u0 : Ω̄ → R

given smooth functions. We are interested in approximating smooth solutions of this

problem, and assume therefore that the data are smooth and compatible such that (3.1)

gives rise to a sufficiently regular solution. We assume that −div([a(x) + b(x, t, u)]∇·)
is an elliptic operator.

Let Hs = Hs(Ω) be the usual Sobolev space of order s, and ‖ · ‖Hs be the norm of

Hs. The inner product in H := L2(Ω) is denoted by (·, ·), and the induced norm by

| · |; the norm of Ls(Ω), 1 ≤ s ≤ ∞, is denoted by ‖ · ‖Ls. Let Av := −div(a∇v) and

B(t, v) := div(b(·, t, v)∇v) + divg(·, t, v) + f(·, t, v). Obviously, V = H1
0 = H1

0 (Ω) and

the norm ‖ · ‖ in V, ‖v‖ = |√a∇v|, is equivalent to the H1−norm.

Let

T̃u := {v ∈ V ∩ L∞ : min
t

‖u(t)− v‖L∞ ≤ 1},

T̂u := {v ∈ V ∩W 1
∞ : min

t
‖u(t)− v‖W 1

∞
≤ 1},

and

λ := sup{|b(x, t, y)|/a(x) : x ∈ Ω, t ∈ [0, T ], y ∈ U}
with U := [−1 + minx,t u, 1 + maxx,t u].

Now, for v, w, ϕ ∈ V,

(B(t, v)− B(t, w), ϕ) = − (b(·, t, w)∇(v − w),∇ϕ)− ([b(·, t, v)− b(·, t, w)]∇v,∇ϕ)

− (g(·, t, v)− g(·, t, w),∇ϕ) + (f(·, t, v)− f(·, t, w), ϕ) ,
and we easily see that

(3.2) ‖B(t, v)−B(t, w)‖⋆ ≤ λ‖v − w‖+ µ|v − w| v ∈ T̂u, w ∈ T̃u.

Thus, a stability condition of the form (1.4) is satisfied for v ∈ T̂u and w ∈ T̃u.

Further,

B′(t, v)w = div(b(·, t, v)∇w) + div(∂3b(·, t, v)w∇v)

+ div(∂3g(·, t, v)w) + ∂3f(·, t, v)w,

and, therefore, A−B′(t, u(t))+σI is, for an appropriate constant σ, uniformly positive

definite in H1
0 .

Let Vh be the subspace of V defined on a regular finite element partition Th of Ω,

and consisting of piecewise polynomial functions of degree at most r − 1, r ≥ 2. Let

hK denote the diameter of an element K ∈ Th, and h := maxK∈Th hK . We define the

elliptic projection operator Rh(t), Rh(t) : V → Vh, t ∈ [0, T ], by

([a(·) + b(·, t, u(·, t))]∇(v − Rh(t)v),∇χ)

+ ([∂3b(·, t, u(·, t))]∇u(·, t) + ∂3g(·, t, u(·, t))](v −Rh(t)v),∇χ)

− ([∂3f(·, t, u(·, t))− σ](v −Rh(t)v), χ) = 0 ∀χ ∈ Vh.

It is well known from the error analysis for elliptic problems that

(3.3) |v − Rh(t)v|+ h‖v − Rh(t)v‖ ≤ Chr‖v‖Hr , v ∈ Hr ∩H1
0 ,



IMPLICIT–EXPLICIT ULTISTEP METHODS FOR QUASILINEAR PARABOLIC EQUATIONS 15

i.e., the estimate (1.7) is satisfied with d = 2. Further,

(3.4) | d
dt
[u(·, t)−Rh(t)u(·, t)]| ≤ Chr,

and

(3.5) | d
j

dtj
Rh(t)v|+ h‖ dj

dtj
Rh(t)v‖ ≤ Chr‖v‖Hr , v ∈ Hr ∩H1

0 , j = 1, . . . , p+ 1,

cf., e.g., [4]; thus (1.8) and (1.9) are valid. We further assume, cf. [12], [15], that

(3.6) sup
t

‖u(·, t)− Rh(t)u(·, t)‖W 1
∞
≤ 1

2
.

Next, we will verify (1.10). We have

B(t, u(t))−B(t, Rh(t)u(t))− B′(t, u(t))(Rh(t)u(t)− u(t)) =

= −
∫ 1

0

τB′′
(
t, Rh(t)u(t)− τ [Rh(t)u(t)− u(t)]

)
dτ [Rh(t)u(t)− u(t)]2

(3.7i)

and

B′′(t, v)w2 = div(∂2
3b(·, t, v)w2∇v) + 2div(∂3b(·, t, v)w∇w)

+ div(∂2
3g(·, t, v)w2) + ∂2

3f(·, t, v)w2.
(3.7ii)

It easily follows from (3.7) and (3.3), in view of (3.6), that

(3.8) ‖B(t, u(t))− B(t, Rh(t)u(t))− B′(t, u(t))(u(t)−Rh(t)u(t))‖H−1 ≤ Chr,

i.e., (1.10) is satisfied.

Now, let W (t) := Rh(t)u(t), and assume that we are given approximations U0, . . . ,

U q−1 ∈ Vh to u0, . . . , uq−1 such that

(3.9)

q−1∑

j=0

(
|W j − U j |+ k1/2‖W j − U j‖

)
≤ c(kp + hr).

Then, we define Un ∈ Vh, n = q, . . . , N, recursively by the (α, β, γ) scheme
q∑

i=0

αi(U
n+i, χ) + k

q∑

i=0

βi(a(·)∇Un+i,∇χ) =

= k

q−1∑

i=0

γi{− (b(·, tn+i, Un+i)∇Un+i + g(·, tn+i, Un+i),∇χ)

+ (f(·, tn+i, Un+i), χ)}, ∀χ ∈ Vh, n = 0, . . . , N − q,

(3.10)

with (α, β) and (α, γ) multistep schemes of order p, and (α, β) strongly A(0)−stable.

Then, Theorem 2.1 yields, in view of (3.6), for sufficiently small k and provided that

the approximate solutions Un are in T̃u, the error estimate

(3.11) max
n

|un − Un| ≤ c(kp + hr).

To ensure that Un ∈ T̃u, n = 0, . . . , N, we define h := minK∈Th hK and will distinguish

three cases: ν = 1, ν = 2 and ν = 3.
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i. ν = 1. First, since theH1−norm dominates the L∞−norm in one space dimension,

we have

max
0≤j≤n+q−1

‖ϑj‖L∞ ≤ C max
0≤j≤n+q−1

‖ϑj‖,

and thus, according to (2.16),

max
0≤j≤n+q−1

‖ϑj‖L∞ ≤ C(kp−1/2 + k−1/2hr).

Therefore, for k and k−1h2r sufficiently small, in view of (3.6), U j ∈ T̃u, j = 0, . . . , n+

q − 1. We easily conclude that the convergence result holds.

ii. ν = 2. First, we note that

‖χ‖L∞ ≤ C| log(h)|1/2‖χ‖H1 ∀χ ∈ Vh,

cf. [14, p. 68]. It is then easily seen that the convergence result holds, if k and h are

chosen such that | log(h)|k2p−1 and | log(h)|k−1h2r are sufficiently small.

iii. ν = 3. In this case,

‖χ‖L∞ ≤ Ch−1/2‖χ‖H1 ∀χ ∈ Vh,

and the result (3.11) holds, provided that h−1k2p−1 and k−1h−1h2r are sufficiently small.

Remark 3.1. Let the quasilinear equation be given in the form

ut = div(c(x, t, u)∇u+ g(x, t, u)) + f(x, t, u).

It can then be written in the form used in (3.1) by letting, say, a(x) := c(x, 0, u0) and

b(x, t, u) := c(x, t, u)− a(x).

Different splittings might be used on a finite number of subintervals of [0, T ]. Assume,

for instance, that an approximation U to u(·, ta) has been computed. Then, the splitting

a(x) := c(x, ta, U) and b(x, t, u) := c(x, t, u)−a(x) may be used on a time interval [ta, tb].

Remark 3.2. As mentioned in the introduction, the stability assumption (1.4) is

weaker than (1.4′) which was used in [1]. For smooth B, (1.4) implies

(1.4′′) |(B′(v)w, ω)| ≤ λ‖w‖‖ω‖+ µ(v)|w| ‖ω‖ ∀v, w, ω ∈ V.

The use of (1.4′′) may lead to improvements in the analysis of the applications in [1,

Section 4]. In particular, the convergence results of [1, Section 4.2] for the Cahn–

Hilliard equation in one space dimension will now hold without any meshconditions.

Also, in [1, Section 4.3] a reaction diffusion equation with power nonlinearities that

grow no faster than |ξ|ρ, ρ ≤ 4, in R3 was considered. A more refined analysis shows

that the stability hypothesis (1.4′′) is now satisfied for ρ < 5 in R3.
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