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Abstract

Contemporary work on learning in continuous

games has commonly overlooked the hierarchi-

cal decision-making structure present in machine

learning problems formulated as games, instead

treating them as simultaneous play games and

adopting the Nash equilibrium solution concept.

We deviate from this paradigm and provide a com-

prehensive study of learning in Stackelberg games.

This work provides insights into the optimization

landscape of zero-sum games by establishing con-

nections between Nash and Stackelberg equilibria

along with the limit points of simultaneous gra-

dient descent. We derive novel gradient-based

learning dynamics emulating the natural structure

of a Stackelberg game using the implicit function

theorem and provide convergence analysis for de-

terministic and stochastic updates for zero-sum

and general-sum games. Notably, in zero-sum

games using deterministic updates, we show the

only critical points the dynamics converge to are

Stackelberg equilibria and provide a local conver-

gence rate. Empirically, our learning dynamics

mitigate rotational behavior and exhibit benefits

for training generative adversarial networks com-

pared to simultaneous gradient descent.

1. Introduction

The emerging coupling between game theory and machine

learning can be credited to the formulation of learning

problems as interactions between competing objectives and

strategic agents. Indeed, generative adversarial networks

(GANs) (Goodfellow et al., 2014), robust supervised learn-

ing (Madry et al., 2018), reinforcement and multi-agent

reinforcement learning (Dai et al., 2018; Zhang et al., 2019),
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and hyperparameter optimization (Maclaurin et al., 2015)

problems can be cast as zero-sum or general-sum continu-

ous action games. To obtain solutions in a tractable manner,

gradient-based algorithms have gained attention.

Given the motivating applications, much of the contem-

porary work on learning in games has focused on zero-

sum games with non-convex, non-concave objective func-

tions and seeking stable critical points or local equilib-

ria. A number of techniques have been proposed includ-

ing optimistic and extra-gradient algorithms (Daskalakis

et al., 2018; Daskalakis & Panageas, 2018; Mertikopoulos

et al., 2019), gradient adjustments (Balduzzi et al., 2018;

Mescheder et al., 2017), and opponent modeling meth-

ods (Zhang & Lesser, 2010; Foerster et al., 2018; Letcher

et al., 2019; Schäfer & Anandkumar, 2019). However, only

a select number of algorithms can guarantee convergence

to stable critical points satisfying sufficient conditions for

a local Nash equilibrium (LNE) (Mazumdar et al., 2019;

Adolphs et al., 2019).

The dominant perspective in machine learning applications

of game theory has been focused on simultaneous play.

However, there are many problems exhibiting a hierarchical

order of play, and in a game theoretic context, such problems

are known as Stackelberg games. The Stackelberg equilib-

rium (Von Stackelberg, 2010) solution concept generalizes

the min-max solution to general-sum games. In the simplest

formulation, one player acts as the leader who is endowed

with the power to select an action knowing the other player

(follower) plays a best-response. This viewpoint has long

been researched from a control perspective on games (Basar

& Olsder, 1998) and in the bilevel optimization commu-

nity (Danskin, 1967; 1966; Zaslavski, 2012).

The work from a machine learning perspective on games

with a hierarchical decision-making structure is sparse and

exclusively focuses on zero-sum games. In the most relevant

theoretical work, Jin et al. (2019) show that all stable critical

points of simultaneous gradient descent with a timescale

separation between players approaching infinity satisfy suf-

ficient conditions for a local Stackelberg equilibrium (LSE).

The closest empirical work we are aware of is on unrolled

GANs (Metz et al., 2017), where the leader (generator) opti-

mizes a surrogate cost function that depends on parameters
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of the follower (discriminator) that have been ‘rolled out’

until an approximate local optimum is reached. This behav-

ior intuitively approximates a hierarchical order of play and

consequently the success of the unrolling method as a train-

ing mechanism provides some evidence supporting the LSE

solution concept. In this paper, we provide a step toward

bridging the gap between theory and practice along this

perspective by developing implementable learning dynam-

ics with convergence guarantees to critical points satisfying

sufficient conditions for a LSE.

Contributions. Motivated by the lack of algorithms focus-

ing on games exhibiting an order of play, we provide a study

of learning in Stackelberg games including equilibria char-

acterization, novel learning dynamics and convergence anal-

ysis, and an illustrative empirical study. The primary bene-

fits of this work to the community include an enlightened

perspective on the consideration of equilibrium concepts

reflecting the underlying optimization problems present in

machine learning applications formulated as games and an

algorithm that provably converges to critical points satisfy-

ing sufficient conditions for a LSE in zero-sum games.

We provide a characterization of LSE via sufficient condi-

tions on the players objectives and term points satisfying

the conditions differential Stackelberg equilibria (DSE). We

show DSE are generic amongst LSE in zero-sum games. This

means except on a set of measure zero in the class of zero-

sum continuous games, DSE and LSE are equivalent. While

the placement of differential Nash equilibria (DNE) amongst

critical points in continuous games is reasonably well un-

derstood, an equivalent statement cannot be made regarding

DSE. Accordingly, we draw connections between the so-

lution concepts in the class of zero-sum games. We show

that DNE are DSE, which indicates the solution concept in

hierarchical play games is not as restrictive as the solution

concept in simultaneous play games. Furthermore, we re-

veal that there exist stable critical points of simultaneous

gradient descent dynamics that are DSE and not DNE. This

insight gives meaning to a broad class of critical points pre-

viously thought to lack game-theoretic meaning and may

give some explanation for the adequacy of solutions not

satisfying sufficient conditions for LNE in GANs. To charac-

terize this phenomenon, we provide necessary and sufficient

conditions for when such points exist.

We derive novel gradient-based learning dynamics emulat-

ing the natural structure of a Stackelberg game from the

sufficient conditions for a LSE and the implicit function

theorem. The dynamics can be viewed as an analogue to

simultaneous gradient descent incorporating the structure

of hierarchical play games. In stark contrast to the simul-

taneous play counterpart, we show in zero-sum games the

only stable critical points of the dynamics are DSE and such

equilibria must be stable critical points of the dynamics. Us-

ing this fact and saddle avoidance results, we show the only

critical points the discrete time algorithm converges to given

deterministic gradients are DSE and provide a local conver-

gence rate. In general-sum games, we cannot guarantee the

only critical point attractors of the deterministic learning

algorithms are DSE. However, we give a local convergence

rate to critical points which are DSE. For stochastic gradi-

ent updates, we obtain analogous convergence guarantees

asymptotically for each game class.

Empirically, we show that our dynamics result in stable

learning compared to simultaneous gradient dynamics when

training GANs. To gain insights into the placement of DNE

and DSE in the optimization landscape, we analyze the eigen-

values of relevant game objects and observe convergence

to neighborhoods of equilibria. Finally, we show that our

dynamics can scale to computationally intensive problems.

2. Preliminaries

We now formalize the games we study, present equilibrium

concepts accompanied by sufficient condition characteriza-

tions, and formulate Stackelberg learning dynamics.

2.1. Game Formalisms

Consider a non-cooperative game between two agents where

player 1 is deemed the leader and player 2 the follower. The

leader has cost f1 : X → R and the follower has cost

f2 : X → R, where X = X1 ×X2 ∈ Rm with X1 ∈ Rm1

and X2 ∈ Rm2 denoting the action spaces of the leader

and follower, respectively.1 We assume throughout that

each fi is sufficiently smooth: fi ∈ Cq(X,R) for some

q ≥ 2. For zero-sum games, the game is defined by costs

(f1, f2) = (f,−f). In words, we consider the class of two-

player smooth games on continuous, unconstrained actions

spaces. The designation of ‘leader’ and ‘follower’ indicates

the order of play between the agents, meaning the leader

plays first and the follower second.

In a Stackelberg game, the leader and follower aim to solve

the following optimization problems, respectively:

min
x1∈X1

{f1(x1, x2)
∣

∣ x2 ∈ arg min
y∈X2

f2(x1, y)}, (L)

min
x2∈X2

f2(x1, x2). (F)

This contrasts with a simultaneous play game in which

each player i is faced with the optimization problem

minxi∈Xi
fi(xi, x−i). The learning algorithms we formu-

late are such that the agents follow myopic update rules

which take steps in the direction of steepest descent for the

respective optimizations problems.

1Our results hold more generally for action spaces that are
precompact subsets of the Euclidean space since they are local.
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2.2. Equilibria Concepts and Characterizations

Before formalizing learning rules, let us first discuss the

equilibrium concept studied for simultaneous play games

and contrast it with that which is studied in the hierarchi-

cal play counterpart. The typical equilibrium notion in

continuous games is the pure strategy Nash equilibrium in

simultaneous play games and the Stackelberg equilibrium

in hierarchical play games. Each notion of equilibria can

be characterized as the intersection points of the reaction

curves of the players (Basar & Olsder, 1998). We focus our

attention on local notions of the equilibrium concepts as is

standard in learning in games since the objective functions

we consider need not be convex or concave.

Definition 1 (Local Nash (LNE)). The joint strategy x∗ ∈ X
is a local Nash equilibrium on U1 × U2 ⊂ X1 ×X2 if for

each i ∈ {1, 2}, fi(x
∗) ≤ fi(xi, x

∗
−i), ∀ xi ∈ Ui ⊂ Xi.

Definition 2 (Local Stackelberg (LSE)). Consider Ui ⊂
Xi for each i ∈ {1, 2}. The strategy x∗

1 ∈ U1 is a local

Stackelberg solution for the leader if, ∀x1 ∈ U1,

supx2∈RU2
(x∗

1
) f1(x

∗
1, x2) ≤ supx2∈RU2

(x1) f1(x1, x2),

where RU2
(x1) = {y ∈ U2|f2(x1, y) ≤ f2(x1, x2), ∀x2 ∈

U2}. Moreover, (x∗
1, x

∗
2) for any x∗

2 ∈ RU2
(x∗

1) is a local

Stackelberg equilibrium on U1 × U2.

While characterizing existence of equilibria is outside

the scope of this work, we remark that Nash equilibria

exist for convex costs on compact and convex strategy

spaces and Stackelberg equilibria exist on compact strategy

spaces (Basar & Olsder, 1998, Thm. 4.3, Thm. 4.8, & §4.9).

This means the class of games on which Stackelberg equi-

libria exist is broader than on which Nash equilibria exist.

Existence of local equilibria is guaranteed if the neighbor-

hoods and cost functions restricted to those neighborhoods

satisfy the assumptions of the cited results.

Predicated on existence, equilibria can be characterized in

terms of sufficient conditions on player costs. We denote

Difi as the derivative of fi with respect to xi, Dijfi as the

partial derivative of Difi with respect to xj , and D(·) as the

total derivative.2 The following gives sufficient conditions

for a LNE as given in Definition 1.

Definition 3 (Differential Nash (DNE) Ratliff et al. (2016)).

The joint strategy x∗ ∈ X is a differential Nash equilibrium

if Difi(x
∗) = 0 and D2

i fi(x
∗) > 0 for each i ∈ {1, 2}.

Analogous sufficient conditions can be stated to character-

ize a LSE from Definition 2. Towards this end, given a

point x∗ at which D2f2(x
∗) = 0 and det(D2

2f2(x
∗)) 6= 0,

the implicit function theorem (Abraham et al., 1988, Thm.

2.5.7) implies that there exists a neighborhood U1 and

2Example: given f(x, r(x)), Df = D1f +Dr⊤D2f .

an implicit map r : x1 7→ x2 defined on U1. Further,

Dr ≡ −(D2
2f2)

−1 ◦D21f2. Note that det(D2
2f2(x)) 6= 0

is a generic condition (cf. Lemma C.3). Let Df1(x1, r(x1))
be the total derivative of f1 and analogously, let D2f1 be

the second-order total derivative.

Definition 4 (Differential Stackelberg (DSE)). The joint

strategy x∗ = (x∗
1, x

∗
2) ∈ X is a differential Stackelberg

equilibrium if Df1(x
∗) = 0, D2f2(x

∗) = 0, D2f1(x
∗) >

0, and D2
2f2(x

∗) > 0.

Game Jacobians play a key role in determining stability of

critical points. For simultaneous play, let

ω(x) = (D1f1(x), D2f2(x))

be the vector of individual gradients and

ωS(x) = (Df1(x), D2f2(x))

as the equivalent for the Stackelberg game. Observe that

Df1 is the total derivative of f1 with respect to x1 given

x2 is implicitly a function of x1, capturing the fact that the

leader operates under the assumption that the follower will

play a (local) best response to x1. The reaction curve of the

follower may not be unique. However, sufficient conditions

on a local Stackelberg solution x—i.e., D2f2(x) = 0 and

det(D2
2f2(x)) 6= 0—guarantee that Df1 is well defined

(cf. implicit mapping theorem).

The vector field ω(x) forms the basis of the well-studied

simultaneous gradient learning dynamics and the Jacobian

of the dynamics is given by

J(x) =

[

D2
1f1(x) D12f1(x)

D21f2(x) D2
2f2(x)

]

.

Similarly, the vector field ωS(x) serves as the foundation

of the learning dynamics we formulate in Section 2.4 and

analyze throughout. The Jacobian of the Stackelberg vector

field ωS(x) is given by

JS(x) =

[

D1(Df1(x)) D2(Df1(x))
D21f2(x) D2

2f2(x)

]

. (1)

A critical point is called non-degenerate if the determinant of

the vector field Jacobian is non-zero. We denote by C◦
− and

C◦
+ the open left and right half complex planes. Moreover, a

critical point x∗ of ẋ = −ω(x) is stable if spec(−J(x∗)) ⊂
C◦

− or equivalently spec(J(x∗)) ⊂ C◦
+. Similarly, a critical

point x∗ of ẋ = −ωS(x) is stable if spec(−JS(x
∗)) ⊂ C◦

−

or equivalently spec(JS(x
∗)) ⊂ C◦

+.

Noting that the Schur complement of JS(x) with respect to

D2
2f2(x) is identically D2f(x1, r(x1)), we give alternative

but equivalent sufficient conditions as those in Definition 4

in terms of JS(x). For a two-by-two block matrix such as

JS , we denote by S1(JS) the Schur complement of JS with

respect to D2
2f2. The proof of the following result is in

Appendix B.
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Proposition 1. Consider a game (f1, f2) defined by fi ∈
Cq(X,R), i = 1, 2 with q ≥ 2 and player 1 (without

loss of generality) taken to be the leader. Let x∗ satisfy

D2f2(x
∗) = 0 and D2

2f2(x
∗) > 0. Then Df1(x

∗) = 0
and S1(JS(x

∗)) > 0 if and only if x∗ is a DSE. Moreover,

in zero-sum games, S1(JS(x)) = S1(J(x)).

2.3. Genericity and Structural Stability

A natural question is how common is it for local equilibria to

satisfy sufficient conditions, meaning in a formal mathemat-

ical sense, what is the gap between necessary and sufficient

conditions in games. Towards addressing this, it has been

shown that DNE are generic amongst LNE and structurally

stable in the classes of zero-sum and general-sum contin-

uous games, respectively (Ratliff et al., 2016; Mazumdar

& Ratliff, 2019). The results say that except on a set of

measure zero in each class of games, DNE = LNE and the

equilibria persist under sufficiently smooth perturbations to

the costs. We give analogous results for DSE in the class

of zero-sum games in this section and provide proofs in

Appendix C. The following result allows us to conclude that

for a generic zero-sum game, DSE = LSE.

Theorem 1. For the class of two-player, zero-sum contin-

uous games (f,−f) where f ∈ Cq(Rm,R) with q ≥ 2,

DSE are generic amongst LSE. That is, given a generic

f ∈ Cq(Rm,R), all LSE of the game (f,−f) are DSE.

A critical point x∗ of the vector field ωS(x) is hyperbolic

if there are no eigenvalues of JS(x
∗) with zero real part.

We now show that in generic zero-sum games, LSE are

hyperbolic critical points of the vector field ωS(x), which is

desirable property owing to the convergence implications.

Corollary 1. For the class of two-player, zero-sum continu-

ous games (f,−f) where f ∈ Cq(Rm,R) with q ≥ 2, LSE

are generically non-degenerate, hyperbolic critical points

of the vector field ωS(x).

As a final result in this section, we show that DSE are struc-

tural stable in the class of zero-sum games. Structural stabil-

ity ensures that differential Stackelberg equilibria are robust

and persist under smooth perturbations.

Theorem 2. For the class of two-player, zero-sum contin-

uous games (f,−f) where f ∈ Cq(Rm,R) with q ≥ 2,

DSE are structurally stable: given f ∈ Cq(Rm1 ×Rm2 ,R),
ζ ∈ Cq(Rm1×Rm2 ,R), and a DSE (x1, x2) ∈ Rm1×Rm2 ,

there exists neighborhoods U ⊂ R of zero and V ⊂
Rm1 × Rm2 such that ∀ t ∈ U there exists a unique DSE

(x̃1, x̃2) ∈ V for the zero-sum game (f + tζ,−f − tζ).

Before moving on, we remark that important classes of

non-generic games certainly exist. In games where the cost

function of the follower is bilinear, LSE can exist which do

not satisfy the sufficient conditions outlined in Definition 4.

Algorithm 1 Deterministic Stackelberg Learning Dynamics

1: Input: x0 ∈ X , learning rates γ1, γ2 > 0
2: for k = 0, 1, . . . do
3: ωS,1 ← D1f1(xk)−D21f2(xk)

⊤(D2
2f2(xk))

−1D2f1(xk)
4: ωS,2 ← D2f2(xk)
5: x1,k+1 ← x1,k − γ1ωS,1

6: x2,k+1 ← x2,k − γ2ωS,2

7: end for

As a simple example, x∗ = (0, 0) is a LSE for the zero-sum

game defined by f(x1, x2) = x1x2 and not a DSE since

D2
2f2(x) = 0 ∀ x ∈ X . Since such games belong to a

degenerate class in the context of the genericity result we

provide, they naturally deserve special attention and algo-

rithmic methods. While we do not focus our attention on

this class of games, we do propose some remedies to allow

our proposed learning algorithm to successfully seek out

equilibria in them. In the experiments section, we discuss

a regularized version of our dynamics that injects a small

perturbation to cure degeneracy problems leveraging the

fact that DSE are structurally stable. Further details can be

found in Appendix H.1. Finally, for bimatrix games with

finite actions it is common to reparameterize the problem

using a softmax function to obtain mixed policies on the

simplex (Fudenberg et al., 1998). We explore this viewpoint

in Appendix H.3 on a parameterized bilinear game.

2.4. Stackelberg Learning Dynamics

Recall that ωS(x) = (Df1(x), D2f2(x)) is the vector field

for Stackelberg games and it, along with its Jacobian JS(x),
characterize sufficient conditions for a DSE. Letting ωS,i

be the i–th component of ωS , the leader total derivative is

ωS,1(x) = D1f1(x) − D21f2(x)
⊤(D2

2f2(x))
−1D2f1(x).

The Stackelberg learning rule we study for each player in

discrete time is given by

xi,k+1 = xi,k − γi,khS,i(xk). (2)

In deterministic learning players have oracle gradient access

so that hS,i(x) = ωS,i(x). We study convergence for deter-

ministic learning in Section 4.1 and Algorithm 1 provides ex-

ample pseudocode. In stochastic learning players have unbi-

ased gradient estimates and hS,i(xk) = ωS,i(xk) + wk+1,i

where {wi,k} is player i’s noise process. We provide con-

vergence analysis for stochastic learning in Section 4.2.

3. Implications for Zero-Sum Settings

Before presenting convergence analysis of the update in

(2), we draw connections between Nash and Stackelberg

equilibria in zero-sum games and discuss the relevance to

applications such as adversarial learning. To do so, we evalu-

ate the limiting behavior of the dynamics from a continuous

time viewpoint since the discrete time system closely ap-
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proximates this behavior for suitably selected learning rates.

While we provide the intuition behind the results here, the

formal proofs of the results are in Appendix D.

Let us first show that for zero-sum games, all stable critical

points of ẋ = −ωS(x) are DSE and vice versa.

Proposition 2. In zero-sum games (f,−f) with f ∈
Cq(X,R) for q ≥ 2, a joint strategy x ∈ X is a stable

critical point of ẋ = −ωS(x) if and only if x is a DSE.

Moreover, if f is generic, a point x is a stable critical point

of ẋ = −ωS(x) if and only if it is a LSE.

The result follows from the structure of the Jacobian of

ωS(x), which is lower block triangular with player 1 and

2 as the leader and follower, respectively. Proposition 2

implies that with appropriate stepsizes the update rule in (2)

will only converge to Stackelberg equilibria and thus, unlike

simultaneous gradient descent, will not converge to spurious

locally asymptotically stable points that lack game-theoretic

meaning (see, e.g., Mazumdar et al. (2020)).

This previous result begs the question of which stable critical

points of the dynamics ẋ = −ω(x) are DSE? The following

gives a partial answer to the question and also indicates that

recent works seeking DNE are also seeking DSE.

Proposition 3. In zero-sum games (f,−f) with f ∈
Cq(X,R) for q ≥ 2, DNE are DSE. Moreover, if f is generic,

LNE are LSE.

This result follows from the facts that the conditions of

a DNE imply S1(J(x)) > 0 and that non-degenerate DNE

are generic amongst LNE within the class of zero-sum

games (Mazumdar & Ratliff, 2019). In the zero-sum set-

ting, the fact that Nash equilibria are a subset of Stackelberg

equilibria for finite games is well-known (Basar & Olsder,

1998). We extend this result locally to continuous action

space games. Similar to our work and concurrently, Jin et al.

(2019) show that LNE are local min-max solutions.

In Proposition D.1 of Appendix D, we show the previous

results imply all DNE are stable critical points of both ẋ =
−ω(x) and ẋ = −ωS(x). This leaves the question of the

meaning of stable points of ẋ = −ω(x) which are not DNE.

Finding Meaning in Spurious Stable Critical Points. We

focus on the question of when stable fixed points of ẋ =
−ω(x) are DSE and not DNE. It was shown by Jin et al.

(2019) that not all stable points of ẋ = −ω(x) are local

min-max or local max-min equilibria since one can con-

struct a function such that D2
1f(x) and −D2

2f(x) are both

not positive definite but the real parts of the eigenvalues

of J(x) are positive. It appears to be much harder to char-

acterize when a stable critical point of ẋ = −ω(x) is not

a DNE but is a DSE since it requires the follower’s individ-

ual Hessian to be positive definite. Indeed, it reduces to a

fundamental problem in linear algebra in which the relation-

Figure 1. Example demonstrating existence of DSE and DSE that

are not DNE: G = (f,−f) where f is defined in (3) with a =
0.15, b = 0.25. There are two stable points of simultaneous

gradient descent which are DSE, but not DNE.

ship between the eigenvalues of the sum of two matrices is

largely unknown without assumptions on the structure of

the matrices (Knutson & Tao, 2001).

In Appendix E, we provide necessary and sufficient condi-

tions for attractors at which the follower’s Hessian is positive

definite to be DSE. Taking intuition from the expression

S1(J(x)) = D2
1f(x) − D21f(x)

⊤(D2
2f(x))

−1D21f(x),
the conditions are derived from relating spec(D2

1f) to

spec(D2
2f) via D12f . To illustrate this fact, consider the fol-

lowing example in which stable points are DSE and not DNE—

meaning points x ∈ X at which D2
1f(x) ≯ 0, −D2

2f(x) >
0 and spec(−J(x∗)) ⊂ C◦

− and S1(J(x)) > 0.

Example: Non-Nash Attractors are Stackelberg. Con-

sider the zero-sum game defined by

f(x) = −e−0.01(x2

1
+x2

2
)((ax2

1+x2)
2+(bx2

2+x1)
2). (3)

Let player 1 be the leader who aims to minimize f with re-

spect to x1 taking into consideration that player 2 (follower)

aims to minimize −f with respect to x2. In Fig. 1, we show

the trajectories for different initializations for this game; it

can be seen that simultaneous gradient descent can lead to

stable critical points which are DSE and not DNE. In fact, it

is the case that all stable critical points with −D2
2f(x) > 0

are DSE in games on R2 (see Corollary E.1, Appendix E).

This example, along with Propositions E.1 and E.2 in Ap-

pendix E, implies some stable critical points of ẋ = −ω(x)
which are not DNE are in fact DSE. This is a meaningful

result since recent works have proposed schemes to avoid

stable critical points which are not DNE as they have been

thought to lack game-theoretic meaning (Adolphs et al.,

2019; Mazumdar et al., 2019). Moreover, some recent em-

pirical studies show a number of successful approaches to

training GANs do not converge to DNE, but rather to stable

fixed points of the dynamics at which the follower is at

a local optimum (Berard et al., 2020). This may suggest

reaching DSE is desirable in GANs.

The ‘realizable’ assumption in the GAN literature says the
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discriminator network is zero near an equilibrium parameter

configuration (Nagarajan & Kolter, 2017). The assumption

implies the Jacobian of ẋ = −ω(x) is such that D2
1f(x) =

0. Under this assumption, we show stable critical points

which are not DNE are DSE given −D2
2f(x) > 0.

Proposition 4. Consider a zero-sum GAN satisfying the

realizable assumption. Any stable critical point of ẋ =
−ω(x) at which −D2

2f(x) > 0 is a DSE and a stable critical

point of ẋ = −ωS(x).

4. Convergence Analysis

In this section, we provide convergence guarantees for both

the deterministic and stochastic settings. In the former, play-

ers have oracle access to their gradients at each step while in

the latter, players are assumed to have an unbiased estimator

of the gradient appearing in their update rule. Proofs of the

deterministic results can be found in Appendix F and the

stochastic results in Appendix G.

4.1. Deterministic Setting

Consider the deterministic Stackelberg update

xk+1 = xk − γ1ωSτ
(xk) (4)

where ωSτ
(xk) is the m-dimensional vector with entries

D1f1(xk) − D⊤
21f2(xk)(D

2
2f2(xk))

−1D2f1(xk) ∈ Rm1

and τD2f2(xk) ∈ Rm2 , and τ = γ2/γ1 is the “timescale”

separation. We refer to (4) as the τ -Stackelberg update. The

Jacobian of ωSτ
(x) is denoted JSτ

(x); it is equivalent to

JS with the m2 ×m block row multiplied by τ .

To get convergence guarantees, we apply well known results

from discrete time dynamical systems. For a dynamical sys-

tem xk+1 = F (xk), when the spectral radius ρ(DF (x∗)) of

the Jacobian at fixed point is less than one, F is a contraction

at x∗ so that x∗ is locally asymptotically stable (cf. Propo-

sition F.1, Appendix F). In particular, ρ(DF (x∗)) ≤ c < 1
implies that ‖DF‖ ≤ c + ε < 1 for ε > 0 on a neigh-

borhood of x∗ (Ortega & Rheinboldt, 1970, 2.2.8). Hence,

Proposition F.1 implies that if ρ(DF (x∗)) = 1 − κ < 1
for some κ, then there exists a ball Bp(x

∗) of radius p > 0
such that for any x0 ∈ Bp(x

∗), and some constant K > 0,

‖xk − x∗‖2 ≤ K(1− κ
2 )

k‖x0 − x∗‖2 using ε = κ
4 .

For a zero-sum setting defined by cost function f ∈
Cq(X,R) with q ≥ 2, recall that S1(J(x)) = D2

1f(x) −
D21f(x)

⊤(D2
2f(x))

−1D21f(x) is the first Schur comple-

ment of the Jacobian J(x).

Theorem 3 (Zero-Sum Rate of Convergence.). Con-

sider a zero-sum game defined by f ∈ Cq(X,R)
with q ≥ 2. For a DSE x∗ with α =
min{λmin(S1(J(x

∗))), λmin(−τD2
2f(x

∗))} and β =
max{λmax(S1(J(x

∗))), λmax(−τD2
2f(x

∗))} and learn-

ing rate γ1 = 1/(2β), the τ–Stackelberg update converges

locally with a rate of O((1− α
4β )

k).

Corollary 2 (Zero-Sum Finite Time Guarantee). Given

ε > 0, under the assumptions of Theorem 3, τ -Stackelberg

learning obtains an ε-DSE in ⌈ 4β
α log(‖x0 − x∗‖/ε)⌉ itera-

tions for any x0 ∈ Bδ(x
∗) with δ = α/(4Lβ) where L is

the local Lipschitz constant of I − γ1JSτ
(x∗).

The proofs leverage the structure of the Jacobian JSτ
, which

is lower block diagonal, along with the above noted result

from dynamical systems theory. The key insight is that at a

given x, the spectrum of JSτ
(x) is the union of the spectrum

of S1(J(x)) and −τD2
2f(x) for zero-sum settings.

We now show a discrete-time analogue to Proposition 2.

Proposition 5. Consider a zero-sum game defined by

f ∈ Cq(X,R), q ≥ 2. Suppose that γ1 ≤ 1/L where

max{spec(S1(J(x))) ∪ spec(−τD2
2f(x))} ≤ L. Then, x

is a stable critical point of τ–Stackelberg update if and only

if x is a DSE.

The next result shows that τ -Stackelberg avoids saddle

points almost surely in general-sum games. We remark

that DSE are never saddle points in zero-sum games.

Theorem 4 (Almost Sure Avoidance of Saddles). Consider

a general sum game defined by fi ∈ Cq(X,R), q ≥ 2 for

i = 1, 2 and where, without loss of generality, player 1 is the

leader. Suppose that ωSτ
is L-Lipschitz and that γ1 < 1/L.

The τ–Stackelberg learning dynamics converge to saddle

points of ẋ = −ωSτ
(x) on a set of measure zero.

In the zero-sum setting, ωSτ
being Lipschitz is equivalent

to max{spec(S1(J(x))) ∪ spec(−τD2
2f(x))} ≤ L. The

only critical points of τ -Stackelberg learning in the zero-

sum case are either saddles, unstable points, or DSE which

comprise all the stable critical points due to the structure of

the Jacobian JSτ
. Consequently, the previous pair of results

imply that the only critical points τ -Stackelberg learning

converges to in zero-sum games are DSE almost surely.

We now provide a convergence guarantee for deterministic

general-sum games. However, the convergence guarantee is

no longer a global guarantee to the set of attractors of which

critical points are DSE since there is potentially stable critical

points which are not DSE. This can be seen by examining

the Jacobian which is no longer lower block triangular.

Given a critical point x∗, let α = λ2
min(

1
2 (J

⊤
Sτ
(x∗) +

JSτ
(x∗))) and β = λmax(JSτ

(x∗)⊤JSτ
(x∗)).

Theorem 5 (General Sum Rate of Convergence). Consider

a general sum game (f1, f2) with fi ∈ Cq(X,R), q ≥ 2 for

i = 1, 2 and where, without loss of generality, player 1 is

the leader. For a DSE x∗ such that J⊤
Sτ
(x∗) + JSτ

(x∗) > 0,

the τ–Stackelberg update with learning rate γ1 =
√
α/β

converges locally with a rate of O((1− α
2β )

k/2).
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Corollary 3 (General Sum Finite Time Guarantee). Given

ε > 0, under the assumptions of Theorem 5, τ–Stackelberg

learning obtains an ε–DSE in ⌈ 4β
α log (‖x0 − x∗‖/ε)⌉ iter-

ations for any x0 ∈ Bδ(x
∗) with δ = α/(2Lβ) where L is

the local Lipschitz constant of I − γ1JSτ
(x).

4.2. Stochastic Setting

In the stochastic setting, players use updates of the form

xi,k+1 = xi,k − γi,k(ωS,i(xk) + wi,k+1) (5)

where γ1,k = o(γ2,k) and {wi,k+1} is a stochastic pro-

cess for each i = 1, 2. The results in this section as-

sume the following. The maps Df1 : Rm → Rm1 ,

D2f2 : Rm → Rm2 are Lipschitz, and ‖Df1‖ < ∞. For

each i ∈ {1, 2}, the learning rates satisfy
∑

k γi,k = ∞,
∑

k γ
2
i,k < ∞. The noise processes {wi,k} are zero mean,

martingale difference sequences: given the filtration Fk =
σ(xs, w1,s, w2,s, s ≤ k), {wi,k}i∈I are conditionally inde-

pendent, E[wi,k+1| Fk] = 0 a.s., and E[‖wi,k+1‖| Fk] ≤
ci(1 + ‖xk‖) a.s. for some constants ci ≥ 0, i ∈ I.

The primary technical machinery we use in this section is

stochastic approximation theory (Borkar, 2008) and tools

from dynamical systems. The convergence guarantees in

this section are analogous to that for deterministic learn-

ing but asymptotic in nature. We first provide a non-

convergence guarantee: the dynamics avoid saddle points in

the stochastic learning regime.

Theorem 6 (Almost Sure Avoidance of Saddles.). Consider

a game (f1, f2) with fi ∈ Cq(Rm1 × Rm2 ,R), q ≥ 2 for

i = 1, 2 and where without loss of generality, player 1 is

the leader. Suppose that for each i = 1, 2, there exists a

constant bi > 0 such that E[(wi,t · v)+|Fi,t] ≥ bi for every

unit vector v ∈ Rmi . Then, Stackelberg learning converges

to strict saddle points of the game on a set of measure zero.

We also give asymptotic convergence results. These re-

sults, combined with the non-convergence guarantee in The-

orem 6, provide a broad convergence analysis for this class

of learning dynamics. Theorem G.3 in Appendix G.3 pro-

vides a global convergence guarantee in general-sum games

to the stable critical point, which may or may not be a

DSE, under assumptions on the global asymptotic stability

of critical points of the continuous time limiting singularly

perturbed dynamical system. In zero-sum games, we know

that the only critical points of the continuous time limiting

system are DSE. Hence, Corollary G.2 in Appendix G.3

gives a global convergence guarantee in zero-sum games to

the DSE under identical assumptions.

Relaxing these assumptions, the following proposition pro-

vides a local convergence result which ensures that sample

points asymptotically converge to locally asymptotic trajec-

tories of the continuous time limiting singularly perturbed

system, and thus to stable DSE.

Theorem 7. Consider a general sum game (f1, f2) with

fi ∈ Cq(X,R), q ≥ 2 for i = 1, 2 and where, without loss

of generality, player 1 is the leader and γ1,k = o(γ2,k). Con-

sider a differential Stackelberg equilibrium x∗ = (x∗
1, x

∗
2).

There exists a neighborhood U = U1×U2 of x∗ = (x∗
1, x

∗
2)

such that for any x0 ∈ U , xk converges almost surely to x∗.

5. Experiments

We now present experiments showing the role of DSE in the

optimization landscape of GANs and the empirical bene-

fits of training GANs with Stackelberg learning compared

to simultaneous gradient descent (simgrad). All detailed

experiment information is given in Appendix H.

Example 1: Learning a Covariance Matrix. We consider

a data generating process of x ∼ N (0,Σ), where the co-

variance Σ is unknown and the objective is to learn it using

a Wasserstein GAN. The discriminator is configured to be

the set of quadratic functions defined as DW (x) = x⊤Wx
and the generator is a linear function of random input noise

z ∼ N (0, I) defined by GV (z) = V z. The matrices W ∈
Rm×m and V ∈ Rm×m are the parameters of the discrimi-

nator and the generator, respectively. The Wasserstein GAN

cost for the problem f(V,W ) =
∑m

i=1

∑m
j=1 Wij(Σij −

∑m
k=1 VikVjk). We consider the generator to be the leader

minimizing f(V,W ). The discriminator is the follower

and it minimizes a regularized cost function defined by

−f(V,W ) + η
2 Tr(W

⊤W ), where η ≥ 0 is a tunable regu-

larization parameter. The game is formally defined by the

costs (f1, f2) = (f(V,W ),−f(V,W ) + η
2 Tr(W

⊤W )),
where player 1 is the leader and player 2 is the follower. In

equilibrium, the generator picks V ∗ such that V ∗(V ∗)⊤ =
Σ and the discriminator selects W ∗ = 0. Further details are

given in Appendix C from Daskalakis et al. (2018).

We compare the deterministic gradient update for Stack-

elberg learning with simultaneous learning, and analyze

the distance from equilibrium as a function of time. We

plot ‖Σ − V V ⊤‖2 for the generator’s performance and

‖W +W⊤‖2 for the discriminator’s performance in Fig. 2

for varying dimensions m with learning rates γ1 = γ2/4 =
0.01 and a fixed regularization of η = 0.5. The covariance

matrix is chosen to be Σ = UUT + I where U ∼ N (0, 1).
We observe that Stackelberg learning converges to an equi-

librium in fewer iterations. For zero-sum games, our theory

provides reasoning for this behavior since at any critical

point the eigenvalues of the game Jacobian are purely real.

This is in contrast to simultaneous gradient descent, whose

Jacobian can admit complex eigenvalues, known to cause

rotational forces in the dynamics.

GAN training details. We now train GANs in which each

player is parameterized by a neural network. The genera-

tor is always taken to be the leader and the discriminator
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(a) m = 2 (b) m = 5 (c) m = 10 (d) m = 2 (e) m = 5 (f) m = 10

Figure 2. Stackelberg learning more effectively estimates covariance Σ as compared to simgrad. Errors given by ‖Σ − V V T ‖2 and

‖W +WT ‖2 are shown in (a)–(c) and trajectory plots of elements of W and V V T in (d)–(f) showing the cycling of simgrad.

(a) Gen. (b) Dis. (c) J (d) D2f1 (e) D2
1f1 (f) D2

2f2

(g) Gen. (h) Dis. (i) J (j) D2f1 (k) D2
1f1 (l) D2

2f2

Figure 3. The generator and discriminator performances for simgrad and Stackelberg are shown in (a)–(b) and (g)–(h), respectively. We

show the 5 smallest and 15 largest real eigenvalues parts of relevant game objects in (c)–(f) for simgrad and (i)–(l) for Stackelberg.

the follower in this set of experiments. Moreover, for both

Stackelberg learning and simultaneous gradient descent we

pass the gradient information of each player into the Adam

optimizer (Kingma & Ba, 2015). To ensure the follower’s

Hessian is well-conditioned in the leader update, we regular-

ize the implicit map of the follower so that the leader gradi-

ent is given by ωS,1 = D1f1(x)+Drη(x)
⊤D2f1(x) where

Drη(x)
⊤ = −D21f2(x)

⊤
(

D2
2f2(x) + ηI

)−1
and η is the

regularization parameter. We also employ regularization in

the follower’s implicit map when computing eigenvalues

of D2f1(x) to determine whether an approximate critical

point is in a neighborhood of a DSE. We provide details on

the derivation of the regularized leader update along with a

notion of a regularized DSE and specifics on the eigenvalue

computation in Appendix H.1 and H.2.

Example 2: Learning a Mixture of Gaussians. We train

a GAN to learn a mixture of Gaussian distribution. The

generator and discriminator networks have two and one hid-

den layers, respectively; each hidden layer has 32 neurons.

We train using a batch size of 256, a latent dimension of

16, with decaying learning rates. For both the diamond and

circle configurations, 10 initial seeds were simulated for

each set of learning dynamics and behavior was generally

consistent across them for both algorithms. The experiments

were run for 60,000 batches and the eigenvalues evaluated

at that stopping point. We show detailed information for the

best run of each algorithm in terms of KL-divergence and

in Appendix H.4.1 examine all runs.

Diamond configuration. This experiment uses the satu-

rating GAN objective and Tanh activations. In Fig. 3a–3b

and Fig. 3g–3h we show a sample of the generator and the

discriminator for simgrad and the Stackelberg dynamics at

the end of training. Each learning rule converges so that the

generator can create a distribution that is close to the ground

truth and the discriminator is nearly at the optimal probabil-

ity throughout the input space. In Fig. 3c–3f and Fig. 3i–3l,

we show eigenvalues from the game that present a deeper

view of the convergence behavior. We observe from the

eigenvalues of J that both sets of dynamics converge to

neighborhoods of points that are stable for the simultaneous

dynamics and they appear to be in a neighborhood of a DSE

since the eigenvalues of D2f1 and D2
2f2 are nearly all posi-

tive. Interestingly, however, since the eigenvalues of D2
1f1

are nearly all zero and not all positive and this was consis-

tent across the runs, it appears that the result may reflect the

realizable assumption (cf. Sec. 3) as well as convergence

to a DSE that is not a DNE. Given the good generator and

discriminator performance, it is worth further empirical in-

vestigation to determine if DSE that are not DNE are desirable

in GANs and if successful methods reach them.
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(a) Real (b) 10k (c) 20k (d) 40k (e) 60k (f) 10k (g) 20k (h) 40k (i) 60k

(j) J (k) D2f1 (l) D2
1f1 (m) D2

2f2

(n) J (o) D2f1 (p) D2
1f1 (q) D2

2f2

Figure 4. Stackelberg learning improves learning stability: simgrad generator in (b)–(e) and Stackelberg learning generator in (f)–(i). We

show the 5 smallest and 15 largest real eigenvalue parts of relevant game objects in (j)–(m) for simgrad and (n)–(q) for Stackelberg.

(a) Real images. (b) Fake images. (c) Inception scores.

Figure 5. Stackelberg learning on the MNIST dataset.

Circle configuration. We demonstrate improved perfor-

mance and stability when using Stackelberg learning dy-

namics in this example. We use ReLU activation functions

and the non-saturating objective and show the performance

in Fig. 4 along the learning path for the simgrad and Stack-

elberg learning dynamics. The former cycles and performs

poorly until the learning rates have decayed enough to sta-

bilize the training process. The latter converges quickly to

a solution that nearly matches the ground truth distribution.

We observed this behavior consistently across the runs. In

a similar fashion as in the covariance example, the leader

update is able to reduce rotations. We show the eigenvalues

after training and see that for this configuration, simgrad

converges to a neighborhood of a DNE and the Stackelberg

dynamics converge again to the neighborhood of a DSE that

is not a DNE. This provides further evidence that DSE may

be easier to reach, and can provide suitable performance.

Example 3: MNIST GAN. To demonstrate that the Stack-

elberg learning dynamics can scale to high dimensional

problems, we train a GAN on the MNIST dataset using

the DCGAN architecture (Radford et al., 2015) adapted to

handle 28× 28 images. We simulate 10 random seeds and

in Fig. 5c show the mean Inception score along the training

process along with the standard error of the mean. The

Inception score is calculated using a LeNet classifier follow-

ing (Berard et al., 2020). We show a real sample in Fig. 5a

and a fake sample in Fig. 5a after 7500 batches from the

run with the fifth highest inception score. The Stackelberg

learning dynamics are able to converge to a solution that

generates realistic handwritten digits and get close to the

maximum inception score in a stable manner. The primary

purpose of this example is to show that the learning dynam-

ics including second order information and an inverse is

not an insurmountable problem for training with millions

of parameters. We detail how the update can be computed

efficiently using Jacobian-vector products and the conjugate

gradient algorithm in Appendix H.2.

6. Conclusion

We study learning dynamics in Stackelberg games. This

class of games pertains to any application in which there

is an order of play. However, the problem has not been

extensively analyzed in the way the learning dynamics of

simultaneous play games have been. Consequently, we are

able to give novel convergence results and draw connections

to existing work focused on learning Nash equilibria.
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