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Abstract

P ROGRESS in the development of implicit algorithms for
the Euler equations using the flux vector splitting method

is described. Comparisons of the relative efficiency of relaxa-
tion and spatially split, approximately factored methods on a
vector processor for transonic and supersonic two-
dimensional channel flows are made. A hybrid three-
dimensional algorithm is developed that uses relaxation in one
coordinate direction and approximate factorization in the
crossflow plane. The scheme is completely vectorizable and
recovers conventional space-marching schemes for fully super-
sonic flows. The method is applied to a forebody shape in
supersonic flow with an embedded pocket of subsonic flow.

Contents
Two-Dimensional Algorithms

Upwind-differencing methods have been successfully used
to obtain solutions to the Euler equations for flows with
strong shocks. These methods approximate the signal-
propagation features of hyperbolic equations and are natural-
ly dissipative, so that no artificial viscosity terms are required.
More computational work per time step is required than with
central-difference methods, which can be offset by the
possibilities for increased versatility and improved con-
vergence rates per time step.

The upwind-differencing scheme considered is based on the
concept of flux vector splitting and uses the splitting of Van
Leer. A general class of semidiscrete spatial-differencing
schemes is considered, ranging from first- or second-order ful-
ly upwind schemes to third-order upwind-biased differencing.
The two basic implicit schemes considered in two dimensions
are both approximations to the unfactored backward-time in-
tegration scheme in delta form and correspond to a spatially
split approximate-factorization (AF) method1 and the
classical Gauss-Seidel relaxation method,2'3 respectively.

The AF method has the advantage in that it is a general,
time-accurate integration scheme, applicable to a wide class of
problems. The scheme is practically independent of the type of
spatial differencing and is vectorizable on current pipeline
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computers. The disadvantage of the scheme is that the
allowable time step is limited. In two dimensions, the scheme
is unconditionally stable, but the optimum convergence rate
for steady-state calculations is generally obtained at a value of
the time step on the order of a Courant number of 10,
although the optimal value is problem dependent. In three
dimensions, the spatially factored algorithm is only condi-
tionally stable for upwind differencing; the maximum
allowable time step is on the order of the value used in an ex-
plicit scheme.

The relaxation algorithms considered are tailored to the
form of the coefficient matrix arising in the unfactored im-
plicit scheme when using upwind differencing. The present
study has concentrated on classical line Gauss-Seidel relaxa-
tion, with the provision that alternating sweep directions are
used to maintain stability in subsonic flow with higher-order
differencing. The scheme is unconditionally stable in a scalar
linear stability analysis, both in two and three dimensions. For
supersonic flow in two dimensions, with fully upwind dif-
ferencing, the algorithm recovers Newton's method for large
time steps. The disadvantage of the relaxation schemes is that
they are not completely vectorizable on vector processors.

The relative efficiencies of the two approaches have been
compared on the basis of a number of test cases. For a tran-
sonic (M=0.85) channel flow, the higher convergence rate
per iteration of the relaxation algorithms is amply compen-
sated for by the faster computational rate per iteration of the
AF algorithm. For a mesh of 85 x 41 points, the optimal time
step for the AF algorithm is a Courant number of 10; for the
relaxation scheme, the optimal time step is on the order of 100
and 105 for the vertical and horizontal line algorithms, respec-
tively. The time step limitation encountered for the vertical
line relaxation scheme is very sensitive to the implementation
of boundary conditions and worsens as the grid is refined. Us-
ing a Fourier analysis of a coupled two-dimensional linear
system as a model for the Euler equations, a recent study by
Mulder3 confirms that the line Gauss-Seidel scheme is not un-
conditionally stable. On sufficiently fine grids, under-
relaxation is required for stability, in accordance with the pre-
sent numerical results.

For a supersonic (M=1.65) flow in a channel, the line-
relaxation algorithm with fully upwind differencing reduced
the residual 12 orders of magnitude in 25 iterations, compared
to 200 iterations for the AF scheme. The relaxation method is
more efficient as the Mach number is increased since the
numerical domain of dependence is more closely matched to
the physical domain of dependence; efficient strategies to han-
dle local regions of embedded subsonic flow are also possible
with the relaxation scheme.

Three-Dimensional Algorithm
A three-dimensional algorithm based on either approximate

factorization or line relaxation is possible. With upwind dif-
ferencing of the residual, the spatially split AF algorithm can
be shown to be only conditionally stable for the scalar convec-
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tion equation but has the advantage of being completely vec-
torizable. The line-relaxation algorithms can be shown to be
unconditionally stable for the scalar convection equation but
are not completely vectorizable. A hybrid approach is adopted
here, using relaxation in one coordinate direction and approx-
imate factorization in the remaining crossflow plane. The
hybrid approach avoids the (A/)3 splitting error in the three-
dimensional AF approach, which is responsible for the severe
time step limitation. The hybrid algorithm is completely vec-
torizable and can recover conventional space-marching tech-
niques for fully supersonic flow.

The linearized, backward-time approximation in delta form
for the three-dimensional equation in generalized coordinates

8F dG
• + 6>-

dH (i)
represents a large banded 5x5 block matrix equation. Here, Q
is the vector of conserved variables, F, G, and H the general-
ized fluxes, and /the Jacobian of the transformation. Apply-
ing upwind relaxation in the £ direction leaves the following
equation to be solved in the crossflow (17 — f) plane:

dfl }=R(Q\Qn+l)

where

*,M=
dF+

JAt

(2)

(3)

includes the time term and the diagonal blocks from implicit
discretization in the £ direction, here taken as first-order ac-
curate differencing. Nonlinear updating of the residual R is in-
dicated, corresponding to the use of updated upstream
crossflow planes when sweeping in the downstream direction
and vice versa. The stream wise relaxation is effected by sweep-
ing the £ direction through the mesh, alternating between for-
ward and backward passes in order to maintain stability for
higher-order differencing.

The crossflow plane equation is solved with a spatially split
AF algorithm,

dG

=R(Qn+l,Qn)

-1 M+<5
dH

(4)

From a stability consideration, there is no particular advan-
tage in using upwind discretization in the crossflow plane, as
long as upwind differencing is used in the £ direction. In par-
ticular, one might use central differencing in the crossflow
plane, although the present results were all obtained with the
flux splitting approach.

For fully supersonic flows, the upstream sweep can be
eliminated, in alalogy with the physical domain of
dependence. The extension to thin-layer and supersonic
parabolized viscous flows is straightforward, as the implicit
terms in either of the 77 or f directions are solved simultane-
ously. Closely related is the two-factor scheme resulting from
an eigenvalue factorization in the £ direction, which has the
advantage of being a single step time-accurate scheme.

Results
Supersonic flow at Mach 1.7 over an analytically defined

forebody, contoured to be representative of the cockpit region
of a high-performance fighter, is considered; pressure data at
a nominal Reynolds number of 3 x 106 based on body length
are available.4 The grid consisted of 31 points in the axial
direction, 38 points circumferentially, and 31 points normal to

Fig. 1 Mach contours for analytic forebody (M= 1.7, a = 0 deg).
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Fig. 2 Pressure distributions for analytic foregody (Af= 1.7, a= - 5
deg).

the surface. The Mach contours along the longitudinal plane
of symmetry are shown in Fig. 1 at 0 deg angle of attack. The
flow is fully supersonic in the streamwise direction and can be
efficiently computed by marching in space.

At sufficiently low negative incidence, however, there are
regions in which the Mach number in the marching direction
becomes subsonic and space marching is no longer possible.
Computed results for such a situation at - 5 deg angle of at-
tack are shown in Fig. 2. The pressure distribution is accurate-
ly predicted with the second-order accurate discretization in
the crossflow plane.

The algorithm has been extended to compute transonic
flows over a swept wing at the angle of attack by applying the
relaxation in the span wise coordinate direction. Also, conical
flow solutions can be recovered with the present method and a
series of delta wings have been computed.
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