Springer Monographs in Mathematics

Editorial Board S. Axler K.A. Ribet

For further volumes: www.springer.com/series/3733 Asen L. Dontchev • R. Tyrrell Rockafellar

Implicit Functions and Solution Mappings

A View from Variational Analysis

With 12 Illustrations

Asen L. Dontchev Mathematical Reviews 416 Fourth Street Ann Arbor, MI 48107-8604 USA ald@ams.org R. Tyrrell Rockafellar University of Washington Department of Mathematics PO Box 354350 Seattle, WA 98195-4350 USA rtr@math.washington.edu

ISSN 1439-7382 e-ISSN ISBN 978-0-387-87820-1 e-ISBN 978-0-387-87821-8 DOI 10.1007/978-0-387-87821-8 Springer Dordrecht Heidelberg London New York

Library of Congress Control Number: 2009926485

Mathematics Subject Classification (2000): 26B10, 47J07, 58C15, 49J53, 49K40, 90C31, 93C70

©Springer Science+Business Media, LLC 2009

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Setting up equations and solving them has long been so important that, in popular imagination, it has virtually come to describe what mathematical analysis and its applications are all about. A central issue in the subject is whether the solution to an equation involving parameters may be viewed as a function of those parameters, and if so, what properties that function might have. This is addressed by the classical theory of implicit functions, which began with single real variables and progressed through multiple variables to equations in infinite dimensions, such as equations associated with integral and differential operators.

A major aim of the book is to lay out that celebrated theory in a broader way than usual, bringing to light many of its lesser known variants, for instance where standard assumptions of differentiability are relaxed. However, another major aim is to explain how the same constellation of ideas, when articulated in a suitably expanded framework, can deal successfully with many other problems than just solving equations.

These days, forms of modeling have evolved beyond equations, in terms, for example, of problems of minimizing or maximizing functions subject to constraints which may include systems of inequalities. The question comes up of whether the solution to such a problem may be expressed as a function of the problem's parameters, but differentiability no longer reigns. A function implicitly obtainable this manner may only have one-sided derivatives of some sort, or merely exhibit Lipschitz continuity or something weaker. Mathematical models resting on equations are replaced by "variational inequality" models, which are further subsumed by "generalized equation" models.

The key concept for working at this level of generality, but with advantages even in the context of equations, is that of the set-valued *solution mapping* which assigns to each instance of the parameter element in the model *all* the corresponding solutions, if any. The central question is whether a solution mapping can be localized graphically in order to achieve single-valuedness and in that sense produce a function, the desired *implicit function*.

In modern variational analysis, set-valued mappings are an accepted workhorse in problem formulation and analysis, and many tools have been developed for handling them. There are helpful extensions of continuity, differentiability, and regularity of several types, together with powerful results about how they can be applied. A corresponding further aim of this book is to bring such ideas to wider attention by demonstrating their aptness for the fundamental topic at hand.

In line with classical themes, we concentrate primarily on local properties of solution mappings that can be captured metrically, rather than on results derived from topological considerations or involving exotic spaces. In particular, we only briefly discuss the Nash–Moser inverse function theorem. We keep to finite dimensions in Chapters 1 to 4, but in Chapters 5 and 6 provide bridges to infinite dimensions. Global implicit function theorems, including the classical Hadamard theorem, are not discussed in the book.

In Chapter 1 we consider the implicit function paradigm in the classical case of the solution mapping associated with a parameterized equation. We give two proofs of the classical inverse function theorem and then derive two equivalent forms of it: the implicit function theorem and the correction function theorem. Then we gradually relax the differentiability assumption in various ways and even completely exit from it, relying instead on the Lipschitz continuity. We also discuss situations in which an implicit function fails to exist as a graphical localization of the solution mapping, but there nevertheless exists a function with desirable properties serving locally as a selection of the set-valued solution mapping. This chapter does not demand of the reader more than calculus and some linear algebra, and it could therefore be used by both teachers and students in analysis courses.

Motivated by optimization problems and models of competitive equilibrium, Chapter 2 moves into wider territory. The questions are essentially the same as in the first chapter, namely, when a solution mapping can be localized to a function with some continuity properties. But it is no longer an equation that is being solved. Instead it is a condition called a generalized equation which captures a more complicated dependence and covers, as a special case, variational inequality conditions formulated in terms of the set-valued normal cone mapping associated with a convex set. Although our prime focus here is variational models, the presentation is self-contained and again could be handled by students and others without special background. It provides an introduction to a subject of great applicability which is hardly known to the mathematical community familiar with classical implicit functions, perhaps because of inadequate accessibility.

In Chapter 3 we depart from insisting on localizations that yield implicit functions and approach solution mappings from the angle of a "varying set." We identify continuity properties which support the paradigm of the implicit function theorem in a set-valued sense. This chapter may be read independently from the first two. Chapter 4 continues to view solution mappings from this angle but investigates substitutes for classical differentiability. By utilizing concepts of generalized derivatives, we are able to get implicit mapping theorems that reach far beyond the classical scope.

Chapter 5 takes a different direction. It presents extensions of the Banach open mapping theorem which are shown to fit infinite-dimensionally into the paradigm of the theory developed finite-dimensionally in Chapter 3. Some background in basic functional analysis is required. Chapter 6 goes further down that road and illustrates

how some of the implicit function/mapping theorems from earlier in the book can be used in the study of problems in numerical analysis.

This book is targeted at a broad audience of researchers, teachers and graduate students, along with practitioners in mathematical sciences, engineering, economics and beyond. In summary, it concerns one of the chief topics in all of analysis, historically and now, an aid not only in theoretical developments but also in methods for solving specific problems. It crosses through several disciplines such as real and functional analysis, variational analysis, optimization, and numerical analysis, and can be used in part as a graduate text as well as a reference. It starts with elementary results and with each chapter, step by step, opens wider horizons by increasing the complexity of the problems and concepts that generate implicit function phenomena.

Many exercises are included, most of them supplied with detailed guides. These exercises complement and enrich the main results. The facts they encompass are sometimes invoked in the subsequent sections.

Each chapter ends with a short commentary which indicates sources in the literature for the results presented (but is not a survey of all the related literature). The commentaries to some of the chapters additionally provide historical overviews of past developments.

Whidbey Island, Washington August, 2008

Asen L. Dontchev R. Tyrrell Rockafellar

Acknowledgements

Special thanks are owed to our readers Marius Durea, Shu Lu, Yoshiyuki Sekiguchi and Hristo Sendov, who gave us valuable feedback on the entire manuscript, and to Francisco J. Aragón Artacho, who besides reviewing most of the book helped us masterfully with all the figures. During various stages of the writing we also benefited from discussions with Aris Daniilidis, Darinka Dentcheva, Hélène Frankowska, Michel Geoffroy, Alexander Ioffe, Stephen Robinson, Vladimir Veliov, and Constantin Zălinescu. We are also grateful to Mary Anglin for her help with the final copy-editing of the book.

The authors

Contents

Preface	v
Acknowledgements	ix
Chapter 1. Functions defined implicitly by equations	1
 1A. The classical inverse function theorem 1B. The classical implicit function theorem 1C. Calmness 1D. Lipschitz continuity 1E. Lipschitz invertibility from approximations 	9 17 21 26 35
1F. Selections of multi-valued inverses 1G. Selections from nonstrict differentiability	47 51
 Chapter 2. Implicit function theorems for variational problems 2A. Generalized equations and variational problems 2B. Implicit function theorems for generalized equations 2C. Ample parameterization and parametric robustness 2D. Semidifferentiable functions 2E. Variational inequalities with polyhedral convexity 2F. Variational inequalities with monotonicity 2G. Consequences for optimization 	61 62 74 83 88 95 106 112
 Chapter 3. Regularity properties of set-valued solution mappings 3A. Set convergence 3B. Continuity of set-valued mappings 3C. Lipschitz continuity of set-valued mappings 3D. Outer Lipschitz continuity 	131 134 142 148 154

C	on	te	n	ts
U	JП	ιe	п	ιs

3E. Aubin property, metric regularity and linear openness	159
3F. Implicit mapping theorems with metric regularity	169
3G. Strong metric regularity	178
3H. Calmness and metric subregularity	182
3I. Strong metric subregularity	186
Chapter 4. Regularity properties through generalized derivatives	197
4A. Graphical differentiation	198
4B. Derivative criteria for the Aubin property	205
4C. Characterization of strong metric subregularity	217
4D. Applications to parameterized constraint systems	221
4E. Isolated calmness for variational inequalities	224
4F. Single-valued localizations for variational inequalities	228
4G. Special nonsmooth inverse function theorems	237
4H. Results utilizing coderivatives	245
	0.54
Chapter 5. Regularity in infinite dimensions	251
5A. Openness and positively homogeneous mappings	253
5B. Mappings with closed and convex graphs	259
5C. Sublinear mappings	265
5D. The theorems of Lyusternik and Graves	274
5E. Metric regularity in metric spaces	280
5F. Strong metric regularity and implicit function theorems	292
5G. The Bartle–Graves theorem and extensions	297
Chanter 6 Applications in numerical variational analysis	211
Chapter 6. Applications in numerical variational analysis	511
6A. Radius theorems and conditioning	312
6B. Constraints and feasibility	320
6C. Iterative processes for generalized equations	326
6D. An implicit function theorem for Newton's iteration	336
6E. Galerkin's method for quadratic minimization	348
6F. Approximations in optimal control	352
Deferences	262
NEIGIGINES	303
Notation	371
Index	