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Abstract

We consider implicit-explicit (IMEX) Runge Kutta methods for hyperbolic systems of
conservation laws with stiff relaxation terms. The explicit part is treated by a strong-stability-
preserving (SSP) scheme, and the implicit part is treated by an L-stable diagonally implicit
Runge Kutta (DIRK). The schemes proposed are asymptotic preserving (AP) in the zero
relaxation limit. High accuracy in space is obtained by finite difference discretization with
Weighted Essentially Non Oscillatory (WENO) reconstruction. After a brief description of
the mathematical properties of the schemes, several applications will be presented.
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1 Introduction

Several physical phenomena of great importance for applications are described by stiff systems of
differential equations in the form

∂tU = F(U) +
1
ε
R(U), (1)

where U = U(t) ∈ RN , F , R : RN → RN and ε > 0 is the stiffness parameter.
System (1) may represent a system of N ODE’s or a discretization of a system of PDE’s,

such as, for example, convection-diffusion equations, reaction-diffusion equations and hyperbolic
systems with relaxation.

In this work we consider the latter case, which in recent years has been a very active field of
research, due to its great impact on applied sciences [12, 28]. For example, we mention that hyper-
bolic systems with relaxation appears in kinetic theory of rarefied gases, hydrodynamical models for
semiconductors, viscoelasticity, multiphase flows and phase transitions, radiation hydrodynamics,
traffic flows, shallow waters, etc.

In one space dimension these systems have the form

∂tU + ∂xF (U) =
1
ε
R(U), x ∈ R, (2)

that corresponds to (1) for F(U) = −∂xF (U). In (2) the Jacobian matrix F ′(U) has real eigen-
values and admits a basis of eigenvectors ∀U ∈ RN and ε is called relaxation parameter.

The development of efficient numerical schemes for such systems is challenging, since in many
applications the relaxation time varies from values of order one to very small values if compared
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to the time scale determined by the characteristic speeds of the system. In this second case the
hyperbolic system with relaxation is said to be stiff and typically its solutions are well approximated
by solutions of a suitable reduced set of conservation laws called equilibrium system [12].

Usually it is extremely difficult, if not impossible, to split the problem in separate regimes and
to use different solvers in the stiff and non stiff regions. Thus one has to use the original relaxation
system in the whole computational domain. The construction of schemes that work for all ranges
of the relaxation time, using coarse grids that do not resolve the small relaxation time, has been
studied mainly in the context of upwind methods using a method of lines approach combined with
suitable operator splitting techniques [8, 23] and more recently in the context of central schemes
[27, 32].

Splitting methods have been widely used for such problems. They are attractive because of
their simplicity and robustness. Strang splitting provides second order accuracy if each step is at
least second order accurate [41]. However with this strategy it is difficult to obtain higher order
accuracy (high order splitting schemes can be constructed, see [15], but they are seldom used
because of stability problems), and, furthermore, splitting schemes reduce to first order accuracy
when the problem becomes stiff.

Recently developed Runge-Kutta schemes overcome this difficulties, providing basically the
same advantages of the splitting schemes, without the drawback of the order restriction [8, 23, 45].

In this paper we will present some recent results on the development of high order, underresolved
Runge-Kutta time discretization for such systems. In particular, using the formalism of implicit-
explicit (IMEX) Runge-Kutta schemes [3, 4, 33, 10, 45] we derive schemes up to order 3 that are
strong-stability-preserving (SSP) for the limiting system of conservation laws (such methods were
originally referred to as total variation diminishing (TVD) methods, see [17, 18, 40]).

To this aim, we derive general conditions that guarantee the asymptotic preserving property,
i.e. the consistency of the scheme with the equilibrium system and the asymptotic accuracy, i.e.
the order of accuracy is maintained in the stiff limit.

The rest of the paper is organized as follows. In Section 2 we introduce the general structure
of IMEX Runge-Kutta schemes. Section 3 is devoted to IMEX Runge-Kutta schemes applied to
hyperbolic systems with relaxation. In Section 4 we describe space discretization obtained by
conservative finite-volume and finite difference schemes. In Section 5 we present some numerical
results concerning the accuracy of IMEX schemes when applied to a prototype hyperbolic system
with relaxation. Finally in Section 6 we investigate the performance of the schemes in several
realistic applications to shallow waters, traffic flows and granular gases. For completeness, an
appendix is given with the WENO reconstruction used for the third order (in time) schemes.

2 IMEX Runge-Kutta schemes

An IMEX Runge-Kutta scheme consists of applying an implicit discretization to the source terms
and an explicit one to the non stiff term. When applied to system (1) it takes the form

U (i) = Un − h

i−1∑

j=1

ãij∂xF (U (j)) + h

ν∑

j=1

aij
1
ε
R(U (j)), (3)

Un+1 = Un − h

ν∑

i=1

w̃i∂xF (U (i)) + h

ν∑

i=1

wi
1
ε
R(U (i)). (4)

The matrices Ã = (ãij), ãij = 0 for j ≥ i and A = (aij) are ν × ν matrices such that the resulting
scheme is explicit in F , and implicit in R. An IMEX Runge-Kutta scheme is characterized by
these two matrices and the coefficient vectors w̃ = (w̃1, . . . , w̃ν)T , w = (w1, . . . , wν)T .

Since the simplicity and efficiency of solving the algebraic equations corresponding to the im-
plicit part of the discretization at each step is of paramount importance, it is natural to consider
diagonally implicit Runge-Kutta (DIRK) schemes [21] for the source terms (aij = 0, for j > i).

IMEX Runge-Kutta schemes can be represented by a double tableau in the usual Butcher

2



notation,
c̃ Ã

w̃T

c A

wT

where the coefficients c̃ and c used for the treatment of non autonomous systems, are given by the
usual relation

c̃i =
i−1∑

j=1

ãij , ci =
i∑

j=1

aij . (5)

The use of a DIRK scheme for R is a sufficient condition to guarantee that F is always evaluated
explicitly.

In the case of system (2), in order to obtain a numerical scheme, a suitable space discretization
of equations (3)-(4) is required. This discretization can be performed at the level of the original
system (2) in which case one has a system of ODEs that is then solved in time by the IMEX scheme
(method of lines). Alternatively one can apply a suitable space discretization directly to the time
discrete equations (3)-(4).

In view of high order accuracy and considering that the source term does not contain derivatives
and requires an implicit treatment, it appears natural to use finite-difference type space discretiza-
tions, rather than finite-volume ones (see Section 4). We refer, for example, to [37] for high order
finite volume and finite difference space discretizations, frequently used in the construction of shock
capturing schemes for conservation laws.

Finally we remark that previously developed schemes, such as the Additive semi-implicit Runge-
Kutta methods of Zhong [45], and the splitting Runge-Kutta methods of Jin et al. [23], [8] can be
rewritten as IMEX-RK schemes [35].

2.1 Order conditions

The general technique to derive order conditions for Runge-Kutta schemes is based on the Taylor
expansion of the exact and numerical solution.

In particular, conditions for schemes of order p are obtained by imposing that the solution of
system (2) at time t = t0 + ∆t, with a given initial condition at time t0, agrees with the numerical
solution obtained by one step of a Runge-Kutta scheme with the same initial condition, up to order
hp+1.

Here we report the order conditions for IMEX Runge-Kutta schemes up to order p = 3, which
is already considered high order for PDEs problems.

We apply scheme (3)-(4) to system (2), with ε = 1. We assume that the coefficients c̃i, ci, ãij ,
aij satisfy conditions (5). Then the order conditions are the following

First order
ν∑

i=1

w̃i = 1,

ν∑

i=1

wi = 1. (6)

Second order ∑

i

w̃ic̃i = 1/2,
∑

i

wici = 1/2,
∑

i

w̃ici = 1/2,
∑

i

wic̃i = 1/2, (7)

Third order∑

ij

w̃iãij c̃j = 1/6,
∑

i

w̃ic̃ic̃i = 1/3,
∑

ij

wiaijcj = 1/6,
∑

i

wicici = 1/3, (8)

∑
ij w̃iãijcj = 1/6,

∑
ij w̃iaij c̃j = 1/6,

∑
ij w̃iaijcj = 1/6,

∑
ij wiãijcj = 1/6,

∑
ij wiaij c̃j = 1/6,

∑
ij wiãij c̃j = 1/6,

∑
i w̃icici = 1/3,

∑
i w̃ic̃ici = 1/3,

∑
i wic̃ic̃i = 1/3,

∑
i wic̃ici = 1/3.

(9)
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IMEX-RK Number of coupling conditions
order General case w̃i = wi c̃ = c c̃ = c and w̃i = wi

1 0 0 0 0
2 2 0 0 0
3 12 3 2 0
4 56 21 12 2
5 252 110 54 15
6 1128 528 218 78

Table 1: Number of coupling conditions in IMEX Runge-Kutta schemes

The order conditions will simplify a lot if c̃ = c. For this reason only such schemes are considered
in [3]. In particular, we observe that, if the two tableau differ only for the value of the matrices A,
i.e. if c̃i = ci and w̃i = wi, then the standard order conditions for the two schemes are enough to
ensure that the combined scheme is third order. Note, however, that this is true only for schemes
up to third order.

Higher order conditions can be derived as well using a generalization of Butcher 1-trees to
2-trees, see [10]. However the number of coupling conditions increase dramatically with the order
of the schemes. The relation between coupling conditions and accuracy of the schemes is reported
in Table 1.

3 Applications to hyperbolic systems with relaxation

In this section we give sufficient conditions for asymptotic preserving and asymptotic accuracy
properties of IMEX schemes. This properties are strongly related to L-stability of the implicit part
of the scheme.

3.1 Zero relaxation limit

Let us consider here one-dimensional hyperbolic systems with relaxation of the form (2). The
operator R : RN → RN is said a relaxation operator, and consequently (2) defines a relaxation
system, if there exists a constant n×N matrix Q with rank(Q) = n < N such that

QR(U) = 0 ∀ U ∈ RN . (10)

This gives n independent conserved quantities u = QU . Moreover we assume that equation
R(U) = 0 can be uniquely solved in terms of u, i.e.

U = E(u) such that R(E(u)) = 0. (11)

The image of E represents the manifold of local equilibria of the relaxation operator R.
Using (10) in (2) we obtain a system of n conservation laws which is satisfied by every solution

of (2)
∂t(QU) + ∂x(QF (U)) = 0. (12)

For vanishingly small values of the relaxation parameter ε from (2) we get R(U) = 0 which by
(11) implies U = E(u). In this case system (2) is well approximated by the equilibrium system
[12].

∂tu + ∂xG(u) = 0, (13)

where G(u) = QF (E(u)).
System (13) is the formal limit of system (1) as ε → 0. The solution u(x, t) of the system will be

the limit of QU , with U solution of system (1), provided a suitable condition on the characteristic
velocities of systems (1) and (13) is satisfied (the so called subcharacteristic condition, see [44, 12].)
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3.2 Asymptotic properties of IMEX schemes

We start with the following

Definition 3.1 We say that an IMEX scheme for system (2) in the form (3)-(4) is asymptotic
preserving (AP) if in the limit ε → 0 the scheme becomes a consistent discretization of the limit
equation (13).

Note that this definition does not imply that the scheme preserves the order of accuracy in t in
the stiff limit ε → 0. In the latter case the scheme is said asymptotically accurate.

In order to give sufficient conditions for the AP and asymptotically accurate property, we make
use of the following simple [35]

Lemma 3.1 If all diagonal element of the triangular coefficient matrix A that characterize the
DIRK scheme are non zero, then

lim
ε→0

R(U (i)) = 0.

In order to apply the previous Lemma, the vectors of c and c̃ cannot be equal. In fact c̃1 = 0
whereas c1 6= 0. Note that if c1 = 0 but aii 6= 0 for i > 1, then we still have limε→0 R(U (i)) = 0
for i > 1 but limε→0 R(U (1)) 6= 0 in general. The corresponding scheme may be inaccurate if the
initial condition is not “well prepared” (R(U0) 6= 0). In this case the scheme is not able to treat
the so called “initial layer” problem and degradation of accuracy in the stiff limit is expected (see
Section 5 and references [8, 33, 32].)

Next we can state [35] the following

Theorem 3.1 If det A 6= 0, then in the limit ε → 0, the IMEX scheme (3)-(4) applied to system
(2) becomes the explicit RK scheme characterized by (Ã, w̃, c̃) applied to the limit equation (13).

Clearly one may claim that if the implicit part of the IMEX scheme is A-stable or L-stable
the previous theorem is satisfied. Note however that this is true only if the tableau of the implicit
integrator does not contain any column of zeros that makes it reducible to a simpler A-stable or
L-stable form. Some remarks are in order.

Remarks:

i) The above theorem holds true even if some terms aii over the main diagonal of A are equal
to zero provided that the corresponding i-column of Ã contains all zeros.

ii) This result does not guarantee the accuracy of the solution for the N − n non conserved
quantities. In fact, since the very last step in the scheme it is not a projection towards the
local equilibrium, a final layer effect occurs. The use of stiffly accurate schemes (i.e. schemes
for which aνj = wj , j = 1, . . . , ν) in the implicit step may serve as a remedy to this problem.

iii) The theorem guarantees that in the stiff limit the numerical scheme becomes the explicit RK
scheme applied to the equilibrium system, and therefore the order of accuracy of the limiting
scheme is greater or equal to the order of accuracy of the original IMEX scheme.

When constructing numerical schemes for conservation laws, one has to take a great care in
order to avoid spurious numerical oscillations arising near discontinuities of the solution. This is
avoided by a suitable choice of space discretization (see Section 4) and time discretization.

Solution of scalar conservation equations, and equations with a dissipative source have some
norm that decreases in time. It would be desirable that such property is maintained at a discrete
level by the numerical method. If Un represents a vector of solution values (for example obtained
from a method of line approach in solving (13)) we recall the following [18]

Definition 3.2 A sequence {Un} is said to be strongly stable in a given norm || · || provided that
||Un+1|| ≤ ||Un|| for all n ≥ 0.
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The most commonly used norms are the TV -norm and the infinity norm.
A numerical scheme that maintains strong stability at discrete level is called Strong Stability

Preserving (SSP). For a detailed description of SSP schemes and their properties see, for example,
[18]. By point iii) of the above remarks it follows that if the explicit part of the IMEX scheme is
SSP then, in the stiff limit, we will obtain an SSP method for the limiting conservation law. This
property is essential to avoid spurious oscillations in the limit scheme for equation (13).

In this section we give the Butcher tableau for second and third order IMEX schemes that
satisfy the conditions of Theorem 3.1. In all these schemes the implicit tableau corresponds to
an L-stable scheme, that is wT A−1e = 1, e being a vector whose components are all equal to 1
[21], whereas the explicit tableau is SSPk, where k denotes the order of the SSP scheme. Several
examples of asymptotically SSP schemes are reported in tables (2)-(6). We shall use the notation
SSPk(s, σ, p), where the triplet (s, σ, p) characterizes the number s of stages of the implicit scheme,
the number σ of stages of the explicit scheme and the order p of the IMEX scheme.

0 0 0
1 1 0

1/2 1/2

γ γ 0
1− γ 1− 2γ γ

1/2 1/2
γ = 1− 1√

2

Table 2: Tableau for the explicit (left) implicit (right) IMEX-SSP2(2,2,2) L-stable scheme

0 0 0 0
0 0 0 0
1 0 1 0

0 1/2 1/2

1/2 1/2 0 0
0 −1/2 1/2 0
1 0 1/2 1/2

0 1/2 1/2

Table 3: Tableau for the explicit (left) implicit (right) IMEX-SSP2(3,2,2) stiffly accurate scheme

0 0 0 0
1/2 1/2 0 0
1 1/2 1/2 0

1/3 1/3 1/3

1/4 1/4 0 0
1/4 0 1/4 0
1 1/3 1/3 1/3

1/3 1/3 1/3

Table 4: Tableau for the explicit (left) implicit (right) IMEX-SSP2(3,3,2) stiffly accurate scheme

4 IMEX-WENO schemes

For simplicity we consider the case of the single scalar equation

ut + f(u)x =
1
ε
r(u). (14)

We have to distinguish between schemes based on cell averages (finite volume approach, widely
used for conservation laws) and schemes based on point values (finite difference approach).

Let ∆x and ∆t be the mesh widths. We introduce the grid points

xj = j∆x, xj+1/2 = xj +
1
2
∆x, j = . . . ,−2,−1, 0, 1, 2, . . .

and use the standard notations

un
j = u(xj , t

n), ūn
j =

1
∆x

∫ xj+1/2

xj−1/2

u(x, tn) dx.
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0 0 0 0
1 1 0 0

1/2 1/4 1/4 0

1/6 1/6 2/3

γ γ 0 0
1− γ 1− 2γ γ 0
1/2 1/2− γ 0 γ

1/6 1/6 2/3

γ = 1− 1√
2

Table 5: Tableau for the explicit (left) implicit (right) IMEX-SSP3(3,3,2) L-stable scheme

0 0 0 0 0
0 0 0 0 0
1 0 1 0 0

1/2 0 1/4 1/4 0

0 1/6 1/6 2/3

α α 0 0 0
0 −α α 0 0
1 0 1− α α 0

1/2 β η 1/2− β − η − α α

0 1/6 1/6 2/3

α = 0.24169426078821, β = 0.06042356519705 η = 0.12915286960590

Table 6: Tableau for the explicit (left) implicit (right) IMEX-SSP3(4,3,3) L-stable scheme

4.1 Finite volumes

Integrating equation (14) on Ij = [xj−1/2, xj+1/2] and dividing by h ≡ ∆x we obtain

dūj

dt
= − 1

h
[f(u(xj+1/2, t))− f(u(xj−1/2, t)) +

1
ε
r(u)j . (15)

In order to convert this expression into a numerical scheme, one has to approximate the right hand
side with a function of the cell averages {ū(t)}j , which are the basic unknowns of the problem.

The first step is to perform a reconstruction of a piecewise polynomial function from cell averages
Given {un

j }, compute a piecewise polynomial reconstruction

R(x) =
∑

j

Pj(x)χj(x),

where Pj(x) is a polynomial satisfying some accuracy and non oscillatory property (see below), and
χj(x) is the indicator function of cell Ij . For first order schemes, the reconstruction is piecewise
constant, while second order schemes can be obtained by a piecewise linear reconstruction.

The flux function at the edge of the cell can be computed by using a suitable numerical flux
function, consistent with the analytical flux,

f(xj+1/2) ≈ F (u−j+1/2, u
+
j+1/2),

where the quantities u−j+1/2, u+
j+1/2 are obtained from the reconstruction.

Example of numerical flux functions are the Godunov flux

F (u−j+1/2, u
+
j+1/2) = f(u∗(u−j+1/2, u

+
j+1/2)),

where u∗(u−j+1/2, u
+
j+1/2) is the solution of the Riemann problem at xj+1/2, corresponding to the

states u−j+1/2 and u+
j+1/2, and the Local Lax Friedrichs flux (also known as Rusanov flux),

F (u−j+1/2, u
+
j+1/2) =

1
2
(f(u∗(u−j+1/2) + f(u+

j+1/2))− α(u+
j+1/2 − u−j+1/2),

where α = maxw |f ′(w)|, and the maximum is taken over the relevant range of w.
The two examples constitute two extreme cases of numerical fluxes: the Godunov flux is the

most accurate and the one that produces the best results for a given grid size, but it is very
expensive, since it requires the solution to the Riemann problem. Local Lax-Friedrichs flux, on the
other hand, is less accurate, but much cheaper. This latter is the numerical flux that has been used
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throughout all the calculations performed for this paper. The difference in resolution provided by
the various numerical fluxes becomes less relevant with the increase in the order of accuracy of the
method.

A key point is the reconstruction step necessary to compute the function u(x, t) at several
points (required to evaluate the right hand side) starting from its cell averages ūj .

A brief account of WENO reconstruction is given in the appendix, and the reader can con-
sult the review by Shu [37] and references therein for a more detailed description of high order
reconstructions.

The right hand side of Eq.(15) contains the average of the source term r(u) instead of the source
term evaluated at the average of u, r(ū). The two quantities agree within second order accuracy

r(u)j = r(ūj) + O(∆x2).

This approximation can be used to construct schemes up to second order.
First order (in space) semidiscrete schemes can be obtained using the numerical flux function

F (ūj , ūj+1) in place of f(u(xj+1/2, t),

dūj

dt
= −F (ūj , ūj+1)− F (ūj−1, ūj)

∆x
+

1
ε
r(ūj). (16)

Second order schemes are obtained by using a piecewise linear reconstruction in each cell, and
evaluating the numerical flux on the two sides of the interface

dū

dt
= −

F (u−j+1/2, u
+
j+1/2)− F (u−j−1/2, u

+
j−1/2)

h
+

1
ε
r(ūj)

The quantities at cell edges are computed by piecewise linear reconstruction. For example,

u−j+1/2 = ūj +
h

2
u′j

where the slope u′j is a first order approximation of the space derivative of u(x, t), and can be
computed by suitable slope limiters (see, for example, [26] for a discussion on TVD slope limiters.)

For schemes of order higher then second a suitable quadrature formula is required to approx-
imate g(u)j . Unfortunately, this has the effect that the source term couples the cell averages of
different cells, thus making almost impractical the use of finite volume methods for high order
schemes applied to stiff sources.

4.2 Finite differences

In a finite difference scheme the basic unknown is the pointwise value of the function, rather than
its cell average. Osher and Shu observed that it is possible to write a finite difference scheme in
conservative form [38]. Let us consider the equation

∂u

∂t
+

∂f

∂x
=

1
ε
r(u),

and write
∂f

∂x
(u(x)) =

f̂(u(x + h
2 ))− f̂(u(x− h

2 ))
h

,

where h ≡ ∆x. The relation between f and f̂ is the following. Let us consider the sliding average
operator

ū(x) =< u >x≡ 1
h

∫ x+ h
2

x−h
2

u(ξ) dξ.

Differentiating with respect to x one has

∂ū

∂x
=

1
h

(u(x +
h

2
)− u(x− h

2
)) .
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Therefore the relation between f and f̂ is the same that exists between ū(x) and u(x), namely,
flux function f is the cell average of the function f̂ . This also suggests a way to compute the flux
function. The technique that is used to compute pointwise values of u(x) at the edge of the cell
from cell averages of u can be used to compute f̂(u(xj+1/2)) from f(u(xj)). This means that in
finite difference method it is the flux function which is computed at xj and then reconstructed at
xj+1/2. But the reconstruction at xj+1/2 may be discontinuous. Which value should one use? A
general answer to this question can be given if one considers flux functions that can be splitted

f(u) = f+(u) + f−(u) , (17)

with the condition that
df+(u)

du
≥ 0 ,

df−(u)
du

≤ 0 . (18)

There is a close analogy between flux splitting and numerical flux functions. In fact, if a flux can
be splitted as (17), then

F (a, b) = f+(a) + f−(b)

will define a monotone consistent flux, provided condition (18) is satisfied. Together with non
oscillatory reconstructions and SSP time discretization, the monotonicity condition will ensure that
the overall scheme will not produce spurious numerical oscillations (see, for example, [26, 37].)

This is the case, for example, of the local Lax-Friedrichs flux. A finite difference scheme
therefore takes the following form

duj

dt
= − 1

h
[F̂j+1/2 − F̂j−1/2] +

1
ε
g(uj),

F̂j+1/2 = f̂+(u−j+1/2) + f̂−(u+
j+1/2);

f̂+(u−j+1/2) is obtained by

• computing f+(ul) and interpret it as cell average of f̂+,

• performing pointwise reconstruction of f̂+ in cell j, and evaluate it in xj+1/2.

f̂−(u+
j+1/2) is obtained by

• compute f−(ul), interpret as cell average of f̂−,

• perform pointwise reconstruction of f̂− in cell j + 1, and evaluate it in xj+1/2.

A detailed account on high order finite difference schemes can be found in [37].

Remarks: An essential feature in all these schemes is the ability of the schemes to deal with
discontinuous solutions. To this aim it is necessary to use non-oscillatory interpolating algorithms,
in order to prevent the onset of spurious oscillations (like ENO and WENO methods), see [37].

Finite difference can be used only with uniform (or smoothly varying) mesh. In this respect
finite volume are more flexible, since they can be used even with unstructured grids. It would be
interesting to consider other space discretization that allow non uniform grids, and that do not
couple the source terms in the various cells.

The treatment presented for the scalar equation can be extended to systems, with a minor
change of notation. In particular, the parameter α appearing in the local Lax-Friedrichs flux will
be computed using the spectral radius of the Jacobian matrix.

For schemes applied to systems, better results are usually obtained if one uses characteristic
variables rather than conservative variables in the reconstruction step. The use of conservative
variables may result in the appearance of small spurious oscillations in the numerical solution. For
a treatment of this effect see, for example, [36].
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5 Numerical tests

In this section we investigate numerically the convergence rate and the zero relaxation limit behav-
ior of the schemes. To this aim we apply the IMEX-WENO schemes to the Broadwell equations
of rarefied gas dynamics [8, 23, 27, 32]. In all the computations presented in this paper we used
the Lax-Friedrichs flux and conservative variables in the implementation of the WENO schemes.
Of course the sharpness of the resolution of the numerical results can be improved using a less
dissipative flux.

As a comparison, together with the new IMEX-SSP schemes, we have considered the second
order ARS(2,2,2) method presented in [3].

The kinetic model is characterized by a hyperbolic system with relaxation of the form (2) for
N = 3 with

U = (ρ, m, z), F (U) = (m, z, m), R(U) =
(

0, 0,
1
2
(ρ2 + m2 − 2ρz)

)
.

Here ε represents the mean free path of particles. The only conserved quantities are the density ρ
and the momentum m.

In the fluid-dynamic limit ε → 0 we have

z = zE ≡ ρ2 + m2

2ρ
, (19)

and the Broadwell system is well approximated by the reduced system (13) with n = 2 and

u = (ρ, ρv), G(u) =
(

ρv,
1
2
(ρ + ρv2)

)
, v =

m

ρ
,

which represents the corresponding Euler equations of fluid-dynamics.

Convergence rates

We have considered a periodic smooth solution with initial data as in [8, 27] given by

ρ(x, 0) = 1 + aρ sin
2πx

L
, v(x, 0) =

1
2

+ av sin
2πx

L
, z(x, 0) = az

ρ(x, 0)2 + m(x, 0)2

2ρ(x, 0)
. (20)

In our computations we used the parameters

aρ = 0.3, av = 0.1, az = 1.0 (no initial layer) and az = 0.2 (initial layer), L = 20, (21)

and we integrate the equations for t ∈ [0, 30]. A Courant number ∆t/∆x = 0.6 has been used.
The plots of the relative error are given in Figure 1.

Notice how, in absence of initial layer, all schemes tested have the prescribed order of accuracy
both in the non stiff and in the stiff limit, with some degradation of the accuracy at intermediate
regimes. Scheme ARS(2,2,2), for which c1 = 0, shows a degradation of the accuracy when an initial
layer is present.

Next we test the shock capturing properties of the schemes in the case of non smooth solutions
characterized by the following two Riemann problems [8]

ρl = 2, ml = 1, zl = 1, x < 0.2,
(22)

ρr = 1, mr = 0.13962, zr = 1, x > 0.2,

ρl = 1, ml = 0, zl = 1, x < 0,
(23)

ρr = 0.2, mr = 0, zr = 1, x > 0.
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For brevity we report the numerical results obtained with the second order IMEX-SSP2(2,2,2) and
third order IMEX-SSP3(4,3,3) schemes that we will refer to as IMEX-SSP2-WENO and IMEX-
SSP3-WENO respectively. The result are shown in Figures 2 and 3 for a Courant number ∆t/∆x =
0.5. Both schemes, as expected, give an accurate description of the solution in all different regimes
also using coarse meshes that do not resolve the small scales. In particular the shock formation
in the fluid limit is well captured without spurious oscillations. We refer to [8, 23, 27, 32, 2] for a
comparison of the present results with previous ones.

6 Applications

Finally we present some numerical results obtained with IMEX-SSP2-WENO and IMEX-SSP3-
WENO concerning situations in which hyperbolic systems with relaxation play a major role in
applications. The results have been obtained with N = 200 grid points. As usual the reference
solution is computed on a much finer grid.

6.1 Shallow water

First we consider a simple model of shallow water flow [23]

∂th + ∂x(hv) = 0,
(24)

∂t(hv) + ∂x(h +
1
2
h2) =

h

ε
(
h

2
− v),

where h is the water height with respect to the bottom and hv the flux.
The zero relaxation limit of this model is given by the inviscid Burgers equation.
The initial data we have considered is [23]

h = 1 + 0.2 sin(8πx), hv =
h2

2
, (25)

with x ∈ [0, 1]. The solution at t = 0.5 in the stiff regime ε = 10−8 using periodic boundary
conditions is given in Figure 4. For IMEX-SSP2-WENO it is evident the dissipative effect due to
the use of the Lax-Friedrichs flux. As expected this effect becomes less relevant with the increase
of the order of accuracy. We refer to [23] for a comparison with the present results.

6.2 Traffic flows

In [5] a new macroscopic model of vehicular traffic has been presented. The model consists of a
continuity equation for the density ρ of vehicles together with an additional velocity equation that
describes the mass flux variations due to the road conditions in front of the driver. The model can
be written in conservative form as follows

∂tρ + ∂x(ρv) = 0,
(26)

∂t(ρw) + ∂x(vρw) = A
ρ

T
(V (ρ)− v),

where w = v + P (ρ) with P (ρ) a given function describing the anticipation of road conditions in
front of the drivers and V (ρ) describes the dependence of the velocity with respect to the density
for an equilibrium situation. The parameter T is the relaxation time and A > 0 is a positive
constant.

If the relaxation time goes to zero, under the subcharacteristic condition

−P ′(ρ) ≤ V ′(ρ) ≤ 0, ρ > 0,

we obtain the Lighthill-Whitham [44] model

∂tρ + ∂x(ρV (ρ)) = 0. (27)
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A typical choice for the function P (ρ) is given by

P (ρ) =





cv

γ

(
ρ

ρm

)γ

γ > 0,

cv ln
(

ρ
ρm

)
γ = 0,

where ρm is a given maximal density and cv a constant with dimension of velocity.
In our numerical results we assume A = 1 and an equilibrium velocity V (ρ) fitting to experi-

mental data [6]

V (ρ) = vm

π/2 + arctan
(
αρ/ρm−β

ρ/ρm−1

)

π/2 + arctan (αβ)
with α = 11, β = 0.22 and vm a maximal speed. We consider γ = 0 and, in order to fulfill the
subcharacteristic condition, assume cv = 2. All quantities are normalized so that vm = 1 and
ρm = 1.

We consider a Riemann problem centered at x = 0 with left and right states

ρL = 0.05, vL = 0.05, ρR = 0.05, vR = 0.5. (28)

The solution at t = 1 for T = 0.2 is given in Figure 5. The figure shows the development of the
density of the vehicles. Both schemes gives very similar results. Again, in the second order scheme
the shock is smeared out if compared to the third order case. See [6] for more numerical results.

6.3 Granular gases

We consider the continuum equations of Euler type for a granular gas [25, 43]. These equations
have ben derived for a dense gas composed of inelastic hard spheres. The model reads

ρt + (ρu)x = 0,

(ρu)t + (ρu2 + p)x = ρg,
(29)(

1
2
ρu2 +

3
2
ρT

)

t

+
(

1
2
ρu3 +

3
2
uρT + pu

)

x

= − (1− e2)
ε

G(ρ)ρ2T 3/2,

where e is the coefficient of restitution, g the acceleration due to gravity, ε a relaxation time, p is
the pressure given by

p = ρT (1 + 2(1 + e)G(ρ)),

and G(ρ) is the statistical correlation function. In our experiments we assume

G(ρ) = ν

(
1−

(
ν

νM

) 4
3 νM

)−1

,

where ν = σ3ρπ/6 is the volume fraction, σ is the diameter of a particle, and νM = 0.64994 is 3D
random close-packed constant.

We consider the following initial data [9] on the interval [0, 10]

ρ = 34.37746770, v = 18, P = 1589.2685472, (30)

which corresponds to a supersonic flow at Mach number Ma = 7 (the ratio of the mean fluid
speed to the speed of sound). Zero-flux boundary condition have been used on the bottom (right)
boundary whereas on the top (left) we have an ingoing flow characterized by (30).

The values of the restitution coefficient and the particle diameter have been taken e = 0.97 and
σ = 0.1. We report the solution at t = 0.2 with ε = 0.01 in Figure 6 (see [9] for similar results). Due
to the nonlinearity of the source term the implicit solver has been solved using Newton’s method.
Both methods provide a good description of the shock that propagates backward after the particles
impact with the bottom. Note that the second order method provides excessive smearing of the
layer at the right boundary. This problem is not present in the third order scheme. However due
to the use of conservative variables we can observe the presence of small spurious oscillations in
the pressure profile.
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Appendix: WENO Reconstruction

In this appendix we describe how to obtain Weighted Essentially Non Oscillatory (WENO) schemes
of order 3-5, by piecewise parabolic reconstruction, that we used in our computations. For more
details, the reader should refer to the original literature (see for example [37].)

Fifth order space accuracy for smooth solutions can be obtained using a piecewise parabolic
reconstruction for the function u(x). Let qk denote the parabola obtained by matching the cell
average in cells k − 1, k, k + 1, i.e. qk(x) is obtained by imposing

< qk >l= ūl , l = k − 1, k, k + 1 .

Then for each polynomial Pj of degree 2 appearing in the reconstruction one can use either qj−1, qj ,
or qj+1. Each choice would provide third order accuracy. One can also choose a convex combination
of qk,

pj = wj
−1qj−1 + wj

0qj + wj
1qj+1 ,

with wj
−1 +wj

0 +wj
1 = 1, wl ≥ 0, l = −1, 0, 1. The weights will be chosen according to the following

requirements:

i) in the region of regularity of u(x) the values of the weights are selected in order to have a
reconstruction of the function at some particular point with higher order of accuracy.

Typically we need high order accuracy at points xj + h
2 and xj− h

2 . With two more degrees of
freedom it is possible to obtain fifth order accuracy at point xj+1/2 (instead of third order).

We shall denote by C+
−1, C+

0 , C+
1 the constants that provide high order accuracy at point

xj+1/2

uj(xj+1/2) =
1∑

k=−1

C+
k qj+k(xj+1/2) + O(h5) ,

and C−k , k = −1, 0, 1 the corresponding constants for high order reconstruction at point
xj−1/2.

uj(xj−1/2) =
1∑

k=−1

C−k qj+k(xj−1/2) + O(h5) .

The values of these constants are

C+
1 = C−−1 =

3
10

, C+
0 = C−0 =

3
5

, C+
−1 = C−1 =

1
10

.

ii) In the region near a discontinuity, one should make use only of the values of the cell averages
that belong to the regular part of the profile.

Suppose there the function u(x) has a discontinuity in x̂ ∈ Ij+1. Then in order to reconstruct the
function in cell j one would like to make use only of qj−1, i. e. the weights should be

wj
−1 ∼ 1 , wj

0 ∼ 0 , wj
1 ∼ 0 .

This is obtained by making the weights depend on the regularity of the function in the correspond-
ing cell. In usual WENO scheme this is obtained by setting

αj
k =

Ck

(ISj
k + ε)2

, k = −1, 0, 1 ,

and

wj
k =

αj
k∑

k αj
k

.

Here ISk are the so-called smoothness indicators, and are used to measure the smoothness or,
more precisely, the roughness of the function, by measuring some weighted norm of the function
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and its derivatives.
Typically

ISj
k =

2∑

l=1

∫ xj+1/2

xj−1/2

h2l−1 dlqj+k(x)
dxl

dx.

The integration can carried out explicitly, obtaining

IS−1 =
13
12

(ūj−2 − 2ūj−1 + ūj)2 +
1
4
(ūj−2 − 4ūj−1 + 3ūj)2

IS0 =
13
12

(ūj−1 − 2ūj + ūj+1)2 +
1
4
(ūj−1 − ūj+1)2

IS1 =
13
12

(ūj − 2ūj+1 + ūj+2)2 +
1
4
(3ūj − 4ūj+1 + ūj+2)2

With three parabolas one obtains a reconstruction that gives up to fifth order accuracy in smooth
region, and that degrades to third order near discontinuities.
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Figure 1: Relative errors for density ρ in the Broadwell equations with initial data (21). Left
column az = 1.0 (no initial layer), right column az = 0.2 (initial layer). From top to bottom,
ε = 1.0, 10−3, 10−6.
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Figure 2: Numerical solution of the Broadwell equations with initial data (23) for ρ(◦), m(∗) and
z(+) at time t = 0.5. Left column IMEX-SSP2-WENO scheme, right column IMEX-SSP3-WENO
scheme. From top to bottom, ε = 1.0, 0.02, 10−8.
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Figure 3: Numerical solution of the Broadwell equations with initial data (24) for ρ(◦), m(∗) and
z(+) at time t = 0.25 for ε = 10−8. Left IMEX-SSP2-WENO scheme, right IMEX-SSP3-WENO
scheme.
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Figure 4: Numerical solution of the shallow water model with initial data (25) for h(◦) and hv(∗)
at time t = 0.5 for ε = 10−8. Left IMEX-SSP2-WENO scheme, right IMEX-SSP3-WENO scheme.
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Figure 5: Numerical solution of the traffic model with initial data (28) for ρ(◦) and ρv(∗) at time
t = 1 for ε = 0.2. Left IMEX-SSP2-WENO scheme, right IMEX-SSP3-WENO scheme.
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Figure 6: Numerical solution of the hydrodynamical model of a granular gas with initial data (30).
Left column IMEX-SSP2-WENO scheme, right column IMEX-SSP3-WENO scheme. ¿From top
to bottom, mass fraction ν, velocity ρu and pressure p.
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