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Abstract

A laminar separation bubble is known to be detrimental to the performance of airfoils 

operating at low Reynolds numbers (Re < 10
5
).  With increasing interest in Micro Air Vehicles 

(MAV), a clear understanding of the formation and subsequent turbulent breakdown of laminar 

separation bubbles is required for improved handling, stability, and endurance of MAV’s.  A 

computational investigation of flow past the SD7003 airfoil over the Reynolds number range 10
4
 

< Re < 9x10
4
 is presented.  This airfoil was selected due to its robust laminar separating bubble 

and the availability of high-resolution experimental data.  A high-order implicit large-eddy 

simulation (ILES) approach capable of capturing the laminar separation and subsequent three-

dimensional breakdown is shown.  The ILES methodology also predicts, without change in 

parameters, the passage into full airfoil stall at high incidence.  In addition, computed separation, 

reattachment, and transition locations, as well as aerodynamic loads generally agree well with 

experimental data.  Finally, a blowing/suction slot positioned near the leading edge was shown to 

energize the two-dimensional mode and reduced spanwise instabilities of the shear layer.  This 

caused transition to occur further downstream and effectively eliminated the time mean laminar 

separation bubble. 
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1 Introduction 

Low Reynolds flow has been of interest for model airplane designers for decades.  As a 

result, a large database of experimental and numerical data for fixed wing airfoils has been 

compiled.  Several investigators, such as F. Schmitz
1
, R. Eppler

2
, and S. Selig

3
, have contributed 

with a vast number of experimental measurements and advanced aerodynamic design 

methodologies.  Interest for developing small Unmanned Air Vehicles, including Micro Air 

Vehicles (MAV), capable of performing a wide range of missions has grown in recent years with 

the development of micro system technologies, such as batteries and sensors.  Due to their small 

size and low air speed, these vehicles typically operate at a Reynolds number on the order of 10
4 

to 10
5
.  At these low Reynolds numbers, the flow may remain laminar over a significant portion 

of the airfoil rendering it susceptible to separation from even mild adverse pressure gradients.  

For moderate incidence, separation leads to the formation of a closed laminar separation bubble 

(LSB) which reattaches through transition into turbulence.  The LSB moves toward the leading 

edge with increasing angle of attack and shortens in streamwise extent.  Eventually, as the stall 

angle is exceeded, the turbulent flow is unable to reattach the flow and bubble bursting ensues.  

The onset and successive breakdown of the LSB at low Reynolds numbers is known to be 

detrimental to the performance, endurance, and stability of MAV’s. 

The first investigation into the behavior of LSB’s was conducted by Sir Melvill Jones
4
 in the 

1930’s.  Early studies concentrated on how one or more of the parameters such as angle of 

attack, Reynolds number, surface roughness, and freestream turbulence level affect bubble 

characteristics and length.
5–11

  General features of a time-mean two-dimensional transitional 

separation bubble are given in Figure 1.1.  A separation bubble is formed when a sufficient 

adverse pressure gradient causes the laminar boundary layer to separate.  Downstream of the 
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separation location, the time-mean flow can be roughly divided into two regions.  The bubble is 

formed below a dividing streamline as a relatively slow recirculating region.  The region above 

the reversed flow of the recirculation region, bounded by the boundary layer edge, is a free shear 

layer.  This shear layer undergoes a transition due to disturbance amplifications in the unstable 

laminar layer.  The subsequent turbulent flow entrains high momentum fluid causing the free 

shear layer to reattach to the airfoil and the separation bubble to close in the time-mean.  A 

turbulent boundary layer continues to develop downstream of the reattachment.  Increasing either 

angle of attack or Reynolds number will move the transition location further upstream, hence 

diminishing both streamwise extent and height of the separation bubble.  At a critical Reynolds 

number, the transition location will coincide with the separation location and the formation of a 

bubble is prevented through turbulent mixing.  This critical Reynolds number is dependent on 

many factors such as adverse pressure gradient, surface roughness, freestream turbulence, 

acoustic noise, etc.  In fact, passive flow control techniques typically rely on increasing surface 

roughness upstream of the separation to induce turbulent mixing and thereby eliminate the 

separated flow. 

 
Figure 1.1: Time-mean flow field about a transitional laminar separation bubble

12
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Separation bubbles have been classified as either short or long.  Short bubbles only extend a 

few percent of the chord and have little overall effect on the flow field.  Such bubbles do not 

drastically influence the flow over the airfoil, hence lift and drag can typically be approximated 

reasonably well with inviscid calculations.  Furthermore, several empirical methods for 

predicting separation and reattachment locations exist that are only valid for small separation 

bubbles.
12

  Conversely, long bubbles exhibit a pressure distribution that inviscid theory is unable 

to predict.  As illustrated in Figure 1.2, the pressure distribution measured from a long separation 

bubble exhibits a lower pressure peak, a characteristic pressure plateau between separation and 

transition locations, and a relatively sharp pressure recovery to the inviscid prediction at the 

reattachment point.  Relative to inviscid theory, the pressure distribution resulting from the long 

bubble leads to drastically different airfoil lift, drag, and pitching moment characteristics.  As a 

result, aircraft scaled down to lower Reynolds numbers may exhibit a notably altered behavior 

compared with their higher Reynolds numbers counterpart where viscous effects may be less 

influential.   

 
Figure 1.2: Charachteristic pressure plateu of a long laminar separation bubble

13
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1.1 Previous Calculations of Laminar Separation Bubbles on Airfoils 

One of the first two-dimensional laminar solutions of the Navier-Stokes equations over an 

airfoil at near stall conditions was obtained by Hodge et al.
14

  Although this work focused on 

automated curvilinear grid generation, it illustrated some key issues when computing separated 

low Reynolds number laminar flow.  Hodge et al. obtained a solution for the NACA 6412 airfoil 

at 10° angle of attack and Reynolds number 4.14x10
4
.  The computations predicted a highly 

unsteady flow with relatively large spanwise vortices forming on the suction surface of the airfoil 

and traversing downstream.  Streamlines revealed that these vortical structures did not dissipate 

until they reached the coarser region of the mesh in the wake where grid resolution was 

inadequate to resolve them.  Unfortunately, time-mean quantities were not computed for 

comparison with experimental measurements.  However, instantaneous streamlines indicated a 

larger separated region than observed in the experimental smoke visualization.
15

  In addition, the 

large shedding vortices were not observed in the experiment.  Rather, experimental smoke lines 

blurred downstream of the separation as a result of transition into turbulence.  Instead of 

capturing the turbulent breakdown of the shear layer, two-dimensional computations tend to over 

predict the coherency of spanwise vortices as they do not inherently account for vortex stretching 

and spanwise instabilities that breakdown the vortex.  While the Navier-stokes equations are 

capable of modeling turbulence directly, grid resolution requirements for such three-dimensional 

Direct Numerical Simulations (DNS) are prohibitive for practical applications.   

To improve the accuracy of two-dimensional transitional flow simulations, researchers have 

coupled Reynolds Averaged Navier-Stokes (RANS) solvers with turbulence transition models.  

A laminar separation is typically obtained by suppressing the turbulence model upstream of the 

transition location predicted by the transition model.  Downstream of the transition location, the 
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turbulence model is responsible for producing the pressure rise as well as boundary layer 

thickening and reattachment.  This coupling method requires both accurate transition and 

turbulence models to achieve a physically representative solution.  Much research has been 

dedicated to both areas over the past decades. 

As transition is affected by a wide range of parameters such as wall roughness, freestream 

turbulence, pressure gradient, acoustic noise, etc., a comprehensive transition model that 

accounts for all factors has not been developed in the literature.  Instead, transition is typically 

predicted with models that only consider one or two parameters.  For example, the first transition 

model was conceived by Von Doenhoff.
16

  Von Doenhoff assumed that the boundary layer 

separated along a tangential path and that transition takes place at a constant Reynolds number 

based on the distance from the separation.  Furthermore, it was assumed that the turbulence 

spread out at a constant wedge angle; which permitted the reattachment location to be 

determined using simple geometric relationships.  Unfortunately, this simple model was only 

valid in a few cases and is generally not applicable.   

Transition models range from simple empirical methods based on linear stability theories, to 

linear or non-linear parabolized stability equations, and finally more comprehensive Navier-

Stokes models.  A design-oriented approach adapted by many researchers is the e
N
 method

17,
 
18

 

which is based on linear stability analysis and boundary layer theory.  Here, local growth rates of 

unstable waves based on velocity profiles are evaluated by solving the Orr-Sommerfeld equation.  

Transition is assumed to occur when the amplification of the most unstable Tollmien-Schlichting 

waves reach a specified critical threshold; known as the critical N-factor.  This method is used, 

for instance, to predict transition location in the popular airfoil-design code XFOIL
19

. 
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Coupling of a RANS solver and transition model was first archived by Hegna
20

.  

Incompressible Reynolds Averaged Navier-Stokes equations were solved with an algebraic eddy 

viscosity turbulence model for the NACA 0012 airfoil at a chord Reynolds number of 1.7x10
5
.  

The turbulence model incorporated modifications to account for separated adverse pressure 

gradient flows.  Prediction of the transition location was achieved through a transition model 

developed by Green et al.
21

  Despite limited computational resources, Hegna was able to obtain 

solutions that agreed favorably with available experimental data.  However, these experiments 

did not exhibit a strong adverse pressure gradient or a significant pressure plateau.  In addition, 

solutions were not obtained in post stall conditions. 

More recently, Radespiel et al.
22

, Lian and Shyy
23

, and Yuan et al.
24

 successfully coupled 

modern RANS solvers, equipped with a number of turbulence models, with the e
N
 method to 

predict laminar to turbulent transition on low Reynolds number airfoils.  While the RANS-e
N
 

solutions were dependent on both critical N-factors for the transition model and the choice of 

turbulence model, the method has been shown capable of accurately capturing the time-mean 

LSB up to stall.  Post stall calculations tended to over predict the lift and drag of the airfoil.
23

  

However, because the post stall flow does not undergo a traditional laminar separation and 

transition process, the discrepancy in lift and drag is related to the turbulence model rather than 

the transition and turbulence coupling technique.   

While this technique of coupling transition and turbulence models is computationally 

efficient; it is limited by its inherent assumptions of two-dimensional parallel steady velocity 

profiles and thin boundary layers.  These limitations are acceptable in many situations 

(particularly for airfoil-design purposes); however full three-dimensional MAV configuration 
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analysis is beyond the scope of such approaches.  Even though the e
N
 method has been extended 

to three-dimensions, a physical interpretation of the method in this situation is unclear
25

.  The 

flow field over a low Reynolds number finite wing incorporates a number of additional features 

not present when analyzing a two-dimensional airfoil.  As shown in the sketch in Figure 1.3, a 

finite wing not only exhibits a three-dimensional laminar separation region, additional 

complexity is introduced by the tip vortices.  Furthermore, for MAV’s with flapping motions, 

high angle of attack excursions may promote the development of leading-edge dynamic stall and 

leading-edge vortices whose stability falls outside of the aforementioned transition prediction 

framework.  Due to current limitations associated with the transition and turbulence modeling 

techniques, it is imperative that other solution methods are explored.  Such methods could 

provide alternative solution techniques and/or additional insights to improve transition and 

turbulence modeling techniques. 

 
Figure 1.3: Model of laminar separation on a finite wing

26
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1.2 Present Computations 

The present work investigates the feasibility of an Implicit Large-Eddy Simulation (ILES) 

approach to predict LSB formation and transition for low Reynolds–number airfoil applications.  

This technique solves the Navier-Stokes equations without the addition of a turbulence model.  

Hence, it relies on grid resolution to capture the relevant flow physics, such as separation, 

transition, and closure of the LSB.  The ILES approach, previously introduced in Refs. 27 and 

28, is based on higher-order compact schemes for the spatial derivatives and a Pade-type low-

pass filter to provide stability.  The high-order scheme allows for accurate capturing of the 

separation and transition process, whereas the highly-discriminating low-pass filter is used in 

lieu of a standard sub-grid-scale (SGS) model to enforce regularization in turbulent regions.  

This approach is very appealing as it provides a seamless methodology for mixed laminar, 

transitional, and turbulent three-dimensional flows.  A re-interpretation of this ILES approach in 

the context of an Approximate Deconvolution Model
29

 has been provided by Mathew et al.
30

. 

 
Figure 1.4: The SD7003 airfoil. 

Results are presented for flow over a SD7003 airfoil section
31

, shown in Figure 1.4.  This 

airfoil has a maximum thickness and camber of 8.5% and 1.48% respectively.  The SD7003 

airfoil was chosen due to the relatively large LSB that forms on the suction side of the airfoil at 

low Reynolds numbers and the available high quality experimental Particle Image Velocimetry 

(PIV) data for comparison.  High resolution velocity and Reynolds stress measurements have 
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been provided by Radespiel
22

.  Experiments were conducted in a water channel, as well as a low-

noise wind tunnel at the Technical University of Braunschweig (TU-BS).  Freestream turbulence 

intensities were 0.08% and 0.8% for the wind tunnel and water channel respectively.  

Measurements are available for Reynolds number 6x10
4
 at 4° angle of attack in the wind tunnel, 

and at 8° and 11° in the water channel.  PIV measurements for the SD7003 airfoil were also 

obtained by Ol et al.
32

 at the Wright Patterson Air Force Base (WPAFB) water channel with a 

freestream turbulence intensity of less than 0.1%.  Aerodynamic load measurements are also 

available from Ol et al.
32

 and Selig et al.
33, 34

 

Due to the adverse affect that LSB’s have on airfoil performance, a limited investigation was 

performed to assess the sensitivity of the shear layer to a leading edge disturbance.  The 

disturbance was introduced as zero-net-mass-flow blowing/suction slot near the leading edge 

driven at a frequency near the dominant natural frequency of the shear layer.  Despite the small 

amplitude of the disturbance, 1% of the freestream velocity, the disturbance was able to 

effectively eliminate the LSB in the time-mean sense.  However, rather than tripping the flow to 

turbulence, the leading edge disturbance energized the two-dimensional mode of the shear layer 

and reduced spanwise instabilities which in turn delayed the transition into turbulence. 

Chapter 2 describes the solution methodology, including the numerical code FDL3DI used 

to obtain ILES solutions.  The mesh and boundary conditions used for the computations are 

described in Chapter 3.  Chapter 4 discusses numerical considerations regarding spatial 

discretization, spanwise extent of the computational domain, and reference Mach number.  A 

comparison between the computed solutions and experimental measurements is given in Chapter 

5.  In addition, the effects of both Reynolds number and angle of attack are investigated in this 

chapter.  To end this chapter, the sensitivity of the separated shear layer to the small leading edge 



 10

disturbance is investigated.  Finally, Chapter 6 summarizes the key findings of this work and 

presents recommendations for future research. 

2 Solution Methodology 

Current computations utilize the flow solver FDL3DI, a higher-order accurate, parallel, 

Chimera, Implicit/SGS Large Eddy Simulation solver from Wright Patterson Air Force Base.  

FDL3DI has been proven reliable for many steady and unsteady fluid flow problems.
35–41

  The 

following sections will describe the underlying methodologies of this solver. 

2.1 Implicit vs. Subgrid-Scale Model LES 

The underlying concept of LES simulations assumes that flow structures can be separated 

into two categories, large scale eddies which are generated by geometry, and small scale 

dissipative eddies.  It is assumed that the large scale structures carry a majority of the Reynolds 

stresses and therefore must be computed directly.  Conversely, the small scale eddies are weaker, 

contribute less to the Reynolds stresses, and are therefore less critical.  In addition, the small 

scales are nearly isotropic with universal characteristics lending them to modeling.  Thus, a 

traditional LES simulation relies on so called sub-grid scale models to capture the effect of small 

scale eddies that are under-resolved by the computational mesh.  These models are incorporated 

as additional terms in the Navier-Stokes equations much like the source terms in RANS 

equations.  Unlike the RANS equations, the SGS terms are obtained through a filtering process 

rather than an averaging process.  The first SGS model was conceived by Smagorinsky
42

 in 1963 

and is commonly used for LES calculations due to its relative simplicity.  Another commonly 

used model is the dynamic SGS model where the coefficient in the original Smagorinsky is 

updated with the solution.
43
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In an Implicit LES scheme, unlike the traditional LES approach, no additional subgrid-scale 

terms are appended to the governing Navier-Stokes equations.  Instead, a high-order low-pass 

filter operator serves to incorporate the additional dissipation associated with the under-resolved 

eddies.  In other words, the filtering process is applied numerically to the computed solution 

during each time step rather than analytically to the Navier-Stokes equations.  This filtering 

procedure has produced accurate results for several turbulent flows on LES level grids, and 

provides an attractive alternative to the use of standard sub-grid-scale models.  For example, 

Visbal and Rizzetta
27

 used a 6
th

-order compact scheme with a 10
th

-order filter to simulate an 

isotropic decaying turbulent flow both with and without a Smagorinsky or dynamic SGS model.  

Time histories of the turbulent kinetic energy of these computations are compared with spectral 

DNS calculations of Spyropoulos and Blaisdell
44

 in Figure 2.1.  The 6
th

-order compact scheme 

required filtering both with and without the SGS model to maintain numerical stability.  

However, the computation without an SGS model tracks the turbulent decay remarkably well 

considering that the mesh consists of 32
3
 points as compared with the DNS calculation with 128

3
 

points.  However, the addition of an SGS model introduced excess dissipation.  This excess 

dissipation stems from the SGS model’s inability to discriminate between resolved and under-

resolved scales.
45

  While the higher-order filter only filters out the under-resolved high wave 

numbers, the SGS models have a tendency to dissipate energy over a wide range of wave 

numbers.  This deficit in SGS models is inherit in the approach and cannot be corrected by 

adjusting the constant in the models.  Besides the favorable results, computations without the 

SGS model are significantly less intensive as the SGS models require the evaluation of numerous 

additional derivatives. 
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Figure 2.1: Time history of turbulent kinetic energy for a decaying isotropic turbulence 

using serveral SGS models (32
3
 mesh)

27
 

The higher-order scheme costs approximately twice that of an explicit 2
nd

-order scheme in 

terms of CPU time per grid point per time step.  However, a mesh size of 128
3
 is required to 

achieve the same results shown in Figure 2.1 with a 2
nd

-order explicit scheme.
27

  This is an 

increase in computational cost of approximately 32 times over the compact scheme.  Thus the 

compact scheme with the higher-order filter has the promise of both accuracy and computational 

efficiency.  The ILES technique has been incorporated into the FDL3DI flow solver and applied 

to a range of complex flow problems such as turbulent channel flow
39

, laminar separation over a 

low pressure turbine blade
35

, vortex breakdown over a delta wing
37

, and a full UAV1303 

model
41

. 
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2.2 Governing Equations 

The FDL3DI code solves the three-dimensional, unsteady, unfiltered, compressible Navier-

Stokes equations expressed in curvilinear coordinates 

 �
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The viscous flux vectors are 
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Compact notation ix , i = 1, 2, 3 is used to represent x, y, and z coordinates respectively and 

similarly �i, for �, �, and �.  Dependent variables have been non-dimensionalized by their 

respective reference values, except for pressure which was non-dimensionalized by 2

��U� .  All 

length scales are non-dimensionalized by the chord length of the airfoil.  This choice of non-

dimensionalization infers that time and total energy were non-dimensionalized by �UC /  and 

2

�U  respectively.  Sutherland’s law for molecular viscosity 
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are used to close the Navier-Stokes equations.  It should be noted that the above governing 

equations correspond to the original unfiltered Navier-Stokes equations, and are solved without 

change in laminar, transitional, or fully turbulent regions of the flow.   

2.3 Numerical Discretization 

2.3.1 Time Integration 

Time accurate solutions of Eq. 2.1 are obtained with the implicit approximate-factorization 

algorithm of Beam and Warming
46

 augmented with Newton-like subiterations to achieve second 

order time accuracy.  The implicit system is written in delta form as 
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where 

 � � 1
1

��� �� i , pp QQQ ��$ �1  (2.10) 

Here, at the n + 1 time level, 1�nQ  is approximated by pp QQQ �$��1 .  For p = 1, 

np QQ � .  First order Euler-implicit and 2
nd

-order three-point backward schemes are given by 

setting 0��  and 2/1��  respectively.  The 2
nd

-order accurate formulation was used for the 

present computations.  The implicit left-hand side of the algorithm is discretized with 2
nd

-order 
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central differencing for all spatial derivatives and utilizes non-linear artificial dissipation to 

augment stability.
47

  The efficiency of the implicit algorithm was increased by solving the 

factorized equations in diagonal form.
48

  In order to maintain temporal accuracy, which can be 

degraded by the diagonal form, three sub-iterations were utilized within a time step.  This 

technique is commonly used to reduce errors due to linearization, factorization, and explicit 

application of boundary conditions.  This implicit time marching scheme has been successfully 

applied to unsteady vortical flow by Visbal and Gaitonde
49

. 

2.3.2 Spatial Discretization 

The right-hand side of Eq. 2.9 is discretized with a 6
th

-order accurate compact scheme based 

on the pentadiagonal system of Lele
50

 and is capable of obtaining spectral-like resolution.  The 

method is described using a one-dimensional computational mesh consisting of N points with 

unit spacing as shown in Figure 2.2.  For body fitted meshes, a coordinate transformation 

� �x�� �  is required to cast the physical coordinates into computational mesh coordinates.  

Furthermore, let � ���� �  be a scalar quantity known at the point location as j� , � �Nj ,1& .  A 

stencil of five points is required in order to achieve a 6
th

-order accurate central compact scheme.  

Because the interior stencil can be utilized up to the third point off the boundary, special 

treatment is required at the first two boundary points.  A limited description of the discretization 

of interior and boundary points implemented in FDL3DI is given in the following two sections.  

Detailed descriptions and additional compact schemes are referred to Ref. 51. 

 
Figure 2.2: Notation for interior and boundary points 

1 3 N-2 M=

N-1 

N2 j-2 j-1 j j+1 j+2
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2.3.2.1 Interior Points 

In general, the interior central differentiation formulation can be expressed as 

 ��
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where j��  is the derivative of �  at point j and �, a, and b are constants that determine the 

order of accuracy of the scheme.  To choose the appropriate coefficients, Taylor series 

approximations about point j are inserted into Eq. 2.11 and terms of appropriate order are set to 

zero.  This leads to the following three equations
50
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Solutions to this system of equations can lead to both explicit and compact schemes.  By 

setting � = 0, the left hand side of Eq. 2.11 is decoupled yielding an explicit expression for the 

derivative at point j.  With this choice, two explicit schemes are obtained by determining a and b 

from the first two equations of Eq. 2.12.  If only the first equation of Eq. 2.12 is solved with � = 

0 and b = 0, an explicit 2
nd

-order scheme is obtained.  Solving the first two equations gives an 

explicit 4
th

-order scheme.  Thus the order of the scheme is one less than the number of stencil 

points. 

Alternatively, allowing � � 0 couples the derivative at point j with its neighbors on the left 

hand side of Eq. 2.12.  This coupling of derivatives produces a tri-diagonal system that must be 

solved to implicitly obtain the derivatives.  With the assumption of � � 0, solving the first two 

equations of Eq. 2.12 with b = 0 yields a 4
th

-order compact scheme while the solution to all three 

equations leads to a 6
th

-order compact scheme.  The term ‘compact scheme’ refers to the fact that 
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the scheme is one order higher than the number of stencil points.  Higher than 6
th

-order compact 

schemes can be derived but would require additional stencil points on either side of the Eq. 2.11. 

A summary of the coefficients for both explicit and compact schemes is given in Table 2.1.  

Here, E2 and E4 stand for explicit 2
nd

 and 4
th

-order accurate schemes respectively, while C4 and 

C6 represent compact 4
th

 and 6
th

-order accurate schemes.   

Table 2.1: Coefficients for interior compact finite differentiation 

Scheme � a b 
Stencil 

Size 
O(h

*
) 

E2 0 1 0 3 2 

E4 0 
3

4
 

3

1�
 5 4 

C4 
4

1
 

2

3
 0 3 4 

C6 
3

1
 

9

14
 

9

1
 5 6 

A wave number analysis reveals insight to which wave numbers are resolved by the 

differencing schemes in Table 2.1.  To derive the equation for the modified wave number of the 

differencing schemes, a periodic Fourier expansion of �  is introduced at point j, expressed as 
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By defining the scaled wave number 
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x
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the Fourier expansion in Eq. 2.13 is rewritten as 
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Furthermore, the exact derivative of the Fourier expansion is given by 
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In other words, the expansion coefficients of the derivative are given by  

 kk bib *��  (2.18) 

To obtain the modified wave number, the Fourier expansion and is derivative are substituted 

into Eq. 2.11 
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After algebraic manipulation, the differencing schemes yields an approximation to the 

coefficients of the derivates as 

 kk bib *���  (2.20) 

where *�  is the modified wave number given by 
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The modified wave numbers for the differencing schemes are shown in Figure 2.3.  The 

extent to which the modified wave number follows the exact line is an indication of the wave 

numbers resolved by the differencing scheme.  Increased order of accuracy of the differencing 
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scheme leads to a resolution of higher wave numbers.  Wave numbers associated with the 

modified wave numbers that deviate from the exact line are under-resolved and can introduce 

phase errors which lead to dispersion. 

 
Figure 2.3: Modified wave number for finite difference schemes 

2.3.2.2 Boundary Points 

To preserve the tridiagonal nature of the interior scheme, the general equation for the first 

boundary point is 

 71615141312111211 ���������� gfedcba ����������  (2.22) 

Similar to the interior points, a set of equations is obtained by inserting a Taylor series 

expansion about point 1 and matching coefficients.  Resulting coefficients from solving this 

system of equations are listed in Table 2.2.  Similar to Table 2.1, E stands for explicit and C 

stands for compact.  Note that the scheme C2 is identical to that developed in Ref. 52. 
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Table 2.2: Coefficients for the first boundary point 

Scheme �1 a1 b1 c1 d1 e1 f1 g1 
Stencil 

Size 
O(h

*
) 

E1 0 -1 1 0 0 0 0 0 2 1 

E2 0 
2

3�
 2 

2

1�
 0 0 0 0 3 2 

E3 0 
6

11�
 3 

2

3�
 

3

1
 0 0 0 4 3 

E4 0 
12

25�
 4 -3 

3

4
 

4

1�
 0 0 5 4 

E5 0 
60

137�
 5 -5 

3

10�
 

4

5�
 

5

1
 0 6 5 

E6 0 
20

49�
 6 

2

15�
 

3

20
 

4

15�
 

5

6
 

6

1�
 7 6 

C2 1 -2 -2 0 0 0 0 0 2 2 

C3 2 
2

5�
 2 

2

1
 0 0 0 0 3 3 

C4 3 
6

17�
 

2

3
 

2

3
 

6

1�
 0 0 0 4 4 

C5 4 
12

37�
 

3

2
 3 
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For the second boundary point, the general formula is given by 

 726252423222123222121 ������������ gfedcba ������������  (2.23) 

In general both sides of Eq. 2.23 are asymmetric about point 2.  Several possible solutions 

exist for solving the system of equations formed from the Taylor series expansion about point 2 

depending on the choice of the relationship between �21 and �22.  Four options for these 

relationships are given in Table 2.3. 
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Table 2.3: Possible relationships between �21 and �22 

Option Relationship Remarks 

A �21 = �22 � 0 

This will set the left hand side of Eq. 2.23 to be symmetric about 

point 2. 

B �21 � �22 � 0 

Due to the extra degree of freedom, a higher order of accuracy is 

obtained than in option A for the same stencil size. 

C �21 = 0, �22 � 0 

This compact formulation does not give the derivative on the 

boundary. 

D �21 = �22 = 0 

This produces an explicit scheme that also does not give the 

derivative at the boundary. 

Option A has been used traditionally in most applications of FDL3DI and has become the 

standard even though a methodical comparison of the different options has not been conducted.  

The coefficients for Option A are given in Table 2.4. 

Table 2.4: Coefficients for second boundary point with �21 = �22 

Scheme �21 �22 a2 b2 c2 d2 e2 f2 g2 
Stencil 

Size 
O(h

*
) 

AC4 
4

1
 

4

1
 

4

3�
 0 

4

3
 0 0 0 0 3 4 

AC5 
14

3
 

14

3
 

28

19�
 

42

5�
 

7

6
 

14

1�
 

84

1
 0 0 5 5 

AC6 
11

2
 

11

2
 

33

20�
 

132

35�
 

33

34
 

33

7�
 

33

2
 

132

1�
 0 6 6 
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For the second to last boundary point, the general equation is similar to that for the second 

boundary point 

 
6543

212211
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����

��������
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NMNMNMNMNNM

gfed

cba

����

��������
 (2.24) 

In fact, the same coefficients given in Table 2.4 are used with the following corrections 

i. 221 �� �M  

ii. 212 �� �M  

iii. Signs of coefficients a through g are reversed, i.e.  2aaM �� , 2bbM �� , … 

The general equation for the last boundary point is also similar to the equation for the first 

boundary point 

 6151413211 ������� ����������
NNNNNNNNNNNNNN gfedcba ����������  (2.25) 

Again, due to the similarities to the equation for the first boundary point, coefficients from 

Table 2.2 are used with the following corrections 

i. 1�� �N  

ii. Signs of coefficients a through g are reversed, i.e.  1aaN �� , 1bbN �� , … 

2.3.3 Low Pass Spatial Filtering 

While the higher order compact scheme addresses the issue of accuracy, an equally 

important property of a numerical scheme is stability.  Like other centered schemes, in practice, 

high order collocated compact schemes are nondissipative and susceptible to numerical 

instabilities due to the growth of unstable high frequency modes.  Theoretical stability analysis 

of higher order compact schemes is not straightforward.  Analysis is only readily available on the 
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simplest cases of linear equations on infinite domains with an even mesh and explicit time 

integration.
53

  In practice, problems typically involve non-linear equations, bounded domains, 

body fitted curvilinear meshes, and implicit time integration.   

Furthermore, stability analysis seldom accounts for physical approximations such as the zero 

normal pressure gradient at a solid wall � �0�		 np .  This is derived from boundary layer theory 

but can potentially incur significant errors near separation and reattachment locations.  

Implementation of such a boundary condition is often approximated with 0�		+		 �pnp  

where �  is the curvilinear coordinate emanating from the wall and may not coincide with the 

wall normal.  In fact, boundary conditions derived on an evenly spaced mesh may not be stable 

on a general curvilinear mesh.
54

 

To stabilize the overall higher order scheme, after each sub-iteration, the conservative 

variables are passed through a high order non-dispersive low-pass spatial filter developed by 

Gaitonde et al.
55

.  Only the poorly resolved high-frequency content of the solution is damped by 

this highly-discriminating filter.  This method of filtering the conservative variables, known as 

Implicit LES, has shown to be more effective at maintaining both stability and accuracy on 

stretched curvilinear meshes than traditional explicitly added artificial dissipation.
49

  A summary 

of the filtering approach is described for interior and boundary points in the following two 

sections.  Further details can be found in Ref. 51. 
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2.3.3.1 Interior Points 

A N2 -order filter derived by Gaitonde et al. for interior points requires a stencil size of 

12 �N  and has the general formula 

 � �'
�

���� ����
N

n

njnj
n

jfjjf

a

0

11
2

�������  (2.26) 

Here, �  represents filtered values of the scalar quantity � .  Similar to the compact finite 

difference scheme, the filtering is implicit and requires the solution of a tridiagonal system.  To 

derive the characteristic spectral function of the filter, which is used to determine the coefficients 

in Eq. 2.26, the same periodic Fourier expansion (Eq. 2.17) used in the wave number analysis of 

the compact scheme is substituted into Eq. 2.26, yielding 

 � � � � � � � � � �� �'
�

������
N

n

n
ff nn

a

0

~~

2
1

~
0

~
1

~
�������  (2.27) 

Through algebraic manipulation, this further reduces to 

 � � kk bSFb *�  (2.28) 

where the spectral function � �*SF  of the filter is 

 � �
� �

� �*�

*
*

cos21

cos
0

f

N

n

n na

SF
�

�
'
�  (2.29) 

This equation is representative of the attenuation the filter will apply to a given wave 

number.  Coefficients in Eq. 2.29 must now be determined such that low frequencies are allowed 

to pass through with little attenuation while higher under-resolved frequencies are eradicated.  

Equation 2.29 has 2�N  unknowns, namely f� , 0a , 1a , …, Na .  To obtain the coefficients, the 
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highest frequency and odd-even modes are eliminated by enforcing the condition � � 0�(SF
50,

 

56
.  In turn, this allows for the coefficients to be determined from a Taylor series expansion of �  

about the point j.  Even though the Taylor series expansion leads a complete system of equations, 

the parameter f�  is retained as a free parameter.  This allows for an explicit formulation of the 

filter where the left hand side of Eq. 2.26 is decoupled by choosing 0�f� .  Due to the form of 

the denominator in Eq. 2.29, an upper bound of 5.0�f�  is required to avoid division with zero.  

However, increasing the value of f�  reduces the attenuation of lower wave numbers.  

Coefficients for filters of up to 10
th

-order are given in Table 2.5.  The formal order of accuracy 

of the filter is representative of the severity at which the filter damps low frequencies.  Lower 

order filters will have a higher attenuation of low frequencies than higher order filters.  This 

illustrated with the spectral functions for the different filtering orders of accuracy shown in 

Figure 2.4.  The deviation from unity of the spectral function is representative of the attenuation 

applied to the corresponding wave number.   

 
Figure 2.4: Frequency response characterisitics of implicit central filters with �f = 0.35 
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Table 2.5: Implicit Central Filter Coefficients � �5.0�f�  

Scheme a0 a1 a2 a3 a4 a5 
Stencil

Size 
O(h

*
)

F2 f��
2

1
 f��

2

1
 0 0 0 0 3 2 

F4 
4

3

8

5
f��  f��

2

1
 

48

1 f�
�

�
 0 0 0 5 4 

F6 
8

5

16

11
f��  

16

17

32

15
f��  

8

3

16

3
f��

�
 

1632

1 f�
�  0 0 7 6 

F8 
128

7093 f��
 

16

187 f��
 

32

147 f���

816

1 f�
�  

64128

1 f�
�

�
 0 9 8 

F10 
256

126193 f��
 

256

302105 f��
 

64

3015 f���

512

9045 f��

256

105 f���
 

512

21 f��
 11 10 

 

 
Figure 2.5: Combined differencing and filtering scheme 

The combination of a 6
th

-order compact differencing and an 8
th

-order low pass filter is 

summarized in Figure 2.5.  The filter has the desired effect of dissipating the under-resolved 

Resolved wave numbers 

No dissipation 
Under-resolved wave numbers 

Added dissipation 
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higher wave numbers with no attenuation applied to the lower wave numbers resolved by the 

compact differencing scheme. 

2.3.3.2 Boundary Points 

Due to the large stencil requirement of the interior filtering scheme, in particular the 10
th

-

order filter with a stencil of 11 points, special treatment is required near boundaries.  For the 

10
th

-order filter, points 1 through 5 and 4�N  through N will have a stencil that extends beyond 

the boundary of the domain.  Two approaches that address this issue have been developed.   

 
Figure 2.6: Frequency response characterisitics of one sided filters with different �f 

The first method uses one sided filters of similar order of the interior scheme to preserve the 

tridiagonal nature of the scheme.  However, in this case for 5.00 �� f�  the spectral function 

will be complex, which is an indication that the filter may introduce artificial dispersion.  In 

addition, as demonstrated in Figure 2.6, the magnitude of the spectral function can exceed unity 

for a selection of wave numbers which will therefore be amplified.  However, also as shown in 

Figure 2.6, the degree to which the magnitude of the spectral function extends beyond unity 
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diminishes as f�  approaches 0.5.  Thus a value of f�  near 0.5 is recommended for the one 

sided filters.  A complete listing of the coefficients for these filters is given in Ref. 51.   

The second method reduces the order of the filter (and hence the stencil) at the j
th

 point from 

the boundary to the order 22 �j .  By reducing the order of the filter near the boundaries, a 

central filter can be maintained up to the boundary.  It has been shown that as f�  approaches 0.5 

for a lower order filter, the lower order filter will behave similar to that of a higher order filter.  

For example, as f�  approaches 0.5 for a 2
nd

-order filter, it behaves similar to an 8
th

-order filter 

as illustrated in Figure 2.7.
57

  Thus, a low dissipative filter can be maintained near boundaries by 

reducing the order of the filter while ramping up f�  closer to a value of 0.5. 

In both situations, no filtering is applied to the first boundary point as this information is 

determined by the boundary condition. 

 
Figure 2.7: Frequency response characterisitics of central filters F2 and F8 with different �f 
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2.4 Metric Calculations 

Issues of freestream preservation and metric cancellation must be addressed when applying 

the higher order compact scheme to nontrivial three-dimensional geometries.  If these issues are 

not properly handled, the resulting errors will have devastating effects on both 2
nd

 and higher-

order schemes.  In two-dimensions, it has been found that metrics evaluated with the same 

higher-order compact finite difference formulations as the fluxes produce freestream 

preservation and metric cancellation errors similar to that of a standard second-order central 

difference method.
49, 58

  As a side note, the application of analytical metrics can lead to 

unacceptable errors and should in general be avoided.
49

  

It has been assessed in the literature that although this simple straight-forward approach is 

effective in two-dimensions, it fails to satisfy metric cancellation in three-dimensions.
59, 60, 61

 

Analytically, the metric relationships are 
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The relationships of Eqs. 2.30, 2.31, and 2.32 may be associated with the x, y, and z 

components of the surface area vectors respectively.  Corresponding to these metric equations 

are metric identities which were implicitly invoked while deriving the strong-conservation form 

of the curvilinear Navier Stokes equations 
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These metric identities represent the surface conservation of a closed cell.  A fourth metric 

identity representing volume conservation, referred to as the geometric conservation law (GCL) 

in the literature, is 
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All of these identities must be satisfied numerically in order to guarantee freestream 

preservation.  For static time independent meshes – only the identities of Eq. 2.33 are applicable.   

Unfortunately, evaluating the derivatives in Eqs.  2.30, 2.31, and 2.32 with either explicit or 

compact finite differences will not satisfy the identities in Eq. 2.33; thus inducing mesh related 

errors in regions of significant mesh variations and singularities.  These issues have been 
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resolved for traditional 2
nd

-order schemes with either a simple averaging technique by Pulliam 

and Steger
60

 or with finite volume concepts as suggested by Vinokur
59

.  While these techniques 

work very well on 2
nd

-order schemes, they are not easily extended to the higher-order compact 

schemes. 

A less well known method for achieving metric cancellation was presented by Thomas and 

Lombard.
61

  Rather than using averaging techniques or introducing any geometrical concepts, the 

metric equations are rewritten before discretization in a “conservative” form 
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While this method was presented in the context of a 2
nd

-order scheme, the simpler averaging 

method has been favored in the literature.  Even though this “conservative” method was not 

envisioned for higher-order compact schemes, it has been shown by Visbal and Gaitonde
62

 to 
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satisfy both freestream preservation and metric cancellation on general three-dimensional 

curvilinear meshes. 

2.5 Parallel Computation 

Despite continuous advancement of computing technology, calculations on meshes 

consisting of millions of grid points over tens of thousands of iterations cannot be completed in 

an adequate time frame.  To reduce the computational time, a parallel paradigm is introduced 

where solutions are obtained through simultaneous computations on multiple independent 

processors.  This involves decomposing the computational domain into smaller blocks which are 

then distributed across multiple processors.  In addition, a synchronization process is required to 

update block boundaries that were previously interior points.  A schematic of this process for a 

one dimensional mesh is given in Figure 2.8.  Here, the original mesh is decomposed into two 

blocks at point j.  However, due to the five-point stencil required by the compact differencing 

scheme, a five point overlap with two fringe points is required.  While this overlap incurs an 

additional overhead to the computation by increasing the total number of points; it is necessary 

in order to properly carry the solution across block boundaries.   

The synchronization process has been implemented using a Message Passage Interface 

(MPI) library.
63

  In the present schematic, this process is responsible for transferring the solution 

from points 4�N  and 3�N  on block 1 to points 1 and 2 respectively on block 2.  The solution 

from points 4 and 5 on block 2 are then transferred to points 1�N  and N on block 1.  Hence, the 

values transferred from block 1 act as boundary conditions on block 2 and vice versa allowing 

for the solution to seamlessly continue across the interface and maintain the formal accuracy of 

the numerical scheme.  For consistency, boundaries that rely on physical boundary conditions are 

also updated immediately after MPI synchronization.  Two MPI and physical boundary condition 
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updates are performed for each Newton sub-iteration: once after the solution is updated from the 

time integration and once again after the solution is filtered.   

 
Figure 2.8: Schematic of domain decomposition with five point overlap 

While a one-dimensional description is given here for the domain decomposition and MPI 

synchronization; the extension to higher dimensions is straight forward due to the use of 

structured meshes.   

To achieve a high parallel efficiency, it is important to partition the mesh as evenly as 

possible across the processors.  A well balanced partitioning was achieved with automated tools 

developed for FDL3DI.
64

  These tools also guarantee that the minimum stencil requirement is 

satisfied on the partitions as discussed in the following section. 
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2.6 Chimera Overset Meshes and Hole Cutting 

Structured meshes are suitable for a practical implementation of the compact differencing 

and filtering schemes due to the larger stencils and tridiagonal nature of the schemes.  However, 

applying a single structured mesh for analysis of a complicated geometry can be prohibitive.  In 

addition, structured meshes often inadvertently cluster grid points in regions of less interest 

resulting in an undesirable computational overhead. 

 
Figure 2.9: A Chimera overset mesh 

To expand the usefulness and flexibility of structured meshes, Benek et al.
65

 introduced the 

concept of Chimera overset meshes while solving the Euler equations.  The fundamental concept 

of the Chimera overset technique is to use a collection of meshes with arbitrary overlapping 

regions, in place of a single mesh, to represent the geometry and computational domain.  Thus, a 

complex geometry can be broken down into smaller and more manageable pieces.  Often 

multiple body fitted meshes are used with a larger background mesh to tie together all the 

individual meshes.  An example of a Chimera mesh for two cylinders is presented in Figure 2.9.  
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Here, two body-fitted meshes represent the cylinders with a background mesh coupling the 

system together.   

Two significant problems exist with this system as it stands.  First, a significant number of 

points from the background mesh lie within the solid walls of the cylinders where a solution is 

not desired.  Secondly, two overlying solutions will exist in regions where the body fitted meshes 

overlap the background mesh.   

To resolve these issues, Benek et al. suggested a hole cutting technique.  Here, all points are 

flagged to either be valid points for calculations or hole points where the solution is invalid.  A 

simple modification to an implicit scheme is required to account for holes in the mesh.  Consider 

the exemplary algebraic system of equations typical of the compact finite difference scheme, 

 FA ��   (2.38) 

where A is the tridiagonal matrix, �  is an unknown vector of derivatives, and F is the known 

right-hand side vector.  A general representation of the system is given in Figure 2.10.  Suppose 

that points 1�j , j, and 1�j  are flagged as hole points.  A simple modification to the implicit 

matrix A is now required to decouple the hole points from the system of equations.  This is done 

by removing the off diagonal coefficients from the matrix at the hole points and treating points 

3�j , 2�j , 2�j , and 3�j as boundary points by modifying their off diagonal coefficients 

(see Figure 2.11).  Also, 3�jf , 2�jf , 2�jf , and 3�jf  must be recomputed with an appropriate 

boundary stencil so that the invalid solution of the hole points is not used to form the right-hand 

side.  Finally, 1�jf , jf , and 1�jf  are set to zero so that the derivatives in the holes are set to zero.  

Similar modifications are required for the implicit matrix of the filtering scheme and implicit 

time integration matrix of Eq. 2.9.  Note that because the hole points are not actually removed 
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(just decoupled from the system of equations), they become a computational overhead.  Thus, 

while hole cutting is powerful, it should be used with caution and the number of hole points 

should be kept at a minimum when possible. 
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Figure 2.10: Representatative tridiagonal system of equations 
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Figure 2.11: Modified tridiagonal system of equations to account for 

a hole at j-1, j, and j+1 
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Figure 2.12: A Chimera mesh with hole cutting 

a) Unsupported minimum stencil  b) Minimum stencil supported 

Extra care must be taken when generating holes for FDL3DI due to the larger stencil of the 

filter and compact differencing scheme.  If a 10
th

-order filter is used, holes must be cut so that all 

regions of non-hole points consist of at least 11 continuous points for all three computational 

coordinates.  Otherwise, the filter will use the invalid solution in holes to generate the right hand 

side of the tridiagonal system of equations.  Consider Figure 2.12 where two holes have been 

generated in the background mesh for the two cylinder overset system.  Figure 2.12a exemplifies 

a hole with regions where the 11 point minimum stencil requirement is not satisfied.  The hole 

generated in Figure 2.12b on the other hand does support the minimum stencil.   

Acceptable
Hole

Not
Acceptable

Hole

a) b) 
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Appropriate conditions must be supplied at all mesh boundaries, including boundaries 

generated from hole cutting.  Because mesh boundaries overlap into interior regions on other 

meshes where valid solutions exist, it is natural to use the interior solution to construct boundary 

conditions for an overlapping mesh.  As boundary points do not coincide with the interior point 

on the neighboring mesh, interpolation is the simplest method of transferring the interior solution 

to the boundaries.  The interpolation is achieved in FDL3DI through a 6
th

 order accurate 

interpolation scheme in order to maintain the overall higher order spatial accuracy of the 

methodology.
66

  Furthermore, following the discussion of the parallel implementation, two fringe 

points must be updated on all overlapping boundaries.   

2.7 Present Numerical Scheme 

For the present computations, the 6
th

-order compact differencing scheme was implemented 

on the interior points in all spatial directions.  For stability reasons, the scheme is reduced to the 

one sided 5
th

-order scheme at the second boundary point and a 4
th

-order one sided scheme at the 

first boundary point.  This is also summarized in Table 2.6. 

Table 2.6: Compact differncing scheme used for present computations 

 Point 

Coordinate 1 2 Interior N-1 N 

� C4 AC5 C6 AC5 C4 

� C4 AC5 C6 AC5 C4 

� C4 AC5 C6 AC5 C4 

The solution was filtered with an 8
th

-order filter in the streamwise and surface normal 

directions and a 10
th

-order filter in the spanwise direction.  The 10
th

-order filter was used in the 

spanwise direction since the mesh has uniform spacing in that direction.  Boundary points were 
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treated with the second method described in section 2.3.3.2 where the order of the filter is 

reduced in order to maintain a central scheme at each grid point.  A summary of the filtering 

scheme is given in Table 2.7. 

Table 2.7: Filtering scheme used for present computations 

  Point 

Coordinate  1, N 2, N-1 3, N-2 4, N-3 5, N-4 Interior 

Filter 0 F2 F4 F6 F8 F8 
� 

�f 0.0 0.49 0.35 0.35 0.35 0.35 

Filter 0 F2 F4 F6 F8 F8 
� 

�f 0.0 0.49 0.35 0.35 0.35 0.35 

Filter 0 F2 F4 F6 F8 F10 
� 

�f 0.0 0.49 0.35 0.35 0.35 0.35 

After each Newton sub-iteration, the one-dimensional filter is successively applied to the 

conservative variables along each of the three computational coordinates.  Before filtering in a 

subsequent computational coordinate, the solution is updated with filtered quantities.  To avoid 

any bias by constantly applying the filter in the same sequence, a permutation is introduced to 

cycle through all six possible filtering sequences.  The filtering sequence is cycled once per time 

step; thus the same sequence is applied after each sub-iteration of a particular time step. 

2.8 Computing Time-mean Quantities 

All time-mean quantities were evaluated by first computing spanwise spatial mean quantities 

which were subsequently averaged over approximately eight characteristic times.  Specifically, 

the instantaneous spanwise mean quantities were averaged over 54,000 time steps with a non-

dimensional time step of �t = 0.00015.  To eliminate the effect of initial transients, the time 

accurate solution was allowed to develop over five characteristic times before the time averaging 
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process was initiated.  Eradication of initial transients resulting from a freestream initial solution 

was further accelerated by initializing three-dimensional computations with a developed two-

dimensional solution.  Two-dimensional solutions were computed with 3 points in the spanwise 

extent and were transferred to the three-dimensional mesh through simple extrusion.   

3 Computational Mesh and Boundary Conditions 

All computational meshes were generated using the software package GridGen
67

.  Initially, a 

single baseline O-grid was generated about the SD7003 airfoil with a rounded trailing edge as 

depicted in Figure 3.1.  The rounded edge had a radius of curvature of 0.0004 relative to the 

chord.  Grid coordinates are oriented such that � traverses clockwise around the airfoil, � is 

normal to the surface, and � follows the spanwise direction.  The baseline mesh consisted of 

315x151x101 points in the �, �, � directions, respectively, which is approximately 4.8 million 

grid points.  The mesh is evenly spaced in the spanwise direction with a width of Z/C = 0.2.  A 

spanwise periodic boundary condition was imposed on all meshes.  Furthermore, a five point 

overlap is required to impose the O-grid periodic boundary condition.   

The farfield boundary was positioned 30 chords away from the airfoil in order to reduce its 

influence on the solution near the airfoil.  In addition, the mesh is stretched to prevent pressure 

waves from reflecting back into the computational domain.
68

  The rapid stretching of the mesh 

promotes transfer of energy to reflected odd-even modes which in turn are eliminated by the 

low-pass filter.  This technique has been empirically shown to be effective in non-linear and 

multi-dimensional situations where more advanced non-reflecting techniques
69

 derived through 

asymptotic or linear-analysis may be ineffective. 
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Figure 3.1: Baseline Computational mesh.  Grid dimensions of 315x151x101: 

a) Full O-grid  b) Mesh near near the body  c) Rounded trailing edeg 

315x151x101 

Freestream 

0�
	
	

x

�

b) a)

c) 
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Figure 3.2: Overset computational mesh.  Grid dimensions (�, �, �) are depicted for each 

grid:  a) Background O-grid  b) Near O-grid  c) Body fitted grids 

A second mesh (Figure 3.2) with greater refinement on the upper surface of the airfoil was 

constructed that exploited the Chimera overset capabilities of the FDL3DI solver.  The baseline 

mesh was used as the basis for the overset mesh and a portion of it was retained as the near O-

grid shown in Figure 3.2b.  A circular O-grid (Figure 3.2a) was generated away from the airfoil 

to again move the farfield boundary conditions 30 chords away from the airfoil.  By using two 

meshes, fewer grid points were required to move the farfield boundary away from the airfoil.  As 

a) b) 

163x50x41 

Freestream

315x47x65 
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101x74x65 
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this mesh is away from the separated flow of interest, its spanwise resolution was reduced to 41 

points.  Similarly, the near O-grid and pressure-side grid were reduced to 65 spanwise points.  

The grid on the suction side of the airfoil maintained 101 spanwise points.  In addition, this mesh 

was doubled in both the surface normal and streamwise directions compared to the baseline 

mesh.  This reduced y
+
 values to below 0.3 for Reynolds number of 6x10

4
 and angle of attack of 

4°.  After these modifications, the total number of mesh points in the overset system is 

approximately 5.7 million grid points, with 69% of the points on the suction side of the airfoil.  

The overset system was further decomposed into 60 blocks for parallel execution. 

Two additional overset meshes were generated to asses that the overset mesh adequately 

resolved the transition of the free shear layer.  A coarse overset and a fine overset mesh were 

generated by altering the streamwise point count on the suction surface mesh from 428 to 328 

and 528 points respectively.  The coarse overset mesh consisted of 5.7 million while the fine 

overset mesh consisted of 6.6 million points. 

3.1 Wall Boundary Condition 

The airfoil surface was modeled with a no-slip adiabatic wall boundary condition with a 

zero normal pressure gradient.  The no-slip is satisfied by simply setting the velocity vector 

components to zero.  Density on the wall is calculated indirectly through the wall pressure and 

temperature; both of which were obtained with a zero wall normal gradient equation discretized 

with a 4
th

-order accurate explicit differencing scheme.  Assuming the �  computational 

coordinate approximates the wall normal, the explicit differencing formula for the scalar �  is 

written to give the quantity at the wall as 
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Pressure and temperature at the wall are now computed by replacing �  with the respective 

quantity.  Once wall pressure and temperature are obtained, the density at the wall was calculated 

with the aid of the ideal gas law. 
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3.2 Farfield Boundary Condition 

A freestream condition was prescribed on the majority of the farfield boundary.  The 

freestream conditions are 
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However, downstream of the airfoil, a zero x-gradient extrapolation is imposed on density 

and velocity components.  The freestream pressure is still prescribed.  The extrapolation is 

expressed for a general scalar �  in computational coordinates as 

 0��� xx
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d

d

d

dx

d
�

�
�

�
�
��

  (3.4) 

The mesh is intentionally constructed such that 0�x� .  The analytical expression is then 

discretized with a 2
nd

-order central scheme in the �  direction and 1
st
-order scheme in the �  

direction.  After rearranging the discrete equation, a tridiagonal system is solved to obtain the 

boundary values 
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3.3 Spanwise Periodic Boundary Condition 

A spanwise periodic boundary condition was imposed on all meshes to simulate an infinite 

wing.  This boundary condition was imposed using a five point overlap similar to what was 

described for the domain decomposition in section 2.5.  The following assignments were applied 

to all i, j values of the meshes to impose the periodic boundary conditions.  
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The decomposition process for parallel computation was restricted from creating any cuts in 

the spanwise direction of the mesh in order to ensure that k = 1 and k = kmax for all blocks were 

located on the spanwise boundaries of the computational domain. 

4 Numerical Considerations 

Several numerical parameters were investigated at 4° angle of attack with a Reynolds 

number of 6x10
4
 to limit numerical errors.  This combination of angle of attack and Reynolds 

number was chosen as it has been investigated extensively experimentally
22, 32

 and numerically
23, 

24
.  Specifically, spatial discretization, grid resolution, spanwise extent, and freestream Mach 

number were evaluated.  

4.1 Effect of Spatial Discretization 

Both 2
nd

- and 6
th

-order computations were performed on the baseline mesh at 4° angle of 

attack and Reynolds number 6x10
4
.  Fourth-order spectral damping terms were used to stabilize 
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the 2
nd

-order solution.
47

  Mean surface pressure and skin friction coefficients from these 

calculations are presented in Figure 4.1.  Even though the pressure gradient predicted by the 6
th

-

order scheme is slightly sharper in the transition region, the surface pressures agree well between 

the two calculations.  However, a starker difference can be observed in the skin friction 

downstream of X/C = 0.5.  The 6
th

-order scheme is able to predict a significantly sharper rise in 

skin friction coefficient using the same mesh.  Further differences between the 2
nd

-order and 6
th

-

order solutions can be observed in contours of Reynolds stress shown in Figure 4.2.  The 2
nd

-

order scheme yields a lower absolute magnitude of the Reynolds stress than the 6
th

-order scheme.   

 
Figure 4.1: Effect of spatial discretization (� = 4°, Re = 6x10

4
): 

a) Mean surface Cp  b) Mean surface Cf 

a) b)
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Figure 4.2: Effect of spatial discretization on Reynolds stress � �vu ��  (� = 4°, Re = 6x10
4
) 

Table 4.1: Computed LSB properties from the baseline mesh (� = 4°, Re = 6x10
4
) 

Computation 
Separation 

xs/C 

Transition

xt/C 

Reattachment

xr/C 

Max Bubble 

Height, hb/C 

Baseline 2
nd

-order 0.25 0.46 0.66 0.034 

Baseline 6
th

-order 0.24 0.45 0.61 0.028 

Separation, transition, and reattachment locations, as well as maximum LSB height for the 

two calculations are given in Table 4.1.  Turbulent transition location is determined in 

accordance with Ref. 22 and is assumed to occur when the Reynolds stress reaches a value of 

0.1% and exhibits a clear visible rise.  Turbulent transition is also indicated by a drop in skin 

friction coefficient which coincides with a sharp pressure gradient observed after a flat pressure 

plateau typical of LSB’s.  As prescribed in Ref. 32, the maximum separation bubble height is 

defined as the distance from the surface to the velocity profile maximum at the edge of the shear 

layer.  For both computations, the flow separates and transitions at approximately the same 

locations.  However, reattachment location occurs further downstream for 2
nd

-order calculation.  

In addition, the 6
th

-order scheme predicts a smaller separation maximum bubble height.  
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Inspecting instantaneous flow structures are visualized with iso-surfaces of the Q-criterion in 

Figure 4.3.  The Q-criterion provides the ability to visualize vortex cores and identify turbulent 

structures.  In the subsonic regime, the Q-criterion is the Laplacian of the static pressure field 

over the density
70

 

 
�2

2P
Qcrit

�
�  (4.1) 

A limited number of relatively large vortical structures have formed from calculation with 

the 2
nd

-order scheme.  Conversely, the 6
th

-order scheme predicts a larger number of finer scale 

vortical structures.  These figures demonstrate the ability of the 6
th

-order scheme to resolve finer 

flow structures than the 2
nd

-order scheme on the same mesh.   

 
Figure 4.3: Effect of spatial discretization on 3-D instantenous iso-surface of 

Q-criterion for the baseline mesh (Q = 500, � = 4°, Re = 6x10
4
) 

Baseline 

2
nd

-order 

Baseline 

6
th

-order 
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4.2 Effect of Grid Resolution 

Instantaneous and time-mean solutions obtained with the 6
th

-order scheme with the baseline 

mesh and the three overset meshes are compared.  Time-mean surface pressure and skin friction 

coefficients obtained with the four meshes are shown in Figure 4.4.  Separation, transition, and 

reattachment locations along with maximum separation bubble height are given in Table 4.2.  

The pressure gradient in the transition regions is much sharper and occurs further downstream on 

the overset meshes compared to the baseline mesh.  Consistently, the transition location occurs 

further upstream with the baseline mesh in comparison with three overset meshes.  The surfaces 

pressures agree well between the three overset meshes with the largest discrepancies in sharp 

pressure recovery region between transition and reattachment locations.  The skin friction 

coefficients agree favorably between the three overset meshes.  However, the baseline mesh 

predicts a significantly shallower drop in skin friction.  Consistent with the transition location, 

the drop in skin friction occurs further upstream in comparison with the overset meshes.  The 

four meshes predict similar skin friction coefficient downstream of the reattachment locations. 

Starker differences between the overset meshes in the magnitude of Reynolds stress are 

observed in contours of Reynolds stress shown in Figure 4.5.  However, maximum magnitude of 

Reynolds stress differs by roughly 15%.  Besides this discrepancy, the shape and extent of the 

Reynolds stresses are similar.  The Reynolds stress contours for the baseline mesh agree 

favorably with the overset meshes. 

Instantaneous flow structures visualized with iso-surfaces of Q-criterion and contours of 

spanwise vorticity are shown in Figures 4.6 and 4.7 for the baseline and three overset meshes.  

While the turbulent structures on the baseline mesh are reasonably isotropic over the airfoil, the 

structures on the overset meshes have a tendency to coalesce into larger structures.  Furthermore, 
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the sizes of the fine scale structures are similar between the three overset meshes.  Instantaneous 

contours of spanwise vorticity indicate that the free sear layer rolls up before transitioning to 

turbulent flow on the three overset meshes.  However, this is not observed in the baseline 

calculation.  These results indicate that even with the 6
th

-order scheme, fine details of transition 

are not captured on the coarser baseline mesh. 

Given the similarities between solutions on the three overset meshes, and that the solution 

obtained on the original overset mesh agreed favorably with available experimental data as 

demonstrated in Chapter 5, the overset mesh was deemed adequate to resolve relevant flow 

features. 

 
Figure 4.4: Effect of mesh resolution (� = 4°, Re = 6x10

4
): 

a) Mean surface Cp  b) Mean surface Cf 

a) b)
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Table 4.2: Computed LSB properties from the four meshes (� = 4°, Re = 6x10
4
) 

Computation 
Separation 

xs/C 

Transition

xt/C 

Reattachment

xr/C 

Max Bubble 

Height, hb/C 

Baseline 0.24 0.45 0.61 0.028 

Coarse Overset 0.20 0.52 0.65 0.033 

Overset 0.23 0.55 0.65 0.030 

Fine Overset 0.20 0.53 0.66 0.032 

 

 

Figure 4.5: Effect of mesh resolution on Reynolds stress � �vu ��  (� = 4°, Re = 6x10
4
) 

 
Figure 4.6: Effect of mesh resolution on 3-D instantenous 

iso-surface of Q-criterion (Q = 500, � = 4°, Re = 6x10
4
) 

Overset Coarse Overset Fine Overset Baseline 



 54

 
Figure 4.7: Effect of mesh resolution on instantanous 

contours of spanwise vorticity (� = 4°, Re = 6x10
4
) 

4.3 Effect of Spanwise Extent 

By imposing spanwise periodic boundary conditions, the three-dimensional mesh is 

represent a wing with infinite span.  As such, spanwise extent is an important parameter in the 

computational setup.  If the span is inadequate, the solution will be artificially constrained and 

flow structures will not properly develop.  Conversely, even though an excessively large span 

will not impose any constraints on the flow it will incur an undesirable computational overhead.  

Therefore, a study was conduced using the overset mesh to determine an adequate spanwise 

extent. 

Three spanwise extents were investigated (namely, 0.1, 0.2, and 0.3 fractions of chord) at an 

angle of attack of 4° and Reynolds number 6x10
4
.  In terms of span over maximum bubble 

height ratio, the three spanwise extents are 3.3, 6.7, and 10.  In order to eliminate the influence of 

spanwise spatial resolution, the number of grid points in the spanwise direction was modified 

such that the spacing remained approximately 0.002 for all cases. 

Mean surface pressure and skin friction coefficients for the three spanwise extents are shown 

in Figure 4.8.  Furthermore, contours of Reynolds stress are shown in Figure 4.9.  Both surface 
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pressure and skin frication along with turbulent Reynolds stresses exhibit little variation for the 

different spanwise extents.  These differences are expected given the irregular and chaotic nature 

of the turbulent transition of the shear layer. 

Instantaneous three-dimensional flow structures are visualized with iso-surfaces of the Q-

criterion for the three spanwise extents in Figure 4.10.  The Q-criterion demonstrates flow 

structures of similar shape and size for all spanwise extents.  Given the similarities between the 

three solutions, it is apparent that the spanwise extent of 0.1 is sufficient for this angle of attack 

and Reynolds number.  However, after considering computational costs and the desire to 

compute a range of angles of attack and Reynolds numbers using the same mesh, the spanwise 

extent of 0.2 was retained.  

 
Figure 4.8: Effect of spanwise extent (� = 4°, Re = 6x10

4
): 

a) Mean surface Cp  b) Mean surface Cf 

a) b)
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Figure 4.9: Effect of spanwise extent on Reynolds stress � �vu ��  (� = 4°, Re = 6x10
4
) 

 
Figure 4.10: Effect of spanwise extent on 3-D instantenous 

iso-surface of Q-criterion (Q = 500, � = 4°, Re = 6x10
4
) 

Z/C = 0.1 Z/C = 0.2 Z/C = 0.3 
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4.4 Effect of Spatial Dimensions 

To demonstrate the necessity of three-dimensional computations, a two-dimensional 

solution was obtained with the overset mesh for 4° angle of attack and Reynolds number 6x10
4
.  

A comparison between the two-dimensional and three-dimensional (Z/C = 0.2) mean surface 

pressure and skin friction coefficients are shown in Figure 4.11.  Contours of Reynolds stress for 

the two calculations are shown in Figure 4.12.  The surface pressure coefficient of the two-

dimensional solution agrees reasonably well with the three-dimensional solution.  In addition, the 

size and extent of the two-dimensional solutions LSB is similar to that of the three-dimensional 

computations.  However, the similarities end here.  In terms of difference in the time-mean 

solution, the Reynolds stresses are more concentrated about the closure of the LSB in the two-

dimensional solution.  In addition, the skin friction coefficient from the two-dimensional solution 

does not rise to the same level of the three-dimensional solution downstream of the reattachment 

location.  The most notable difference can be observed in contours of instantaneous spanwise 

vorticity component shown in Figure 4.13.  In the two-dimensional solution, similar to 

observations by Hodge et al.
14

, the shear layer rolls up into a coherent vortex that does not 

diminish significantly as it travels towards the trailing edge.  It is evident that the two-

dimensional solution restricts the decay of the vortex due to the lack of spanwise instabilities and 

vortex stretching.  
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Figure 4.11: Effect of spatial dimenaionalty (� = 4°, Re = 6x10

4
): 

a) Mean surface Cp  b) Mean surface Cf 

 

Figure 4.12: Effect of spatial dimenaionalty on Reynolds stress � �vu ��  (� = 4°, Re = 6x10
4
) 

 
Figure 4.13: Effect of spatial dimensionality on spanwise vorticity 

a) b)
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4.5 Effect of Mach Number 

All experimental measurements were conducted under incompressible flow conditions.  As 

FDL3DI solves the compressible Navier-Stokes equations, a reference Mach number is required.  

However, specifying a reference Mach number near zero for the compressible equations can 

induce numerical instabilities.  In fact, computations at a Mach number of 0.05 produced 

spurious non-physical flow structures near the leading edge of the airfoil.  The issue could be 

addressed with preconditioning for low Mach number flows; however no such methods have 

been implemented into FDL3DI.  Experience with the solver has shown that a stable 

incompressible solution can be obtained with a reference Mach number of 0.1.  To verify that 

this is a satisfactory low Mach number, a solution was computed with a reference Mach number 

of 0.075.  Results using these two reference Mach numbers are compared in Figure 4.14 where 

few differences are observed in both mean surface pressure and skin friction coefficient.  

Similarly, contours of Reynolds stress agree favorably as shown in Figure 4.15.  Again, given the 

irregular nature of the turbulent transition, these differences are acceptable.  Separation, 

transition, and reattachment locations closely agreed between the two solutions.  To emphasize 

the incompressible nature of the solutions, the minimum and maximum non-dimensional density 

was 0.99 and 1.01 respectively.  Therefore, a Mach number of 0.1 was prescribed for all angles 

of attack and Reynolds numbers.   
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Figure 4.14: Effect of Mach number (� = 4°, Re = 6x10

4
): 

a) Mean surface Cp  b) Mean surface Cf 

 

Figure 4.15: Effect of Mach number on Reynolds stress � �vu ��  (� = 4°, Re = 6x10
4
) 

5 Results 

5.1 Comparison with Time-mean Experimental Data 

Computed contours of Reynolds stresses and spanwise vorticity for the available angles of 

attack of 4°, 8°, and 11° are compared with TU-BS and HFWT experimental measurements in 

Figures 5.1 and 5.2 respectively.  For angles of attack of 4° and 11°, computed and measured 

Reynolds stresses agree well in terms of shape, magnitude, and extent.  Similarly for spanwise 

a) b)
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vorticity contours, general shape and extent of the computed shear layer differs little from 

experimental measurements.  However, discrepancies with all three data sets are observed at 8° 

angle of attack.  In particular, HFWT data does not exhibit a notable separation bubble.   

Initially, Ol et al. speculated that the lack of a recirculation region in the experimental data 

could come from increased freestream turbulence intensity, or a shortcoming of the PIV image 

pairs for adequate convergence of flow statistics; or both.  During later experimental 

measurements, it was discovered that the model had a tendency to vibrate at this particular angle 

of attack which likely caused the flow to transition prematurely effectively eliminating the LSB.
*
   

While the computed Reynolds stress is comparable in magnitude to that measured in the 

TU-BS water tunnel for 8° angle of attack, transition along with reattachment occurs further 

downstream resulting in a longer LSB than observed in the experiment.  Similar trends were 

observed in computations by Radespiel et al.
22

 and Yuan et al.
24

  These differences are likely 

caused by the higher freestream turbulence intensity of the TU-BS water tunnel of approximately 

0.8%.  Alternatively, the discrepancy could be attributed to a disparity in effective angle of attack 

due to interference effects in the water tunnel.  A slightly higher angle of attack would lead to a 

smaller separation bubble closer to the leading edge of the airfoil.  However, no attempts were 

made to investigate a discrepancy in angle of attack.  Finally, this particular measurement was 

taken during an earlier experimental campaign with a lower PIV image resolution. 

                                                 
*
Personal communication with Dr. Ol. 
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Figure 5.1: Reynolds stress � �vu ��  and experimental PIV data 

for � = 4°, 8°, 11° at Re = 6x10
4 

� = 4° � = 8° 
TU-BS TU-BS

HFWT HFWT

ILES ILES

TU-BS

HFWT

ILES 

� = 11°
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Figure 5.2: Spanwise vorticity and experimental PIV data 

for � = 4°, 8°, 11° at Re = 6x10
4
 

� = 4° � = 8° 
TU-BS TU-BS

HFWT HFWT

ILES ILES

TU-BS

HFWT

ILES 

� = 11° 
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Even though the computed LSB at 11° angle of attack is slightly thicker than observed in 

both experiments, separation, transition, and reattachment locations agree well as shown in Table 

5.1.  As the airfoil is near stall, a greater pressure recovery is required to cause the LSB to 

reattach.  Such a strong pressure gradient amplifies disturbances resulting in a rapid transition to 

form the short LSB.  In contrast to the 8° angle of attack, it is evident that the higher freestream 

turbulence intensity in the TU-BS water tunnel does not lead to an earlier transition at 11° angle 

of attack. 

Boundary layer profiles normal to the airfoil surface, shown in Figures 5.3 through 5.5, were 

extracted from the ILES solution and both experimental PIV measurements.  The ILES solution 

was interpolated onto a body-fitted orthogonal mesh with the same 6
th

-order accurate 

interpolation scheme used for the overset interpolation.  Experimental data was transferred to the 

body fitted orthogonal mesh through linear interpolation.  For simplicity, the u-velocity 

component for the profiles rather than the tangential velocity component.  Only a select number 

of profiles are given and the velocity component displayed with different scale factors for each 

angle of attack.  Following the profiles from the leading edge, for each angle of attack, the 

upstream laminar profile separates to an S-shaped profile which subsequently transforms to a 

fuller turbulent profile.  The computed ILES profiles consistently predict a slightly thicker and 

longer separation region compared with experimental measurements.  Despite the 

aforementioned discrepancies, good overall agreement is found between experiments and 

computation.  
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Figure 5.3: Boundary layer profiles at � = 4°, Re = 6x10

4
 (scaled by 0.045)  

 
Figure 5.4: Boundary layer profiles at � = 8°, Re = 6x10

4
 (scaled by 0.02) 

 
Figure 5.5: Boundary layer profiles at � = 11°, Re = 6x10

4
 (scaled by 0.01) 
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Table 5.1 compares separation, transition, reattachment, and maximum LSB height at 4° 

angle of attack measured from the two experimental facilities along with simulations by Yuan et 

al.
 24

 and Lian et al.
23

 and the present ILES and XFOIL
19

 computations.  A critical N-factor of 8 

was used for the RANS-e
N
 calculations by Yuan et al. and Lian et al., as well as the XFOIL 

calculation, based on the empirical relationship between freestream turbulence intensity and 

critical N-factor by Mack
71

   

Both XFOIL and ILES computations place the separation location in between the two 

experimental measurements.  The relatively large disparity in the experimentally measured 

separation location is due in part to difficulties in determining a separation location from near-

wall PIV measurements of shallow separation regions.  The ILES separation location of 23% is 

in agreement with separation locations determined by LES and RANS-e
N
 method calculations by 

Yuan et al. and Lian et al.  A transition location of 55% chord predicted by the ILES 

computation agrees well with the measured TU-BS transition location of 53% chord.  Transition 

at the HFWT tunnel was measured at 47% chord which is consistent with slightly higher 

freestream intensity in this facility of ~0.1% compared to 0.08% of the TU-BS low-noise wind 

tunnel.  The influence of freestream turbulence intensity on the ILES solution was not 

investigated.  Reattachment locations are also in agreement between ILES and TU-BS at 65% 

chord and 62% chord respectively.  Reattachment measured at HFWT occurs slightly further 

upstream at 58%.  Finally, the maximum height of the LSB differs little between both 

experimental measurements and ILES computations.   
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Table 5.1: Measured and computed LSB properties (� = 4°, Re = 6x10
4
) 

Data Set 
Freestream 

Turbulence [%] 

Separation 

xs/C 

Transition

xt/C 

Reattachment 

xr/C 

Max Bubble 

Height, hb/C 

TU-BS 0.08 0.30 0.53 0.62 0.028 

HFWT ~0.1 0.18 0.47 0.58 0.029 

Yuan SGS-LES 0 0.25 0.49 0.60 - 

Yuan RANS-e
N
 0.1, N=8 0.21 0.49 0.58 - 

Lian RANS-e
N
 0.1, N=8 0.21 0.48 - - 

XFOIL 0.1, N=8 0.21 0.55 0.59 - 

ILES 0 0.23 0.55 0.65 0.030 

 

A sequence of spanwise averaged instantaneous surface pressure coefficients are shown in 

Figure 5.6.  Contours of instantaneous spanwise vorticity component for the corresponding time 

sequence is shown in Figure 5.7.  The instantaneous surfaces pressure follows the average 

surface pressure up to roughly X/C = 0.5, which is slightly upstream of the transition location.  

Downstream of X/C = 0.5, the surface pressure begins to deviate from the mean, consistent with 

the rollup of the shear layer observed in the instantaneous spanwise vorticity contours.  

Furthermore, the peaks in low surface pressure coincide with the relatively coherent vortex that 

has been shed from the shear layer and can be observed traversing downstream from the contours 

of spanwise vorticity. 



 68

 
Figure 5.6: Instantaneous surface Cp (� = 4°, Re = 6x10

4
) 

 
Figure 5.7: Instantanous contours of spanwise vorticity component (� = 4°, Re = 6x10

4
) 
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To inspect the transition into turbulence, velocity probes were positioned at the mid-span 

over a number of streamwise locations along the suction surface of the airfoil at 4° angle of 

attack and Reynolds number 6x10
4
.  At each streamwise location, the probes were positioned at 

approximately half the local time-mean boundary layer height.  Streamwise velocity energy 

spectra are plotted from three probes in Figures 5.8 and 5.9 respectively.  Furthermore, mean 

velocity profiles at the three locations are shown in Figure 5.10.  For completeness, both original 

and normalized boundary layer profiles are shown.  The boundary layer profiles are normalized 

based on 99.5% boundary layer thickness and boundary layer edge velocity.   

Upstream of the separation location at X/C = 0.1, the velocity energy spectrum has a low 

energy content indicating small fluctuations in the solution which is consistent with the thin 

laminar boundary layer observed in Figure 5.10.  After separation, the velocity energy spectrum 

at X/C = 0.5 increases (note the change in scales of Figure 5.8).  This increase in fluctuations is 

consistent with the presence of the LSB and reversed flow at X/C = 0.5 indicated by the S-shaped 

boundary layer profile.  Furthermore, while observable at X/C = 0.1, a distinct frequency of F
+
 = 

5.8 emerges in the velocity spectrum at X/C = 0.5.  This frequency is likely associated with the 

shedding frequency of the shear layer vortex rollup which also occurs at roughly X/C = 0.5.  

However, a sufficient amount of time accurate images of the flow field were not gathered to 

conclude this.  Higher harmonics of the dominant shear layer frequency are not present.   

For a chord length of 200 mm, as used in experiments by Radespiel et al.
22

, F
+
 = 5.8 

corresponds to a frequency of 129 Hz in air and 8.7 Hz in water.  This is consistent with RANS- 

e
N
 calculations by Radespiel et al. where numerical oscillations were observed at a frequency of 

125 Hz and 8.5 Hz for air and water respectively.  These findings also agree reasonably well 

with the experimental measurements in the TU-BS water tunnel where 2D waves were observed 
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with time resolved high resolution PIV to have a frequency of 12 Hz.  Non-dimensionalized, 12 

Hz in water corresponds to F
+
 = 8.   

At X/C = 0.95, downstream of the LSB reattachment, the velocity energy spectrum 

resembles that of a turbulent boundary layer with a limited emerging inertial range.  A fuller 

turbulent boundary layer profile is also observed in Figure 5.10 consistent with the energy 

spectrum.  In addition, a dominant shedding frequency is no longer distinguishable from the 

velocity spectrum.   
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Figure 5.8: Streamwise velocity component energy spectra on linear scales 

 
Figure 5.9:  Streamwise velocity component energy spectra on log log scales 
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Figure 5.10: Mean tangential velocity profiles (� = 4°, Re = 6x10

4
) 

5.2 Effect of Angle of Attack at Fixed Reynolds Number 

Solutions were obtained at angles of attack 2°, 4°, 6°, 8°, 11°, and 14° at Reynolds number 

6x10
4
.  Lift and drag coefficients were obtained from the ILES solutions by integrating mean 

pressure and skin friction over the surface of the airfoil.  In order to accurately perform the 

integration in overlapping regions of the overset mesh, the solution was first transferred to a 

single mesh, i.e. the baseline mesh.  As points did not necessarily coincide in the refined region 

of the suction surface of the airfoil, linear interpolation was used to transfer the solution.
72

  

Because linear interpolation was used to solely transfer surface data, which was subsequently 

integrated, the low order interpolation was not expected to degrade the quality of the computed 

lift and drag. 

Integrated lift and drag coefficients are compared in Figure 5.11 with computed values from 

XFOIL and experimental measurements of Selig et al.
33, 34

 and Ol et al.
32

  Computations with 

XFOIL slightly over predict but generally agree well with experimental measurements up to 

stall.  While drag coefficients from the ILES calculations slightly over estimated measurements 
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by Selig et al., ILES lift coefficients agree well with experimental measurements.  Stall is 

predicted at 11° angle of attack by the ILES computations consistent with measurements by Ol et 

al.  Most notably, the post stall lift coefficient at 14° angle of attack agrees well with the 

measured lift coefficient.  Accurate lift and drag predictions are challenging to obtain with 

traditional transition and turbulence modeling for massively separated flows past stall angles of 

attack.  However, investigations into dynamic motions such as plunging airfoil requires accurate 

modeling of massively separated flows induced by the motion of the airfoil.  Furthermore, unlike 

traditional methods, the evolution from a closed LSB to bubble bursting and stall was seamlessly 

captured by the ILES model without modification to any parameters.   

 
Figure 5.11: Comparison of ILES lift and drag polars with 

XFOIL and experimental measurements 

Mean surface pressure coefficient, skin friction coefficient, Reynolds stresses, and spanwise 

vorticity for all angles of attack computed are presented in Figures 5.12 through 5.15.  At the 

lowest angle of attack of 2°, a long LSB forms, the flow begins to transition to turbulent flow 
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near the trailing edge, and reattaches at 93% chord.  Consistent with experimental findings, as 

the angle of attack increases, the adverse pressure gradient grows and pressure plateau of the 

LSB shortens as shown in Figure 5.12.  As a result, separation, turbulent transition, and 

reattachment locations, summarized in Table 5.2, move upstream.  As shown in Figure 5.13, the 

transition location, characterized by the sudden drop in skin friction, moves towards the leading 

edge with increasing angle of attack.  It is noteworthy that the sharp rise in skin friction 

coefficient downstream of the transition location is consistent with experimental observations 

and is challenging to obtain with RANS calculations.
73

   

As the LSB moves towards the leading edge, shown in Figure 5.14, the increasing 

magnitude of Reynolds stresses is indicative of a more intense turbulent transition process 

causing the reattachment location to move upstream.  When the airfoil is fully stalled at 14° 

angle of attack, the Reynolds stress drops, the spanwise vorticity indicates that the free shear 

layer does not reattach to the surface, and the mean surface pressure is characteristically flat 

across the entire suction side of the airfoil.   

Instantaneous flow features visualized with iso-surfaces of the Q-criterion are shown in 

Figure 5.16 for all angles of attack.  As the separated shear layer breaks down, a coherent 

spanwise vortex forms over the extent of the airfoil and, due to spanwise instabilities, 

subsequently breaks down into turbulent structures.  With increasing angle of attack, the 

formation of the spanwise vortex moves towards the leading edge and breaks down after 

traveling shorter distances.  However, the size of the turbulent structures does not change 

drastically with increasing angle of attack. 
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Figure 5.12: Effect of angle of attack on mean surface Cp (Re = 6x10

4
) 

 
Figure 5.13: Effect of angle of attack on mean suction surface Cf (Re = 6x10

4
) 
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Figure 5.14: Effect of angle of attack on Reynolds stress � �vu ��  (Re = 6x10
4
) 
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Figure 5.15: Effect of angle of attack on spanwise vorticity component (Re = 6x10

4
) 
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Table 5.2: Effect of angle of attack on LSB properties at Re = 6x10
4
 

� 

Degrees 

Separation 

xs/C 

Transition 

xt/C 

Reattachment

xr/C 

Max Bubble 

Height, hb/C 

2 0.45 0.74 0.92 0.036 

4 0.23 0.55 0.65 0.030 

6 0.11 0.34 0.45 0.028 

8 0.04 0.18 0.28 0.027 

11 0.007 0.06 0.16 0.025 

14 0.01 - - - 

 

 
Figure 5.16: Effect of angle of attack on 3-D instantaneous 

iso-surfaces of Q-criterion (Q = 500, Re = 6x10
4
) 

2° 4° 6° 

8° 11° 14° 
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5.3 Effect of Reynolds Number at Fixed Angle of Attack 

Two series of Reynolds numbers at fixed angles of attack were computed.  In the first series, 

two additional Reynolds numbers of 10
4
 and 4x10

4
 were computed at 4° angle of attack.  The 

second series included Reynolds numbers ranging from 10
4
 to 9x10

4
 at 8° angle of attack. 

Contours of Reynolds stress and spanwise vorticity for both angles of attack are given in 

Figures 5.17 and 5.18.  In addition, time and spanwise mean surface pressure and skin friction 

coefficients are given in Figures 5.19 and 5.20.  For the lowest Reynolds number of 10
4
, the 

shear layer does not reattach at either angle of attack.  For the 4° angle of attack, the Reynolds 

stress and vorticity contours show the shear layer rolling up near the trailing edge of the airfoil.  

The pressure coefficient has a weak suction peak followed by a relatively flat distribution over 

the airfoil.  The skin friction coefficient has a sudden drop near the trailing edge associated with 

the rollup of the shear layer.  At 8° angle of attack, the spanwise vortex formed by the shear layer 

rolling up does not break down rapidly and remains relatively coherent over the streamwise 

extend of the airfoil.  This can be observed in the instantaneous iso-surface of the Q-criterion in 

Figure 5.22.  The airfoil is in fact fully separated as indicated by the relatively flat surface 

pressure distribution over the entire suction surface. 

As the Reynolds number increases for both angles of attack, the LSB closes and continues to 

decrease in size consistent with the increasing pressure gradient downstream of the LSB.  At 4° 

angle of attack, separation, transition, and reattachment locations move upstream with increasing 

Reynolds number as shown in Table 5.3.  A more significant difference in separation location is 

observed between the two lowest Reynolds numbers.  For 8° angle of attack, the transition 

location and reattachment locations move upstream with increasing Reynolds number, whereas 

the separation location remains near constant near the leading edge as presented in Table 5.4.  
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For both angles off attack, the lift coefficient increases and the drag coefficient decreases with 

rising Reynolds number. 

Table 5.3: Effects of Reynolds number on LSB properties at � = 4° 

Re 

 

Separation 

xs/C 

Transition

xt/C 

Reattachment

xr/C 

Max Bubble 

Height, hb/C 

Mean 

CL 

Mean 

CD 

10
4 

0.36 - 0.98 0.115 0.36 0.047 

4x10
4
 0.25 0.57 0.77 0.044 0.58 0.028 

6x10
4
 0.23 0.55 0.65 0.030 0.59 0.021 

Table 5.4: Effects of Reynolds number on LSB properties at � = 8° 

Re 

 

Separation 

xs/C 

Transition

xt/C 

Reattachment

xr/C 

Max Bubble 

Height, hb/C 

Mean 

CL 

Mean 

CD 

10
4 

0.09 - 0.98 0.217 0.65 0.082 

3x10
4
 0.05 0.25 0.53 0.073 0.89 0.070 

6x10
4
 0.04 0.18 0.28 0.027 0.92 0.043 

9x10
4
 0.04 0.14 0.20 0.014 0.94 0.035 

 

Instantaneous three-dimensional vortical structures are visualized with an iso-surface of the 

Q-criterion in Figures 5.21 and 5.22 for 4° and 8° angles of attack respectively.  Even though it is 

not as clear for 4° angle of attack, the instantaneous turbulent flow structures appear to decrease 

in size with increasing Reynolds number.  At the lowest Reynolds number (10
4
), the shear layer 

does not transition over the airfoil at either angle of attack.  Rather, the shear layer rolls up into 

large coherent structures which exhibit only mild spanwise instabilities.  For the lower 4° angle 

of attack, the time-mean solution resulting from these coherent spanwise vortices can actually be 

computed with two-dimensional simulation as shown in Figure 5.23.  However, two-dimensional 

calculation for the higher 8° angle of attack, shown in the same figure, does not capture the 

breakdown of the vortex near the trailing edge of the airfoil resulting in a shorter time-mean 

separation bubble.  These trends for the two angles of attack are also observable in the time-



 81

mean surface pressures coefficients shown in Figure 5.24.  For the 4° angle of attack, the surface 

pressures are in agreement between the two-dimensional and three-dimensional calculations.  

However, for the 8° angle of attack, the two-dimensional calculation predicts a higher suction 

peak along with a higher pressure gradient near the trailing edge in comparison with the three-

dimensional calculation. 
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Figure 5.17: Effect of Reynolds number on Reynolds stress � �vu ��  and 

spanwise vorticity at � = 4° 

 

Figure 5.18: Effect of Reynolds number on Reynolds stress � �vu ��  and 

spanwise vorticity at � = 8° 
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Figure 5.19: Effect of Reynolds number on mean surface Cp for � = 4° and � = 8° 

 

 
Figure 5.20: Effect of Reynolds number on mean suction surface Cf for � = 4° and � = 8° 
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Figure 5.21: Effect of Reynolds number on 3-D instantaneous 

iso-surfaces of Q-criterion (Q = 500, � = 4°) 

 
Figure 5.22: Effect of Reynolds number on 3-D instantaneous 

iso-surfaces of Q-criterion (Q = 500, � = 8°) 

Re 10
4
 Re 4x10

4
Re 6x10

4

Re 10
4
 Re 3x10

4
 Re 6x10

4
Re 9x10

4
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Figure 5.23: Effect of spatial dimensionality on Reynolds stress 

for Reynolds number 10
4 

 

 
Figure 5.24: Effect of spatial dimensionality on surface pressure for Reynolds number 10

4
 

� = 4° � = 8° 
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5.4 Effect of Leading Edge Disturbance 

A limited study was conducted to investigate the sensitivity of the separation bubble to 

disturbances.  The goal was not to investigate any particular flow control technique, rather the 

effect of perturbations to the shear layer.  For simplicity, the disturbance selected was a wall 

normal zero-net mass-flow blowing/suction slot with a streamwise sinusoidal distribution.  The 

slot was positioned near the leading edge and the amplitude was oscillated sinusoidally in time.  

The mathematical expression for the disturbance is 

 � � � �tF
s

s
AtsD �

��
�

 
!!
"

#
� (( 2sin2sin,

max

,   max0 ss )) ,   smax/C = 0.03 (5.1) 

where s denotes the body fitted coordinate along the surface of the airfoil and A is the 

maximum amplitude of the slot.  The streamwise extent of the disturbance was chosen such that 

it was resolved with 20 points.  Also, the disturbance is effectively two-dimensional as it is 

uniform across the span of the computational domain.  A magnified illustration of the 

disturbance is given in Figure 5.25.   

 
Figure 5.25: Leading edge disturbance with magnified velocity amplitude  
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Two velocity amplitudes were considered: A = 0.001 and A = 0.01, which correspond to 

0.1% and 1% of the freestream velocity respectively.  Both of these amplitudes are too small to 

affect the time-mean flow in the vicinity of the disturbance.  Preliminary investigations into the 

frequency spectrum indicated a dominant frequency around F
+
 = 6; this frequency was used for 

both velocity disturbances.   

It is apparent from the contours of the Reynolds stress and spanwise vorticity component in 

Figure 5.26 that both disturbance velocity amplitudes diminish the separation bubble.  Contours 

of the Reynolds stress has been significantly altered by both leading edge disturbances.  Both 

magnitude and extent normal to the surface of the airfoil have been drastically diminished by the 

disturbances.  Furthermore, the recirculation region, although present, has been nearly 

eliminated.  For both amplitudes, the separation location has moved downstream while the 

transition and reattachment locations have move upstream as shown in Table 5.5.  Neither 

disturbance has much effect on lift coefficient as shown in Table 5.5.  However, both 

disturbances reduce the drag, with the highest disturbance nearly halving the drag.  

Table 5.5: Effect of leading edge disturbance on LSB properties (� = 4°, Re = 6x10
4
) 

A 

(F
+
 = 6) 

Separation 

xs/C 

Transition

xt/C 

Reattachment

xr/C 

Max Bubble 

Height, hb/C 

Mean 

CL 

Mean 

CD 

0
 

0.23 0.55 0.65 0.030 0.59 0.021 

0.001 0.25 - 0.52 0.024 0.60 0.018 

0.01 0.29 - 0.43 0.019 0.60 0.011 
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Figure 5.26: Reynolds stress � �vu ��  and spanwise vorticity with 

leading edge disturbance (� = 4°, Re = 6x10
4
) 

Time-mean velocity profiles from the suction surface of the airfoil are shown in Figure 5.27.  

Despite the placement of the disturbance about X/C = 0.02, the laminar velocity profiles 

upstream of X/C = 0.2 are unaltered.  This demonstrates that neither disturbance amplitude is 

large enough to affect the time-mean solution near the disturbance.  However, the disturbance 

does cause the profiles to retain a fuller velocity profile through the undisturbed separated 

region, consistent with the reduction in the separation bubble.  The higher disturbance velocity 

amplitude yields the fullest profile.  Furthermore, both the flat plateau in the surface pressure 

coefficient and the drop in skin friction coefficient diminish with increasing disturbance velocity 

amplitude as depicted in Figures 5.28 and 5.29.  Besides the drop in the pressure peak, the 

disturbance with higher velocity magnitude produces a pressure field that closely follows that 

predicted by inviscid theory.  
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Figure 5.27: Boundary layer profiles with leading edge disturbance at � = 4°, Re = 6x10

4
 

(scaled by 0.05) 

 
Figure 5.28: Effect of leading edge disturbance on mean surface Cp  
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Figure 5.29: Effect of the leading edge disturbance on mean suction surface Cf  

 
Figure 5.30: Effect of leading edge disturbance on  3-D instantaneous 

iso-surfaces of Q-criterion (Q = 500, � = 4°) 

Baseline A = 0.001 A = 0.01
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Instantaneous flow features are inspected to explain the affect of the leading edge 

disturbance on the time-mean flow.  Similar to the baseline calculation, with the leading edge 

disturbance present the shear layer rolls up into a spanwise vortex as shown by the instantaneous 

flow features visualized by the iso-surface of Q-criterion in Figure 5.30.  However, rather than 

rapidly breaking down into finer turbulent structures, the leading edge disturbance causes the 

vortex to remain coherent over a significant portion over the airfoil before breaking down.  

Unfortunately, the periodic boundary condition appears to have an affect on the solution as the 

spanwise vortices first begin breakdown at the spanwise boundaries of the computational 

domain.  It is possible that a larger spanwise extent is required to eliminate grid affects on the 

solution with the leading edge disturbance present. 

Instantaneous surface pressure coefficient and contours of spanwise vorticity component for 

the two disturbance magnitudes are shown in Figures 5.31 through 5.34.  Instantaneous surface 

pressures begin to deviate from the time-mean surface pressure at approximately X/C = 0.4 and 

X/C = 0.35 for the lower and higher disturbance amplitudes respectively.  Similarly, 

instantaneous spanwise vorticity contours indicate the shear layer rolling up at approximately at 

the same streamwise locations.  Furthermore, a periodic shedding of the vortices has been 

established as the surface pressures at the particular instances in time nearly coincide.  In 

addition, the instantaneous spanwise vorticity component contours appear nearly identical for the 

selected time instances.   
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Figure 5.31: Instantaneous surface Cp (� = 4°, Re = 6x10

4
, A = 0.001) 

 
Figure 5.32: Instantanous contours of spanwise vorticity component 

(� = 4°, Re = 6x10
4
, A = 0.001) 
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Figure 5.33: Instantaneous surface Cp (� = 4°, Re = 6x10

4
, A = 0.01) 

 
Figure 5.34: Instantanous contours of spanwise vorticity component 

(� = 4°, Re = 6x10
4
, A = 0.01) 
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Streamwise velocity spectra for the two disturbances obtained using the probes described in 

section 5.1 are depicted in Figures 5.35 and 5.36.  Note that the axes differ in range for these 

figures to emphasize the dominant frequencies at each streamwise location.  As expected, the 

forcing frequency of F
+ 

= 6 is dominant for both disturbance amplitudes and at all three 

streamwise locations.  Furthermore, additional harmonics have formed by the physics of the 

fluid.   

Comparing the two disturbance amplitudes at X/C = 0.1, there is an order of magnitude 

greater energy transferred into the first mode for the higher amplitude disturbance along with a 

noticeable transfer of energy into the second mode.  However, moving downstream to the half 

chord, the energy content in the dominant mode has grown significantly and is now similar 

between the two disturbance amplitudes.  Near the trailing edge, the dominant mode for the 

lower amplitude disturbance has retained a greater amount of energy.  Thus, it is evident that the 

higher amplitude disturbance transfers energy to the higher modes at a greater rate which causes 

the coherent spanwise vortex to breakdown after traveling a shorter distance consistent with 

observations in the instantaneous solution.  The streamwise velocity energy spectra from the 

baseline and two disturbance amplitudes at X/C = 0.95 are shown with log-log plots in Figure 

5.37.  While all three spectra resemble that of turbulent decay, the leading disturbance has shifted 

energy content into lower frequencies.   

Evidently, unlike traditional passive methods where the LSB is removed by tripping the 

flow to turbulent upstream of the separation location, the leading edge disturbance has nearly 

eliminated the LSB by exiting the two-dimensional mode and reduced spanwise instabilities of 

the shear layer. 
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Figure 5.35: Streamwise velocity component energy spectra (� = 4°, Re = 6x10

4
, A = 0.001) 

 
Figure 5.36: Streamwise velocity component energy spectra (� = 4°, Re = 6x10

4
, A = 0.01) 
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Figure 5.37: Streamwise velocity component energy spectra 

(� = 4°, Re = 6x10
4
, X/C = 0.95) 

6 Conclusions and Recommendations 

6.1 Conclusions 

An implicit large eddy simulation (ILES) technique has been applied to predict the 

formation and burst of a time-mean laminar separation bubble (LSB) on the SD7003 airfoil.  The 

LSB is characterized by laminar, transitional, and turbulent flow regions.  Flow solutions were 

obtained with a validated Navier-Stokes solver based on high-order compact schemes.  The 

solution was regularized with a low pass Pade-filter which removed poorly resolved high wave 

numbers in the mesh in lieu of an explicit SGS model.  Unlike RANS solvers coupled with 

transition models, which rely on a limited number of parameters to determine transition 

locations, the ILES method solves the unfiltered Navier-Stokes equations without change in the 

laminar, transitional, and turbulent regions of the flow.  Furthermore, the ILES method captured 

the shift from a closed LSB to bubble burst and stall without modification of any parameters. 
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Computations compared favorably with experimentally measured Reynolds stresses for 

available angles of attack, 4°, 8°, and 11°, at Reynolds number 6x10
4
.  Computed separation, 

transition, and reattachment locations were also in agreement with measured values.  The 

transitional nature of the flow was indicated by streamwise velocity component energy spectra, 

and a fuller turbulent velocity profile was observed downstream of the reattachment location.  

The computed time-mean lift polar (2°-14°) agreed well with experimental measurements.  Most 

notably, both the stall angle of attack and post stall lift coefficient were accurately predicted.  

Even though the time-mean drag coefficients were over predicted, they also compare favorably 

with measured values.  As expected, with increasing angle of attack, the ILES simulations 

predict the LSB decreasing in size and moving toward the leading edge until post stall where the 

bubble bursts and the flow is fully separated.  Accurate resolution of massively separated flows 

is imperative for research focused on modeling maneuvers that may promote dynamic stall 

phenomena. 

Effects of Reynolds number was considered for 4° and 8° angle of attack.  For the lowest 

Reynolds number (10
4
), the time-mean flow field is characterized by a large recirculation region.  

Furthermore, the shear layer does not transition into turbulence.  At the higher Reynolds numbers 

of 3x10
4
 and 4x10

4
 an LSB has formed.  As the Reynolds number increases, the LSB decreases 

in vertical and streamwise extent and moves towards the leading edge of the airfoil.  In addition, 

the pressure gradient increases as a result of a more intense transition process indicated by the 

increase in Reynolds stress and decrease in size of instantaneous turbulent flow structures with 

increased Reynolds number.  Time-mean lift increases while time-mean drag decreases 

consistent with the diminishing extent of the LSB with increasing Reynolds number. 
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A leading edge disturbance was introduced to perturb the shear layer.  The disturbance was 

implemented in the form of a zero-net-mass-flow jet.  Two velocity amplitudes of the jet were 

considered, neither of which were strong enough to influence the time-mean flow field in direct 

vicinity of the jet.  The jet was forced at a frequency near the natural frequency of the shear 

layer.  Both disturbance amplitudes were able to practically eliminate the time-mean LSB.  

However, unlike traditional passive control methods, the leading edge disturbance did not induce 

turbulent transition to eliminate the LSB; rather it excited two-dimensional mode and reduced 

spanwise instabilities which in turn caused the shear layer to roll up into more stable and 

coherent vortices that traversed a significant streamwise portion of the airfoil before breaking 

down.  As such, the LSB was eliminated by delaying the turbulent transition process.   

6.2 Recommendations 

The ILES method has been demonstrated to capture the complex laminar-transitional-

turbulent low Reynolds number flow associated with a LSB.  The primary influence on the 

quality of the solution is grid resolution.  Furthermore, because the unfiltered Navier-Stokes 

equations are solved directly, the method is dependent on three-dimensional computational 

domains to capture the vortex stretching and spanwise instabilities of the shear layer associated 

with turbulent transition process.  However, ILES methods are mostly suitable for low Reynolds 

numbers that exhibit large LSBs.  With increasing Reynolds numbers, the transitional and 

turbulent vortical structures decrease in size and hence require increasing grid resolution to 

capture the fine scale structures.  In addition, due to the higher computational cost of three-

dimensional calculations, the method of coupling well calibrated turbulence and transition 

models, such as the RANS-e
N
 method

22, 23, 24
, are more suitable for studies requiring a large 
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number of airfoil calculations at pre-stall angles of attack.  The massively separated flows 

associated with post-stall angles of attach are still challenging for RANS solvers to capture.
23

   

Given the ability of the ILES method to capture the massively separated flow associated 

with post-stall flow fields, it is recommended that the method be applied to maneuvering airfoils 

where high angle of attack excursions could induce leading-edge dynamic stall.  Similar to 

massively separated post-stall flow, turbulence modeling techniques are limited in their ability to 

capture the breakdown and transition of vortices shed from the leading edge of a plunging 

airfoil.
22

  Such calculations would however require a significant increase in grid resolution on 

both sides of the airfoil.  In particular, instantaneous vortical structures were observed to 

propagate into the coarser mesh away from the airfoil surface in presented high incidence angle 

calculations.  Adequate resolution of these structures is likely required in a maneuvering airfoil 

calculation.  None the less, it is hoped that maneuvering airfoil ILES calculations could provide 

further insight to improve the ability of turbulence models to capture the vortex breakdown. 

A few improvements are suggested for FDL3DI flow solver to extend the ILES technique to 

full three-dimensional calculations of MAV’s.  A boundary condition or model that imposes 

freestream turbulence on the solution is lacking.  Freestream turbulence can cause the separated 

shear layer of the LSB to transition more rapidly, which shifts the transition and reattachment 

locations upstream.
 23

  Furthermore, particularly for dynamic motions, the solver lacks a routing 

for obtaining integrated lift, drag, and momentum coefficients on Chimer overset meshes.  The 

integration first required the solution to be transferred to a single mesh during the post-

processing stage.  While this is feasible for time-mean solutions, it is not feasible for simulations 

that intend incorporate maneuvers requiring a time history of integrated quantities.  
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Appendix A: Boundary Layer Stability Analysis 

To investigate the growth of boundary layer instabilities, the code LASTRAC
74

 was used to 

compute the N-factor growth for both linear and non-linear parabolized boundary layer stability 

analysis.  The e
N
 transition model indicates transition when the N-factor of the most unstable 

Tollmien-Schlichting waves reaches a predetermined critical value.  The critical N-factor is 

dependant on many factors such as surface roughness, freestream turbulence intensity, and 

acoustics to name a few.  Typical values for wind tunnels are roughly between 7 and 9, and 

values can go as high as 12 or 13 for a wing in flight.   

N-factor growth for a range of frequencies in Figure A.1 were initially computed from the 

time-mean solution at 4° angle of attack and Reynolds number 6x10
4
 using both linear and non-

linear parabolized stability analysis to estimate the most unstable frequency.  Both analysis 

indicate a most unstable frequency of roughly F
+
 = 9.  While this frequency is not the dominant 

frequency observed in the velocity energy spectrum shown in Figure 5.8, it is consistent with the 

peak observed at F
+
 = 9.2 at X/C = 0.5.  Given the previously determined transition location, 

both the linear and non-linear parabolized stability analyses yield an N-factor of roughly 10 at 

transition.  Limited differences between the linear and non-linear parabolized stability analysis 

indicates that non-parallel effects are not significant in the stability analysis.  Hence, the quasi 

two-dimensional parallel flow assumption of the linear stability analysis is valid. 

A comparison of N-factor growth between the LASTRAC analysis and N-factor growth 

used by XFOIL for a range of Ncrit values is given in Figure A.2.  Here, only the dominant 

frequencies observed in the velocity fluctuations are included.  In comparison with the ILES 

solution, XFOIL slightly under estimates the growth of the N-factor.  In addition, an Ncrit value 
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of 10 in XFOIL predicts transition to occur at X/C = 0.59 which is further downstream than the 

ILES.  A consistent transition location at X/C = 0.55 is obtained from XFOIL with an Ncrit value 

of 8.   

Even though an Ncrit of 10 predicts transition to occur further downstream, the surface 

pressure distribution with Ncrit of 10 is closer to the ILES prediction than an Ncrit value of 8 as 

illustrated in Figures A.3 and A.4.  Part of the discrepancy can be attributed to how transition is 

defined.  For the ILES solution, transition is assumed to occur when the Reynolds stress in the 

shear layer reaches a value of 0.1% and exhibits a clear visible rise.  However, this occurs 

slightly further upstream of the sudden recovery in pressure.  In contrast, XFOIL uses the 

transition location as predicted by the e
N
 method to demarcate the pressure recovery process.  

However, the ILES computations predict a sharper pressure recovery than XFOIL. 

 
 a) b) 

Figure A.1: N-Factor growth rate from stability analysis (� = 4°, Re = 6x10
4
) 

a) Linear b) Non-linear Parabolized 
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 a) b) 

Figure A.2: N-Factor growth rate of dominant frequencies compared with N-factors 

from XFOIL (� = 4°, Re = 6x10
4
) a) Linear b) Non-linear Parabolized 

 
Figure A.3: Cp comparison between XFOIL and ILES (� = 4°, Re = 6x10

4
) 
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Figure A.4: Cp comparison between XFOIL and ILES in the transition regtion 

(� = 4°, Re = 6x10
4
) 

The most significant differences between the ILES and XFOIL computations are observed 

in the suction surface skin friction coefficient shown in Figure A.5.  While the skin friction 

coefficients in the laminar and separated region agree well, the XFOIL results lack the drastic 

drop in skin friction coefficient in the transition region.  The abrupt rise is after reattachment is 

present, but under estimated.  Despite these discrepancies, the reattachment location is in 

agreement with Ncrit of 10.   

A comparison in Figures A.6 and A.7 of displacement and momentum thickness and 

kinematic shape factor of the boundary layer on the suction surface of the airfoil also indicate a 

reasonable agreement for Ncrit of 10.  A physical reasoning of Ncrit is also plausible.  Higher Ncrit 

values are associated with lower freestream turbulence intensities.  Thus, since the ILES 
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calculation does not include any freestream turbulence intensities, a higher Ncrit value would 

expectedly yield better agreement with the ILES computation. 

Despite the indication that Ncrit would be the proper value to prediction transition, a 

comparison of lift and drag polars for three Ncrit values in Figure A.8 indicates little difference in 

lift and drag coefficients up to stall.  All three Ncrit values slightly over predict the lift coefficient 

and yield different stall angles.  Arguably, Ncrit of 7 gives the correct stall angle of 11°.  Post stall 

the lift is under predicted for all values of Ncrit.  Despite all discrepancies, XFOIL performs 

remarkably well given the computational costs; XFOIL computations take seconds while the 

ILES calculations requires weeks on a cluster of computers. 

 
Figure A.5: Sucton surface Cf comparison between XFOIL and ILES (� = 4°, Re = 6x10

4
) 
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Figure A.6: Displacement (�*) and momentum (�) thickness comparison between 

XFOIL and ILES (� = 4°, Re = 6x10
4
) 

 
Figure A.7: Kinematic shapefactor comparison between 

XFOIL and ILES (� = 4°, Re = 6x10
4
) 
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Figure A.8: XFOIL and ILES lift and drag polars 

A boundary layer stability analysis using LASTRAC
74

 was performed for the two leading 

edge disturbances.  For the lower amplitude, N-factor growth for a range of F
+
 values and for the 

dominant modes observed in the velocity spectra are given in Figures A.9 and A.10 respectively.  

Similar figures for the higher amplitude disturbance are given in Figures A.11 and A.12.  Few 

differences can be observed between the linear and non-linear parabolized solutions indicating 

that non-parallel effects are not significant.  Consistent with the transition locations moving 

upstream for both amplitudes, the critical N-factor has decreased from the undisturbed flow.  For 

the lower amplitude disturbance, the critical N-factor has dropped to 5 with the most unstable of 

roughly F
+
 = 12.  Similarly, the most unstable frequency for the higher amplitude disturbance is 

roughly F
+
 = 12, however the critical N-factor has dropped now to roughly 3.5.  Finally, the 

disturbances reduced displacement and momentum thicknesses as show in Figure A.13, and 

hence a reduction in the shape factor as shown in Figure A.14.   
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 a) b) 

Figure A.9: N-Factor growth rate from stability analysis (A = 0.001) 

a) Linear b) Non-linear Parabolized 

 
 a) b) 

Figure A.10: N-Factor growth rate of dominant frequencies (A = 0.001) 

a) Linear b) Non-linear Parabolized 
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 a) b) 

Figure A.11: N-Factor growth rate from stability analysis (A = 0.01) 

a) Linear b) Non-linear Parabolized 

 
 a) b) 

Figure A.12: N-Factor growth rate of dominant frequencies (A = 0.01) 

a) Linear b) Non-linear Parabolized 



 114

 
Figure A.13: Bondary layer displacement (�*) and momentum (�) thickness 

with leading edge disturbance 

 
Figure A.14: Bondary layer kinmatic shape factor with leading edge disturbance 
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Appendix B: Instantaneous Spanwise Vorticity Time 
Sequences

Time sequences of instantaneous spanwise vorticity are given here for 4° angel of attack at 

Reynolds number 6x10
4
.  In addition, time sequences for of instantaneous spanwise vorticity 

with the leading edge disturbance present are given.  For detailed discussions regarding these 

time sequences see sections 5.1 and 5.4. 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

Figure B.1: Instantanous contours of spanwise vorticity component (� = 4°, Re = 6x10
4
) 
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Figure B.2: Instantanous contours of spanwise vorticity component with leading edge 

disturbance (� = 4°, Re = 6x10
4
, A = 0.001) 
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Figure B.3: Instantanous contours of spanwise vorticity component with leading edge 

disturbance (� = 4°, Re = 6x10
4
, A = 0.01) 

 


