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Abstract

It is known that the Allen-Chan equations satisfy the maximum principle. Is this true for

numerical schemes? To the best of our knowledge, the state-of-art stability framework is the

nonlinear energy stability which has been studied extensively for the phase field type equations.

In this work, we will show that a stronger stability under the infinity norm can be established for

the implicit-explicit discretization in time and central finite difference in space. In other words,

this commonly used numerical method for the Allen-Cahn equation preserves the maximum

principle.

Key Words. Allen-Cahn Equations, implicit-explicit scheme, maximum principle, nonlinear

energy stability.

1 Introduction

This paper is concerned with the numerical approximation of the Allen-Cahn equation

∂u

∂t
= ǫ2∆u − f(u), x ∈ Ω, t ∈ (0, T ], (1.1)

with the initial condition

u(x, 0) = u0(x), x ∈ Ω̄, (1.2)
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and subjects to the periodic or homogeneous Neumann/Dirichlet boundary conditions, where Ω is

a bounded domain in Rd (d = 1, 2, 3), u represents the concentration of one of the two metallic

components of the alloy, and the parameter ǫ > 0 represents the inter-facial width.

Without lose of generality, we consider the commonly used double well potential which gives

f(u) = u3 − u. (1.3)

Roughly speaking, the Allen-Cahn equation (1.1) describes regions with u ≈ −1 and u ≈ 1 that

grow and decay at the expense of one another [1]. Define the energy function in L2- space

E(u) =

∫

Ω

(1

2
ǫ2|∇u|2 + F (u)

)

dx (1.4)

where F (u) = 1

4
(u2 − 1)2. One of the intrinsic properties of the Allen-Cahn equation is that the

energy function is decreasing with time:

d

dt
E(u) ≤ 0, ∀t > 0. (1.5)

The Allen-Cahn equation was originally introduced by Allen and Cahn in [1] to describe the

motion of anti-phase boundaries in crystalline solids. As the exact solutions of these phase-field

models can not be found, numerical methods have played an important role in various simulations.

In particular, there has been extensive numerical study for approximating various phase field models,

see, e.g., the survey articles of [7, 9]. One of the important numerical aspects is about the discrete

stability of the numerical schemes. For the Allen-Cahn equation, some recent stability analysis can

be found in [4, 6, 11, 13, 14]. To the best of our knowledge, the existing stability analysis for the

phase field models has been restricted to the energy setting, see, e.g., [2, 5, 8, 12, 10], and there have

no rigorous l∞-stability analysis for the numerical methods.

It is known that the solutions of the Allen-Cahn equation (1.1) satisfies the maximum principle,

see, e.g., [3]. The primary goal of this paper is to establish a discrete L∞-stability analogue. More

precisely, we will show that for the implicit-explicit discretization in time and central finite difference

in space, the numerical solutions for (1.1)-(1.3) can be bounded by 1 under the condition that the

initial data is bounded by 1. In other words, this commonly used numerical method for the Allen-

Cahn equation preserves the maximum principle.
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To demonstrate the main idea, we only consider a regular solution domain in Rd (d = 1, 2, 3).

Without lose generality, we only consider a unit square in 2D and a cube in 3D. We also use the

central finite difference to approximate the spatial derivatives and denote Dh as the discrete matrix

of the Laplace operator. It is known that the discrete matrix of the Laplace operator subjected with

homogeneous Dirichlet boundary conditions in 1D is given by

Dh = Λh :=
1

h2

























−2 1

1 −2 1

. . .
. . .

. . .

1 −2 1

1 −2

























N×N

, (1.6)

where h is the width of an 1D uniform mesh. By using the notation of the Kronecker tensor product,

we can obtain the discrete matrix in 2D:

Dh = I ⊗ Λh + Λh ⊗ I, (1.7)

where I is the N × N identity matrix. Similarly, the discrete matrix of 3D case can be represented

as

Dh = I ⊗ I ⊗ Λh + I ⊗ Λh ⊗ I + Λh ⊗ I ⊗ I.

Independent of the dimension, it can be verified that the discrete matrix Dh satisfies the following

properties:

• Dh is symmetric;

• Dh is negative semidefinite, i.e.,

UT DhU ≤ 0, ∀U ∈ RN ; (1.8)

• Elements of Dh satisfy

bii = −b < 0, b ≥ max
i

∑

j 6=i

|bij | , 1 ≤ i ≤ N. (1.9)
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2 The discrete maximum principle and energy stability

We first prove the following useful lemma.

Lemma 1. Let B ∈ RN×N and A = aI − B, where a > 0. If B = (bij) satisfies (1.9), then

||A−1||∞ ≤
1

a
. (2.1)

Proof. We first write A in the following equivalent form:

A = (a + b)(I − sC), (2.2)

where b is given by (1.9), s = b/(a + b) < 1, and matrix C = (cij) satisfies

cii = 0, max
i

∑

j 6=i

|cij | = max
i

∑

j 6=i

∣

∣

∣

∣

bij

b

∣

∣

∣

∣

≤ 1, 1 ≤ i ≤ N. (2.3)

By Gershgorin’s circle theorem, it can be verified that

||C||∞ ≤ 1, ρ(sC) = sρ(C) ≤ s < 1, (2.4)

where ρ(C) stands for the spectral radius of the matrix C. As the inverse of I−sC can be represented

by the power series of sC, we have

||A−1||∞ =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

a + b

∞
∑

p=0

(sC)p

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∞

≤
1

a + b

∞
∑

p=0

sp||C||p∞

≤
1

a + b
·

1

1 − s
=

1

a
, (2.5)

where in the last step we have used the fact that 0 < s < 1. This completes the proof of the

lemma.

The most conventional approach for solving (1.1) is to use the standard implicit-explicit scheme

in time and central finite difference in space:

Un+1 − Un

τ
+ ((Un).3 − Un) = ǫ2DhUn+1, (2.6)

where τ denotes the time stepsize, Un represents the vector of numerical solution at the t = tn level,

and (Un).3 = ((Un
1 )3, (Un

2 )3, · · · , (Un
N )3)T .
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2.1 The maximum principle

Theorem 1. Consider the Allen-Cahn problem (1.1)-(1.3) with periodic or homogeneous Neu-

mann/Dirichlet boundary conditions. If the initial value is bounded by 1, i.e., max
x∈Ω̄ |u0(x)| ≤ 1,

then the fully discrete scheme (2.6) is also bounded by 1 in the sense that ||Un||∞ ≤ 1 for all n > 0,

provided that the time stepsize satisfies 0 < τ ≤ 1

2
.

Proof. We prove our claim by induction. Obviously, ||U0||∞ ≤ ‖u0‖ ≤ 1. We assume ||Um||∞ ≤ 1

and will verify the result is true for Um+1. It follows from the scheme (2.6) that

Um+1 = (I − τǫ2Dh)−1(Um + k(Um − (Um).3)). (2.7)

Using Lemma 1 gives we have

||(I − τǫ2Dh)−1||∞ ≤ 1. (2.8)

Note that each element of Um + τ(Um − (Um).3) is of the form g(x) = x + τ(x − x3). It can be

verified that if 0 < τ ≤ 1

2
then g′(x) ≥ 0 for x ∈ [−1, 1]. This gives that

max
|x|≤1

g(x) = g(1) = 1; min
|x|≤1

g(x) = g(−1) = −1,

which implies that ‖g‖∞ = 1. Consequently, we can conclude that

||Um + τ(Um − (Um).3)||∞ ≤ 1 if ||Um||∞ ≤ 1. (2.9)

This, together with (2.7) and (2.8), gives

||Um+1||∞ ≤ ||(I − τǫ2Dh)−1||∞ · ||Um + τ(Um − (Um).3)||∞ ≤ 1. (2.10)

This completes the proof.

2.2 The discrete energy stability

Subjected with the periodic or homogeneous Neumann/Dirichlet boundary conditions, we have

E(u) =

∫

Ω

(1

2
ǫ2|∇u|2 + F (u)

)

dx

=

∫

Ω

(

−
1

2
ǫ2u△u + F (u)

)

dx, (2.1)

5



where E(u) is defined by (1.4). The discrete energy function can be represented by the discrete

Laplace operator Dh given below

Eh(U) = hd
(

−
ǫ2

2
UT DhU +

N
∑

i=1

1

4
(U2

i − 1)2
)

, (2.2)

where d is the number of dimension.

Theorem 2. Consider the Allen-Cahn problem (1.1)-(1.3) with periodic or homogeneous Neu-

mann/Dirichlet boundary conditions. If the initial value is bounded by 1, i.e., max
x∈Ω̄ |u0(x)| ≤ 1,

then the numerical solutions obtained by the scheme (2.6) satisfies the discrete energy decreasing

property:

Eh(Un+1) ≤ Eh(Un), (2.3)

provided that the time stepsize satisfies 0 < τ ≤ 1

2
.

Proof. Taking the difference of the discrete energy between two consective time level gives

Eh(Un+1) − Eh(Un)

=
hd

4

N
∑

i=1

[

((Un+1
i )2 − 1)2 − ((Un

i )2 − 1)2
]

−
ǫ2hd

2

(

(Un+1)T DhUn+1 − (Un)T DhUn
)

. (2.4)

Note that for all a, b ∈ [−1, 1]:

(b3 − b)(a − b) + (a − b)2 ≥
1

4
[(a2 − 1)2 − (b2 − 1)2]. (2.5)

It follows from Theorem 1 that ||Un+1||∞, ||Un||∞ ≤ 1 with 0 < τ ≤ 1

2
. This fact, together with

(2.4), gives

Eh(Un+1) − Eh(Un)

≤ hd

N
∑

i=1

[

((Un
i )3 − Un

i )(Un+1
i − Un

i ) + (Un+1
i − Un

i )2
]

−
ǫ2hd

2

(

(Un+1)T DhUn+1 − (Un)T DhUn
)

. (2.6)

Taking L2 inner product for (2.6) with (Un+1 − Un)T yields

N
∑

i=1

[

((Un
i )3 − Un

i )(Un+1
i − Un

i ) +
1

τ
(Un+1

i − Un
i )2

]

= ǫ2(Un+1 − Un)T DhUn+1. (2.7)
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Since the discrete Laplace operator Dh is symmetric, we can rewrite the right-hand side of (2.7) as

ǫ2((Un+1 − Un)T DhUn+1

=
ǫ2

2
((Un+1)T DhUn+1 − (Un)T DhUn) +

ǫ2

2
((Un+1 − Un)T Dh(Un+1 − Un). (2.8)

Consequently, combining (2.6)-(2.8) gives

Eh(Un+1) − Eh(Un) −
ǫ2hd

2
(Un+1 − Un)T Dh(Un+1 − Un) ≤ 0. (2.9)

Since Dh is negative semidefinite, the desired result (2.3) follows from the above inequality.

3 Unconditionally stable implicit-explicit scheme

It is shown in the previous section that the commonly used scheme (2.6) is conditionally stable.

In the following numerical section we will show that the stability condition 0 < τ ≤ 1/2 is both

necessary and sufficient. To obtain an unconditionally stable implicit-explicit scheme, we can add an

extra perturbation term which is consistent with the truncation error. For example, we can follow

[11] to give a modified scheme:

Un+1 − Un

τ
+ ((Un).3 − Un) + β(Un+1 − Un) = ǫ2DhUn+1, (3.1)

where β > 0 is a constant.

Theorem 3. Consider the Allen-Cahn problem (1.1)-(1.3) with periodic or homogeneous Neu-

mann/Dirichlet boundary conditions. If the initial value is bounded by 1, i.e., max
x∈Ω̄ |u0(x)| ≤ 1,

then the numerical solutions obtained by the scheme (3.1) satisfy ||Un||∞ ≤ 1 and Eh(Un+1) ≤

Eh(Un), provided that

β +
1

τ
≥ 2, (3.2)

where the discrete energy Eh is defined by (2.2). In particular when β ≥ 2, the numerical scheme

(3.1) is unconditionally pointwise stable and energy stable.

Proof. The proof is similar to that of Theorems 1 and 2, and will be omitted here.
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4 Numerical tests

In this section, we present some numerical experiments to verify the theoretical results obtained

in the previous sections. Since our analysis is independent of dimensions, for simplicity we only
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Figure 1: Energy curves for scheme (2.6) with different time steps τ = 0.5, 0.75, 1, 3.

0 5 10 15 20
0.8

0.85

0.9

0.95

1

t

|u
| m

ax

Maximum value

 

 

τ=0.5

0 5 10 15 20 25 30
0.85

0.9

0.95

1

1.05

t

|u
| m

ax

Maximum value

 

 

τ=0.75

0 10 20 30 40
0.9

0.95

1

1.05

1.1

t

|u
| m

ax

Maximum value

 

 

τ=1

0 10 20 30 40
0

2

4

6

8

10
x 10

161 Maximum value

t

|u
| m

ax

 

 
τ=3

Figure 2: Maximum values for scheme (2.6) with different time steps τ = 0.5, 0.75, 1, 3.
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consider one-dimensional problems for (1.1) with homogeneous Neumann boundary condition. The

initial condition is chosen as

u0(x) = 0.9 × rand(·) + 0.05,

where ”rand(·)” represents a random number on each point in [0, 1]. The parameter ǫ2 is 0.001, the

computation domain is [0, 1] and the mesh size in space is h = 0.01.
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Figure 3: Energy curves and maximum values for (3.1) with β = 1 and time steps τ = 0.5, 1, 3.

We first consider the standard implicit-explicit scheme (2.6). Fig. 1 plots the energy curves for

several values of τ , and it is found that the energy blows up quickly when τ = 3. Fig. 2 plots the

maximum solution values against time, and the numerical results are in excellent agreement of our

theoretical analysis. More precisely, the maximum principle is preserved for τ = 05 and is violated

when τ = 0.75, 1, 3.

Fig. 3 gives the numerical results obtained using the modified scheme (3.1) with β = 1. Several

time stepsizes τ are used. It is seen when the requirement β+1/τ ≥ 2 is not satisfied with β = 1 and

τ = 3 the maximum principle is violated. Finally, we change β from 1 to 2 and it is observed from

Fig. 4 that the corresponding scheme becomes unconditionally stable. This is in good agreement
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Figure 4: Same as Fig. 3, except with β = 2.

with the results of Theorem 3.

5 Concluding remarks

This works provides a theoretical framework for analyzing the l∞-stability for the approximate

solutions to the Allen-Cahn equations. Although similar theoretical results do not hold for phase

field models which involve biharmonic operators, we are considering some weak version of the l∞-

stability.
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