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Implicit feedback policies 
for COVID‑19: why “zero‑COVID” 
policies remain elusive
Ali Jadbabaie 1,2, Arnab Sarker 1* & Devavrat Shah 1,3

Successful epidemic modeling requires understanding the implicit feedback control strategies used 
by populations to modulate the spread of contagion. While such strategies can be replicated with 
intricate modeling assumptions, here we propose a simple model where infection dynamics are 
described by a three parameter feedback policy. Rather than model individuals as directly controlling 
the contact rate which governs the spread of disease, we model them as controlling the contact 
rate’s derivative, resulting in a dynamic rather than kinematic model. The feedback policy used by 
populations across the United States which best fits observations is proportional-derivative control, 
where learned parameters strongly correlate with observed interventions (e.g., vaccination rates and 
mobility restrictions). However, this results in a non-zero “steady-state” of case counts, implying 
current mitigation strategies cannot eradicate COVID-19. Hence, we suggest making implicit policies 
a function of cumulative cases, resulting in proportional-integral-derivative control with higher 
potential to eliminate COVID-19.

Determining the optimal policy for regulating an epidemic requires assessing complex infection dynamics across 
heterogeneous populations. Due to this complexity, simplified models of epidemic spread are often used in order 
to develop guidelines and understand the impact of policies on the level of infection. Throughout the COVID-
19 pandemic, a wide range of models have been implemented in order to provide forecasts for important time 
series related to the pandemic as well as estimate causal effects of various policies1–6. Such approaches have been 
developed since as early as the 19th century, and have been successfully applied to forecast epidemics such as 
seasonal influenza, smallpox, and H1N17,8.

However, a key distinction between the COVID-19 pandemic and the spread of infectious disease in the 
past is the extent to which populations have reacted to limit the spread of the virus. As cases have surged, gov-
ernment officials have instituted lockdowns and mask mandates, individuals have changed their behavior at 
an unprecedented scale, and the public has received access to mass vaccination. This endogenous response to 
the magnitude of the pandemic is rarely reflected by models developed for previous epidemics, but is critical 
in developing a robust response to COVID-199,10. Even of the models used for forecasting COVID-19 fatalities, 
only one explicitly includes an assumption that policy changes as the state of the pandemic worsens4. That is not 
to say that other models do not account for behavior. Rather, the remaining predictive models which do account 
for behavior treat human intervention as an exogenous variable, observed for example through mobility data 
and the presence of government mandates and vaccinations.

In this work, we identify a parsimonious model for epidemics where the response to the pandemic is encoded 
as a feedback policy which depends on the number of cases observed so far. We assess the validity of the model 
by fitting it to empirical data on COVID-19 case counts, and find that the model fits data well both in and out 
of sample, despite only having three parameters. To develop a behavioral interpretation of the parameters of the 
model, we then compare learned parameters to explicit policy actions taken during the COVID-19 pandemic 
such as mobility restrictions and vaccination rates, which correlate well with the implicit parameters of the feed-
back law that encode the endogenous response of the population. Finally, we consider the long-term implications 
of the model and find that there is no currently implemented implicit policy within the global population that 
fully eliminates COVID-19. As such, we propose modifications to the implicit control which our model suggests 
would have a greater chance of achieving zero weekly COVID-19 cases.
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Model description.  We begin by considering a general model of the growth phase of an epidemic with a 
time-varying growth rate, which we show contains several common epidemic models as special cases. We let 
I(t) represent the number of infections in a population at time t, where t is a discrete time index, and use the 
convention I(0) = 1 . Generically, any epidemic process with time-varying growth rate can be written in the 
following form:

Here, R(t) represents a generic time-varying parameter which indicates the number of infections that stem 
from each infected individual, and η(t) represents noise in the process, which we assume to come from a log-
normal distribution with parameters µ = 0 and σ 2 . This choice of distribution for the noise is fundamental to 
the branching process literature that inspires this type of model and is a natural assumption in this setting11.

In this work, we build upon the aforementioned model and assume individuals control the growth rate using 
a time-varying parameter ρ(t) ≥ 0 which represents the proportion of existing ties that each infected individual 
will add or remove at time t. Mathematically, we assume R(t) = R(0)×

∏

t−1
k=1 ρ(k) , where R(0) is taken to 

be a constant value that represents the initial rate of infection. Hence, the open-loop dynamics of the system 
considered in this work take the form

Although equating ρ(t) = R(t + 1)/R(t) reveals that the models in Eqs. (1) and (2) are equivalent, we note that 
the parameterization of the model in terms of ρ(t) represents a subtle but important distinction from models 
proposed in recent literature: rather than assume the contact rate is a direct function of a population’s interven-
tions, here we make the assumption that individuals are instead controlling the rate at which they increase or 
decrease interactions with one another, resulting in a dynamic as opposed to a kinematic model. In terms of a 
mechanical analogy to a moving car, rather than assuming that individuals dictate control of position through a 
choice of velocity, our model assumes that individuals control their position through acceleration, i.e. by pressing 
on the gas or the brakes. This parameterization allows us to model the reaction of the population in a novel way 
by allowing ρ(t) to be a function of previous case counts, as will be shown in Eq. (4).

Connections to existing epidemic models Because the time series of control parameters ρ(t) is not specified in 
Eq. (2), the model is considered open-loop, and we note that natural selections of ρ(t) lead to common epidemic 
models in the literature. In particular, if ρ(t) = 1 for all t, then the model leads to exponential growth in case 
counts, which is a commonality across the initial stages of many epidemic models12.

If ρ(t) = ρ̄ for all t, where ρ̄ < 1 , then Eq. (2) recovers the form of the Gaussian curve noted in Farr’s law, 
which is a common non-mechanistic approach to prediction of an epidemic7. This model underlies many com-
mon data-driven approaches to epidemic modeling and forecasting, cf.6,13.

Moreover, a detailed connection can be made to the standard SIR model. A specific time-varying choice of ρ(t) 
can recreate the traditional Susceptible-Infected-Recovered (SIR) model as well as its time-varying extensions14. For 
simplicity of exposition, here we consider the most basic SIR model of epidemic spread. One can make similar 
comparisons to variants of the model such as SEIR, SIR with vaccination, or other compartmental models12. 
The SIR model and relevant variants have been used extensively throughout the COVID-19 pandemic, for both 
forecasting and inference of population dynamics (a non-exhaustive list includes1–3,15–17). In discrete time, the 
SIR model consists of the following set of dynamic equations18:

In the model, N represents population size, and S(t), I(t) and R(t) represent the parts of the population that are 
susceptible, infected, and recovered from infection, respectively. In this simplified model, it is assumed that for all 
t, S(t)+ I(t)+ R(t) = N , and we use the convention that at t = 0 we have I(0) = 1,R(0) = 0 , and S(0) = N − 1 . 
The parameters β and γ modulate the dynamics of the system, where β measures the average number of contacts 
each individual in the population has with others, and 1/γ represents the average amount of time that an infec-
tious individual is able to infect others. Such parameters are often allowed to be time-varying, which ultimately 
results in infection dynamics of the form

For any choice of time-varying γ (t) and β(t) , these dynamics are a special case of the model Eq. (2), as we note 
in the following proposition, proved in Online Appendix A.

Proposition 1  There exists a parameterization of the open-loop model in Eq. (2) such that its dynamics are equiva-
lent to the time-varying SIR model in Eq. (3).

(1)I(t + 1) = I(t)×R(t)× η(t).

(2)I(t + 1) = I(t)×R(0)×

t−1
∏

k=1

ρ(k)× η(t).

S(t + 1)− S(t) = −
β

N
S(t)I(t)

I(t + 1)− I(t) =
β

N
S(t)I(t)− γ I(t)

R(t + 1)− R(t) = γ I(t) .

(3)I(t + 1) = I(t)×

[

1− γ (t)+
β(t)

N
S(t)

]

.
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The connection to the SIR model reveals that the model in Eq. (2) provides a novel way to represent how 
individuals react in a pandemic. Specifically, we see that the open-loop model in Eq. (2) does not explicitly assume 
that individuals in a population are adjusting their contact rates or recovery rates. The model assumes that people 
are unaware of the cardinal values that govern the physics of infection dynamics, given by a particular value of 
R(t) , and instead control the relative proportion of ties they add or remove from their network, which would 
be equivalent to R(t)/R(t − 1).

A new model of implicit feedback While there are many possible ways in which feedback can be incorporated 
into the model in Eq. (2), we find that observed COVID-19 case counts are consistent with a particular type of 
feedback control law known as a proportional-derivative (PD) controller. Specifically, the data is consistent with 
a control parameter ρ(t) which takes the following form:

where log I(t) represents the proportional term (P) and log I(t)− log I(t − 1)− logR(0) represents the deriva-
tive term (D). This particular form for the control input is selected for the following reasons. First, the model 
appears to have the best performance compared to other feedback models (see “Comparisons to other feedback 
models” section). Second, the parameterization of the control input is inspired by a long history of research in 
control engineering which studies the behaviors of proportional (P), proportional-derivative (PD), and propor-
tional-integral-derivative (PID) control. This allows us to compare the model in Eq. (4) to other well-known 
feedback policies. Moreover, the model is parsimonious in that it only relies on three parameters and these three 
parameters have a simple behavioral interpretation.

Behaviorally, the first term in the sum of Eq. (4) implies that individuals in a population observe and react to 
case counts through log I(t) . If β1 < 0 , which is the case in observed data, then larger magnitude of cases result 
in more control actions, for example through increased social distancing or mask adoption. Similarly, individu-
als react to the recent change in cases relative to the reproductive rate, and when β2 < 0 , which is also the case 
in observed data, then individuals increase the control action if cases are rising quickly. Finally, β3 represents a 
constant term which indicates an inherent level of reaction by the population. While these parameters need not 
be related, we note empirically that they tend to be correlated with one another.

It is worth noting that if β1 = β2 = β3 = 0 , then ρ(k) = 1 in this uncontrolled case and we recover a simple 
model of exponential growth. Moreover, as discussed in Online Appendix A, this assumption can be viewed as 
creating a specific time-varying structure for the time-varying SIR model in Eq. (3). Using state feedback allows 
us to write the model into the single closed loop dynamical system as follows.

Let X(t) ∈ R
3 represent the state of a dynamical system where X1(t) = log I(t − 1) , X2(t) = log I(t) , and 

X3(t) represents the cumulative control taken so far, i.e. X3(t) =
∑

t−1
k=1 log ρ(k) . The closed loop dynamics of 

the system Eq. (2) under the control policy Eq. (4) can be shown algebraically to be summarized by the follow-
ing affine dynamical system:

Here,

The details of this derivation are presented in Online Appendix B. Given the assumption that η(t) in Eq. (2) is 
log-normal, we see that η(t) can be modeled as unobserved Gaussian noise with mean 0 and variance σ 2 . This 
closed loop model is extremely simple as it is governed by only three parameters, and can be efficiently learned 
from data19. As our results indicate, the model with the PD controller fits the data surprisingly well, which 
suggests that it succinctly describes existing behavior throughout the pandemic, and the model has the critical 
implication that steady state infections are non-zero.

Summary of results.  With the above model, in comparing to existing data we see that there is a satisfactory 
fit to observed data and that the parameters of the implicit feedback correlate with observed policies. Moreover, 
in our analysis, we find that a major consequence of this model is that weekly cases are never eradicated; rather, 
for most observed learned parameters, weekly cases will stabilize at some non-zero level. This has non-trivial 
policy implications– in order to eradicate COVID-19 sooner rather than later, populations need to introduce 
another policy intervention. For example, by reacting to total case counts since the beginning of the pandemic 
rather than the case counts in the last two weeks.

Fit to data To assess the validity of the proposed model, we fit Eq. (5) to observed case counts during the 
COVID-19 pandemic. Our results indicate the model fits to empirical data surprisingly well both in and out of 
sample, despite having only 3 learned parameters, which suggests that the model captures the essence of popula-
tion dynamics in reaction to COVID-19 case counts. As a means of comparison, we assess the performance of our 
model against the ensemble method used by the CDC, which aggregates predictions from at least 30 state of the 
art forecasting models each week to provide predictions of COVID-19 case counts5. When comparing the simple 
3 parameter model to ensemble forecasts at the state level, we find that the prediction performance is comparable 
for 1, 3, and 4 week ahead forecasts. Moreover, our results suggest the model in Eq. (5) becomes competitive in 
longer term forecasting, which is consistent with prior results on the use of feedback in forecasting17. We also 
show that other similar feedback policies do not fit as well to the data as the simple policy suggested in Eq. (4). 

(4)
log ρ(t) = β1 × log I(t)

+ β2 × (log I(t)− log I(t − 1)− logR(0))+ β3 ,

(5)X(t + 1) = QX(t)+ c + η(t) .

Q =

[

0 1 0
0 1 1

−β2 β1 + β2 1

]

, and c =

[

0
logR(0)

−β2 logR(0)+ β3

]

.
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This, combined with the comparison to observed policies noted below, supports the claim that populations 
implicitly perform PD control.

Comparison between implicit and explicit policies In regressing parameters of the implicit control against 
explicit policies taken by different populations across the globe, we find significant correlations between the 
β1 and β2 parameters when compared to mobility data as well as levels of natural immunity measured by the 
percentage of the population which has had a confirmed positive COVID-19 test. This relationship between 
parameters of the model and observed policies taken by populations reinforces the validity of the model and 
also suggests ways in which the effect of the pandemic may be mitigated which are consistent with the prevailing 
public health guidance in the United States.

Difficulty of eradication and proposed modifications We show that there is no selection of β1, β2 , and β3 that 
has been implemented by states which would result in zero weekly cases. As a result, in order to fully eliminate 
the COVID-19 pandemic, populations must alter their implicit strategies and deviate from the dynamical model 
in Eq. (5). This result is consistent with previous results on the fragility of non-pharmaceutical interventions, 
which suggests that even small measurement errors in the timing of a strategy can produce large increases in case 
counts16. Our results expand on this prior work by incorporating recent data, suggesting that even pharmaceuti-
cal interventions such as vaccinations are currently insufficient to eradicate new COVID-19 cases. Further, the 
results presented here are empirical in nature, and highlight properties of implemented policies.

We conclude by presenting an example of a policy which does result in the eradication of COVID-19 cases 
in theory, namely a proportional-integral-derivative (PID) control. Although our data suggests that no state or 
country currently implements an implicit policy with PID control, we provide steps which suggest a time-varying 
policy that would replicate PID control. Our results suggest that by increasing the intensity of certain interven-
tions such as vaccination rates by an order of magnitude, COVID-19 cases can be eradicated.

Data
The data used in order to learn the parameters of the model is taken from Johns Hopkins20. In preprocessing the 
data, we assume each time index t represents a full week to remove weekly seasonality. The dataset provides time 
series of case data in each state of the United States, as well as for 110 countries, which we aggregate weekly to fit 
the model in Eq. (5). We also use this data to compute estimates of naturalized immunity, by taking the ratio of 
confirmed positive tests and each region’s population to get a percentage of individuals who have had COVID-19.

In order to compare the learned parameters to observed policies, we also use data from Google21, which 
compares aggregate mobility trends across individual states and countries compared to pre-pandemic levels.

Methods
To learn the parameters of the implicit control, we focus on identifying the parameters β1 , β2 , and β3 from Eq. 
(4). To do so, we first infer each log ρ(t) from future time steps, as Eq. (2) yields:

Hence, because log η(t) is mean-zero, we estimate

We estimate R(0) to be equal to 2.522, and hence we are able to infer the values of the dependent variable log ρ(t).
We then perform a least-squares regression to determine the coefficients β1 , β2 , and β3 in Eq. (4), where 

the exogenous variables are computed from time series data ( log I(t) , log I(t)− log I(t − 1)− logR(0) , and a 
constant term) and the endogenous variable is given by Eq. (6) above, which we consider a measure of the true 
control taken by a population. This approach of using a least-squares regressions to learn the parameters of a 
dynamical system is common in the literature, and many theoretical results exist showing the consistency and 
non-asymptotic reliability of such methods19.

We also provide statistical evidence which shows that the learned β1 and β2 parameters above strongly corre-
late with policies taken by individuals during the pandemic (See Tables S1, S2, and Fig. S5). To get an estimate of 
policies taken during the pandemic, we process the Google mobility data, which consists of six mobility measures 
given as time series for each geographical region, and take the first two principal components of the data, such 
that for each region we get two time series. We then average this time series for each region over the time period 
that the policies are learned, giving two regressors for each region. Finally, we compute the correlation between 
the β1 and β2 parameter and each mobility metric. We then repeat the same procedure replacing the mobility 
metrics with the normalized number of cumulative cases in each region up to the end of the training period, 
which we use as a proxy for natural immunity.

Results
Fit to observed data.  To validate the model, we fit it to observed case counts throughout the COVID-19 
pandemic to determine if it captures population dynamics. As shown in Fig. 1, the closed-loop model Eq. (5) fits 
the data well on United States national level case counts, and we additionally fit the model to data across various 
times, regions, and forecast targets in order to validate the model. For example, we find that the model tracks 

log ρ(t) = log I(t + 1)− log I(t)−

t−1
∑

k=1

log ρk − logR(0)− log η(t).

(6)

log ρ0 = log I(t + 1)− log I(t)− logR(0)

log ρ(t) = log I(t + 1)− log I(t)−

t−1
∑

k=1

log ρ(k)− logR(0) (t ≥ 1) .
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case counts across all 50 states well (Supplementary Information, Fig. S1). As a quantitative baseline, we consider 
state of the art ensemble forecasts which aggregate predictions from over 30 state of the art prediction models5, 
and find that the fit of the closed loop model is often comparable to the state of the art forecasts (Supplementary 
Information, Table S1). It is worth noting that the ensemble forecasts are used solely as a baseline to validate that 
the model in Eq. (5) fits well to the data. In practice, due to delays in the data collection, the observed values of 
I(t) at time t are often underestimated, resulting in a small drop in predictive performance when only data avail-
able at each particular time is used (Supplementary Information, Fig. S6 ). Although such data fidelity issues can 
be accounted for, we note that the purpose of this work is to highlight the behavioral implications of this model 
as opposed to its predictive value.

In comparing the closed-loop model Eq. (5) to ensemble predictions for forecast targets ranging from 1 to 4 
weeks ahead of the forecasting date, we find that the implicit control approach has comparable R2 scores to the 
ensemble approach for k = 1, 3, and 4, as shown in Fig. S2. Taking the United States national case counts as an 
example, as illustrated in Fig. 1, we find that for the in-sample time series, the model fits the data with an R2 value 
of 0.966, and for the out of sample time series, the R2 value is 0.949. In comparison, the 1 week ahead forecasts 
of state of the art ensemble predictions over the same period is 0.9425.

The learned β1,β2 , and β3 parameters are heterogenous between different geographic regions, and we find 
that different parameters of implicit control result in different implications for the pandemic. The 50 states in 
the US provide insight into the different values of β1 and β2 and their importance in understanding the differ-
ent forms of control that are being implicitly used by different states throughout the pandemic. The learned β1 
and β2 parameters from each of the 50 states are shown in Fig. 2, and it is clear that there is heterogeneity in the 
learned values.

The differences in these learned values are significant as far as their effects on prediction, as we can not simply 
take one state’s parameters and use this information to predict for a different state (Fig. 3). While there are clusters 
of states with similar parameters, it is clear that the specific values of parameters is still important in terms of 
generating valid predictions and explaining behavior.

The learned β1 , β2 , and β3 parameters can also be used in order to understand the heterogeneity in each state’s 
implicit control policies. When the matrix Q is Hurwitz (has spectral radius at most 1) in Eq. (5), we can compute 
the steady state number of cases limt→∞ X2(t) . We report the per capita results in Fig. 4. This steady state value 
provides insight on how different states handled the pandemic in terms of the ability to efficiently bring case 
counts towards 0. In particular, larger steady state values seem to suggest relaxed policies in controlling pandemic.

It is worth noting that the model captures a compounded impact of government policies, population behav-
ior and other circumstances (e.g. weather, industry, etc.). However, it is a definitive way to “evaluate” the com-
pounded effect across states which may be of interest in its own right.

Relationship to observed policies.  Our results indicate that both β1 and β2 in Eq. (4) correlate with 
observed policies taken throughout the pandemic. In comparing the learned parameters of all 50 states as well as 
110 countries to observed mobility patterns, we find statistically significant correlations (Supplementary Infor-
mation, Table S2). Moreover, we also see significant correlations with respect to the proportion of the population 
that has become immune during the training period. This suggests a relationship between learned parameters 
and the proportion of the population which is no longer susceptible to the disease. In fact, a similar relationship 

Figure 1.   US Case counts as modeled by the dynamical system in Eq. (5). We learn the parameters of the 
control β1 and β2 on the first 30 weeks of data, and then they are held constant for the remainder of the data. 
One week ahead predictions using this method are shown in orange (in-sample) and green (out of sample), 
and the true data is shown in blue. The red line represents a transition to a separate proposed policy which 
incorporates an integral feedback term, as discussed in Rethinking Control for Future Epidemics.
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can be shown between β1 and vaccination rates across the United States; however, the statistical evidence only 
suggests a correlation as the parameters are learned from the initial stages of the pandemic, so a causal relation-
ship can not be made (Supplementary Information, Table S3).

Comparisons to other feedback models.  While the model fits to empirical data suggest that the model 
is consistent with observations, and the parameters do correlate with observed policies, such results cannot 
definitively prove that the model assumptions are representative of reality. Here, we compare our model to other 
plausible hypotheses in order to understand the value and limitations of this simple approach.

Because the results until now have provided one week ahead forecasts, and hence are dependent on most 
recent actual observations, it is also important to compare against a case in which these recent observations are 
estimated. In control theory, an observer is used for this task23. When implementing the system with an observer 
as opposed to true data on the US case counts, we find that our predictions are still very close to when the original 
data is used, with nearly equivalent R2 values (Supplementary Information, Fig. S4).

We also compare this model to a simple, one-dimensional Proportional-Integral-Derivative (PID) controller, 
since PID control is nearly ubiquitous in control applications24. In this comparison, we find that the PID control-
ler requires more data in order to effectively learn appropriate parameters, and that it does not explain the data 

Figure 2.   Coefficients of the implicit control used by the 50 US states. We find that states with low magnitude 
of β2 and high magnitude of β1 have a higher magnitude of steady state cases, highlighting a need for adjusted 
implicit policies in states such as South Dakota, Wyoming, and Nebraska.

Figure 3.   Applying learned parameters across different states. When applying the parameters learned from 
Vermont (VT) data to fit the data from Pennsylvania (PA), we find that the model predictions are drastically 
different. This suggests that variations in the control parameters β1 , β2 , and β3 are meaningful.
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as well as the closed-loop system in Eq. (5) (Supplementary Information, Fig. S3). Hence, although PID control 
is omnipresent in engineering applications, it is not representative of the actual behavior observed throughout 
the pandemic (Figs. 4 and 5).

Finally, we compare against several models for which different sets of regressors are used in estimating 
log ρt , in order to understand the different implications of each approach (Fig. 6). Our results indicate that our 
proposed feedback law in Eq. (4) provides the best explanation of log ρt across the 50 states. It is also important 
to note that the use of 

∑

t

k=1 log I(t) as a regressor for log ρt does not improve prediction performance, and that 
the coefficient of 

∑

t

k=1 log I(t) is never significantly away from 0 across all 50 states and countries considered. 
This observation indicates at least one way in which policy changes can be modified to eradicate COVID-19 

Figure 4.   Computed steady state case counts per capita for each state, based on the learned parameters of the 
implicit control policy. These values have a 0.564 correlation with the actual mean weekly case counts per capita 
in each state (p < 10−4) , supporting the validity of the model Eq. (5) and suggesting particular geographic 
regions to focus on adjusting implicit control.

(a) Simulated policy with control consistent with pop-
ulation behavior (Eq. (4))

(b) Simulated policy with an added integral term
(Eq. (7))

Figure 5.   (a) Different choices of β1 and β2 for the system in Eq. (5). This simulated system begins with an 
initial exponential growth (blue) followed by case counts when the control policy enacted (orange). We find 
that as β1 becomes closer to 0, the system becomes increasingly unstable and prone to exponential growth. As 
β2 decreases away from 0 with fixed β1 , we see that the system becomes more oscillatory and likely to become 
unstable as well. Moreover, across all selection of parameters, even when the system is such that Q is stable, 
we see that the steady state number of cases is non-zero. (b) Adding an integrator term βS

∑t
k=1 X(k) to the 

implementation of the control input log ρt . The simulated system again begins with an initial exponential 
growth (blue) followed by case counts when the control policy enacted (orange). The integral term stabilizes the 
system and brings weekly case counts towards an steady state with no weekly cases, although in practice we find 
that no country has a statistically significant non-zero βS term in its control policy.
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cases, and will be discussed further in Rethinking Control for Future Epidemics where we discuss the policy 
implications of our results.

Properties of the implicit feedback control.  The impact of the parameters which govern the implicit 
feedback control is summarized in Fig. 5a. Figure 5a indicates that there is a complex relationship between the 
values of β1 and β2 and the resulting case counts. Namely, increases in β2 often result in oscillatory behavior, but 
still depend on the value of β1 . These plots reflect that this control strategy results in a constant but non-zero 
steady state of weekly cases. Stated differently, the this approach suggests that behavior eventually results in an 
instantaneous reproductive rate of 1. This reinforces that the system is sensitive to the selection of β1 and β2 , and 
our results indicate that β1 and β2 can be learned from data and fit the data surprisingly well (Fig. 1).

Rethinking control for future epidemics.  Principles of control dictate that when Eq. (2) has a multipli-
cative factor of R(0) > 1 , the system generated when taking logarithms of Eq. (2) can be driven to 0 weekly cases 
using a feedback law which includes an integral term. That is, rather than the system dynamics being governed 
by the form of log ρ(t) described in Eq. (4), a suitable control would take the form

where 
∑

t

k=1 log I(t) represents an integral feedback control. On synthetic data, the effect of this integrator term 
βS

∑

t

k=1 log I(t) is clear, as it drives weekly case counts to 0 (Fig. 5b). This additional term forces the weekly 
reaction of the community to the pandemic to go from being a proportional derivative (PD) control in Eq. (4) 
to a proportional-integral-derivative (PID) control, which provides the necessary integration of error which 
eventually results in a steady state of 0 weekly cases.

Key policy implication Ultimately, this suggests that the cumulative costs of the pandemic should be empha-
sized, even when the current state of the pandemic has a low number of cases. When the implemented control 
has little memory of the past, we can not expect cases to decay towards 0. The overall policy implication here is 
implicit, rather than explicit, in the sense that the current policy interventions being used, such as stay at home 
orders, mask mandates, and vaccination development, are still suggested by this model. Rather than implement-
ing these policies as a function of recent cases, the model suggests they should be implemented and intensified 
according to cumulative case counts. Moreover, because the suggestion is implicit in behavior, the model also 

(7)

log ρ(t) = β1 × log I(t)

+ β2 × (log I(t)− log I(t − 1)− logR(0))

+ β3 + βS ×

t
∑

k=1

log I(t) ,

Figure 6.   Boxplot of R2 scores of the 50 US states when different regressors are used to determine log ρt . We 
find that the choice of regressors in Eq. (4) provides the best fit to the data overall, suggesting that the three 
parameter control input fits sufficiently well across heterogenous regions. Moreover, including a regression term 
on 

∑t
k=1 log I(t) , as is proposed in Eq. (7) does not result in an improved fit to the data, suggesting that this 

particular policy which would eradicate COVID-19 cases is not being implemented by populations.
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calls for individuals in a population to adopt a slightly different latent approach that reduces contacts as a func-
tion of cumulative case counts as opposed to recent ones.

While there are many ways integral feedback can be implemented in practice, we highlight one possible policy 
which can be taken by adapting the existing policy in Eq. (4) using time-varying parameters. In Fig. 7, we show 
that the integral policy suggested Fig. 1 can be replicated by allowing β1 and β2 to be time-varying. Moreover, 
since we have shown that β1 and β2 relate linearly to observed policies such as vaccination rates and mobility 
above (Supplementary Information, Fig. S5), this suggests that using time-varying policies can recreate an inte-
gral feedback policy. Specifically, in the United States we find that β1 relates collinearly with vaccination rates, 
and that β2 related collinearly with percentage of time individuals spend at home. Using these policy levers in a 
way that is consistent with Fig. 7 would effectively replicate an integral feedback policy over time. Because the 
values of β1 in Fig. 7 are approximately ten times larger in magnitude than those learned across the 50 states, the 
analysis suggest that any appropriate policy would require that interventions would need to be increased by an 
order of magnitude in order to eradicate COVID-19 cases.

Discussion
We provide a dynamical model to represent the trajectory of cases in an epidemic, and show that COVID-19 
cases are well explained by a control strategy which only depends on three parameters. The result is based on a 
robust estimation procedure, and all learned parameters are non-zero in a statistically significant sense.

The model takes an approach which is dynamic rather than kinematic. That is, we assume that individuals 
only control the rate at which they increase or decrease contacts with one another, as opposed to controlling 
the number of contacts with one another at any given time. This approach is significant in applications such as 
robotics25, and ultimately suggests that there is an inertia individuals face in reacting to the current state of an 
epidemic. While a limitation of the simplified model is that it does not capture subtleties in disease transmission 
such as recovery times as well as classical models, we note that the model is sufficient to explain variation in 
the data and provides a rigorous data-driven approach to estimation. We believe such simplifying assumptions 
have value in epidemic modeling, though we hope in future work to provide a robust comparison to other, more 
complex mechanistic feedback models to determine the significance of this simplicity.

Our results indicate that the implicit feedback control policy used by individuals that best fits the observed 
data is that of a proportional-derivative (PD) control. That is, the magnitude of an individual’s reaction to the 
progress of the epidemic is proportional to both the observed number of cases and the weekly rate of change of 
cases. While the description of the PD control is implicit, we find that the parameters of the control correlate 
strongly with explicit control measures such as vaccination rates and mobility restrictions. As such, in future 
work we would like to further quantify and establish a causal link between explicit and implicit strategies for 
infectious disease mitigation. Ultimately, these initial results reinforce the validity of the closed-loop model and 
suggests possible mechanisms for improved policy design.

Specifically, we propose the modification of the control strategy to be a proportional-integral-derivative (PID) 
control, as opposed to a PD control. In such a strategy, the magnitude of an individual’s reaction would also 
depend on the cumulative number of cases so far. Such a modification could result in zero weekly COVID-19 
cases, but the data suggests that no region is currently implementing a policy which has a statistically signifi-
cant non-zero integral term in their COVID-19 response. In future work, we hope to assess the feasibility of 
an integral control in the context of infectious disease. Because augmenting the implicit control with a term 
proportional to the sum of previous case counts would eventually eradicate new cases, this suggests that policy 
makers should emphasize the cumulative costs of the pandemic when communicating with the public, even 
when current cases are low.

Figure 7.   Example of recreating the integral feedback policy of the red line in Fig. 1 using time-varying β1 and 
β2 to replicate the effect of an integral feedback term. By steadily increasing vaccination adoption according 
to the blue line presented above, and using stay at home orders to replicate the orange line, policy makers can 
effectively replicate an integral feedback policy.
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Data availibility
Most data used in this article is publicly available, with the exception of SafeGraph mobility data. COVID-19 
time series data is available at https://​github.​com/​CSSEG​ISand​Data/​COVID-​19 for all regions considered in 
this work. For auxiliary data of explicit interventions, vaccination data is available at https://​github.​com/​owid/​
covid-​19-​data and Google mobility data is retrieved from https://​www.​google.​com/​covid​19/​mobil​ity/. Safegraph 
mobility data is available upon request at https://​www.​safeg​raph.​com/​acade​mics.

Code availability
Code needed to reproduce numerical results and figures for this work can be found at https://​github.​com/​arnab​
sarker/​impli​cit-​contr​ol-​epide​mics, which includes the publicly available data used for the study.
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