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Abstract

In the implicit large eddy simulation (ILES) paradigm, the dissipative nature of high-resolution shock-capturing

schemes is exploited to provide an implicit model of turbulence. The ILES approach has been applied to different

contexts, with varying degrees of success. It is the de-facto standard in many astrophysical simulations and in

particular in studies of core-collapse supernovae (CCSN). Recent 3D simulations suggest that turbulence might play

a crucial role in core-collapse supernova explosions, however the fidelity with which turbulence is simulated in these

studies is unclear. Especially considering that the accuracy of ILES for the regime of interest in CCSN, weakly

compressible and strongly anisotropic, has not been systematically assessed before. Anisotropy, in particular, could

impact the dissipative properties of the flow and enhance the turbulent pressure in the radial direction, favouring

the explosion. In this paper we assess the accuracy of ILES using numerical methods most commonly employed in

computational astrophysics by means of a number of local simulations of driven, weakly compressible, anisotropic

turbulence. Our simulations employ several different methods and span a wide range of resolutions. We report a

detailed analysis of the way in which the turbulent cascade is influenced by the numerics. Our results suggest that

anisotropy and compressibility in CCSN turbulence have little effect on the turbulent kinetic energy spectrum and a

Kolmogorov k–5/3 scaling is obtained in the inertial range. We find that, on the one hand, the kinetic energy

dissipation rate at large scales is correctly captured even at low resolutions, suggesting that very high “effective

Reynolds number” can be achieved at the largest scales of the simulation. On the other hand, the dynamics at

intermediate scales appears to be completely dominated by the so-called bottleneck effect, i.e., the pile up of kinetic

energy close to the dissipation range due to the partial suppression of the energy cascade by numerical viscosity. An

inertial range is not recovered until the point where high resolution ∼5123, which would be difficult to realize in

global simulations, is reached. We discuss the consequences for CCSN simulations.
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1 Introduction
Despite decades of studies and compelling evidence that
a significant fraction (Clausen et al. ) of stars with
initial masses in excess of ∼ solar masses explode as
core-collapse supernovae (CCSN) at the end of their evo-
lution, the exact details of the explosion mechanism are
still uncertain (Woosley and Janka ; Janka et al. ;
Burrows ; Foglizzo et al. ). Current state-of-the
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art D simulations either fail to explode or have explosion

energies that fall short of the observed energies by factors

of a few formost of the progenitor mass range (Janka ;

Burrows ; Foglizzo et al. ).

The dynamics at the center of a star undergoing core

collapse is shaped by a delicate balance between compet-

ing effects where all of the known forces: gravity, electro-

magnetism, weak and strong interactions, are important.

The task of modeling these systems is made particularly

challenging by the fact that the generation of the asymp-

totic explosion energies, although enormous (∼ J), re-
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quires a rather subtle, percent-level imbalance between
non-linear processes over many dynamical times.
The flow of plasma in the core of a star going super-

nova is known to be unstable to convection (Herant ;
Burrows et al. ; Janka and Müller ; Foglizzo et al.

) and/or to another large scale instability known as
standing accretion shock instability (Blondin et al. ;
Foglizzo et al. ). In any case, given the very large
Reynolds numbers, as large as ∼ in the region of in-
terest (Abdikamalov et al. ) (the so-called gain region,
where neutrino heating dominates over neutrino cooling),
it is expected that the resulting flow will be fully turbu-
lent. It has been suggested (Murphy et al. ; Couch
and Ott ) recently that turbulence and, in particu-
lar, turbulent pressure could tip the balance of the forces
in favor of explosion. In this respect, anisotropy is of key
importance, because it results in an effective radial pres-
sure support with adiabatic index γturb = , much larger
than that of thermal (radiation) pressure (γth ≃ /). This
means that turbulent kinetic energy is a much more valu-
able source of radial pressure support than thermal energy
(see Appendix).
All of the current numerical simulations employ the im-

plicit large eddy simulation (ILES) paradigm (Garnier et al.
; Grinstein et al. ) (also known as monotone in-
tegrated LES (MILES)) of exploiting the dissipative nature
of high resolution shock capturing (HRSC) methods as an
implicit turbulence model. However, the combination of
the use of rather dissipative schemes and the relatively low
spatial resolution that can be achieved in global simula-
tions is such that the fidelity with which turbulence is cap-
tured is questionable (Abdikamalov et al. ).
To be useful in the context of CCSN simulations, an

ILES should, at the very least, account for the right rate
of decay of the kinetic energy at the largest scales while
avoiding unphysical pile up of energy at smaller scales.
Unfortunately, all of the current simulations seem to be
strongly dominated by the so-called bottleneck effect (Ab-
dikamalov et al. ), which corresponds to an inefficient
energy transfer across intermediate scales due to the vis-
cous suppression of non-linear interaction with smaller
scales (Yakhot and Zakharov ; She and Jackson ;
Falkovich ; Verma and Donzis ; Frisch et al.

). Current global simulations achieve resolutions, in
the turbulent region, comparable to those of - lat-
tices in periodic domains (Couch and O’Connor ;
Couch and Ott ; Abdikamalov et al. ). At these
resolutions, almost all of the dynamical range of the simu-
lations can be expected to be directly affected by numerical
viscosity (Sytine et al. ). The fidelity with which tur-
bulence is captured in these simulations will then depend
on the degree with which the numerical truncation error
approximates an LES closure.
In this respect, it has been shown byGarnier et al. ()

and Johnsen et al. () that many HRSC methods can

be too dissipative to yield a faithful description of tur-

bulence at low resolutions. These studies, however, con-

sidered a different regime, decaying isotropic turbulence,

while turbulence in a core-collapse supernova, as well

as in many other astrophysical settings, is often strongly

anisotropic (Arnett et al. ; Murphy et al. ; Couch

and Ott ) as rotational invariance is broken by grav-

ity. Garnier et al. () and Johnsen et al. () also

considered different numerical schemes with respect to

those used in supernova simulations. Both of these as-

pects can, in principle, be important. First of all, strong

anisotropies could potentially influence the turbulence

dynamics at the level of the energy cascade and of the

dissipation (Casciola et al. ). Secondly, some of the

schemes used in computational astrophysics, such as the

piecewise parabolic method (PPM) (Colella and Wood-

ward ) as well as some of the MUSCL (Toro )

schemes, have been shown, differently from some of the

methods considered by Garnier et al. () and Johnsen

et al. (), to bewell suited for ILES (Schmidt et al. ;

Thornber et al. ).

The aim of this work is to fill the gap between exist-

ing theoretical studies and the particular applications of

our interest. To this end we use a publicly available code,

FLASH (Fryxell et al. ; Dubey et al. ; Lee et al.

), which is widely used in the computational astro-

physics community, and perform a series of simulations

of turbulence in a regime relevant for core-collapse super-

novae: driven at large scale, with large anisotropies and

mildly compressible. We use five different numerical se-

tups and, for each, several resolutions in the range from

 to  in a periodic domain. We study in detail the

way in which the energy cascade across different scales is

represented by our ILES and we discuss the use of local or

lower dimensional diagnostics that can be used to assess

the quality of a global simulation in a complex geometry

where D spectra are not readily available.

The rest of this paper is organized as follows. First, in

Section , we discuss the exact setup of our simulations

and the diagnostic quantities used in our analysis. Then, in

Section , we discuss the basic characteristics of the flow

realized in our simulations. In Section , we present a de-

tailed analysis of the way in which the energy cascade is

captured by the different schemes at different scales. In

particular, we quantify the accuracy with which different

methods capture the decay rate of energy from the largest

scales and the way in which energy is distributed across

scales. We discuss the role of anisotropies in the context

of the /-law, a fundamental exact relation for isotropic

and incompressible turbulence relating the statistics of ve-

locity fluctuations with the energy dissipation rate (see

Section .), in Section . We explore the use of the D,

transverse, energy spectrum as a diagnostic for D simu-

lations in Section . Finally, we present a brief summary of
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our main findings, as well as a discussion of their implica-

tions for CCSN simulations in Section . Appendix con-

tains some supplemental background material on the role

of turbulence in the explosion mechanism of CCSN.

2 Methods
2.1 Numerical methods

We consider a compressible fluid with a prescribed ac-

celeration, a, in a unit-box with periodic boundary con-

ditions. The code that we employ for these simulations,

FLASH, solves the gas-dynamics equations in conserva-

tion form. In particular we evolve the continuity equation

∂tρ +∇ · (ρv) =  ()

and the momentum equation

∂t(ρv) +∇ · (ρv⊗ v + pI) = ρa. ()

These equations are closed with a simple isentropic equa-

tion of state,

p = ρ/, ()

that can be considered as a rough description of a gas dom-

inated by radiation pressure. Since the equation of state en-

sures an adiabatic evolution we do not need to solve the

energy equation as equations (), () and () suffice to fully

describe the flow.

Equations () and () are solved using the directionally-

unsplit hydrodynamics solver of the open-source FLASH

simulation framework. FLASH implements the corner

transport upwind method (Colella ) for fully direc-

tionally-unsplit evolution of the Euler equations (Lee and

Deane ; Lee ). FLASH includes several options

for the order of spatial reconstruction (Lee et al. ),

including nd-order TVD (Toro ), rd-order PPM

(Colella and Woodward ), and th-order WENOZ

(Borges et al. ). Fluxes are computed at nd-order

accuracy using one of a number of approximate Riemann

solvers included in FLASH, such as HLLE (Einfeldt )

and HLLC (Toro et al. ). Second-order accuracy in

time is achieved via a characteristic tracing evolution of

the Riemann solver input states to the time step midpoint

(Colella and Woodward ). We remark that, in accor-

dance with the ILES, paradigm, we do not include any ad-

ditional sub-grid scale model, but relied on the implicit

turbulent closure built in the numerical schemes we use

for the integration of the hydrodynamics equation.

All of our simulations start with the fluid at rest ρ = ,

v = . Turbulence is driven using the stirring module of

FLASH. This module uses the Ornstein-Uhlenbeck pro-

cess (Uhlenbeck and Ornstein ) to generate stirring

modes in Fourier space. This yields an acceleration field

which smoothly decorrelates (Eswaran and Pope )

over a timescale Ts. The FLASH implementation permits

the use of any arbitrary combination of solenoidal and

compressive modes (Federrath et al. ). For our runs,

we set Ts = ., we use only solenoidal forcing and we re-

strict the accelerating field to be nonzero only in the first

four Fourier modes. This forcing is designed to mimic the

influence of some larger scale weakly compressible flow

and, for this reason, it does not include any compress-

ible component. This is a reasonable approximation for

low Mach number convection which is well described by

the anelastic approximation, e.g., Verhoeven et al. ().

In the CCSN context, simulations show that the turbu-

lence is highly anisotropic, being roughly twice as strong in

the radial direction as either tangential direction (Murphy

and Meakin ; Murphy et al. ; Handy et al. ;

Couch and Ott ) since it is driven by buoyancy due to

a negative radial entropy gradient. In order to emulate this

behavior, the accelerating field in the x-direction (which is

going to play the role of the radial direction) is scaled by

a constant factor (before the solenoidal projection of the

acceleration field) such that Rxx ≃ Ryy ≃ Rzz, where

Rij = 〈ρvivj〉, ()

is the Reynolds stress tensor (to simplify the notation we

considered a frame in which 〈ρv〉 = ) and 〈·〉 denotes an
ensemble average. Finally, the overall strength of the stir-

ring is tuned to achieve a RMS Mach number of ≃.,

which is typically observed in realistic CCSN simulations

(Couch and Ott ; Müller and Janka ).

2.2 Energy transfer equations

In order to study the cascade of the specific kinetic energy

(which we will refer to simply as “kinetic energy” or “en-

ergy” in the following), |v|/, we will consider an energy

budget equation across different scales, analogous to the

one commonly employed in the study of incompressible,

isotropic turbulence, e.g., Frisch (). In particular, we

consider themomentum equation () in non-conservation

form,

∂tv + (v · ∇)v = –V∇p + a, ()

where V = /ρ is the specific volume of the gas.

We can use equation () to derive an evolution equation

for the Fourier transform of the velocity

v̂(k) =

∫

R
e–π ik·xv(x) dx. ()

Transforming both sides of equation () we obtain

∂t v̂ + v̂ ∗ π ik⊗ v̂ = –V̂ ∗ π ikp̂ + â, ()
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where ∗ denotes the convolution operator, i.e.,

[f ∗ g](k) =

∫

R
f (q)g(k – q) dq. ()

If we multiply both sides of equation () by v̂∗ and take the
real part, we obtain an equation for the D energy spec-

trum

∂tE(k) = T(k) +C(k) + ǫ(k), ()

where

E(k) =



v̂ · v̂∗, ()

T(k) = –πℜ(v̂ ∗ ik⊗ v̂) · v̂∗, ()

C(k) = –πℜ(V̂ ∗ ikp) · v̂∗, ()

ǫ(k) = ℜâ · v̂∗. ()

Here E is the energy spectrum (the velocity power spec-

tral density (PSD)) and T is the same transfer term as in

the classical incompressible equations and ǫ is the energy

injection rate. The C term vanishes in the incompressible

limit and represents the interaction between kinetic and

acoustic modes. In practice, in our models, C is found to

be at least one order of magnitude smaller than T at all

scales and it is thus negligible. In any case, we retain C in

the analysis below.

For each of the spectral quantities, S, being E, T , C or ǫ,

we define the integrated spectrum, S(k), as

S(k) =

∫

R
S(k)δ

(

|k| – k
)

dk, ()

δ(·) being the Dirac delta function.
Integrating equation (), we obtain the following one-

dimensional energy balance equation

∂tE(k) = T(k) +C(k) + ǫ(k). ()

This can also be written in terms of the energy flux across

scales,

�(k) = –

∫ k



T(ξ ) dξ , ()

as

∂tE(k) + ∂k�(k) = C(k) + ǫ(k). ()

Notice that we did not assume isotropy in any of the above.

Equation () is derived in the inviscid limit. In practice,

our evolution method introduces dissipation in the form

of “numerical viscosity”. This can be quantified in terms of

the residual

R(k) = ∂tE(k) – T(k) –C(k) – ǫ(k). ()

This can be used to define a wave number dependent nu-

merical viscosity:

ν(k) = –




R(k)

kE(k)
. ()

We remark that ν does not, in general, correspond to a

classical shear or bulk viscosity, but can nevertheless be

interpreted as a relative measure of the dissipation acting

at different wave numbers (see, e.g., Fureby and Grinstein

(); Aspden et al. (); Zhou et al. () for alter-

native approaches).

In practice, since we will be working in the stationary

case, after having taken the appropriate time averages,R(k)

reduces to

R(k) = –T(k) –C(k) – ǫ(k). ()

Finally, sincewe areworking in a periodic domain, which

we take of size Lx = Ly = Lz = , all of the spectra are quan-

tized and non-trivial only for kx, ky and kz integers. Fur-

thermore, all of the integrals in wave number space reduce

to summations. Integrals over spherical shells are trans-

formed to weighted sums following Eswaran and Pope

():

E(k) =
πk

Nk

∑

k–/<|k|≤k+/

E(k), ()

where Nk is the number of discrete wave-numbers in the

shell k – / < |k| ≤ k + /.

2.3 Structure functions

The energy spectrum and its sources/fluxes give a compre-

hensive picture of the energy cascade and can be used to

assess the level of convergence of the simulation. Unfortu-

nately, D energy spectra and fluxes are not easily acces-

sible in calculations in complex domains and/or with in-

homogeneous turbulence. In these cases, local quantities

in the physical domain are more easily extracted and ana-

lyzed. Hence, one of the goals of this work is to validate the

use of indirect measures of convergence of ILES. Among

these quantities, the structure functions of the velocity ap-

pear to be natural candidates for study.

We define the velocity increments

δv(x, r) =
[

v(x + r) – v(x)
]

· r
r

()
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and study the quantities

Sp(r) =
〈

δvp
〉

j=
, ()

where, 〈·〉j= denotes an ensemble average aswell as amean

over all of the angles between v and r (in other words we

are looking at the j =  component of the SO() decom-

position of the structure functions (Biferale and Procaccia

)). In the case of homogeneous turbulence Sp does not

depend on x and is thus a function of only the separation r.

The most important relation involving the structure

functions is the so-called /-law, which relates the third

order structure function, S(r), with the mean energy dis-

sipation rate,

〈ǫ〉 =
∫ ∞



ǫ(k) dk, ()

and states that, for incompressible, homogeneous and

isotropic turbulence (Frisch ):

S(r) = –



〈ǫ〉r. ()

Equation () can be derived from theNavier-Stokes equa-

tion for fully-developed, incompressible, homogeneous

and isotropic turbulence and it is one of the few exact re-

lations in the theory of turbulence (Frisch ). In the

anisotropic or compressible case, however, equation ()

is not strictly valid and could be violated in the data. As we

show in Section , we find equation () to be very well sat-

isfied by our data, suggesting that the rd order structure

function can be a very useful diagnostic in global simula-

tions.

2.4 Transverse energy spectrum

Another alternative to the analysis of D spectra, which

has been adopted by several authors in the core-collapse

supernova context (Dolence et al. ; Couch and

O’Connor ; Handy et al. ; Abdikamalov et al.

), is the use of D spectra computed using a spher-

ical harmonics expansion of the velocity field tangential

to one or more spherical shells in the simulation. Analo-

gously, we emulate this by looking at quantities in the y-z

plane and we define the D spectra

E⊥(k⊥) =




∫

R
ṽ⊥ · ṽ∗

⊥δ
(√

ky + kz – k⊥
)

dky dkz, ()

where v⊥ is the projection of the velocity perpendicular

to the x-direction and we introduced the partial Fourier

transform of v⊥:

ṽ⊥(ky,kz) = lim
Lx→+∞



Lx

∫ Lx/

–Lx/

dx

×
∫

R
e–π i(kyy+kzz)v⊥(x, y, z) dydz. ()

In the limit of infinite Reynolds number/resolution, the D

spectrum is expected to have the same asymptotic behav-

ior as the D spectrum, however it is a-priori unclear if E⊥
is a good proxy for E at finite resolution. For this reason we

find it useful to investigate this here.

As was the case for the D spectra, also here the spec-

trum is non-trivial only for integer ky and kz, when period-

icity is taken into account. The integral in equation () is

treated analogously to the integral in the equation () for

the D case, while the average in the x-direction in equa-

tion () is converted to an average over the x-extent of the

simulation box.

3 Basic flow properties
We employ the finite-volume HRSC (Godunov) approach

in which physical states are reconstructed at inter-cell

boundaries and local Riemann problems are solved to

compute the physical inter cell fluxes. In particular, we

perform five groups of simulations using different numer-

ical methods. Each group is labeled using the name of the

reconstruction algorithm and of the Riemann solver. For

instance TVD_HLLE, denotes a group of simulations done

using TVD reconstruction andHLLE Riemann solver. Sin-

gle simulations are labeled using their resolution so that,

for instance, TVD_HLLE_N128, denotes the TVD_HLLE

run done using a  grid. For all of the runs the timestep

is chosen to have a CFL, i.e., c�t/�x, of ., c being the

maximum characteristics speed, with the exception of the

PPM_HLLC_CFL0.8 runs where we set the CFL to ..

For the TVD runs we use the monotonized central (MC)

slope limiter (Toro ). The runs with PPMuse the orig-

inal flattening and artificial viscosity prescriptions from

Colella and Woodward (). The artificial viscosity co-

efficient is .. We remark that the use of the artificial

viscosity for PPM is not really necessary in this regime

(Porter and Woodward ), however our goal is not to

perform a study of the turbulent dynamics, but to assess

how each numerical method performs when used under

the same condition as in a real CCSN simulation where

strong shocks need to be handled in some parts of the do-

main.

For each group of simulations we run four resolutions:

, ,  and . The RMS velocity in all of

the runs is vrms ≃ ., giving an eddy turnover time τ =

/vrms ≃ .. All of the simulations are run until time

t =  (≃ eddy turnover times). The time evolution of



Radice et al. Computational Astrophysics and Cosmology  ( 2015)  2:7 Page 6 of 17

a few relevant diagnostics is shown in Figure  for our fidu-
cial group of runs (PPM_HLLC) at different resolutions.We
can see how the flow is accelerated from rest and quickly
reaches a steady, fully turbulent, state. In all cases, steady
state is reached after t �  (∼ turnover time) and the di-
agnostics are insensitive to the resolution. The results for
the other runs (not shown) are very similar to the ones
of PPM_HLLC as they all achieve very similar RMS Mach

numbers and Reynolds stresses. All of the analysis shown
in the rest of the paper are performed using  D snap-
shots (evenly spaced in time) of the data in the interval
 ≤ t ≤ .
A first, qualitative, comparison between the different

methods can be done by looking at their visualizations.
In particular, in Figure , we show a visualization of the
magnitude of the vorticity in the x-z plane for four of the

Figure 1 Time evolution of the diagnostic quantities for the fiducial set of runs PPM_HLLCwith different resolutions. The left panel shows

the root mean square (RMS) Mach number, while the middle and right panels show, respectively, the ratios Rxx/Ryy and Rxx/Rzz , R being the Reynolds

stress tensor (equation (4)). Since the x-direction is the anisotropic direction (it would play the role of the radial direction in a CCSN) the ratios Rxx/Ryy
and Rxx/Rzz , offer a global measure of the anisotropy of the flow at the largest scale. All of the quantities appear to have reached stationarity after

time t� 3 and oscillate around their target values. All resolutions produce the same qualitative behavior.

Figure 2 Square root of the magnitude of the vorticity,
√

|∇ × v|, for four of the simulations with 5123 resolution in a slice through the

middle of the x-z plane at the final time of the simulations (t = 100). The panels show simulations using PPM_HLLE_N512,

PPM_HLLC_N512, WENOZ_HLLC_N512, and TVD_HLLC_N512 clockwise from the top left. The direction of the anisotropic driving is up in

these figures. The colorcode goes linearly from 0 (no vorticity; dark colors) to 15 (light colors) and it is the same for all panels.
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five schemes (excludingPPM_HLLC_CFL0.8) at the high-

est resolution (). The data is taken at the final time

(t = ). As it can be seen from the figure, all of the sim-

ulations show the presence of thin, elongated, regions of

high vorticity, as typically seen in direct numerical simula-

tions (DNS) of homogeneous turbulent flows (Vincent and

Meneguzzi ; Ishihara et al. ). However, the width

and the intensity of the vorticity at these smaller scales

depend crucially on the numerical scheme. Methods with

small intrinsic numerical viscosity, such asPPM_HLLC and

WENOZ_HLLC, present smaller structures and more in-

termittent vorticity fields with respect to more dissipative

methods, such as PPM_HLLE and TVD_HLLE.

4 The energy cascade
In this section we focus our analysis on the accuracy with

which the energy cascade is captured by our ILES runs.

First, we focus on the largest scales of the simulation with

the goal of quantifying the accuracy in the decay rate of

the energy as a function of the resolution for the different

methods. Next, we will look at the energy distribution at

smaller scales where, in resolved simulations, the inertial

range starts. Finally, we will look at the dynamics in the

dissipation region and summarize.

4.1 Energy decay rate

In the limit of very large Reynolds number it is assumed,

in standard turbulence phenomenology (Frisch ), that

there exists a range of wave numbers (the inertial range)

where energy injection and dissipation can be neglected

in equation (). In this range we can write (compressible

effects are negligible in our simulations):

∂tE(k) + ∂k�(k) ≃ , ()

so that stationarity requires �(k) ≃ const. In particu-

lar, since energy is conserved, one finds �(k) ≃ 〈ǫ〉. This
means that, in the limit of large Reynolds numbers, the

energy decay rate depends only on the macroscopic prop-

erties of the flow (and in particular not on the nature of

the viscosity), a fact that has also been verified numerically

(Kaneda et al. ). The significance of this property and

its importance for the modeling of turbulence cannot be

overstated.

In the context of CCSN simulations this means that the

large scale kinetic energy, a crucial quantity for the dy-

namics of the explosion (Couch and Ott ), can be

faithfully captured even with simulations achieving mod-

est Reynolds numbers.

For an ILES, a basic requirement, then, is that a suffi-

ciently high resolution should be achieved to correctly rep-

resent the energy cascade at the largest scales.What quali-

fies as a sufficiently high resolution is of course dependent

on the details of the closure built into the scheme (and on

the accuracy required for the particular application). To
quantify this, we can estimate the level of accuracy that can
be reached at any given resolution, using our local simula-
tions. In particular, we can study directly the energy flux
across scales, defined by equation (). This is shown in
Figure  for all of the different runs.
As discussed before, we expect that �(k) ≃ 〈ǫ〉 over an

extended region in Fourier space should be a direct indica-
tion that a simulation has been able to recover an inertial
range. Perhaps not surprisingly, in light of previous results
(Sytine et al. ), we find that regions where � ≃ 〈ǫ〉
as wide as a few wave numbers � k �  only appear at
the highest resolutions (we will discuss the inertial range
in more detail in Section .). However, the amount of en-
ergy decaying from the largest scales reaches an asymp-
totic value much quicker than that implying that the total
kinetic energy budget at the largest scales is well resolved
even at modest resolutions.
We can make a more quantitative statement concern-

ing the energy decay rate by looking at the peak of the
energy flux as a function of resolution, as shown in Fig-
ure . We can see that at  points all of the simula-
tions have a deviation from the asymptotic energy decay
rate of less than %. The least dissipativemethods already
have an error close to the % level. A comparison between
PPM_HLLE and PPM_HLLC reveals the profound impact
that the choice of the Riemann solver has even at relatively
large scale (more on the dissipative properties of the dif-
ferent schemes in Section .).

4.2 Energy spectra

Obviously, not all of the dynamics of turbulence can be re-
duced to the rate at which kinetic energy decays from the
injection scale. The internal dynamics of the energy cas-
cade, far from the injection scale and far from the dissi-
pation range, can also play an important role in many ap-
plications. To analyze this aspect we consider in Figure 
the energy spectrum of the velocity defined by equation
(). The spectra are compensated by k/ to highlight re-
gions with Kolmogorov scaling, which might be expected
in the inertial range. Since we want to focus on quantities
that do not depend (or depend weakly) on the nature of
the energy injection at large scale, we show all of the spec-
tra as a function of a dimensionless wave number, k�x.
The rationale behind this normalization is that, first of all,
we assume the Kolmogorov scale η to be proportional to
the grid spacing. Secondly, the  factor is introduced to
have the dimensionless k, k�x coincide with the di-
mensional one for the highest resolution runs. With this
choice, k�x =  corresponds to awavelength of a sin-
gle grid point, k�x =  corresponds to a wavelength
of two grid points and so on.
Looking at any of the groups of runs in Figure , one can

immediately notice that the spectra obtained at different
resolutions do not collapse into a single curve in the dissi-
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Figure 3 Energy flux, as defined by equation (16), obtained with different numerical methods and resolutions. The energy flux is shown

normalized to the average dissipation rate given by equation (24). From left to right and from top to bottom we show the results obtained with

PPM_HLLC, PPM_HLLC_CFL0.8, PPM_HLLE, TVD_HLLE and WENOZ_HLLC. The bottom right panel show a comparison of all of the methods

at 5123 . All of the schemes show a good level of accuracy in the energy flux from the largest scales, with errors smaller than a few % already at low

resolutions. The differences between the schemes become more marked at large wave numbers where the numerical dissipation starts to interfere

with the energy cascade.

Figure 4 Dissipation rate of the energy at the largest scales due

to the turbulent cascade (not including direct dissipation by the

numerical viscosity) as a function of resolution and for all of the

schemes. The dissipation rate is normalized so as to be 1 in the limit

of large Reynolds numbers/resolution. At 1283 points all of the

schemes show an error of less than 10%, with the HLLC schemes

already close to the 2% level.

pation region, as would be required by Kolmogorov’s first

similarity hypothesis (Frisch ) (cf.Gotoh et al. ()).

This lack of convergence in the dissipation region could

be due to the non-linear viscosity of HRSC schemes. This,

in turn, could result in an anomalous scaling of η with
the grid spacing. Such scaling has been reported in the
past for ILES, but it is not very well understood (Aspden
et al. ). The good agreement between the three differ-
ent groups of simulations employing the HLLC Riemann
solver seems to support this hypothesis and suggests that
the nonlinear viscosity introduced by the Riemann solver
is an important ingredient in setting this scaling.
Convergence appears to be recovered at larger scales

� �x (k�x� ), but the spectra appear to be dom-
inated by the bottleneck effect. This manifests itself as
a bump in the compensated spectra extending from the
dissipation range until the end of the inertial range, for
the simulations that show one (e.g., until k�x = 
for the HLLC runs), or until the energy injection scale
(k�x = ), for the simulations that show no or little in-
ertial range (TVD_HLLE). The bottleneck effect is a viscous
phenomenon which is also observed in direct numerical
simulations. However, in the present context where vis-
cosity is of numerical origin, it is at the very least ques-
tionable if a pronounced bottleneck is a desirable feature of
the modeling. In astrophysical flows, where the Reynolds
numbers are typically very large, this pile up of energy at
large scales is unphysical and could affect the quantita-
tive and qualitative outcome of a simulation (Abdikamalov
et al. ). A quantification of the bottleneck effect in
terms of the energy budget is discussed in Section ..
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Figure 5 Energy spectra (equation (10)) obtained with different numerical methods and resolutions. The energy spectra are compensated

by a k5/3 spectrum, so that any region with Kolmogorov scaling should appear roughly flat. Furthermore, the spectra are all plotted as a function of

the dimensionless wave number 512k�x (the 512 factor is introduced to have the dimensionless wave number coincide with the dimensional one

for the 5123 runs). The first five panels show the PPM_HLLC (upper left), PPM_HLLC_CFL0.8 (upper center), PPM_HLLE (upper right),

TVD_HLLE (lower left) and WENOZ_HLLC (lower center) group of runs. The last panel (lower right) shows a comparison of all of the methods at the

highest resolution (5123). An inertial range seems to be recovered only at the highest resolutions (perhaps with the exception of TVD_HLLEwhere

no inertial range is visible). All schemes employing the HLLC Riemann solver are in very good agreement.

At even larger scales, an inertial range (E ∼ k–/ and

� ∼ const, see Figure ) seems to be recovered by the

least dissipative schemes (PPM andWENOZ with HLLC)

in the region  � k � . PPM_HLLE and TVD_HLLE

have a more limited region, a few wave numbers at most,

that could be interpreted as being an inertial range. We

note that this resolution is not particularly high in com-

parison with state of the art DNS (Kaneda et al. ;

Federrath ), but it would already correspond to an ex-

tremely high resolution in global CCSN simulations that

typically have ∼- zones across the turbulent region

(Abdikamalov et al. ).

The overall behavior of the spectra, as obtained by

all schemes, is consistent with Kolmogorov’s theory of

turbulence. The anisotropic contributions to the angle-

integrated spectra are too small to be detected in our data.

4.3 Numerical viscosity

At very small scales (∼several grid points) the dynam-

ics is dominated by the numerical viscosity. This can be

estimated from the residual of the energy equation ()

or, equivalently, by the effective numerical viscosity ν(k)

(equation ()). The latter is shown in Figure  for all

schemes and resolutions.

The first thing to notice is that the numerical viscosity

provided by all numerical schemes is not constant, but dif-

fers by roughly an order of magnitude between low and
high k. Having a wave number dependent viscosity is a de-
sirable feature expected in any LES model (explicit or oth-
erwise). Nevertheless, this makes the definition and cal-
culation of the effective Reynolds number achieved in a
simulation ambiguous. Meaningful ways to estimate it for
ILES have been proposed (Zhou et al. ) and they can
be used to ease the comparison between different simula-
tions and assess their quality. However, one has to be very
carefulwhile using any quoted “Reynolds number” froman
ILES, to estimate things like the dynamical range achieved
by a simulation, because the dissipative properties of ILES
differ considerably from the ones of the true Navier-Stokes
equations.
Two other features can be observed in most of the nu-

merical viscosity profiles. First, many of them exhibit a
sudden reversal at high wave numbers. This is due to the
fact that the numerical viscosity does not behave like a
shear viscosity so that, although the numerical diffusion
is strong at those scales, the numerical viscosity appears
small because of a partial decoupling between vorticity and
dissipation. Second, at high resolution and at the largest
scales, the numerical viscosity is close to zero or even
slightly negative. The reason is that the residual of equa-
tion () oscillates around zero and it is too small to be re-
liably extracted from our data: a much longer integration
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Figure 6 Numerical viscosity as a function of the wave number measured for all schemes and resolutions. The numerical viscosity is

estimated using the procedure outlined in Section 2 and it is defined by equation (19). The different panels are, from left to right and from top

to bottom, the results obtained with PPM_HLLC, PPM_HLLC_CFL0.8, PPM_HLLE, TVD_HLLE and WENOZ_HLLC. The bottom right panel

show a comparison of all of the methods at 5123 . The numerical viscosity shows large variations across the wave number space. The choice of the

Riemann solver plays a role that is at least as important as the choice of the reconstruction method in affecting the numerical viscosity throughout

the entire the spectrum.

time would be needed to accumulate enough statistics for

it.

Finally, a comparison between the numerical viscos-

ity reveals two interesting effects. First, by comparing

PPM_HLLC and PPM_ HLLE, we see that the choice of

the Riemann solver affects the viscosity at basically all

scales. Second, if we compare PPM_HLLC, PPM_HLLC_

CFL0.8 and WENOZ_HLLC, we see that doubling the

timestep appears to have an effect comparable to the dif-

ference between the PPM andWENOZ reconstructions at

intermediate scales (� k � ).

4.4 The energy distribution

So far we have been concerned with the energy decay

rate from the largest scales, which we have shown to be

well captured by the ILES (Section .), and with the en-

ergy transfer in the inertial range, which we have seen to

be described accurately only at much higher resolutions

(Section .). In a turbulent flow both of these aspects are

important and a good ILES should display a distribution of

energy across vortical structures at different scales that is

as close as possible to the asymptotic one. Obviously, there

is a limit to the accuracy that any ILES can achieve at a

fixed resolution. Here, wemake this statementmore quan-

titative by considering the amount of kinetic energy that is

well resolved by each simulation at a given resolution.

We introduce the cumulative energy spectrum, the inte-

gral of the energy spectrum:

E(k) =

∫ k



E(ξ ) dξ . ()

This quantity is plotted in Figure , where it is normalized

by

vrms


=

∫ +∞



E(k) dk ()

to obtain the cumulative distribution function of the ki-

netic energy. As a reference, we also show the cumulative

energy spectrum estimated from Kolmogorov’s theory:

EK(k) =

∫ k



EK(ξ ) dξ , ()

EK(k)

=

{

EPPM_HLLC_N512(k), if k ≤ ,

EPPM_HLLC_N512()(
k

)–/, k > .

()

We find that as the resolution increases, all schemes ap-

pear to be converging to the predictions of Kolmogorov’s
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Figure 7 Cumulated energy distribution (equation (29)) for all methods and resolutions, normalized by a factor 2/v2rms to be equal to 1 for

large k. As a reference for comparison we also plot the asymptotic profile expected from Kolmogorov’s theory (equation (31)). The different panels

are, from left to right and from top to bottom, the results obtained with PPM_HLLC, PPM_HLLC_CFL0.8, PPM_HLLE, TVD_HLLE and

WENOZ_HLLC. The bottom right panel show a comparison of all of the methods at 5123 . At low resolution all of the schemes show an excess of

energy at intermediate scales, due to the bottleneck. Only at the highest resolution at least, roughly, 80% of the energy is correctly resolved.

theory. The results at finite resolution, however, are not en-
couraging: at  only ∼% or less of the kinetic energy
is in well resolved structures, while the other ∼% have
piled up at rather large scale, with a cumulative excess of
∼% at the grid scale, mostly because of the bottleneck
effect. At higher resolutions, the amount of kinetic energy
well captured by the ILES increases, but at  this is still
only about % of the energy and there is still a cumulative
excess of over ∼% at the grid scale (ℓ ∼ �x).

5 The 4/5-law
The /-law (equation ()) is not a-priori valid in the

regime of turbulence we are considering. However, the
/-law has been numerically verified to hold also in some
situations outside the domain of validity of its derivation.
For instance, for isotropic mildly compressible decaying
(Porter et al. ) and driven (Benzi et al. ) turbu-
lence. In the anisotropic case, however, anisotropic con-
tributions cannot be excluded (Biferale et al. ), al-
though they are known to be subdominant in some im-
portant cases (Calzavarini et al. ; Biferale et al. ;
Kaneda et al. ). In this section we show that equation
() is consistent with our data over a wide range of scales.
We compute the rd-order structure functions of the ve-

locity, defined by equation (), in a rather simple way us-
ing a random sample of , points in each of the 
D data dumps of our simulations. At each time, we com-
pute the rd power of the velocity increments for each pair

of points and accumulate and average in time the results

in bins of size �x. The resulting structure functions are

shown in Figure , compensated by – 

r–〈ǫ〉–, so that the

resulting quantity should be equal to one if the /-law is

satisfied in our data. Aswas the case for the energy spectra,

we assume η ∼ �x and plot the structure functions versus

r/�x.

The degreewithwhich the /-law is satisfied in our data

is very good. We see that anisotropic contributions only

play a minor role in the angle-integrated formulation of

the /-law. This is in agreement with the incompressible

DNS of Kaneda et al. () and has been known to be

true also for Rayleigh-Bénard convection in most regimes

(Lohse and Xia ). Our results provide an important

new example where this appears to hold true. Secondly, for

all of our simulations at , we find

max
r

{

–



r–〈ǫ〉–

〈

δv
〉

j=

}

()

within % of . This level of accuracy is reached in DNS

simulations achieving at least a Taylor micro-scale

Reynolds number (Kaneda et al. )

Rλ =
u′λ

ν
∼ , ()
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Figure 8 Compensated 3rd-order structure functions (equation (23)) for all the numerical methods and resolutions. The structure functions

are compensated and scaled so that they should be close to one where the 4/5-law (equation (25)) is verified. The data is plotted as a function of the

dimensionless separation r/�x. The first five panels show the PPM_HLLC (upper left), PPM_HLLC_CFL0.8 (upper center), PPM_HLLE (upper

right), TVD_HLLE (lower left) and WENOZ_HLLC (lower center) group of runs. The last panel (lower right) shows a comparison of all of the methods

at the highest resolution (5123). The 4/5-law is very well verified in our data suggesting that (1) anisotropic corrections are subdominant and (2) all of

the simulations behave in a way consistent with large Reynolds numbers turbulence at the largest scales.

where ν is the kinematic viscosity, u′ = √

vrms and λ =

(νu′/〈ǫ〉)/ is the Taylor micro-scale. This corresponds

to a large-scale Reynold numbers R = u′L
ν

∼ R
λ, L =  be-

ing the domain size, in excess of ∼,. Reaching these

Reynolds numbers in a DNS requires resolutions between

 and  using pseudo-spectral methods (Donzis

et al. ). This large-scale estimate of the Reynolds

number is consistent with previous findings (Zhou et al.

), although it is several orders of magnitude larger

than the one that could be naively estimated using νmax.

For instance, for PPM_HLLC at , νmax ≃ .× – and

vrms ≃ . giving

u′L

νmax

≃ . ()

This apparent discrepancy is due to the fact that an ILES is

not a DNS. As a consequence, different quantities that in

a DNS depend on the Reynolds number, such as the dissi-

pation rate or the Kolmogorov scale, behave as though the

simulation had multiple values of the Reynolds number.

6 The transverse spectrum
Finally, we want to comment on the use of D transverse

spectra in D simulations, a practice typically employed in

the analysis of turbulence in CCSN simulations (Dolence

Figure 9 3D (equation (10), blue) and 2D, transverse (equation

(26), red) energy spectra for the PPM_HLLC simulations. The

energy spectra are compensated by k5/3 to highlight eventual regions

with Kolmogorov scaling. The spectra are plotted as a function of the

dimensionless wave number 512k�x, as in Figure 5. Although E(k)

and E⊥(k⊥) have similar trends, the use of the transverse spectrum

can overestimate the width of the bottleneck region.

et al. ; Couch and O’Connor ; Handy et al. ;

Abdikamalov et al. ).

Figure  shows a comparison of the D transverse spec-

trum E⊥(k⊥) from equation () and the D energy spec-

trum from equation () for the PPM_HLLC simulations.
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The other runs (not shown) have the same qualitative be-
havior. We can see that the transverse spectrum follows
qualitatively the same trend as the D spectrum in terms
of convergence. They are both roughly compatible with
a Kolmogorov scaling, but the bottleneck appears to be
more pronounced in the D spectrum than in the D spec-
trum. In particular, E⊥(k⊥) only shows a very small region
that suggests an inertial range,  � k �  (as opposed to
� k �  in E(k)).
Abdikamalov et al. () concluded, also based on the

analysis of D spectra, that turbulence in CCSN simula-
tions is dominated by the bottleneck effect. Given the res-
olutions used in CCSN studies, our work supports their
conclusion. However, in the light of Figure , we recom-
mend that future studies supplement the analysis of D
spectra with rd-order structure functions, that, as we
have shown, can give a more accurate description of the
energy cascade.

7 Conclusions
The details of the explosion mechanism of CCSNe have
eluded our comprehension in spite of more than  years
of studies (Woosley and Janka ; Janka et al. ;
Burrows ; Foglizzo et al. ). Recent numerical ad-
vances (Murphy et al. ; Couch and Ott ; Couch
and Ott ; Müller and Janka ) suggest that turbu-
lencemight play a fundamental role in tipping over the bal-
ance of the forces and lead to successful explosions (see
also Appendix). At the same time, the level of accuracy of
current simulations, which employ the ILESmethodology,
is unclear (Abdikamalov et al. ). Turbulence inCCSNe
is mildly compressible, but strongly anisotropic (Murphy
et al. ; Couch and Ott ). Simulations use rather
dissipative numerical schemes (because they have to deal
with strong shock waves and complex microphysics) and
relatively low resolution, a combination (anisotropic tur-
bulence and dissipative schemes) that has not been sys-
tematically studied before.
With the goal of assessing the reliability of ILES em-

ployed in the study of CCSNe, as well as in other areas
of physics and astrophysics, we performed a series of lo-
cal simulations of driven, anisotropic, weakly compressible
turbulence. We compared five commonly employed nu-
merical schemes with different reconstruction methods,
Riemann solvers, and time step size. Each was run at  dif-
ferent resolutions ranging from  to . Our analysis
focused on the fidelity with which the turbulent cascade
is represented in each model. In particular, we performed
an analysis both in Fourier space (with the velocity power-
spectra and the energy flux) and in physical space (with
the rd-order structure functions). Finally, we measured
the numerical viscosity of each scheme from the residual
of the specific kinetic energy equation.
We found that, on the one hand, all of the numerical se-

tups are able to accurately capture the decay rate of kinetic

energy from the injection scale, with errors at the few %

level already at  (e.g., ∼.% for PPM_HLLC_N128).
On the other hand, a large fraction of the energy is at unre-
solved scales where it piles up due to the bottleneck effect
and an inertial range appears only at the highest resolu-
tions (). Even at this resolution, which would be diffi-
cult to achieve in global simulations, only roughly ∼%

(the exact number depends on the scheme, see Section .)
of the energy is resolved, the remaining ∼% accumu-
lates as excess energy at intermediate scales (the cumula-
tive energy excess at the grid scale alone is as large as ∼%

of the total energy).
CurrentCCSN simulations have resolutions of atmost of

- points covering the gain region (Abdikamalov et al.
) (the energy injection scale). Based on our analysis we
expect that at these resolutions even the energy decay rate
from the largest scales will not be completely converged,
but will show errors of up to tens of percent, depending on
the numerical scheme (see Section .). At smaller scales,
the dynamics is going to be completely dominated by the
bottleneck effect. This is in agreement with the findings of
Abdikamalov et al. (), based on the use of global sim-
ulations reaching a maximum resolution of  grid points
covering radially the extent of the gain region.
Based on our findings, we expect that, if the resolution in

global simulations is increased by a factor∼ from the one
of Abdikamalov et al. (), the decay rate will be con-
verged to within a few % of the asymptotic value. This im-
plies that the ratio between thermal and kinetic energy, a
crucial quantity for the onset of the explosion, will also be
converged to within a few %, at least when the energy in-
jection rate changes slowly compared to the eddy turnover
time (which is roughly ∼ ms in a CCSN (Ott et al. ;
Couch andO’Connor )). Unfortunately, while the lead
up to explosion occurs over a larger timescale of a few hun-
dred milliseconds, the transition to explosion can happen
over much shorter timescales (one turnover time or less)
(Couch and Ott ). This means that the dynamics of
the cascade over smaller time and length scales in the gain
region also needs to be captured correctly since changes in
the energy input rate on such short time scales will yield an
inaccurate representation of the energy on large scales due
to the bottleneck effect. This could require an increase of
resolution by a factor ∼- with respect to current high-
resolution simulations. Additional work using semi-global
or global simulations will be required tomore firmly estab-
lish the resolutions requirements at the transition of the
explosion.
Concerning the properties of anisotropic turbulence in

our simulations, we found anisotropy contributions to the
energy spectrum and to the angle-averaged formulation of
the /-law to be subdominant: the accuracy with which
the /-law is satisfied is limited only by the employed
resolution and the energy spectrum appears to be con-
sistent with Kolmogorov k–/ scaling. We also found the
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transverse energy spectrum with respect to the direction

of anisotropy, a quantity typically computed in CCSN sim-

ulations, to overestimate the bottleneckwith respect to the

angle-integrated D spectrum. For this reason, we recom-

mend future studies of CCSN to supplement (or replace)

the analysis of the transverse spectrum with the analysis

of the rd order, angle-integrated, structure function (or,

where possible, with the D spectrum itself ).

Our results are, of course, dependent on the choice of

the numerical scheme. In particular, we found significant

differences in the dissipative properties of schemes em-

ploying theHLLCRiemann solver with respect to schemes

using the more dissipative HLLE solver. The reconstruc-

tion order of the scheme is also important, although, while

significant differences are found between TVD and PPM,

the differences between PPMandWENOZ aremuchmore

minute (despiteWENOZ being significantly more compu-

tationally expensive than PPM). In the end, none of the

schemes we considered seems to be able to yield an ac-

curate representation of the kinetic energy distribution

across different scales at an affordable resolution for global

CCSN simulations. A possible way forward would be to

adopt low-dissipation numerical schemes especially de-

signed for the use in ILES, such as the methods proposed

by Hickel et al. (); Martín et al. () or Thornber

et al. (). Implementing and testing these schemes will

be subject of future work.

An important limitation of the present work is that we

considered a very idealized setup. On the one hand, this

allows us to benchmark the behavior of ILES in a con-

trolled environment. On the other hand, our simulations

cannot fully capture all features of the turbulent convec-

tive flow in a CCSN. Unlike the situation in a CCSN, our

local simulations did not include a vertical advective ve-

locity field that is due to the accretion of the stellar man-

tle. However, the advective velocities are nearly constant in

the regions of interest andGalilean invariance ensures that

our results are unaffected.More limiting is the local nature

of our simulations and the inevitable choice of boundary

conditions. Moreover, our simulations could not take into

account spatial variations in gravity and the large-scale ra-

dial convergence of the flow in globally spherical problems

like collapsing stars. Addressing these issues will also be

subject of future work.

Appendix: The role of turbulence in core-collapse

supernova explosions
In this appendix we present a brief discussion of the im-

portance of turbulent pressure in the explosion of massive

stars. To set the stage, we will briefly summarize what is

known of the dynamics of the most common class of CC-

SNe that are relevant for our later discussion. This is done

for the benefit of readers that are not supernova specialists

and it is not meant to be a complete review of the status of

the field, for whichwe refer, instead, to the reviews of Janka

et al. () and Burrows (). Next, we will discuss the

role of turbulence and, in particular, of turbulent pressure

on the explosion mechanism, in light of some recent re-

sults (Murphy et al. ; Couch and Ott ).

A.1 The neutrino mechanism
Towards the end of their evolution, massive stars form

massive (∼. solar mass) iron cores at their center. Since

the iron nucleus has the largest binding energy per nu-

cleon, no energy can be extracted from nuclear fusion be-

yond iron. The iron core is essentially inert and supported

against gravity only by the degeneracy pressure of relativis-

tic electrons. Themass of the iron core increases with time

as more iron-groupmaterial is added by silicon shell burn-

ing. Electron capture on protons, which becomes energet-

ically favorable at high densities, depletes the core of elec-

trons and thus reduces the pressure supporting it against

gravity. Eventually, the core becomes dynamically unstable

and collapses.

During the collapse, the subsonically collapsing inner

core (∼. solarmasses) contracts until it reaches densities

comparable to that in atomic nuclei (∼-×  g cm–).

At this point, the nuclear equation of state stiffens (due to

the strong nuclear force). This halts the collapse of the in-

ner core. It stops, bounces back and a proto-neutron star

(PNS) is formed. The outer core, however, is still collaps-

ing supersonically and a strong shock wave is launched at

the interface between the inner and outer core.

It was once thought that this shock wave would travel

outwards dynamically, depositing its energy in the outer

layers of the star, causing the explosion. However, multiple

numerical simulations performed over multiple decades

have consistently shown that the initial shock fails to ex-

plode the star. Instead, it stalls due to energy losses to the

dissociation of heavy nuclei into free nucleons and to the

emission of neutrinos that stream away from the neutrino-

semitransparent regions behind the shock (Bethe ).

The shock generally stalls within only a few tens of mil-

liseconds of core bounce and turns into an accretion shock

standing at a radius of ∼- km. The accretion rate

through the shock is so high (a fraction of a solar mass per

second) that, if nothing revitalizes the shock within ∼-

seconds, the gravitational force would overwhelm the nu-

clear repulsion force, collapsing the core of the supernova

to a black hole, precluding explosion (e.g., O’Connor and

Ott ()).

During this time, however, the PNS will release a signif-

icant fraction of its binding energy in the form of neutri-

nos (of order  J). Converting a few percent of that en-

ergy into kinetic energy would be enough to unbind the

stellar envelope and power the supernova explosion. In

the standard neutrino mechanism it is theorized that a
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small fraction neutrinos emitted from the edge of the pro-

toneutron star is re-absorbed in the region right behind the

stalled shock. The deposition of neutrino energy leads to

higher thermal pressure so that the shock can eventually

overcome the ram pressure of accretion and accelerates

in a run-away process (Bethe ; Pejcha and Thompson

). Turbulence in the heating region behind the shock

increases the time a fluid parcel spends in that region and,

importantly, turbulent pressure helps in overcoming the

ram pressure of accretion (see next section and Couch and

O’Connor ()). It is, however, presently unclear if neu-

trino heating (even if aided by turbulence in launching the

explosion) is able to provide enough energy to power the

explosions to the energies inferred from astronomical ob-

servations.

A.2 Turbulent pressure and the Rankine-Hugoniot

conditions

Simulations (Burrows et al. ; Murphy et al. ;

Couch and Ott ) have shown that turbulence and, in

particular, turbulent pressure behind the shock, could play

an important role in aiding the explosion. To seewhy this is

the case, we consider the Rankine-Hugoniot momentum

condition for a standing accretion shock in a supernova

core,

s
[

ρdv
r
d – ρuv

r
u

]

= ρd

(

vrd
)

+ pd – ρu

(

vru
)

– pu, ()

where s is the shock speed and ·d and ·u denote the down-
stream and upstream values respectively. For the purpose

of our discussion, we can assume the upstream gas to be

cold and free-falling:

pu = 
(

vru
)

=
GM

r
. ()

For the shock to expand we must then have

ρd

(

vrd
)

+ pd > ρu

GM

r
. ()

In the presence of turbulence, Murphy et al. () sug-

gested to modify equation () in a way akin to a Reynolds

decomposition and write it as

ρd

(

v̄rd
)

+ ρd

(

δvrd
)

+ pd > ρu

GM

r
, ()

where v is the average velocity and δv = v̄ – v is the turbu-

lent velocity. Although not entirely rigorous, equation ()

has been shown to be well verified in the numerical simu-

lations if angular averages are used to compute the respec-

tive quantities (Murphy et al. ; Couch and Ott ).

Couch and Ott () have shown that the turbulent pres-

sure expressed in this fashion can exceed % of the ther-

mal pressure, making a very significant contribution to the

momentum balance in ().

Going beyond the arguments of Murphy et al. (),

we can reinterpret equation () as being the Rankine-

Hugoniot condition for a fluid with a modified equation of

state, which has two separate internal degrees of freedom:

thermodynamical and turbulent. To this aim, we express

δvrd in terms of the specific turbulent energy

eturb =



|δv| ()

noting that

|δv| :=
(

δvr
)

+
(

δvθ
)

+
(

δvφ
)
, ()

and using the fact that

(

δvr
) ≃

(

δvθ
)

+
(

δvφ
)

()

in CCSN turbulence, to obtain

(

δvr
) ≃ 


|δv| = eturb. ()

Assuming the pressure varies like p = (γ – )ρe, and sub-

stituting () into (), we find

ρd

(

v̄rd
)

+ (γth – )ρded + (γturb – )ρdeturb

> ρu

GM

r
, ()

where γth ≃ / is the thermodynamical adiabatic in-

dex, ed is the downstream thermal energy and γturb =  is

the equivalent adiabatic index associated with anisotropic

CCSN turbulence. Since γturb > γth, we see that turbulent

energy is more efficient, per unit specific internal energy,

at pushing the shock than thermal energy.

We point out that, if equation () is dropped and

turbulence is assumed to be isotropic, then γturb = /,

which is still larger than γth, but not as large as for the

anisotropic case. This is a simple consequence of the fact

that anisotropic turbulence has an anisotropic pressure,

which is stronger in the radial direction.

In both cases, since the total energy is conserved, the rel-

evant quantity is the ratio eturb/e. From standard turbulent

phenomenology we expect that this ratio will only depend

on macroscopic parameters, such as the net heating rate,

the accretion rate and so on, and not on the details of the

viscosity. For this reason, we expect this ratio to be cor-

rectly captured in ILES achieving a sufficiently high reso-

lution.
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As a final remark, we point out that a similar argument

has been recently proposed by Müller and Janka ()

who formulated their equations in terms of the turbulent

Mach number, as opposed to the turbulent energy.
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