
Implicit Fairing of Irregular Meshes using Diffusion and Curvature Flow

Mathieu Desbrun Mark Meyer Peter Schröder Alan H. Barr

Caltech∗

Abstract
In this paper, we develop methods to rapidly remove rough features
from irregularly triangulated data intended to portray a smooth sur-
face. The main task is to remove undesirable noise and uneven
edges while retaining desirable geometric features. The problem
arises mainly when creating high-fidelity computer graphics objects
using imperfectly-measured data from the real world.

Our approach contains three novel features: an implicit integra-
tion method to achieve efficiency, stability, and large time-steps; a
scale-dependent Laplacian operator to improve the diffusion pro-
cess; and finally, a robust curvature flow operator that achieves a
smoothing of the shape itself, distinct from any parameterization.
Additional features of the algorithm include automatic exact vol-
ume preservation, and hard and soft constraints on the positions of
the points in the mesh.

We compare our method to previous operators and related algo-
rithms, and prove that our curvature and Laplacian operators have
several mathematically-desirable qualities that improve the appear-
ance of the resulting surface. In consequence, the user can easily
select the appropriate operator according to the desired type of fair-
ing. Finally, we provide a series of examples to graphically and
numerically demonstrate the quality of our results.

1 Introduction
While the mainstream approach in mesh fairing has been to enhance
the smoothness of triangulated surfaces by minimizing computa-
tionally expensive functionals, Taubin [Tau95] proposed in 1995 a
signal processing approach to the problem of fairing arbitrary topol-
ogy surface triangulations. This method is linear in the number of
vertices in both time and memory space; large arbitrary connectiv-
ity meshes can be handled quite easily and transformed into visually
appealing models. Such meshes appear more and more frequently
due to the success of 3D range sensing approaches for creating com-
plex geometry [CL96].

Taubin based his approach on defining a suitable generalization
of frequency to the case of arbitrary connectivity meshes. Using
a discrete approximation to the Laplacian, its eigenvectors become
the “frequencies” of a given mesh. Repeated application of the re-
sulting linear operator to the mesh was then employed to tailor the
frequency content of a given mesh.

Closely related is the approach of Kobbelt [Kob97], who consid-
ered similar discrete approximations of the Laplacian in the con-
struction of fair interpolatory subdivision schemes. In later work
this was extended to the arbitrary connectivity setting for purposes
of multiresolution editing [KCVS98].

The success of these techniques is largely based on their sim-
ple implementation and the increasing need for algorithms which
can process the ever larger meshes produced by range sensing tech-

∗{mathieu|mmeyer|ps|barr}@cs.caltech.edu.

(a) (b)

Figure 1: (a): Original 3D photography mesh (41,000 vertices).
(b): Smoothed version with the scale-dependent operator in two
integration step with λdt = 5 · 10−5, the iterative linear solver
(PBCG) converges in 10 iterations. All the images in this paper
are flat-shaded to enhance the faceting effect.

niques. However, a number of issues in their application remain
open problems in need of a more thorough examination.

The simplicity of the underlying algorithms is based on very ba-
sic, uniform approximations of the Laplacian. For irregular con-
nectivity meshes this leads to a variety of artifacts such as geomet-
ric distortion during smoothing, numerical instability, problems of
slow convergence for large meshes, and insufficient control over
global behavior. The latter includes shrinkage problems and more
precise shaping of the frequency response of the algorithms.

In this paper we consider more carefully the question of numeri-
cal stability by observing that Laplacian smoothing can be thought
of as time integration of the heat equation on an irregular mesh.
This suggests the use of implicit integration schemes which lead
to unconditionally stable algorithms allowing for very large time
steps. At the same time the necessary linear system solvers run
faster than explicit approaches for large meshes. We also consider
the question of mesh parameterization more carefully and propose
the use of discretizations of the Laplacian which take the underly-
ing parameterization into account. The resulting algorithms avoid
many of the distortion artifacts resulting from the application of
previous methods. We demonstrate that this can be done at only a
modest increase in computing time and results in smoothing algo-
rithms with considerably higher geometric fidelity. Finally a more
careful analysis of the underlying discrete differential geometry is
used to derive a curvature flow approach which satisfies crucial ge-
ometric properties. We detail how these different operators act on
meshes, and how users can then decide which one is appropriate in
their case. If the user wants to, at the same time, smooth the shape
of an object and equalize its triangulation, a scale-dependent diffu-
sion must be used. On the other hand, if only the shape must be
filtered without affecting the sampling rate, then curvature flow has
all the desired properties. This allows us to propose a novel class of
efficient smoothing algorithms for arbitrary connectivity meshes.

2 Implicit fairing
In this section, we introduce implicit fairing, an implicit integra-
tion of the diffusion equation for the smoothing of meshes. We will
demonstrate several advantages of this approach over the usual ex-

plicit methods. While this section is restricted to the use of a linear
approximation of the diffusion term, implicit fairing will be used as
a robust and efficient numerical method throughout the paper, even
for non-linear operators. We start by setting up the framework and
defining our notation.

2.1 Notation and definitions

In the remainder of this paper, X will denote a mesh, xi a vertex of
this mesh, and ei j the edge (if existing) connecting xi to x j . We will

call N1(i) the “neighbors” (or 1-ring neighbors) of xi, i.e., all the
vertices x j such that there exists an edge ei j between xi and x j (see
Figure 9(a)).

In the surface fairing literature, most techniques use constrained
energy minimization. For this purpose, different fairness function-
als have been used. The most frequent functional is the total curva-
ture of a surface S :

E(S) =
∫

S

κ2
1+κ2

2 dS . (1)

This energy can be estimated on discrete meshes [WW94, Kob97]
by fitting local polynomial interpolants at vertices. However, prin-
cipal curvatures κ1 and κ2 depend non-linearly on the surface S .
Therefore, many practical fairing methods prefer the membrane
functional or the thin-plate functional of a mesh X :

Emembrane(X) =
1

2

∫
Ω

X2
u +X2

v dudv (2)

Ethin plate(X) =
1

2

∫
Ω

X2
uu+2X2

uv+X2
vv dudv. (3)

Note that the thin-plate energy turns out to be equal to the total
curvature only when the parameterization (u,v) is isometric. Their
respective variational derivatives corresponds to the Laplacian and
the second Laplacian:

L(X) = Xuu+Xvv (4)

L
2(X) = L ◦L(X) = Xuuuu+2Xuuvv+Xvvvv. (5)

For smooth surface reconstruction in vision, a weighted aver-
age of these derivatives has been used to fair surfaces [Ter88].
For meshes, Taubin [Tau95] used signal processing analysis to
show that a combination of these two derivatives of the form:
(λ+ µ)L − λµL2 can provide a Gaussian filtering that minimizes
shrinkage. The constants λ and µ must be tuned by the user to ob-
tain this non-shrinking property. We will refer to this technique as
the λ|µ algorithm.

2.2 Diffusion equation for mesh fairing

As we just pointed out, one common way to attenuate noise in a
mesh is through a diffusion process:

∂X

∂t
= λL(X). (6)

By integrating equation 6 over time, a small disturbance will dis-
perse rapidly in its neighborhood, smoothing the high frequencies,
while the main shape will be only slightly degraded. The Lapla-
cian operator can be linearly approximated at each vertex by the
umbrella operator (we will use this approximation in the current
section for the sake of simplicity, but will discuss its validity in
section 4), as used in [Tau95, KCVS98]:

L(xi) =
1

m
∑

j∈N1(i)

x j−xi (7)

where x j are the neighbors of the vertex xi, and m = #N1(i) is the

number of these neighbors (valence). A sequence of meshes (Xn)

can be constructed by integrating the diffusion equation with a sim-
ple explicit Euler scheme, yielding:

Xn+1 = (I+λdtL)Xn. (8)

With the umbrella operator, the stability criterion requires λdt < 1.
If the time step does not satisfy this criterion, ripples appear on the
surface, and often end up creating oscillations of growing magni-
tude over the whole surface. On the other hand, if this criterion is
met, we get smoother and smoother versions of the initial mesh as
n grows.

2.3 Time-shifted evaluation

The implementation of this previous explicit method, called for-
ward Euler method, is very straightforward [Tau95] and has nice
properties such as linear time and linear memory size for each fil-
tering pass. Unfortunately, when the mesh is large, the time step
restriction results in the need to perform hundreds of integrations to
produce a noticeable smoothing, as mentioned in [KCVS98].

Implicit integration offers a way to avoid this time step limi-
tation. The idea is simple: if we approximate the derivative us-
ing the new mesh (instead of using the old mesh as done in ex-
plicit methods), we will get to the equilibrium state of the PDE
faster. As a result of this time-shifted evaluation, stability is ob-

tained unconditionally [PTVF92]. The integration is now: Xn+1 =
Xn + λdtL(Xn+1). Performing an implicit integration, this time
called backward Euler method, thus means solving the following
linear system:

(I−λdtL)Xn+1 = Xn. (9)

This apparently minor change allows the user not to worry about
practical limitations on the time step. Consequent smoothing will
then be obtained safely by increasing the value λdt. But solving a
linear system is the price to pay.

2.4 Solving the sparse linear system

Fortunately, this linear system can be solved efficiently as the ma-
trix A = I− λdtL is sparse: each line contains approximately six
non-zero elements if the Laplacian is expressed using Equ. (7) since
the average number of neighbors on a typical triangulated mesh is
six. We can use a preconditioned bi-conjugate gradient (PBCG) to

iteratively solve this system with great efficiency1. The PBCG is
based on matrix-vector multiplies [PTVF92], which only require
linear time computation in our case thanks to the sparsity of the
matrix A. We review in Appendix A the different options we chose
for the PBCG in order to have an efficient implementation for our
purposes.

2.5 Interpretation of the implicit integration

Although this implicit integration for diffusion is sound as is, there
are useful connections with other prior work. We review the analo-
gies with signal processing approaches and physical simulation.

2.5.1 Signal processing

In [Tau95], Taubin presents the explicit integration of diffusion with
a signal processing point of view. Indeed, if X is a 1D signal of a

given frequency ω: X = eiω, then L(X) =−ω2X . Thus, the transfer

function for Equ. (8) is 1−λdtω2, as displayed in Figure 2(a) as a
solid line. We can see that the higher the frequency ω, the stronger
the attenuation will be, as expected.

The previous filter is called FIR (for Finite Impulse Response)
in signal processing. When the diffusion process is integrated using
implicit integration, the filter in Equ. (9) turns out to be an Infinite

Impulse Response filter. Its transfer function is now 1/(1+λdtω2),
depicted in Figure 2(a) as a dashed line. Because this filter is always
in [0,1], we have unconditional stability.

1We use a bi-conjugate gradient method to be able to handle non sym-

metric matrices, to allow the inclusion of constraints (see Section 2.7).

0

0.2

0.4

0.6

0.8

3

Frequency

Explicit filter

Implicit filter

Attenuation

2.5

1

0 0.5 1 1.5 2
0

0.2

0.4

0.6

1

Filter for ten implicit integrations

Filter for ten explicit integrations

Frequency

Attenuation

0.8

0.8

1

0 0.2 0.4 0.6

(a) (b)

Figure 2: Comparison between (a) the explicit and implicit transfer
function for λdt = 1, and (b) their resulting transfer function after
10 integrations.

By rewriting Equ. (9) as: Xn+1 = (I−λdtL)−1Xn, we also note

that our implicit filtering is equivalent to I+λdtL+(λdt)2L2+ ...,
i.e., standard explicit filtering plus an infinite sequence of higher
order filtering. Contrary to the explicit approach, one single implicit
filtering step performs global filtering.

2.5.2 Mass-spring network

Smoothing a mesh by minimizing the membrane functional can be
seen as a physical simulation of a mass-spring network with zero-
rest length springs that will shrink to a single point in the limit.
Recently, Baraff and Witkin [BW98] presented an implicit method
to allow large time steps in cloth simulation. They found that the
use of an implicit solver instead of the traditional explicit Euler in-
tegration considerably improves computational time while still be-
ing stable for very stiff systems. Our method compares exactly to
theirs, but used for meshes and for a different PDE. We therefore
have the same advantages of using an implicit solver over the usual
explicit type: stability and efficiency when significant filtering is
called for.

2.6 Filter improvement

Now that the method has been set up for the usual diffusion equa-
tion, we can consider other equations that may be more appropriate
or may give better visual results for smoothing when we use im-
plicit integration.

We have seen in Section 2.1 that both L and L2 have been used
with success in prior work [Ter88, Tau95, KCVS98]. When we use
implicit integration, as Figure 3(a) shows, the higher the power of
the Laplacian, the closer to a low-pass filter we get. In terms of
frequency analysis, it is a better filter. Unfortunately, the matrix
becomes less and less sparse as more and more neighbors are in-

volved in the computation. In practice, we find that L2 is a very
good trade-off between efficiency and quality. Using higher orders
affects the computational time significantly, while not always pro-
ducing significant improvements. We therefore recommend using

(I+λdtL2)Xn+1 = Xn for implicit smoothing (a precise definition

of the umbrella-like operator for L2 can be found in [KCVS98]).

0

0.2

0.4

0.6

0.8

1

0 0.5

-1

(I-L)
-1

(I-L)2

3

4

(I-L)

1 1.5 2 2.5

-1

-1
(I-L)

3
0

0.2

0.4

2 2.5 3

Implicit filter
Constant filter

Resulting convolution

1.5

0.6

0.8

1

1.2

0 0.5 1

(a) (b)

Figure 3: (a): Comparison between filters using L , L2, L3, and
L4. (b): The scaling to preserve volume creates an amplification
of all frequencies; but the resulting filter (diffusion+scaling) only
amplifies low frequencies to compensate for the shrinking of the
diffusion.

We also tried to use a linear combination of both L and L2. We
obtained interesting results like, for instance, amplification of low
or middle frequencies to exaggerate large features (refer to [GSS99]
for a complete study of feature enhancement). It is not appropriate

in the context of a fixed mesh, though: amplifying frequencies re-
quires refinement of the mesh to offer a good discretization.

2.7 Constraints

We can put hard and soft constraints on the mesh vertex positions
during the diffusion. For the user, it means that a vertex or a set of
vertices can be fixed so that the smoothing happens only on the rest
of the mesh. This can be very useful to retain certain details in the
mesh.

A vertex xi will stay fixed if we impose L(xi) = 0. More compli-
cated constraints are also possible [BW98]. For example, vertices
can be constrained along an axis or on a plane by modifying the
PBCG to keep these constraints enforced during the linear solver
iterations.

We can also easily implement soft constraints: each vertex can
be weighted according to the desired smoothing that we want. For
instance, the user may want to smooth a part of a mesh less than
another one, in order to keep desirable features while getting a
smoother version. We allow the assignment of a smoothing value
between 0 and 1 to attenuate the smoothing spatially: this is equiv-
alent to choosing a variable λ factor on the mesh, and happens to
be very useful in practice. Entire regions can be “spray painted”
interactively to easily assign this special factor.

2.8 Discussion
Even if adding a linear solver step to the integration of the diffusion
equation seems to slow down the problem at first glance, it turns
out that we gain significantly by doing so. For instance, the implicit
integration can be performed with an arbitrary time step. Since
the matrix of the system is very sparse, we actually obtain com-
putational time similar or better than the explicit methods. In the
following table, we indicate the number of iterations of the PBCG
method for different meshes and it can be seen that the PBCG is
more efficient when the smoothing is high. These timings were per-
formed on an SGI High Impact Indigo2 175MHz R10000 processor
with 128M RAM.

Mesh Nb of faces λdt = 10 λdt = 100

Horse 42,000 8 iterations (2.86s) 37 iterations (12.6s)

Dragon 42,000 8 iterations (2.98s) 39 iterations (13.82s)

Isis 50,000 9 iterations (3.84s) 37 iterations (15.09s)

Bunny 66,000 7 iterations (4.53s) 35 iterations (21.34s)

Buddha 290,000 5 iterations (13.78s) 28 iterations (69.93s)

To be able to compare the results with the explicit method, one
has to notice that one iteration of the PBCG is only slightly more
time consuming than one integration step using an explicit method.
Therefore, we can see in the following results that our implicit fair-
ing takes about 60% less time than the explicit fairing for a filtering
of λdt = 100, as we get about 33 iterations compared to the 100 in-
tegration steps required in the explicit case. We have found this be-
havior to be true for all the other meshes as well. The advantage of
the implicit method in terms of computational speed becomes more
obvious for large meshes and/or high smoothing value. In terms of
quality, Figure 4(b) and 4(c) demonstrate that both implicit and ex-
plicit methods produce about the same visual results, with a slightly
better smoothness for the implicit fairing. Note that we use 10 ex-
plicit integrations of the umbrella operator with λdt = 1, and 1 inte-
gration using the implicit integration with λdt = 10 to approximate
the same results. Therefore, there is a definite advantage in the use
of implicit fairing over the previous explicit methods. Moreover,
the remainder of this paper will make heavy use of this method and
its stability properties.

3 Automatic anti-shrinking fairing

Pure diffusion will, by nature, induce shrinkage. This is inconve-
nient as this shrinking may be significant for aggressive smooth-
ing. Taubin proposed to use a linear combination of L and L ◦L

to amplify low frequencies in order to balance the natural shrink-
ing. Unfortunately, the linear combination depends heavily on the
mesh in practice, and this requires fine tuning to ensure both stable

(a) (b) (c) (d)

Figure 4: Stanford bunnies: (a) The original mesh, (b) 10 explicit integrations with λdt = 1, (c) 1 implicit integration with λdt = 10 that takes
only 7 PBCG iterations (30% faster), and (d) 20 passes of the λ|µ algorithm, with λ = 0.6307 and µ = −0.6732. The implicit integration
results in better smoothing than the explicit one for the same, or often less, computing time. If volume preservation is called for, our technique
then requires many fewer iterations to smooth the mesh than the λ|µ algorithm.

and non-shrinking results. In this section, we propose an automatic
solution to avoid this shrinking. We preserve the zeroth moment,
i.e., the volume, of the object. Without any other information on
the mesh, we feel it is the most reasonable invariant to preserve,
although surface area or other invariants can be used.

3.1 Volume computation
As we have a mesh given in terms of triangles, it is easy to compute
the interior volume. This can be done by summing the volumes of
all the oriented pyramids centered at a point in space (the origin, for
instance) and with a triangle of the mesh as a base. This computa-
tion has a linear complexity in the number of triangles [LK84]. For
the reader’s convenience, we give the expression of the volume of

a mesh in the following equation, where x1
k ,x

2
k and x3

k are the three
vertices of the kth triangle:

V =
1

6

nbFaces

∑
k=1

gk ·Nk (10)

where g= (x1
k +x2

k +x3
k)/3 and Nk =

~x1
kx2

k ∧
~x1
kx3

k

3.2 Exact volume preservation
After an integration step, the mesh will have a new volume V n. We

then want to scale it back to its original volume V 0 to cancel the
shrinking effect. We apply a simple scale on the vertices to achieve

this. By multiplying all the vertex positions by β = (V 0/V n)1/3,
the volume is guaranteed to go back to its original value. As this
is a simple scaling, it is harmless in terms of frequencies. To put it
differently, this scaling corresponds to a convolution with a scaled
Dirac in the frequency domain, hence it amplifies all the frequen-
cies in the same way to change the volume back. The resulting
filter, after the implicit smoothing and the constant amplification
filter, amplifies the low frequencies of the original mesh to exactly
compensate for the attenuation of the high frequencies, as sketched
on Figure 3(b).

The overall complexity for volume preservation is then linear.
With such a process, we do not need to tweak parameters: the
anti-shrinking filter is automatically adapted to the mesh and to
the smoothing, contrary to previous approaches. Note that hard
constraints defined in the previous section are applied before the
scaling and do not result in fixed points anymore: scaling alters the
absolute, but not the relative position.

We can generalize this re-scaling phase to different invariants.
For instance, if we have to smooth height fields, it is more appropri-
ate to take the invariant as being the volume enclosed between the
height field and a reference plane, which changes the computations
only slightly. Likewise, for surfaces of revolution, we may change
the way the scaling is computed to exploit this special property. We
can also preserve the surface area if the mesh is a non-closed sur-
face. However, in the absence of specific characteristics, preserving
the volume gives nice results. According to specific needs, the user
can select the appropriate type of invariant to be used.

3.3 Discussion
When we combine both methods of implicit integration and anti-
shrinking convolution, we obtain an automatic and efficient method

for fairing. Indeed, no parameters need be tuned to ensure stability
or to have exact volume preservation. This is a major advantage
over previous techniques. Yet, we retain all of the advantages of
previous methods, such as constraints [Tau95] and the possibility
of accelerating the fairing via multigrid [KCVS98], while addition-
ally offering stability and efficiency. This technique also dramati-
cally reduces the computing time over Taubin’s anti-shrinking al-
gorithm: as demonstrated in Figure 4(c) and 4(d), using the λ|µ
algorithm may preserve the volume after fine tuning, but one itera-
tion will only slightly smooth the mesh. The rest of this paper ex-
ploits both automatic anti-shrinking and implicit fairing techniques
to offer more accurate tools for fairing.

4 An accurate diffusion process
Up to this section, we have relied on the umbrella operator
(Equ. (7)) to approximate the Laplacian on a vertex of the mesh.
This particular operator does not truly represent a Laplacian in the
physical meaning of this term as we are about to see. Moreover,
simple experiments on smooth meshes show that this operator, us-
ing explicit or implicit integration, can create bumps or “pimples”
on the surface, instead of smoothing it. This section proposes a
sounder simulation of the diffusion process, by defining a new ap-
proximation for the Laplacian and by taking advantage of the im-
plicit integration.

4.1 Inadequacy of the umbrella operator

The umbrella operator, used in the previous sections corresponds
to an approximation of the Laplacian in the case of a specific pa-
rameterization [KCVS98]. This means that the mesh is supposed
to have edges of length 1 and all the angles between two adjacent
edges around a vertex should be equal. This is of course far from
being true in actual meshes, which contain a variety of triangles of
different sizes.

Treating all edges as if they had equal length has significant un-
desired consequences for the smoothing. For example, the Lapla-
cian can be the same for two very different configurations, corre-
sponding to different frequencies as depicted in Figure 5. This dis-
torts the filtering significantly, as high frequencies may be consid-
ered as low ones, and vice-versa. Nevertheless, the advantage of
the umbrella operator is that it is normalized: the time step for inte-
gration is always 1, which is very convenient. But we want a more
accurate diffusion process to smooth meshes consistently, in order
to more carefully separate high from low frequencies.

(a) (b)
Figure 5: Frequency confusion: the umbrella operator is evalu-
ated as the vector joining the center vertex to the barycenter of its
neighbors. Thus, cases (a) and (b) will have the same approximated
Laplacian even if they represent different frequencies.

We need to define a discrete Laplacian which is scale dependent,
to better approximate diffusion. However, if we use explicit inte-
gration [Tau95], we will suffer from a very restricted stability crite-
rion. It is well known [PTVF92] that the time step for a parabolic
PDE like Equ. (6) depends on the square of the smallest length scale
(here, the smallest edge length min(|e|)):

dt ≤
min(|e|)2

2 λ

This limitation is a real concern for large meshes with small de-
tails, since an enormous number of integration steps will have to
be performed to obtain noticeable smoothing. This is intractable in
practice.

With implicit integration explained in Section 2, we can over-
come this restriction and use a much larger time step while still
achieving good smoothing, saving considerable computation. In
the next two paragraphs we present one design of a good approxi-
mation for the Laplacian.

4.2 Simulation of the 1D heat equation
The 1D case of a diffusion equation corresponds to the heat equa-
tion xt = xuu. It is therefore worth considering this example as a
test problem for higher dimensional filtering. To do so, we use
Milne’s test presented in [Mil95]. Milne compared two cases of
the same initial problem: first, the problem is solved on a regular
mesh on [0,1], and then on an irregular mesh, taken to consist of a

uniform coarse grid of cells on [0,1] with each of the cells in [12 ,1]
subdivided into two fine cells as depicted in Figure 6(a) and 6(b).
With such a configuration, classical finite difference coefficients for
second derivatives can be used on each cell, except for the middle
one which does not have centered neighbors. Milne shows that if
no particular care is taken for this “peripheral” cell, it introduces a
noise term that creates large inaccuracies — larger than if the mesh
was represented uniformly at the coarser resolution! But if we fit
a quadratic spline at this cell to approximate the second derivative,
then the noise source disappears and we get more accurate results
than with a constant coarse resolution (see the errors created in each
case in one iteration of the heat equation in Figure 6(c)).

This actually corresponds to the extension of finite difference
computations for irregular meshes proposed by Fornberg [For88]:
to compute the FD coefficients, just fit a quadratic function at the
sample point and its two immediate neighbors, and then return
the first and second derivative of that function as the approximate
derivatives. For three points spaced ∆ and δ apart (see Figure 6(d)),
we get the 1D formula:

(xuu)i =
2

δ+∆

(

xi−1−xi

δ
+

xi+1−xi

∆

)

.

Note that when ∆= δ, we find the usual finite difference formula.

4.3 Extension to 3D
The umbrella operator suffers from this problem of large inaccura-
cies for irregular meshes as the same supposedly constant parame-
terization is used (Figure 7 shows such a behavior). Surprisingly,
a simple generalization of the previous formula valid in 1D corre-
sponds to a known approximation of the Laplacian. Indeed, Fuji-
wara [Fuj95] presents the following formula:

L(xi) =
2

E
∑

j∈N1(i)

x j−xi

|ei j|
, with E = ∑

j∈N1(i)

|ei j|. (11)

where |ei j| is the length of the edge ei j. Note that, when all edges
are of size 1, this reduces to the umbrella operator (7). We will then
denote this new operator as the scale-dependent umbrella operator.

Unfortunately, the operator is no longer linear. But during a typi-
cal smoothing, the length of the edges does not change dramatically.
We thus make the approximation that the coefficients of the matrix
A = (I− λdtL) stay constant during an integration step. We can

0.6

0.4

0.2

0

0.8

π

Samples on grid A

x0

y

2
π

0.8

0.6

0.4

0.2

0

y

x
2
π

Samples of grid B

π0

(a) (b)

0

5e-07

1e-06

1.5e-06

2e-06

2.5 3 x

Grid A, regular FD

Grid B, extended FD

Grid B, regular FD

Error

2

2.5e-06

3e-06

3.5e-06

0 0.5 1 1.5

X

iX

Xi-1

u

i+1

u

X

δ ∆
i+1ii-1u u

(c) (d)
Figure 6: Test on the heat equation: (a) regular sampling vs. (b)
irregular sampling. Numerical errors in one step of integration (c):
using the usual FD weight on an irregular grid to approximate sec-
ond derivatives creates noise, and gives a worse solution than on
the coarse grid, whereas extended FD weights offer the expected
behavior. (d) Three unevenly spaced samples of a function and cor-
responding quadratic fitting for extended FD weights.

compute them initially using the current edges’ lengths and keep
their values constant during the PBCG iterations. In practice, we
have not noted any noticeable drawbacks from this linearization.
We can even keep the same coefficients for a number of (or all)
iterations: it will correspond to a filtering “relative” to the initial
mesh instead if the current mesh. For the same reason as before, we
also recommend the use of the second Laplacian for higher qual-
ity smoothing without significant increase in computation time. As
demonstrated in Figure 7, the scale-dependent umbrella operator
deals better with irregular meshes than the umbrella operator: no
spurious artifacts are created. We also applied this operator to noisy
data sets from 3D photography to obtain smooth meshes (see Fig-
ure 1 and 12).

The number of iterations needed for convergence depends heav-
ily on the ratio between minimum and maximum edge lengths. For
typical smoothing and for meshes over 50000 faces, the average
number of iterations we get is 20. Nevertheless, we still observe
undesired behavior on flat surfaces: vertices in flat areas still slide
during smoothing. Even though this last formulation generally re-
duces this problem, we may want to keep a flat area intact. The
next section tackles this problem with a new approach.

5 Curvature flow for noise removal
In terms of differential equations, diffusion is a close relative of
curvature flow. In this section, we first explore the advantages of
using curvature flow over diffusion, and then propose an efficient
algorithm for noise removal using curvature flow.

5.1 Diffusion vs. curvature flow

The Laplacian of the surface at a vertex has both normal and tan-
gential components. Even if the surface is locally flat, the Lapla-
cian approximation will rarely be the zero vector [KCVS98]. This
introduces undesirable drifting over the surface, depending on the
parameterization we assume. We in effect fair the parameterization
of the surface as well as the shape itself (see Figure 10(b)).

We would prefer to have a noise removal procedure that does not
depend on the parameterization. It should use only intrinsic prop-
erties of the surface. This is precisely what curvature flow does.
Curvature flow smoothes the surface by moving along the surface
normal n with a speed equal to the mean curvature κ:

∂xi

∂t
=−κi ni. (12)

(a) (b) (c) (d)
Figure 7: Application of operators to a mesh: (a) mesh with differ-
ent sampling rates, (b) the umbrella operator creates a significant
distortion of the shape, but (c) with the scale-dependent umbrella
operator, the same amount of smoothing does not create distortion
or artifacts, almost like (d) when curvature flow is used. The small
features such as the nose are smoothed but stay in place.

Other curvatures can of course be used, but we will stick to the
mean curvature: κ = (κ1+ κ2)/2 in this paper. Using this proce-
dure, a sphere with different sampling rates should stay spherical
under curvature flow as the curvature is constant. And we should
also not get any vertex “sliding” when an area is flat as the mean
curvature is then zero.

There are already different approaches using curvature
flow [Set96], and even mixing both curvature flow and volume
preservation [DCG98] to smooth object appearance, but mainly in
the context of level-set methods. They are not usable on a mesh as
is. Next, we show how to approximate curvature consistently on a
mesh and how to implement this curvature flow process with our
implicit integration for efficient computations.

5.2 Curvature normal calculation

It seems that all the formulations so far have a non-zero tangential
component on the surface. This means that even if the surface is flat
around a vertex, it may move anyway. For curvature flow, we don’t
want this behavior. A good idea is to check the divergence of the
normal vector, as it is the definition of mean curvature (κ = div n):
if all the normals of the faces around a vertex are the same, this
vertex should not move then (zero curvature). Having this in mind,
we have selected the following differential geometry definition of
the curvature normal κ n:

∇ A

2 A
= κ n (13)

where A is the area of a small region around the point P where
the curvature is needed, and ∇ is the derivative with respect to the
(x,y,z) coordinates of P. With this definition, we will have the zero
vector for a flat area. As proven in Figure 8, we see that moving the
center vertex xi on a flat surface does not change the surface area.
On the other hand, moving it above or below the plane will always
increase the local area. Hence, we have the desired property of a
null area gradient for a locally flat surface, whatever the valence,
the aspect ratio of the adjacent faces, or the edge lengths around the
vertex.

x

ix

ix

ixi

Figure 8: The area around a vertex xi lying in the same plane as
its 1-ring neighbors does not change if the vertex moves within the
plane, and can only increase otherwise. Being a local minimum,
it thus proves that the derivative of the area with respect to the
position of xi is zero for flat regions.

To derive the discrete version of this curvature normal, we se-
lect the smallest area around a vertex xi that we can get, namely the

area of all the triangles of the 1-ring neighbors as sketched in Fig-
ure 9(a). Note that this area A uses cross products of adjacent edges,
and thus implicitly contains information on local normal vectors.
The complete derivation from the continuous formulation to the dis-
crete case is shown in Appendix B. We find the following discrete
expression through basic differentiation:

−κ n=
1

4 A
∑

j∈N1(i)

(cot α j+cot β j)(x j−xi) (14)

where α j and β j are the two angles opposite to the edge in the
two triangles having the edge ei j in common (as depicted in Fig-
ure 9(b)), and A is the sum of the areas of the triangles having xi as
a common vertex.

X

ij

j

e

Xi

Aβ

j

j

j+1

j
j

j

α
A

β
j-1

X

i

α

X

X

X

(a) (b)

Figure 9: A vertex xi and its adjacent faces (a), and one term of its
curvature normal formula (b).

Note the interesting similarity with [PP93]. We obtain almost
the same equation, but with a completely different derivation than
theirs, which was using energies of linear maps. The same remark
stands for [DCDS97] since they also find the same kind of expres-
sion as Equ. (14) for their functional, but using this time piecewise
linear harmonic functions.

5.3 Boundaries

For non-closed surfaces or surfaces with holes, we can define a spe-
cial treatment for vertices on boundaries. The notion of mean cur-
vature does not make sense for such vertices. Instead, we would
like to smooth the boundary, so that the shape of the hole itself
gets rounder and rounder as iterations go. We can then use for in-
stance Equ. (11) restricted to the two immediate neighbors which
will smooth the boundary curve itself.

Another possible way is to create a virtual vertex, stored but not
displayed, initially placed at the barycenter of all the vertices placed
on a closed boundary. A set of faces adjacent to this vertex and con-
necting the boundary vertices one after the other are also virtually
created. We can then use the basic algorithm without any special
treatment for the boundary as now, each vertex has a closed area
around it.

5.4 Implementation

Similarly to Section 4, we have a non-linear expression defining
the curvature normal. We can however proceed in exactly the same
way, as the changes induced in a time step will be small. We simply
compute the non-zero coefficients of the matrix I−λdtK, where K
represents the matrix of the curvature normals. We then succes-
sively solve the following linear system:

(I−λdtK) Xn+1 = Xn.

We can use preconditioning or constraints, just as before as every-
thing is basically the same except for the local approximation of
the speed of smoothing. As shown on Figure 10, a sphere with dif-
ferent triangle sizes will remain the same sphere thanks to both the
curvature flow and the volume preservation technique.

In order for the algorithm to be robust, an important test must be
performed while the matrix K is computed: if we encounter a face
of zero area, we must skip it. As we divide by the area of the face,
degenerate triangles are to be treated specially. Mesh decimation
to eliminate all degenerate triangles can also be used as suggested
in [PP93].

(a) (b) (c) (d)

Figure 10: Smoothing of spheres: (a) The original mesh containing
two different discretization rates. (b) Smoothing with the umbrella
operator introduces sliding of the mesh and unnatural deformation,
which is largely attenuated when (c) the scale-dependent version is
used, while (d) curvature flow maintains the sphere exactly.

5.5 Normalized version of the curvature operator

We can now write the equivalent of the umbrella operator, but for
the curvature normal. Since the new formulation has nice proper-
ties, we can create a normalized version that could be used in an
explicit integration for quick smoothing. The normalization will
bring the eigenvalues back in [−1,0] so that a time step up to 1 can
be used in explicit integration methods. Its expression is simply:

(κ n)normalized =
1

∑ j(cot αl
j+cot αr

j)
∑

j

(cot αl
j+cot αr

j)(Xi−X j)

5.6 Comparison of results

Figures 7, 10, and 11 compare the different operators we have used:

• For significant fairing, the umbrella operator changes the
shape of the object substantially: triangles drift over the sur-
face and tend to be uniformly distributed with an equal size.

• The scale-dependent umbrella operator allows the shape to
stay closer to the original shape even after significant smooth-
ing, and almost keeps the original distribution of triangle
sizes.

• Finally, the curvature flow just described achieves the best
smoothing with respect to the shape, as no drift happens and
only geometric properties are used to define the motion.

Knowing these properties, the user can select the type of smoothing
that fits best with the type of fairing that is desired. Diffusion will
smooth the shape along with the parameterization, resulting in a
more regular triangulation. If only the shape is to be affected, then
the curvature operator should be used.

(a) (b) (c) (d)

Figure 11: Significant smoothing of a dragon: (a) original mesh,
(b) implicit fairing using the umbrella operator, (c) using the scale-
dependent umbrella operator, and (d) using curvature flow.

6 Discussion and conclusion
In this paper, we have presented a comprehensive set of tools for
mesh fairing. We first presented an implicit fairing method, us-
ing implicit integration of a diffusion process that allows for both
efficiency, quality, and stability. Additionally we guarantee volume
preservation during smoothing. Since the umbrella operator used in
the literature appears to have serious drawbacks, we defined a new
scale-dependent umbrella operator to overcome undesired effects
such as large distortions on irregular meshes. Finally, since using
a diffusion process leads always to vertex “sliding” on the mesh,

we developed a curvature flow process. The same implicit inte-
gration is used for this new operator that now offers a smoothing
only depending on intrinsic geometric properties, without sliding
on flat areas and with preserved curvature for constant curvature ar-
eas. The user can make use of all these different tools according to
the mesh to be smoothed.

We believe the computational time for this approach can still
be improved upon. We expect that multigrid preconditioning for
the PBCG in the case of the scale-dependent operator for diffu-
sion and for curvature flow would speed up the integration process.
This multigrid aspect of mesh fairing has already been mentioned
in [KCVS98], and could be easily extended to our method. Like-
wise, subdivision techniques can be directly incorporated into our
method to refine or simplify regions according to curvature for in-
stance. Other curvature flows, for example along the principal cur-
vature directions, are also worth studying.

Acknowledgements

The original 3D photography mesh was provided by Jean-Yves
Bouguet, the mannequin head and spock dataset by Hugues Hoppe,
the bunny and buddha models by Stanford University, and addi-
tional test meshes by Cyberware. The authors would like to thank
John T. Reese for the initial implementation and the dragon mesh,
and Konrad Polthier for interesting comments. This work was sup-
ported by the Academic Strategic Alliances Program of the Accel-
erated Strategic Computing Initiative (ASCI/ASAP) under subcon-
tract B341492 of DOE contract W-7405-ENG-48. Additional sup-
port was provided by NSF (ACI-9624957, ACI-9721349, DMS-
9874082, and ASC-89-20219 (STC for Computer Graphics and
Scientific Visualization)), Alias|wavefront and through a Packard
Fellowship.

References

[Bar89] Alan H. Barr. The Einstein Summation Notation: Introduction and Exten-

sions. In SIGGRAPH 89 Course notes #30 on Topics in Physically-Based

Modeling, pages J1–J12, 1989.

[BW98] David Baraff and Andrew Witkin. Large Steps in Cloth Simulation. In
SIGGRAPH 98 Conference Proceedings, pages 43–54, July 1998.

[CL96] Brian Curless and Marc Levoy. A Volumetric Method for Building Com-

plex Models from Range Images. In SIGGRAPH 96 Conference Proceed-

ings, pages 303–312, 1996.

[DCDS97] Tom Duchamp, Andrew Certain, Tony DeRose, and Werner Stuetzle. Hi-
erarchical computation of PL harmonic embeddings. Technical report,

University of Washington, July 1997.

[DCG98] Mathieu Desbrun and Marie-Paule Cani-Gascuel. Active Implicit Sur-
face for Computer Animation. In Graphics Interface (GI’98) Proceedings,
pages 143–150, Vancouver, Canada, 1998.

[For88] Bengt Fornberg. Generation of Finite Difference Formulas on Arbitrarily

Spaced Grids. Math. Comput., 51:699–706, 1988.

[Fuj95] Koji Fujiwara. Eigenvalues of Laplacians on a closed riemannian manifold

and its nets. In Proceedings of AMS 123, pages 2585–2594, 1995.

[GSS99] Igor Guskov, Wim Sweldens, and Peter Schröder. Multiresolution Signal
Processing for Meshes. In SIGGRAPH 99 Conference Proceedings, 1999

[KCVS98] Leif Kobbelt, Swen Campagna, Jens Vorsatz, and Hans-Peter Seidel. In-
teractive Multi-Resolution Modeling on Arbitrary Meshes. In SIGGRAPH

98 Conference Proceedings, pages 105–114, July 1998.

[Kob97] Leif Kobbelt. Discrete Fairing. In Proceedings of the Seventh IMA Con-

ference on the Mathematics of Surfaces ’97, pages 101–131, 1997.

[LK84] S. Lien and J. Kajiya. A Symbolic Method for Calculating the Integral
Properties of Arbitrary Nonconvex Polyhedra. IEEE CG&A, 4(9), October

1984.

[Mil95] Roger B. Milne. An Adaptive Level-Set Method. PhD Thesis, University
of California, Berkeley, December 1995.

[PP93] Ulrich Pinkall and Konrad Polthier. Computing Discrete Minimal Surfaces
and Their Conjugates. Experimental Mathematics, 2(1):15–36, 1993.

[PTVF92] William Press, Saul Teukolsky, William Vetterling, and Brian Flannery.
Numerical Recipes in C, second edition. Cambridge University Press, New

York, USA, 1992.

[Set96] James A. Sethian. Level-Set Methods: Evolving Interfaces in Geome-

try, Fluid Dynamics, Computer Vision, and Material Science. Cambridge

Monographs on Applied and Computational Mathematics, 1996.

[Tau95] Gabriel Taubin. A Signal Processing Approach to Fair Surface Design. In

SIGGRAPH 95 Conference Proceedings, pages 351–358, August 1995.

[Ter88] Demetri Terzopoulos. The Computation of Visible-Surface Representa-
tions. IEEE Transactions on Pattern Analysis and Machine Intelligence,
10(4), July 1988.

(a) (b) (c) (d)

Figure 12: Faces: (a) The original decimated Spock mesh has 12,000 vertices. (b) We linearly oversampled this initial mesh (every visi-
ble triangle on (a) was subdivided in 16 coplanar smaller ones) and applied the scale-dependent umbrella operator, observing significant
smoothing. One integration step was used, λdt = 10, converging in 12 iterations of the PBCG. Similar results were achieved using the
curvature operator. (c) curvature plot for the mannequin head (obtained using our curvature operator), (d) curvature plot of the same mesh
after a significant implicit integration of curvature flow (pseudo-colors).

[WW94] Willian Welch and Andrew Witkin. Free-form shape design using triangu-
lated surfaces. In SIGGRAPH 94 Conference Proceedings, pages 247–256,

July 1994.

Appendix

A Preconditioned Bi-Conjugate Gradient
In this section, we enumerate the different implementation choices
we made for the PBCG linear solver.

A.1 Preconditioning
A good preconditioning, and particularly a multigrid precondition-
ing, can drastically improve the convergence rate of conjugate gra-
dient solver. The umbrella operator (7) has all its eigenvalues in
[−1,0]: in turn, the matrix A is always well conditioned for typical
values of λdt. In practice, the simpler the conditioning the better.

In our examples, we used the usual diagonal preconditioner Ã with:

Ãii = 1/Aii, which provides a significant speedup with almost no
overhead.

A.2 Convergence criterion
Different criteria can be used to test whether or not further iterations
are needed to get a more accurate solution of the linear system.
We opted for the following stopping criterion after several tests:
||AXn+1−Xn|| < ε||Xn||, where ||.|| can be either the L2 norm, or, if
high accuracy is needed, the L∞ norm.

A.3 Memory requirements
An interesting remark is that we don’t even need to store the matrix
A in a dedicated data structure. The mesh itself provides a sparse
matrix representation, as the vertex xi and its neighbors are the only
non-zero locations in A for row i. Computations can thus be carried
directly within the mesh structure. Computing AX can be imple-
mented by gathering values from the 1-ring neighbors of each ver-
tex, while AT X can be achieved by “shooting” a value to the 1-ring
neighbors.

With these simple setups, we obtain an efficient linear solver for
the implicit integration described in Section 2.

B Curvature normal approximation
From the continuous definition of the curvature normal (Equ. (13)),
we must derive a discrete formulation when the surface is given as
a mesh. Let’s consider a point P of the mesh. Its neighbors, in
counterclockwise order around P, are the points {Qn}. An adjacent

face is then of the form P,Qn,Qn+1. The edge vector PQn is the
difference between Qn and P:

PQn = Qn−P.

Now, we take the neighboring area as being the union of the
adjacent faces. The total adjacent area A is then equal to the sum
of every adjacent face’s area: A = ∑n An, the area of each adjacent
face being: An =

1
2
||PQn×PQn+1||. So, using Einstein summation

notation [Bar89], we have:

A
2
n =

1

4
εi jk PQn

j PQn+1
k εilm PQn

l PQn+1
m ,

where εi jk is the permutation symbol. Using the Kronecker delta

δi j, and using ∂Pi

∂Pq
= δiq as well as ∇ = ∂/∂Pq, we derive:

∂A2
i

∂Pq
= 2 Ai

∂Ai

∂Pq

=
1

4
εi jkεilm

[

−δjq PQn+1
k PQn

l PQn+1
m −δkq PQn

j PQn
l PQn+1

m

−δlq PQn
j PQn+1

k PQn+1
m −δmq PQn

j PQn+1
k PQn+1

l

]

Using the ε-δ rule stating εi jkεilm = δjlδkm−δjmδkl , we obtain:

∂A2
i

∂Pq

=
1

2

[

−||PQn+1||2 PQn+(PQn ·PQn+1) PQn+1

−||PQn||2 PQn+1+(PQn+1 ·PQn) PQn
]

q

=
1

2

[

(PQn+1 ·Qn+1Qn) PQn+(PQn ·QnQn+1) PQn+1
]

q
.

Consequently:

∂Ai

∂P
=

1

4 Ai

(

(PQn+1 ·Qn+1Qn) PQn+(PQn ·QnQn+1) PQn+1
)

.

(15)
Using Equ. (13), we find:

∇ A

2 A
=

1

2 A
∑

i

∂Ai

∂P
(16)

From equations (15) and (16), we find the equations used in Sec-

tion 5.2 since the dot product of PQn by QnQn+1 divided by their
cross product simplifies into a cotangent.

