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Abstract and 12, however,usea spatialdiscretizationbasedon central
differencingwith explicit artificial dissipation,and use a

Improved algorithms for the solution of the time- temporal discretization involving explicit time-marching
dependent Euler equations are presented for unsteady basedon a multi-stageRunge-Kuttatime integration. The
aerodynamicanalysisinvolvingunstructureddynamicmeshes, explicitartificialdissipationusedin such schemestendsto
The improvementshavebeendevelopedrecentlyto the spatial smearshockwavesoverseveralgridcellsand requiresthe
and temporaldiscretizationsused by unstructuredgridflow tuningof free parametersthatscalethe dissipation.Also,the
solvers. The spatial discretizationinvolvesa flux-split explicitRunge-Kuttatime-integrationhas a step size that is
approachwhichis naturallydissipativeand capturesshock limitedby the Courant-Fredricks-Lewy(CFL) conditionto
wavessharplywith at mostone grid pointwithinthe shock verysmallvalues. Consequently,thousands(andoccasionally
structure. The temporaldiscretizationinvolvesan implicit tensof thousands)of timestepsare requiredto obtainsteady-
time-integrationscheme using a Gauss-Setdelrelaxation statesolutions,andthousandsof stepsper cycleof motionare
procedurewhichis computationallyefficientfor eithersteady requiredforunsteadysolutions.Therefore,the purposeof the
or unsteadyflow problems. For example,very large time paperis to reporton improvementsthathavebeendeveloped
stepsmaybe usedfor rapidconvergenceto steadystate,and recentlyto the spatialand temporaldiscretizationsof the
the stepsize for unsteadycasesmaybe selectedfortemporal unstructuredgrid flow solverswhichresolvethe numerical
accuracyrather than for numericalstability. Steady and issues describedabove. The spatial discretizationnow
unsteadyflowresultsare presentedforthe NACA0012airfoil involvesa so-calledflux-splitapproach,whichis similarto
to demonstrateapplicationsof the new Eulersolvers. The discretizationspresentedin Refs. 10, 13, and 14 basedon
unsteady results were obtained for the airfoil pitching either the flux-vectorsplitting(FVS) of van Leer15 or the
harmonicallyabout the quarter chord. The resulting flux-differencesplitting(FDS) of Roe.16 These flux-split
instantaneouspressuredistributionsand lift and moment discretlzationsaccount for the local wave-propagation
coefficientsduring a cycle of motioncomparewell with characteristicsof the flow and they captureshockwaves
experimentaldata. The paperpresentsa descriptionof the sharply with at most one grid point within the shock
Eulersolversalongwithresultsandcomparisonswhichassess structure. A furtheradvantageis that these discretizations
the capability, are naturallydissipativeand consequentlydo not require

additionalartificialdissipationterms or the adjustmentof
free parametersto controlthe dissipation.Furthermore,the

Introduction temporaldiscretizationhasbeenchangedto an implicittime-
integration scheme involving a Gauss-Seidel relaxation

Considerableprogresshas beenmadeover the past two proceduresimilarto discretizationspresentedin Refs. 17 and
decadeson developingcomputationalfluid dynamics(CFD) 18. This relaxationschemeis unconditionallystableandthus
methodsfor aerodynamicanalysis.l,2RecentworkinCFD has allowsthe selectionof the stepsize basedon the temporal
focusedprimarilyon developingalgorithmsforthe solutionof accuracydictatedby the problembeingconsidered,ratherthan
the Euler and Navier-Stokesequations. For unsteady on the numericalstabilityof the algorithm. Consequently,
aerodynamicandaeroelasticanalysis,thesemethodsgenerally very largetime stepsmaybe usedfor rapidconvergenceto
requirethat the meshmoveto conformto the instantaneous steadystate,andan appropriatestepsizemaybe selectedfor
positionof the movingordeformingbody underconsideration, unsteadycases, independentof numericalstabilityissues.
Manyof themethodsthatarecurrentlybeingdevelopedassume Steadyandunsteadyresultsare presentedfor the NACA0012
that the mesh movesrigidlyor that the meshshearsas the airfoil to demonstrateapplicationsof the new Eulersolvers.
body deforms. These assumptionsconsequentlylimit the The unsteady flow results were obtained for the airfoil
applicabilityof the proceduresto rigid-bodymotionsor pitchingharmonicallyaboutthe quarterchord. The paper
small-amplitudedeformations. Furthermore,these methods presentsa descriptionof the Eulersolversalongwithresults
of solutiontypicallyassumethatthecomputationalgridhas an andcomparisonswhichassessthecapabilily.
underlying geometrical structure. As an alternative,

• algorithmshave beendevelopedrecentlywhichmakeuseof
unstructuredgrids. 3-12 In twodimensionsthesegridsare ._;I[LP,L__J_
typicallymadeup of triangles,andin threedimensionsthey
consistof an assemblageof tetrahedra.Theunstructuredgrid Inthepresentstudy,the flowis assumedto begovernedby
methodshavedistinctadvantagesoverstructuredgridmethods the two-dimensionaltime-dependentEuler equationswhich
in that they can easily treat the mostcomplexof geometric maybe writtenin integralformas
configurationsas well as flow conditions,and that the

unstructuredgridcan be movedto treatrealisticmotionsand "_tJ'J"Qdxdy +fa(Fdy -Gdx )= 0 (1)structuraldeformationsof these configurations.10"12 n
wherethe vectorof conservedvariablesQ andthe convective

The resultspresentedby the authorin Refs. 11 and 12 fluxesF andG aregivenby
demonstratedthat (1) the methods producesolutionsof
comparableaccuracyto resultsobtainedusingstructuredgrid

methodologycan easilyanalyzecomplexaircraftgeometries
undergoingstructuraldeformation.12 Themethodsof Refs.11 Q = (2a)
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pU 1 and U' and_" are the correspondingcontravariantvelocities
F pUu+p !. --_=1 pUv { (2b) U' = (u-x,)-(v-y,)_s (8a)

[(e + p)U + x,pJ

G = pVu z_s z_s

| The flux vector H is split in a one-dimensionaJ fashion into
pVv+p

[(€ +p)V +y,pJ
forward (H+) andbackward(H-) vectorsfor {q < a as

The contravariantvelocitiesU andV aredefinedby
H = H++ H" (9)

U=u-x, V=v-yt (3)
where

wherext andYtare the gridspeedsinthe x andy directions, Ih_=, 1

respectively,andthe pressurep is givenby the equationof "h*=,,.[(-U-l-2a)/y/+u]'/statefor a perfectgas H* = L
_ , I I (to)

i

P=(7 1) [e-_p(u =*v2)] (4) [h=.nry j

The aboveequationshave been nondimensionalizedby the

freestreamdensityp. andthefreestreamspeedofsounda.. and h*,_ = :l:_a(U"f'a)= (11a)

Flux-Vector Solittina ± = h*=,=[-(7- 1)_2 + 2(y- 1)U'a+ 2a2
7_ -1

The spatialdiscretizationbasedon flux-vectorsplittingis (1 lb)
a cell-centeredschemewherethe flowvariablesare storedat

the centroidof eachtriangleand the controlvolumeis simply +_ +_2 . Ay_y,.._.)(_Uthe triangle itself. The boundaryintegralof Eq. (1) is _"_+(x"_" s
+ 2a)/ 7]

L_S

approximated by using the flux-vector splitting of van
Leer.15 In this methodthe flux vectorsare split intoforward The resultingsplit fluxes are finally rotated back.into the
and backward contributions which are continuously originalcoordinatesystemso that
differentiableevenat sonicandstagnationpoints. The scheme
is derivedas follows. For eachedgeof a giventriangle,the FAy-O_x = T-'[H*(q-)+H-(q.)] (12)
fluxes are first rotated into a locallyCartesiancoordinate

systemx-y with the principaldirectionbeingperpendicular where the notation H+(q") and H-(q+) indicatesthat the
tothe edge. Thefluxinthisdirectionis definedas ±

fluxes H are evaluatedusingupwind-biasedinterpolationsof

l pU [ theprimitivevariablesq. Foragiventrianglej, forexample,

andconsideringthe diagramin Fig. t(a), the upwind-biased

H_s = T(F&y-G_x)= p_T'_+p interpolationforq- alongtheedgebetweentrianglesj andk is

I I ,5, definedby 1
Le_'+p_J q-=qj +T[ (1-4) &_ +(I+K) A.] (13)

where

wherethe transformationmatrixT is givenby &+=qk -qj (14a)

A_ =ql - ql (14b)

As 0 0 0T I 0 Ay -_. 0 In Eqs. (13) and (14), qj and qk are the vectors of
=_s I0 Ax Ay 0 (6) primitive variables at the centroidsof triangles j and k,

Lo 0 0 As respectively,and ql' the vector of primitivevariables at
nodei, isdeterminedbyan averageof theflowvariablesin the

In Eqs.(5) and (6), Ax and&y are the directedlengthsof the trianglessurroundingnodeI. The upwind-biasedinterpolation
edge in the x andy coordinatedirections,respectively,and for q+ alongthisedge is determinedsimilarlyusingthe flow

variablesat centroidsj andk andthe flowvariablesat nodeI.
As2= Ax=+Ay2. Also,_ and _ are the Cartesianvelocity The parameter k: in Eq. (13) controlsa family of difference
componentsperpendicularandparalleltotheedgedefinedby schemes by appropriatelyweighting &_ and & .. On

structuredmeshesit is easyto showthat K= - 1 yieldsa fully
= uAy -v _'-_-- (7a) upwindscheme,i: - 0 yieldsFromm'sscheme,andK = 1 yields

As As central differencing. The value _ = 1/3 leadsto a third-
order-accurateupwind-biasedscheme,althoughthird-order
accuracy is strictly correct only for one-dimensional

_=uAX+v z_y (7b) calculations. Nevertheless, _ = 113 was used in theAs As calculationspresentedherein.



On highly stretched meshes, the formula for A+ is q-= qJ +s[(1-Ks)&-+(l+_s)&*]4 (17)modifiedto be
where s Is the flux limlter. In the present study, the

a-a_b continuously differentlable flux limiter of Ref. 21 was& + = ( qk - q'l) (15) employedwhich is definedby

2A.A++e

where a and b are thedistancesfromthe midpointof theedge to s = A2_ 2 (t 8)the centrotds of triangles j and k, respectively, as shown in + A+ +_,

Fig. l(b). This formula weights the flow variables in the where e is a very small number to preventdivision by zero in
interpolation formula (Eq. (13)) differently to account for smoothregionsof the flow.
the stretchingof the mesh. For example, by substitutingEq.
(15) into Eq. (13) and letting _ ,, 1 yields

Flux-Difference Solittino
= b q + a (16)q- a+b J a--_ "qk

The spatial discretization based on flux-difference
splitting is a cell-centered scheme where the flow variables

For the case shown In Fig. l(b), Eq. (16) clearly gives more are stored at the centroid of each triangle and the control
weight in the calculationof q" to the flow variables at centroid volume is simplythe triangle itself. The flux balance becomes
j than to the flow variables at centroid k, since b>a.
Furthermore, in calculations involving upwind-biased Z T-I HAs =-_ _ T -1[H (q-) + H (q+) ] As

schemes, oscillations in the solution near shock waves are -}Z T-_I_'I (Q*-Q-) As (19)
expected to occur. To eliminate these oscillationsflux limiting
is usually required. The flux limiter modifies the upwind-

biased interpolationsfor q-and q+ such that, for example where the first term on the right-hand side is simply the
average of the original flux H evaluated using the flow
variables on each side of the edge. The second term on the

• centroid right-hand side represents a flux difference since it involves
the product of the difference in flow variables (Q+- Q') and

• node I the flux jacobian A which is defined as

aH

aQ (20)
In this context the flux jacobian can be rewritten by a
similarity transformation as

R-1• j A=R^ (21)

where A iS a diagonalmatrixwhosediagonal elements are the

characteristicspeeds U, U, U+a, and U-a. The variable U
i is the contravariant velocity normal to the edge being

consideredand a is the localspeed of sound. The notationI_kl

(a) centroidsand nodesused in construction indicates that the flux jacobian is evaluated by taking the
of upwind-biasedflow variables, absolutevalue of the characteristic speeds and by using so-

called Roe-averaged16 flowvariables (indicated by the tilde).

In the FDS scheme, the conservedflow variables on either
side of a given edge, Q+and Q-, are determined by first
calculating the upwind-biased primitive flow variables q-and
q+ and thenconverting them from primitiveto conserved. The
interpolation formula for q', for example, is identical to Eq.
(17) including the flux limiter defined by Eq. (18).
Therefore the same parameter K in Eq. (17) controls a family
of difference schemes, ranging from fully upwind to central

differencing, by appropriately weighting A_ and &+ as in the
FVS scheme. The calculationspresentedherein used _ = 113.

Imolicit Tern•oral Discretizatior]

The Implicit relaxation algorithm is formulated by first
approximatingthe time derivative in the Euler equationsby

aQ.2+_ AQ 2+$ Q-_Qn $ Qn_Qn-1+ (22)
( b ) distancesbetween centroidsand midpoint at 2 At 2 & t 2 A t

of edge used in Eqs. (15) and (16).

Fig. 1 Diagrams illustrating details of flux-split Euler where & Q= Qn.__ Q'and where the parameter $ controls
algorRhm imptementation, the temporal order of accuracy. For example, the scheme is



first-order-accuratein timeif $-0 andthe schemeis second- exceptof course,the residualis computedusingFDS. The
order-accuratein time if €-1. For an implicittemporal secondway is to constructapproximatejacobiansusingEq.
discretization,the flux H mustbe treatedat time level(n+l) (21) and the fact that the forwardand backwardjacobians
whichis accomplishedby linearizingaccordingto should have non-negativeand non-positiveeigenvalues

(characteristicspeeds),respectively.Thisis doneto produce

___ Ii a diagonallydominantsystemof equationsfor numerical
Hn+l = H* + °_H AQ (23) stabilityandis accomplishedby definingQ= Q*

whereaH/_Qis thefluxjacobianA as discussedabove. Also, A+= RA+ R-1 A- =R A- R-1 (26)
Eqs.(22) and(23) involveQ', the vectorof flowvariablesat
an iteratelevel(') whichis normallytaken to be time level where(n). For unsteadyapplications,however,subiterationsmay

be performed to drive Q'toQ n+l and thus minimize A+=A+IAI - A-IAIA = -- (27)linearizationand relaxationerrors. 2 2

For FVS the forwardand backwardfluxesare finearized
fora giventrianglej as The resultspresentedhereinwereobtainedusingthe firstof

thesetwoapproaches.
__. T-I[ H. (q-)+ H- (q.) ]".lAs

= E T-_[ H* (q-) + H- (q*) ]" As ResultsandDiscussion
3

+[ _ T-_A* As] AQj+ _ T-1A- AsAQ,, To assess the new Euler solvers, calculationswere
=-1 performedfor the NACA 0012 airfoil. These resultswere

(24) obtainedusingthe unstructuredgrid shownin Fig. 2 which
wasgeneratedusingthe advancingfrontmethod.6,19Thegrid

In this equationthe last summationon the righthand side has3300 nodes,6466 triangles,andextends20chordlengths
involves,_Qm, the changein the flowvariablesinthe three from the airfoil with a circularouter boundary. Also there
trianglesadjacentto trianglej. Also,the exact jacobians are 110pointsthatlieon the airfoilsurface. Thisis the same
A+andA" are determinedby differentiationof H+ and H- by meshthatwasusedto obtaintheresultsthatwerepresentedin
the conservedvariablesQ. By combiningEqs. (22)and (24), Ref. 11. Steady-statecalculationswere performedfor the
the Eulerequationsarediscretizedas airfoilat a fraestreamMachnumberof M = 0.8 andanangle

3 of attackof =o=1.25°. Unsteadycalculationswereperformed
[ 2 + _ areaI + E T-1A+ As] AQj + E T-IA- AsAQm for the airfoilpitchingharmonicallyabout the quarterchord2 At m=l

withan amplitudeof a1=2.51° anda reducedfrequencybased
- _Q. ._Q.-i- 2 + ¢ areaQ'_ + __areaQ

2 At 2 At on semichordof k = 0.0814at M = 0.755 and ao= 0.016°.
Thesecalculationsare comparedwiththe experimentaldataof

- E T-l[ H+ (q-) + H- (q+) ]* As Ref. 20.
(25)

SteadyFlowResults
where [ is the identitymatrix and "area" is the area of
triangle j. Direct solutionof the systemof simultaneous Steady flow resultswere obtainedfor the NACA 0012
equationswhich resultsfrom applicationof Eq. (25) for all airfoil usingboth the implicittime-marchingof the present
trianglesin the mesh,requiresthe inversionof a largematrix studyand the explicitfour-stageRunge-Kuttatime-marching
with large bandwidthwhich is computationallyexpensive, of Ref. 11. Results are presentedfirst usingflux-vector
Instead,a Gauss-Seidelrelaxationapproachisusedto solvethe
equationswherebythe summationinvolving& Qmismovedto
the righthandsideof Eq. (25). The termsin thissummation
are then evaluatedfor a given time step usingthe most
recentlycomputedvaluesfor AQm • Thesolutionprocedure
then involves only the inversion of a 4 x 4 matrix
(representedby the termsin squarebracketson the lefthand
side of Eq. (25)) for eachtrianglein themesh. Also,although
the procedureis implementedfor applicationon (randomly-
ordered)unstructuredmeshes,it is not a pointGauss-Seidel
procedure.The methodis in factmorelike lineGauss-Seidel
sincethe list of trianglesthat makeup the unstructuredmesh
is re-orderedfrom upstreamto downstream,and the solution
isobtainedby sweepingtwo timesthroughthe meshasdictated
by stabilityconsiderations.The firstsweep is performedIn
the directionfrom upstreamto downstreamand the second
sweep is from downstreamto upstream. For purely
supersonicflowsthesecondsweepis unnecessary.

For FDSthe exactjacobianA is tooexpensiveto compute
andthusan approximatejacobianis normallyused. Thereare
severalwaysto accomplishthis,twoof whichare describedas
follows. The first way is to simply use the forwardand Fig. 2 Partialview of unstructuredgridof trianglesabout
backwardjacobiansfrom the FVS schemeas in Eq. (25), the NACA0012 airfoil.



splitting and then using flux-differencesplitting for the distributionis shownin Fig. 3(b). For this case there is a
spatial discretization. The explicit time-marchingresults relativelystrongshockwave on the upper surfaceof the
wereobtainedusinga CFL numberof 2.5 (sincetheCFL limit airfoilnear62% chordand a relativelyweakshockwave on
is approximately2.8) and the implicittime-marchingresults the lower surface near 30% chord. The pressure
wereobtainedusinga CFL numberof 100,000. Sucha large distributionsindicatethat thereis only one gridpointwithin
value was used for the implicitresultssincethe relaxation the shockstructure,on eitherthe upperor lowersurfaceof
schemehasmaximumdampingandhencefastestconvergence the airfoil,due to the sharp shockcapturingabilityof flux-
for very large time steps. This is in contrastwith implicit vectorsplitting. Furthermore,the steadypressureresultsof
approximatefactorizationschemes which have maximum Fig.3(b) are of comparableaccuracyin comparisonwiththe
dampingforCFL numbersontheorderof 10. numerouspublishedresultsfor this case such as those

reportedin Ref. 21.
A comparisonofthe convergencehistoriesbetweenexplicit

and implicittime-marchingfor flux-vectorsplittingis shown A comparisonof theconvergencehistoriesbetweenexplicit
in Fig.3(a). The "error"in the solutionwas takento be the and implicittime marchingfor flux-differencesplittingis
L2 normof the densityresidual. As shownIn Fig. 3(a), the shownin Fig. 4(a). Similarto the solutionsobtainedusing
explicitsolutionis very slowto converge. Thissolutiontakes flux-vectorsplitting,the explicitsolutionhere is very slow
approximately10,000 time steps to becomeconvergedto to converge. However,the implicitsolutionis againconverged
engineeringaccuracy,whichis taken to be a fourorderof to fourordersof magitudein only approximately500 steps
magnitudereductionin solutionerror. In contrast, the and is convergedto machinezero Is less than2000 steps.
implicitsolutionis convergedto four ordersof magnitudein These solutions, with either implicit or explicit time-
only approximately500 stepsand is convergedto machine marching,cost approximatelythe sameas the corresponding
zero in less than2000 steps. The implicitsolutioncosts solutionsinvolvingflux-vectorsplitting. The resultingsteady
approximately75% more per time step than the explicit pressuredistributionIs shownIn Fig. 4(b). The pressure
solutionbecauseof the increasednumberof operations distributionagain indicatesthat there is only one gridpoint
requiredto evaluatethe fluxjacobians.Thisincreasein CPU within the shock structuresdue to the flux-difference
time is far out-weighedby the fasterconvergenceto steady splitting,and the shocksappearto be slightlymoresharply
statein thata convergedsolutionis obtainedwiththe implicit capturedin comparisonwith the shocksfromthe solution
relaxationschemewithan orderof magnitudelessCPU time obtainedusingflux-vectorsplitting.This is becausethe FDS
than the explicitscheme. The resultingsteady pressure schemehaslessdissipationthantheFVSscheme.

8 8

4 4
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0 time-marching 0 time-marching

log _ log -4 \
(error:) (:error:) \-s implicit -8 implicit
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Iterotion Iterotion

(a) convergencehistories. (a) convergencehistories.
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(b) steadypressuredistribution. (b) steadypressuredistribution.

Fig.3 Comparisonof steady-stateresultsfortheNACA Fig.4 Comparisonof steady-stateresultsfor theNACA
0012 airfoilat M.=0.8 andao - 1.25" computed 0012 airfoilat M.=0.8 and ao = 1.25"computed
using flux-vectorsplitting, using flux-differencesplitting.



UnsteadvFlowResull_ The effectsof performingsubiterationsper time stepon
the instantaneouspressuredistributionsat k¢ ,, 69° in the

Unsteadyresultswere obtained for the pitchingNACA cyclecorrespondingto an Instantaneouspitchangleof a(t) =
0012 airfoilusing250, 1000, and 2500 stepsper cycle of 2.34° are shownin Fig. 6. The calculationswere performed
motion with the implicit time-marchingand flux-vector using250 steps per cycleof mortonwiththe Implicittime-
splittingto determinethe appropriatestep size to ensure marchingand flux-vectorsplittingand parallelresultswere
temporalaccuracyfor thiscase. Threecyclesof motionwere obtainedusing0, 5, and 10 subiterationspertime step. As
computedto obtainperiodicsolutions.The effectsof stepsize discussedpreviously,the purposeof the subiterationsIs to
on the instantaneouspressuredistributionat k_=69o in the minimizelinearizationand relaxationerrors,similarto that
thirdcycle,whichcorrespondsto an instantaneouspitchangle which is done with approximatefactorizationschemesto
of -('=) = 2.34%are shownin Fig.5. Thisanglewasselected minimizelinearizationand factorizationerrors.22 As shown
for thisassessmentsinceit liesin the mostsensitivepartof in Fig. 6, as the numberof subiterationsis increasedthe
the cycle. The resultsof Fig.5 clearlyindicatethat withas inaccuraciesin shockstrengthand locationare decreased.
fewas 250 stepspercycletheupperandlowersurfaceshocks With 10 subiterations, for example, the instantaneous
bothhaveinaccuratestrengthandlocationincomparisonwith pressuredistributionsresemble closely those of Fig. 5,
the resultsobtainedusing2500 stepsper cycle. The results obtained using 2500 steps per cycle of motionand no
of Fig.5 also indicatethat the appropriatestepsize for this subiterations. There is thereforea compromisebetween
case is a timestepcorrespondingto between1000and2500 runninglarge time steps with subiterationsand running
stepspercycleof motion. Thisfindingis consistentwiththe smallertimestepswithno subiterations,sincethe CPU time
temporalrefinementstudyof Ref. 22, where similarresults is approximatelythe same.
were obtained using implicit approximate factorization
solutions of the transonic small-disturbanceand Euler Instantaneouspressuredistributionsat eight points in
equations.It is noted,however,thatforeasiercasesinvolving timeduringthe thirdcycleof motionfromthe 2500 stepsper
higherreducedfrequenciesandsmalleramplitudesof motion, cycle solutionusingflux-vectorsplittingare shownin Fig. 7
as few as two or threehundredstepspercycleof motionare for comparisonwiththe experimentaldata. In eachpressure
sufficientfor temporalaccuracy, plot the instantaneouspitch angle a('=) and the angular

a('=) = 2.34 °
k'_= 69°

1.5 [

_
-Cp o

lower surface_ •

-t.o 250 stepslcycle le

-1.5 .I f I I I LI I I I I I LI I I I 1 Io .2 ., .6 .8 ,.o o .2 .4 .6 .8 t.o o .2 ., .8
x/c x/c x/c

Fig.5 Effectsof stepsizeon theinstantaneouspressuredistributionat k'== 69° anda(_)=
2.34° during the third cycle of motion for the NACA 0012 airfoil pitchingat
M, = 0.755, ao = 0.016°, c_1= 2.51°, andk = 0.0814 computedusing flux-vector
splitting.

a(_) = 2.34 ° 250 steps/cycle
k'=- 69 °

1. urface

5 ower surface '_

-1.o_-| 0 subiterations subiterations
/

-1.5 LI I I I I I LI I I I I I I I I I

0 .2 .4 .6 .6 1.0 0 .2 .4 .6 .B 1.0 0 .2 .4 .6 .8 1.0

×/c ×/c x/c
Fig. 6 Effectsof performingsubiterationsper timesteponthe instantaneouspressure

distributionat kt - 69° and,',(_)=2.34° duringthe thirdcycleof motionfor the NACA
0012 airfoil pitchingat M.- 0.755, ao - 0.016°, _1 - 2.51°, and k = 0.0814
computedusingflux-vectorsplitting.



Flux-vectorsplitting o Upper surface - Experiment
Lower surface - Experiment
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Fig. 7 Comparisonof instantaneouspressuredistributionsfor the NACA0012 airfoil
pitching at M, ,, 0.755, ao = 0.016=, Izl = 2.51=, and k ,=0.0814 computed using
flux-vector splitting.

Flux-differencesplitting o Upper surface - Experiment
Lower surface - Experiment

lOlI-Cp

- /_ a(_)- 1.o9° .( .o1°
-,.or__ k_-2so r: k_-69o r: k_-188o

-1.5 L_1.1.!1 o -1._5 ° I_Li I I I I I I I I I ol I LI I I I I"/t "(_)"
-,.or: k_.21oo r; _- 2s5o
-1.5 LL_L--.J.__J L' _ _ t I I I Io .2 .4 .6 .8 1.oo .2 .4 .6 .6 1.oo .2 .4 .6 .8 1.oo .2 .4 .8 .8 I.o

x/c x/c x/c x/c
Fig. 8 Comparisonof instantaneouspressuredistributionsfor the NACA0012 airfoil

pitching at M=- 0.755, O=o- 0.016=, (zl = 2.51=, and k ,,, 0.0814 computed using
flux-difference splitting.



position in the cycle kt are noted. During the firstpart of the results were obtained using the implicit time-marching with
cycle there is a shockwave on the upper surfaceof the airfoil, 2500 steps per cycle of motion and the flux-difference
and the flow over the lower surface is predominately splitting for the spatial discretization. The FDS pressures
subcritical. During the latter part of the cycle the flow about show similar features as the FVS pressures of Fig. 7 in that
the upper surface is subcritical, and a shock forms along the the shock waves are sharply captured within only one grid
lower surface. The pressure distributions indicate that the point within the shock structure. In general, the FDS
shock positionoscillatesover approximately25% of the chord pressure distributions also agree well with the experimental
along each surface, and in general, that the two sets of data.
calculated results compare well with the experimental data.
Similar to the steady flow results, the shock waves are Comparisons of calculated and experimental lift and
captured sharply with at most one grid point within the shock moment coefficientsversus the instantaneousangle of attack
structure. The calculatedresults, however, show the expected are presented in Fig. 8. The lift coefficient is shown in Fig.
symmetry in the flow, in that the upper surface pressure 8(a), and the moment coefficient is shown in Fig. 8(b). These
distribution during the first half of the cycle is very similar coefficientsshow the variation as a functionof angle of attack
to the lower surface pressure distributionduring the second during a cycle of motion, and in general, the two sets of
half of the cycle. The experimentaldata therefore appears to calculated results compare well with the experimental data.
have been obtained at a slightly higher effective steady-state The comparisons of lift coefficient further indicate that the
angle of attack than that reported in Ref. 20. Furthermore, data was probably obtained at a higher effective steady-state
the unstructured grid results of Fig. 7 are of comparable angle of attack, since the experimentalvalues are higher than
accuracy in comparison with published resultsobtained using the calculatedvalues. Also, the largestdifferencebetween FDS
structured grid methods for this case, such as those reported and FVS coefficients which occur in the moment coefficient
in Ref. 22. (Fig. 8(b)) are due to the sensitivityof the moment since the

moment center is at the quarter-chord. The two calculated

Similar comparisons between calculated and experimental moment coefficients are not symmetric about one another
instantaneous pressure distributions at the same eight points because of the small angle of attack (c_o- 0.016 °) for this
in time during the cycle are shown in Fig. 8. The calculated case.

Euler ConcludinoRemarks

o Experiment
.6- Improved algorithms for the solution of the time-

dependent Euler equations were presented for unsteady
o aerodynamic analysis involving unstructured dynamic meshes.

.3 - o/"_ The improvementshave been developed recently to the spatial

J
and temporal discretizations used by unstructuredgrid flow
solvers. The improved spatial discretization involves a flux-

C t 0 split approach which is naturally dissipative and captures
shock waves sharply with at most one grid point within the

-.3 shock structure. The improved temporal discretization
involves an implicit time-integration scheme using a Gauss-
Seidel relaxation procedure which is computationally efficient

-,6 I I I I for either steady or unsteady flow problems. For example,
-4 -2 0 2 4 very large time steps may be used for rapid convergence to

a (deg.) steady state, and the step size for unsteady cases may beselected for temporal accuracy rather than for numerical
stability.

(a) lift coefficient. Steady and unsteady flow results were presented for the
NACA 0012 airfoil to demonstrate applications of the new
Euler solvers. The steady results showed that rapid

Euler convergence to steady state couldbe achievedwith the implicit
o Experiment time-marching in comparison with results obtained using

.04 explicit time-marching. A factor of ten reduction in
computational cost was obtained for the case that was
presented. The unsteady results were obtained for the airfoil

.02 .J_-- FVS pitching harmonicallyabout the quarter chord. The effects of
step size and of performing subiterationsper time step on the

C m 0 - instantaneouspressure distributionsduring a cycle of pitchingmotion were demonstrated. These results indicated that the
scheme was numerically stable for large time steps although

-.02 smaller time steps were required to maintain temporal
accuracy for the unsteadycase that was considered. Also, the

-.04 I I I I calculated instantaneous pressure distributions and lift and
-, -2 0 2 4 moment coefficients during a cycle of motion compared well

with experimental data.
a (deg,)
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