Implicit Formulation for SPH-based Viscous Fluids

1. Introduction

- The first SPH method that uses implicit integration for the full form of viscosity
- The first method that extracts matrix coefficients contributed by second-ring neighbors
- Our method offers the Following advantages:
- It is efficient
- It is robust and stable
- It can generate coiling and buckling phenomena and handle variable viscosity

2. Related Work (1/4)

Melting and flowing
[Mark Carlson et al. / 2002 SIGGRAPH]
First enabled stable simulation of high viscous fluid

Directable Photorealistic Liquids [RASMUSSEN N. et al. / 2004 SCA]

Implicit-explicit scheme for the full form of viscosity to correctly handle variable viscosity

2. Related Work (2/4)

Accurate viscous free surfaces for buckling, coiling, and rotating liquids [BATTY C. et al. / 2008 SIGGRAPH]

It possible to take larger time steps, handle variable viscosity, and generate coiling and buckling

A simple finite volume method for adaptive viscous liquids [BATTY C. et al. / 2011 SIGGRAPH]

It is for an adaptive tetrahedral fluid simulator

2. Related Work (3/4)

Simulating Liquids and Solid-Liquid Interactions with Lagrangian Meshes [CLAUSEN P. et al. / 2013 TOG]

A Lagrangian FEM that can handle elastic, plastic, and fluid materials in a unified manner

Discrete viscous sheets [BATTY C. et al. / 2012 TOG]

Dimensionally reduced discrete methods and generated coiling and buckling

2. Related Work (4/4)

Fast Simulation of Viscous Fluids with Elasticity and Thermal Conductivity Using Position-Based Dynamics [TAKAHASHI T. et al. / 2014 C\&G]

For unified framework of Position-based dynamics

Deformation embedding for point-based elastoplastic simulation
[JONES B. et al. / 2014 TOG]

A deformation-based method to handle varying mass materials

3. Fundamentals for Simulating Viscous Fluids Formulations

- The Navier-Stokes equations for particle i can be described as

$$
\begin{array}{r}
\rho_{i} \frac{d \mathbf{u}_{i}}{d t}=-\nabla p_{i}+\nabla \cdot \mathbf{s}_{i}+\frac{\rho_{i}}{m} \mathbf{F}_{i}^{\mathrm{ext}} \\
\mathbf{s}_{i}=\mu_{i}\left(\nabla \mathbf{u}_{i}+\left(\nabla \mathbf{u}_{i}\right)^{T}\right) \tag{2}
\end{array}
$$

$\rho_{i}:$ density of particle i
$t:$ time
$\mathbf{u}_{i}:\left[u_{i}, v_{i}, w_{i}\right]^{T}$ (velocity)
$\mathbf{S}_{i}:$ viscous stress tensor
m : mass
$\mathbf{F}_{i}^{\text {ext }}$: external force
μ_{i} : dynamic viscosity

3. Algorithm (1/2)

Algorithm 1 Procedure of our method
1: // j : neighbor particle of i
2: // $W_{i j}$: kernel with a kernel radius h
3: for all particle i do
4: find neighbor particles
for all particle i do
apply external force $\mathbf{u}_{i}^{*}=\mathbf{u}_{i}^{t}+\Delta t \mathbf{F}_{i}^{\text {ext }} / m$
for all particle i do solve viscosity using Eqs. (3) and (4) // § 4
: for all particle i do
10: \quad compute p_{i} using a particle-based fluid solver
11: for all particle i do
12: \quad compute $\mathbf{F}_{i}^{p}=-m^{2} \sum_{j}\left(\frac{p_{i}}{\rho_{i}^{2}}+\frac{p_{j}}{\rho_{j}^{2}}\right) \nabla W_{i j}$
13: for all particle i do
14: \quad integrate particle velocity $\mathbf{u}_{i}^{t+1}=\mathbf{u}_{i}^{* *}+\Delta t \mathbf{F}_{i}^{p} / m$
15: \quad integrate particle position $\mathbf{x}_{i}^{t+1}=\mathbf{x}_{i}^{t}+\Delta t \mathbf{u}_{i}^{t+1}$

3. Algorithm (2/2)

- More details of Eq.(2)

$$
\begin{array}{r}
\mathbf{u}_{i}^{* *}=\mathbf{u}_{i}^{*}+\frac{\Delta t}{\rho_{i}} \nabla \cdot \mathbf{s}_{i}^{* *}, \\
\mathbf{s}_{i}^{* *}=\mu_{i}\left(\nabla \mathbf{u}_{i}^{* *}+\left(\nabla \mathbf{u}_{i}^{* *}\right)^{T}\right) . \tag{4}
\end{array}
$$

$\mathbf{u}_{i}^{*}:$ first intermediate velocity
$\mathbf{u}_{i}^{* *}$: second intermediate velocity
$\mathbf{S}_{i}^{* *}$: intermediate viscous stress tensor
$\mu_{i}:$ dynamic viscosity

4.1 Implicit Integration for Full Form of Viscosity (1/3)

- Discretization of Eq.(3) and (4) using implicit integration in SPH framework

$$
\begin{aligned}
& \qquad \mathbf{u}_{i}=\mathbf{u}_{i}^{*}+m \Delta t \sum_{j}\left(\frac{\mathbf{s}_{i}}{\rho_{i}^{2}}+\frac{\mathbf{s}_{j}}{\rho_{j}^{2}}\right) \nabla W_{i j} \\
& \mathbf{S}_{i}=\mu_{i} \sum_{j} V_{j}\left(\left(\mathbf{u}_{j}-\mathbf{u}_{i}\right) \nabla W_{i j}^{T}+\nabla W_{i j}\left(\mathbf{u}_{j}-\mathbf{u}_{i}\right)^{T}\right) \\
& \mathbf{u}_{i}: \mathbf{u}_{i}^{* *} \\
& \mathbf{S}_{i}: \mathbf{S}_{i}^{* *} \\
& V_{j}: \text { stress tensor volume }
\end{aligned}
$$

4.1 Implicit Integration for Full Form of Viscosity (2/3)

- By substituting si in Eq. (6) into Eq. (5) and arranging the terms in these equations, we obtain an implicit formulation:

$$
\begin{align*}
& \mathbf{u}_{i}+\hat{m} \sum_{j}\left(\hat{\mu}_{i} \mathbf{Q}_{i j}+\hat{\mu}_{j} \mathbf{Q}_{j k}\right) \nabla W_{i j}=\mathbf{u}_{i}^{*}, \tag{7}\\
& \mathbf{Q}_{i j}=\left[\begin{array}{ccc}
2 \sum_{j} a_{i j, x} u_{i j} & q_{i j, x y} & q_{i j, x z} \\
q_{i j, x y} & 2 \sum_{j} a_{i j, y} v_{i j} & q_{i j, y z} \\
q_{i j, x z} & q_{i j, y z} & 2 \sum_{j} a_{i j, z} w_{i j}
\end{array}\right], \\
& q_{i j, x y}=\sum_{j}\left(a_{i j, y} u_{i j}+a_{i j, x} v_{i j}\right), q_{i j, x z}=\sum_{j}\left(a_{i j, z} u_{i j}+a_{i j, x} w_{i j}\right), \\
& q_{i j, y z}=\sum_{j}\left(a_{i j, z} v_{i j}+a_{i j, y} w_{i j}\right), \\
& u_{i j}: u_{i}-u_{j} \\
& k \text { : neighbor particle of } \mathrm{j} \\
& v_{i j}: v_{i}-v_{j} \\
& \mathrm{a}_{\mathrm{ij}}:\left[a_{i j, x}, a_{i j, y \prime} a_{i j, z}\right]^{T}=V_{j} \nabla W_{i j}=V_{j}\left[\nabla W_{i j, x}, \nabla W_{i j, y}, \nabla W_{i j, z}\right]^{T} \quad w_{i j}: w_{i}-w_{j}
\end{align*}
$$

$\widehat{m}: m \Delta t$
$\widehat{\mu_{i}}: \mu_{i} / \rho_{i}^{2}$

4.1 Implicit Integration for Full Form of Viscosity (3/3)

- This implicit formulation Eq. (7) is a linear system and can be rewritten in a matrix form as

$\mathbf{C U}=\mathbf{U}^{*}$

C : coefficient matrix ($3 N \times 3 N, N$ is number of particles)
$\mathbf{U}:\left[\ldots, u_{i}, v_{i}, w_{i}, \ldots\right]^{T}(3 N \times 1, N$ is number of particles $)$

4.2 Sparsity of Coefficient Matrix

- Sparsity of Coefficient Matrix
- i has radius h and $30 \sim 40$ neighbors
- Minkowski sum M_{i} has radius $2 h$ and $240 \sim 320$ neighbors
- Non-zero values for each velocity component can be 960

4.3 Solver and Coefficient Extraction (1/4)

- By substituting $\mathbf{Q}_{i j}$ in Eq. (8), we can rewrite Eq. (7) for x component of \mathbf{u}_{i}, u_{i} as

$$
\begin{array}{r}
u_{i}+\hat{m} \sum_{j}\left(\hat { \mu } _ { i } \left(2 \nabla W_{i j, x} \sum_{j} a_{i j, x} u_{i j}+\right.\right. \\
\left.\nabla W_{i j, y} \sum_{j}\left(a_{i j, y} u_{i j}+a_{i j, x} v_{i j}\right)+\nabla W_{i j, z} \sum_{j}\left(a_{i j, z} u_{i j}+a_{i j, x} w_{i j}\right)\right) \\
+\hat{\mu}_{j}\left(2 \nabla W_{i j, x} \sum_{k} a_{j k, x} u_{j k}+\nabla W_{i j, y} \sum_{k}\left(a_{j k, y} u_{j k}+a_{j k, x} v_{j k}\right)\right. \\
\left.\left.+\nabla W_{i j, z} \sum_{k}\left(a_{j k, z} u_{j k}+a_{j k, x} w_{j k}\right)\right)\right)=u_{i}^{*} .(9)
\end{array}
$$

4.3 Solver and Coefficient Extraction (2/4)

- we further convert Eq. (9) into the following equation to straightforwardly extract coefficients
$c_{u_{i} u_{i}}, \quad c_{v_{i} u_{i}}, \quad c_{w_{i} u_{i}}, c_{u_{j} u_{i}}, \quad c_{v_{j} u_{i}}, c_{w_{j} u_{i}}, \quad c_{u_{k} u_{i}}, \quad c_{v_{k} u_{i}}, \quad c_{w_{k} u_{i}}$:
$\left[\begin{array}{c}c_{u_{i u} u_{i}} \\ c_{v i} u_{i} \\ c_{w_{i} u_{i}}\end{array}\right]^{T}\left[\begin{array}{c}u_{i} \\ v_{i} \\ w_{i}\end{array}\right]+\sum_{j}\left[\begin{array}{c}c_{u_{j} u_{i}} \\ c_{v} u_{j} \\ c_{w_{j}} u_{i}\end{array}\right]^{T}\left[\begin{array}{c}u_{j} \\ v_{j} \\ w_{j}\end{array}\right]+\sum_{k}\left[\begin{array}{c}c_{u_{k} u_{u}} \\ c_{v_{k} u_{i}} \\ c_{w_{k}} u_{i}\end{array}\right]^{T}\left[\begin{array}{c}u_{k} \\ v_{k} \\ w_{k}\end{array}\right]=u_{i}^{*}$,

4.3 Solver and Coefficient Extraction (3/4)

$$
\begin{align*}
c_{u_{i} u_{i}}= & 1+\hat{m} \hat{\mu}_{i}\left(2 \omega_{i j, x} \alpha_{i j, x}+\omega_{i j, y} \alpha_{i j, y}+\omega_{i j, z} \alpha_{i j, z}\right), \\
c_{v_{i} u_{i}}= & \hat{m} \hat{\mu}_{i} \omega_{i j, y} \alpha_{i j, x}, \\
c_{w_{i} u_{i}}= & \hat{m} \hat{\mu}_{i} \omega_{i j, z} \alpha_{i j, x}, \\
c_{u_{j} u_{i}}= & \hat{m}\left(-\hat{\mu}_{i}\left(2 a_{i j, x} \omega_{i j, x}+a_{i j, y} \omega_{i j, y}+a_{i j, z} \omega_{i j, z}\right)+\right. \\
& \left.\hat{\mu}_{j}\left(2 \nabla W_{i j, x} \alpha_{j k, x}+\nabla W_{i j, y} \alpha_{j k, y}+\nabla W_{i j, z} \alpha_{j k, z}\right)\right), \\
c_{v_{j} u_{i}}= & \hat{m}\left(-\hat{\mu}_{i} a_{i j, x} \omega_{i j, y}+\hat{\mu}_{j} \nabla W_{i j, y} \alpha_{j k, x}\right), \\
c_{w_{j} u_{i}}= & \hat{m}\left(-\hat{\mu}_{i} a_{i j, x} \omega_{i j, z}+\hat{\mu}_{j} \nabla W_{i j, z} \alpha_{j k, x}\right), \\
c_{u_{k} u_{i}}= & -\hat{m} \sum_{j} \hat{\mu}_{j}\left(2 \nabla W_{i j, x} a_{j k, x}+\nabla W_{i j, y} a_{j k, y}+\nabla W_{i j, z} a_{j k, z}\right), \tag{10}\\
& \tag{11}\\
c_{v_{k} u_{i}}= & -\hat{m} \sum_{j} \hat{\mu}_{j} \nabla W_{i j, y} a_{j k, x}, \tag{12}\\
c_{w_{k} u_{i}}= & -\hat{m} \sum_{j} \hat{\mu}_{j} \nabla W_{i j, z} a_{j k, x},
\end{align*}
$$

4.3 Solver and Coefficient Extraction (4/4)

Algorithm 1 Procedure of our method
Algorithm 1 Procedure of our method
// j : neighbor particle of i
// j : neighbor particle of i
// $W_{i j}$: kernel with a kernel radius h
// $W_{i j}$: kernel with a kernel radius h
for all particle i do
for all particle i do
find neighbor particles
find neighbor particles
for all particle i do
for all particle i do
apply external force $\mathbf{u}_{i}^{*}=\mathbf{u}_{i}^{t}+\Delta t \mathbf{F}_{i}^{\text {ext }} / m$
apply external force $\mathbf{u}_{i}^{*}=\mathbf{u}_{i}^{t}+\Delta t \mathbf{F}_{i}^{\text {ext }} / m$
for all particle i do
for all particle i do
solve viscosity using Eqs. (3) and (4) //§ 4
solve viscosity using Eqs. (3) and (4) //§ 4
for all particle i do
for all particle i do
compute p_{i} using a particle-based fluid solver
compute p_{i} using a particle-based fluid solver
for all particle i do
for all particle i do
compute $\mathbf{F}_{i}^{p}=-m^{2} \sum_{j}\left(\frac{p_{i}}{\rho_{i}^{2}}+\frac{p_{j}}{\rho_{j}^{2}}\right) \nabla W_{i j}$
compute $\mathbf{F}_{i}^{p}=-m^{2} \sum_{j}\left(\frac{p_{i}}{\rho_{i}^{2}}+\frac{p_{j}}{\rho_{j}^{2}}\right) \nabla W_{i j}$
for all particle i do
for all particle i do
integrate particle velocity $\mathbf{u}_{i}^{t+1}=\mathbf{u}_{i}^{* *}+\Delta t \mathbf{F}_{i}^{p} / m$
integrate particle velocity $\mathbf{u}_{i}^{t+1}=\mathbf{u}_{i}^{* *}+\Delta t \mathbf{F}_{i}^{p} / m$
integrate particle position $\mathbf{x}_{i}^{t+1}=\mathbf{x}_{i}^{t}+\Delta t \mathbf{u}_{i}^{t+1}$
integrate particle position $\mathbf{x}_{i}^{t+1}=\mathbf{x}_{i}^{t}+\Delta t \mathbf{u}_{i}^{t+1}$

4.4 Implementation Details and Algorithm

- When fluid particles collide with solid particles, we use explicit viscosity integration for fluid particles with low viscosity while using Dirichlet boundary condition
- namely setting averaged solid particle velocities $\mathbf{u}_{\text {olut }}$ to fluid particles if viscosity of the fluid particles is higher than a criterion $\mu_{\text {orosthet }}$

Algorithm 2 Algorithm for solving viscosity
1: assemble the matrix // see Appendix A
2: solve the linear system with CG
3: for all fluid particle i do
4: if $\mu^{\text {Dirichlet }}<\mu_{i} \wedge$ neighbor solid particle exists then
5: \quad enforce solid boundary condition $\mathbf{u}_{i}=\mathbf{u}^{\text {solid }}$

5. Result

- Implementation
- C++ and Open MP 2.0
- IISPH as an incompressible fluid solver
- z-index neighbor search method
- Setting
- Intel Core i7 3.40 GHz CPU and RAM 16.0 GB
- Physically-based renderer Mitsuba.

5.1 Numerical Stability

- Our implicit method successfully simulates the bunny with a large time step and high viscosity
- SPH fluids for viscous jet buckling
- [ANDRADE LUIZ F. D. S. et al. / 2014 SIBGRAPI]

Side by Side Comparison

Andrade et al.
Our method

5.2 Performance

- We can take a 260.0 times larger time step than the method of Andrade et al. and more fast

5.3 Variable Viscosity

- An example of a dragon consisting of particles with different viscosities from 0.0 (light green) to $800.0 \mathrm{~kg} /(\mathrm{ms})$ (dark green)

5.4 Buckling and Coiling (1/2)

- Buckling

Laplacian form
Full form

5.4 Buckling and Coiling (2/2)

- Coiling

Low Viscosity High Viscosity

6. Discussions and Limitations

- Robustness
- More robust and allows large step
- But, Our method may not generate plausible fluid behaviors
- Very large step, very high viscosity and resolution
- Solver
- Jacobi method
- It is able with small time step, low viscosity and low resolution
- MICCG
- More fast than Jacobi method but slow than CG method

6. Discussions and Limitations

- Performance
- Solving our viscosity formulation generally occupies more than 90% of the whole computational time
- It can be improved by using precomputation
- Memory
- Preserving a coefficient matrix requires a large memory
- e.g. 12 GB memory for 500k particles, due to 1 k of 8 byte double values for 3 velocity components of 500 k particles
- Scalability
- The size of a matrix grows proportionally to the number of particles

7. Conclusion and Future Work

- We proposed a new SPH-based implicit formulation for the full form of viscosity.
- efficient
- stable viscous fluid simulations
- Larger time steps
- Higher viscosities
- Resolutions
- We additionally presented a novel coefficient extraction method for a sparse matrix that involves second-ring neighbors to efficiently solve a linear system with a CG solver

