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• The first SPH method that uses implicit integration for the full 
form of viscosity 

• The first method that extracts matrix coefficients contributed by 
second-ring neighbors

• Our method offers the Following advantages:

 It is efficient

 It is robust and stable

 It can generate coiling and buckling phenomena and handle 
variable viscosity

1. Introduction 
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2. Related Work (1/4)

Melting and flowing
[Mark Carlson et al. / 2002 SIGGRAPH]

First enabled stable simulation of high
viscous fluid

Directable Photorealistic Liquids
[RASMUSSEN N. et al. / 2004 SCA]

Implicit-explicit scheme for the full form of viscosity
to correctly handle variable viscosity
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2. Related Work (2/4)

Accurate viscous free surfaces
for buckling, coiling, 
and rotating liquids
[BATTY C. et al. / 2008 SIGGRAPH]

It possible to take larger time steps,
handle variable viscosity, 
and generate coiling and buckling

A simple finite volume method
for adaptive viscous liquids
[BATTY C. et al. / 2011 SIGGRAPH]

It is for an adaptive tetrahedral fluid simulator
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2. Related Work (3/4)

Simulating Liquids and Solid-Liquid 
Interactions with Lagrangian Meshes
[CLAUSEN P. et al. / 2013 TOG]

A Lagrangian FEM that can handle elastic, plastic,
and fluid materials in a unified manner

Discrete viscous sheets
[BATTY C. et al. / 2012 TOG]

Dimensionally reduced discrete methods 
and generated coiling and buckling
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2. Related Work (4/4)

Fast Simulation of Viscous Fluids 
with Elasticity and 
Thermal Conductivity 
Using Position-Based Dynamics 
[TAKAHASHI T. et al. / 2014 C&G]

For unified framework of Position-based 
dynamics

Deformation embedding 
for point-based elastoplastic
simulation
[JONES B. et al. / 2014 TOG]

A deformation-based method to handle 
varying mass materials
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• The Navier-Stokes equations for particle 𝑖 can be described as

3. Fundamentals for Simulating Viscous 
Fluids Formulations

ρ𝑖 : density of particle 𝑖𝑡 ∶ time𝐮𝑖 ∶ 𝑢𝑖 , 𝑣𝑖 , 𝑤𝑖 𝑇 (velocity)𝐒𝑖 ∶ viscous stress tensor
𝑚 ∶ mass𝐅𝑖ext : external force𝜇𝑖 : dynamic viscosity
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3. Algorithm (1/2)
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• More details of Eq.(2)

3. Algorithm (2/2)

𝐮𝑖∗ ∶ first intermediate velocity𝐮𝑖∗∗ ∶ second intermediate velocity𝐒𝑖∗∗ ∶ intermediate viscous stress tensor𝜇𝑖 : dynamic viscosity
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• Discretization of Eq.(3) and (4) using implicit integration in SPH 
framework

4.1 Implicit Integration for Full Form 
of Viscosity (1/3)

𝐮𝑖 ∶ 𝐮𝑖∗∗𝐒𝑖 ∶ 𝐒𝑖∗∗𝑉𝑗 : stress tensor volume 
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• By substituting si in Eq. (6) into Eq. (5) and arranging the terms in 
these equations, we obtain an implicit formulation:

4.1 Implicit Integration for Full Form 
of Viscosity (2/3)

 𝑚 ∶ 𝑚∆𝑡 𝜇𝑖 ∶ 𝜇𝑖/ρ𝑖2𝑘 ∶ neighbor particle of jaij ∶ [𝑎𝑖𝑗,𝑥, 𝑎𝑖𝑗,𝑦, 𝑎𝑖𝑗,𝑧]𝑇 = 𝑉𝑗𝛻𝑊𝑖𝑗 = 𝑉𝑗 𝛻𝑊𝑖𝑗,𝑥, 𝛻𝑊𝑖𝑗,𝑦 , 𝛻𝑊𝑖𝑗,𝑧 𝑇
𝑢𝑖𝑗 ∶ 𝑢𝑖 − 𝑢𝑗𝑣𝑖𝑗 ∶ 𝑣𝑖 − 𝑣𝑗𝑤𝑖𝑗 ∶ 𝑤𝑖 − 𝑤𝑗
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• This implicit formulation Eq. (7) is a linear  system and can be 
rewritten in a matrix form as

4.1 Implicit Integration for Full Form 
of Viscosity (3/3)

𝐂 ∶ coefficient matrix (3𝑁 × 3𝑁, 𝑁 is number of particles)𝐔 ∶ … , 𝑢𝑖 , 𝑣𝑖 , 𝑤𝑖 , … 𝑇 (3𝑁 × 1, 𝑁 is number of particles)

𝐂𝐔 = 𝐔∗
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• Sparsity of Coefficient Matrix

 𝒊 has radius ℎ and 30 ~ 40 neighbors

 Minkowski sum 𝑀𝑖 has radius 2ℎ and 240 ~320 neighbors

 Non-zero values for each velocity component can be 960

4.2 Sparsity of Coefficient Matrix
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• By substituting 𝐐𝑖𝑗 in Eq. (8), we can rewrite Eq. (7) for 𝑥
component of 𝐮𝑖 , 𝑢𝑖 as

4.3 Solver and Coefficient Extraction (1/4)
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• we further convert Eq. (9) into the following equation to 
straightforwardly extract coefficients 𝑐𝑢𝑖𝑢𝑖 , 𝑐𝑣𝑖𝑢𝑖 , 𝑐𝑤𝑖𝑢𝑖 , 𝑐𝑢𝑗𝑢𝑖 , 𝑐𝑣𝑗𝑢𝑖 , 𝑐𝑤𝑗𝑢𝑖 , 𝑐𝑢𝑘𝑢𝑖 , 𝑐𝑣𝑘𝑢𝑖 , 𝑐𝑤𝑘𝑢𝑖 :

4.3 Solver and Coefficient Extraction (2/4)
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4.3 Solver and Coefficient Extraction (3/4)

α𝑖𝑗 ∶ α𝑖𝑗,𝑥, α𝑖𝑗,𝑦 , α𝑖𝑗,𝑧 𝑇 =  𝑗 𝐚𝑖𝑗𝜔𝑖𝑗 ∶ 𝜔𝑖𝑗,𝑥, 𝜔𝑖𝑗,𝑦 , 𝜔𝑖𝑗,𝑧 𝑇 =  𝑗 𝛻w𝑖𝑗
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4.3 Solver and Coefficient Extraction (4/4)
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4.4 Implementation Details and Algorithm

• When fluid particles collide with solid particles, we use explicit 
viscosity integration for fluid particles with low viscosity while 
using Dirichlet boundary condition

 namely setting averaged solid particle velocities 𝐮𝑠𝑜𝑙𝑖𝑑 to fluid 
particles if viscosity of the fluid particles is higher than a criterion 𝜇𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡
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• Implementation

 C++ and Open MP 2.0

 IISPH as an incompressible fluid solver

 z-index neighbor search method

• Setting

 Intel Core i7 3.40 GHz CPU and RAM 16.0 GB

 Physically-based renderer Mitsuba.

5. Result
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• Our implicit method successfully simulates the bunny with a large 
time step and high viscosity

 SPH fluids for viscous jet buckling

 [ANDRADE LUIZ F. D. S. et al. / 2014 SIBGRAPI]

5.1 Numerical Stability
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5.2 Performance

• We can take a 260.0 times larger time step than the method of 
Andrade et al. and more fast
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• An example of a dragon consisting of particles with different 
viscosities from 0.0 (light green) to 800.0 kg/(ms) (dark green)

5.3 Variable Viscosity
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• Buckling

5.4 Buckling and Coiling (1/2)



MyungJin Choi | 2015-08-24| # 24Computer Graphics @ Korea University

• Coiling

5.4 Buckling and Coiling (2/2)
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• Robustness

 More robust and allows large step

 But, Our method may not generate plausible fluid behaviors

• Very large step, very high viscosity and resolution

• Solver

 Jacobi method

• It is able with small time step, low viscosity and low resolution

 MICCG

• More fast than Jacobi method but slow than CG method

6. Discussions and Limitations
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• Performance

 Solving our viscosity formulation generally occupies more than 
90% of the whole computational time

• It can be improved by using precomputation

• Memory

 Preserving a coefficient matrix requires a large memory

• e.g. 12 GB memory for 500k particles, due to 1k of 8 byte 
double values for 3 velocity components of 500k particles

• Scalability

 The size of a matrix grows proportionally to the number of 
particles 

6. Discussions and Limitations
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• We proposed a new SPH-based implicit formulation for the full 
form of viscosity. 

 efficient

 stable viscous fluid simulations

• Larger time steps 

• Higher viscosities 

• Resolutions

• We additionally presented a novel coefficient extraction method 
for a sparse matrix that involves second-ring neighbors to 
efficiently solve a linear system with a CG solver

7. Conclusion and Future Work


