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Abstract   

Is implicit learning an independent and automatic process? In
this paper, I attempt to answer this question by exploring
whether implicit learning occurs even despite the availability
of more reliable explicit information about the material to be
learnt. I report on a series of experiments during which
subjects performed a sequential choice reaction task. On each
trial subjects were exposed to a stimulus and to a cue of
varying validity which, when valid, indicated where the next
stimulus would appear. Subjects could therefore optimize their
performance either by implicitly encoding the sequential
constraints contained in the material or by explicitly relying on
the information conveyed by the cue. Some theories predict
that implicit learning does not rely on the same processing
resources as involved in explicit learning. Such theories would
thus predict that sensitivity to sequential constraints should not
be affected by the presence of reliable explicit information
about sequence structure. Other theories, by contrast, would
predict that implicit learning would not occur in such cases.
The results suggest that the former theories are correct. I also
describe preliminary simulation work meant to enable the
implications of these contrasting theories to be explored.

Introduction

Implicit learning is typically defined as the process whereby
subjects appear capable of acquiring new information
without concomitant awareness of what is being learnt. Even
though this definition is currently very controversial (e.g.,
Reber, 1994; Shanks & StJohn, 1994), there is now a large
body of evidence suggesting that improvements in
performance at a given task are not systematically
accompanied by similar improvements in subjects’s ability to
express or use the acquired knowledge in an explicit way.
For instance, Artificial Grammar Learning studies have
shown that subjects can classify strings of letters as
grammatical or not after practice at memorizing similar
strings, and without being able to report on the rules that
define grammaticality (e.g., see Dienes & Berry, 1994, for a
review). Sequence learning studies, on which this paper will
focus, have demonstrated that subjects can become sensitive
to the regularities contained in sequences of stimuli presented
in a choice reaction setting despite remaining unable to report
on the sequence or to perform well in other direct tests such
as generation, where subjects are asked to predict the next
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stimulus instead of reacting to the current one (e.g.,
Cleeremans, 1993a; Nissen & Bullemer, 1987).

Implicit learning is assumed to have a number of features
that distinguish it from explicit learning. However, because
the existence and nature of implicit learning is controversial,
there is currently no agreement in the field about which
features have been empirically established. For instance,
some authors claim that implicit learning is an unconscious
process that can result in abstract knowledge (e.g., Reber,
1994). For others, however, implicit learning is essentially
explicit exemplar-based learning (e.g., Shanks & StJohn,
1994). These issues have been extensively explored
empirically and I believe that it is fair to say that they remain
largely unsolved at this point.

In this paper I would like to focus on a assumption that
often underpins the others but that has seldom been
addressed directly, that is, that implicit learning is an
independent and automatic process. Three positions about
this issue have been expressed in the implicit learning
literature.

First, some authors (e.g., Perruchet & Amorim, 1992)
argue that performance in implicit learning tasks does not
necessarily reflect the operation of an independent implicit
learning system. Rather, performance would be mostly based
on explicit processing, but the resulting knowledge is
fragmented enough that verbal reports probing for general
information are unlikely to reveal the extent of subjects’
knowledge.

Other authors (e.g., Knowlton, Ramus & Squire, 1992)
assume that implicit and explicit learning are supported by
different memory systems, and that these systems are
completely independent from each other. Implicit and
explicit learning would thus proceed in parallel, and without
interacting. They produce different kinds of knowledge, and
are most likely to operate efficiently in contrasted settings.

Finally, there may be an intermediate position where one
assumes that implicit and explicit processing indeed rely on
distinct memory systems, but in which some interactions
between the two systems are allowed, and in which some
processing resources are shared (e.g., Cleeremans, 1993b).

Typically, these issues have been approached by placing
subjects in dual task settings. For instance, Keele and his
collaborators (e.g., Curran & Keele, 1992) used sequential
reaction time (SRT) tasks coupled with a secondary tone-
counting task. The rationale of these experiments was to
determine whether learning of the sequential structure of the
stimulus material can still occur despite attentional resources
being recruited by the secondary task. In other experiments
Curran & Keele also manipulated subject’s explicit
knowledge by letting them study the sequence beforehand.



In general, the results of these and other studies have
shown that the availability of explicit knowledge results in
better performance under single task conditions, but that the
presence of a secondary task results in all subjects
performing at the same level regardless of whether or no they
possess explicit knowledge.

This kind of result has often been interpreted as yielding
support to the notions (1) that sequence learning involves
both explicit and implicit learning, and (2) that implicit
learning relies on mechanisms that are independent from
short-term memory and from the availability of attentional
resources, both of which are crucially important for explicit
learning to occur.

This methodology has a number of problems, however.
First, it is difficult to assess how much attentional capacity
the secondary task requires. For instance, the difficulty of
keeping track of how many tones of a particular kind have
been presented so far may vary with the number of tones
presented. This problem makes it hard to draw strong
inferences about the relative independence of the processes
responsible for learning the sequential structure.

Second, it is hard to determine how much explicit
knowledge subjects possess and actually use during the task.

In this paper, inspired by work on overshadowing in
conditioning experiments with animals (e.g., Matzel,
Schachtman & Miller, 1985), I report on a different way to
address this issue. Instead of placing subjects in a dual-task
setting, I placed them in a dual-stimulus setting where on
each trial, two sources of information are available to
compute the response: the sequential context set by previous
elements of the sequence on the one hand, and a cue
indicating where the next stimulus will appear on the other
hand. Hence, on each trial subjects can rely on either or both
the temporal context and the information conveyed by the
cue to prepare for the next event. Do subjects learn about
both dimensions or is learning of one dimension blocked by
learning of the other? If implicit learning truly is an
automatic process that relies on independent processing and
memory systems, then one should expect to obtain such
learning even in conditions where more reliable and fully
explicit sources of information about the relevant material
are available.

In the following, I first describe experimental work that
implements the design outlined above. Next, I report on
preliminary simulation work that illustrates how one can
explore these issues within the connectionist framework.

Experimental Design

Method

The experiment consisted of three conditions. Each consisted
of 10 training sessions during which subjects were exposed
to a six-choice SRT task. Each session consisted of 20 blocks
of 150 trials each, for a total of 30,000 trials. After training
all subjects were exposed to 3 blocks of a generation task in
which they were asked to predict the location at which the
next stimulus would appear. On each trial of the SRT task, a
stimulus could appear at one of six positions arranged
horizontally on a computer screen, and subjects were to press
as fast and as accurately as possible on the key corresponding

to the current location of the stimulus. Subjects were kept
unaware that the material was structured sequentially. The
sequential structure of the material was manipulated by
generating the sequence based on a noisy finite-state
grammar, as described below. In cued blocks, a cue
consisting of a cross under one of the six stimulus positions
appeared concurrently with the stimulus. This cue could
either be valid or invalid. If valid, it indicated the location at
which the next stimulus in the sequence would appear.

During generation, the same stimulus material was
presented, but subjects were instructed to try to predict the
next stimulus instead of merely reacting to the current one.
No explicit feedback was provided during generation
performance to minimize within–generation learning.

In the Low Validity (LV) condition, each session consisted
of 2700 cued trials followed by 300 neutral trials. Cue
validity was set at 20%. In the High Validity (HV) condition,
the same design was used but cue validity was considerably
higher (80%). The third condition (100% validity, or HV100)
followed a somewhat different design: Each of the first 9
sessions consisted of 3000 trials for which cue validity was
100%, and the final session consisted exclusively of 3000
neutral trials.

Subjects

Six subjects participated in each of the three experiments.
Subjects were paid about $65 for participating in the
experiment, and could earn an additional bonus of $34 to $62
based on performance in the SRT task.

Apparatus and Display

The experiment was run on Macintosh computers. The
display consisted of six dots arranged in a horizontal line on
the computer's screen and separated by intervals of 3 cm.
Each screen position corresponded to a key on the computer's
keyboard. The spatial configuration of the keys was fully
compatible with the screen positions. The stimulus was a
small black circle 0.35 cm high that appeared on a white
screen background, centered 1 cm below one of the six dots.
The cue was a small cross (X) appearing at the same
locations as the stimuli. The RSI was 120 msec.

Stimulus and cue generation

Stimuli were generated based on the noisy finite-state
grammar illustrated in Figure 1, with a small proportion of
random stimuli (20%) interspersed with those derived from
the grammar. Learning is assessed by comparing
performance on stimuli that follow the rules of the grammar
versus random stimuli. A total of 30,000 trials were
presented to each subject. On each trial, stimulus generation
proceeded in three phases. First, an arc coming out of the
current node was randomly selected, and its label recorded.
The current node was set to be #0 on the first trial of any
block, and was updated on each trial to be the node pointed
to by the selected arc. Second, there was a 20% chance of
substituting a randomly selected label to the recorded one
(identity substitutions, as well as any substitution that would
result in a stimulus being repeated or legal at the current



node, were not allowed). Third, the label was used to
determine the screen position at which the stimulus would
appear by following a 6 x 6 Latin square design, so that each
label corresponded to each screen position for exactly one of
the six subjects in each condition. Note that each label
appears twice in the grammar and may be followed by
different successors on different occurrences. Maximally
reducing the uncertainty associated with each label requires
encoding up to three elements of temporal context. Cue
generation proceeded independently. On each trial, a cue
corresponding to the next stimulus was generated. This valid
cue could be presented on all trials of a given session (first 9
sessions of the HV100 condition), suppressed entirely
(neutral blocks or sessions) or be replaced by an invalid cue
in either 20% (HV condition) or 80% (LV condition) of the
trials. Substitution consisted of selecting a random location
for the cue to appear at, with the constraints that this location
could be neither the location of the current stimulus location
nor that of the next one.

To summarize, this generation procedure results in six
types of trials defined by crossing the Grammaticality
(Grammatical or Non-Grammatical) and Cue Validity (Valid,
Invalid, or Neutral) factors. A particular trial was thus
categorized as “valid” if the location at which the stimulus
had appeared on that trial had indeed been validly primed by
the cue that had appeared on the previous trial. Similarly, a
given trial was categorized as “grammatical” if the stimulus
that had appeared on that trial was consistent with the
generation rules expressed by the finite-state grammar.

Finally, note that the sequence generation procedure makes
it impossible for any stimulus to be involved in a direct
repetition of itself. This guarantees that RT effects are not
contaminated by short-term priming effects, which have
large facilitatory effects on performance that are completely
independent from the factors of interest in this research.

Results and Discussion

Figure 2 represents average RTs over the 10 sessions of
training and for each trial type, in the LV (left panel), HV

(middle panel) and HV100 (right panel; note the scale
difference) conditions. Consider first the data for the HV
condition (middle panel). It is obvious that cue validity has a
large effect on performance, as RTs elicited by valid trials
are considerably faster than those elicited by both neutral and
invalid trials. This pattern of results indicates that subjects
are indeed using the cue to anticipate the location at which
the next event will appear and to specifically prepare their
response accordingly. Despite the massive impact of cue
validity, small effects of grammaticality are also present at
all levels of cue validity, and seem to have approximately the
same magnitude in each case. These impressions were
confirmed by an ANOVA with Practice (10 levels) X
Validity (Valid, Invalid or Neutral) X Grammaticality
(Grammatical vs. Non-Grammatical) as factors and RT as
dependent variable. The analysis yielded significant main
effects of Practice [F(9, 45) = 27.389, p < .001, MSe =
64494.037], of Cue Validity [F(2, 10) = 162.385, p < .001,
MSe = 1849184.178], and of Grammaticality [F(1, 5)
=39.685, p < .01, MSe = 29322.225], as well as a significant
interaction between Practice and Cue Validity [F(18, 90) =
8.680, p < .001, MSe = 7443.181]. There was no significant
interaction between Cue Validity and Grammaticality (p >
.05).

Overall, these results suggest that sensitivity to sequential
structure was not blocked by the presence of the cue, despite
the facts that subjects (1) demonstrably use the cue, and (2)
that the cue conveys considerably more reliable information
about the next event than the sequential structure does.

Unsurprisingly, cue validity has a much smaller impact on
performance in the LV condition (left panel): Valid, invalid
and neutral trials elicit similar RTs over training (with the
exception of neutral trials in the first session, see below).
Grammatical trials at all levels of cue validity, however,
elicit faster RTs than non-grammatical trials, just as in the
HV condition. Thus, subjects do not appear to use the
unreliable cue in the LV condition, relying instead on the
sequential structure to optimize their performance at the task.
This analysis was again confirmed by an ANOVA, which
produced significant main effects of Practice [F(9, 45) =
54.328, p < .001, MSe = 157235.027] and of Grammaticality
[F(1, 5) = 17.987, p < .01, MSe = 123839.803]. Surprisingly,
Cue Validity was also significant [F(2, 10) = 26.799, p <
.001, MSe = 14187.900] and interacted with Practice [F(18,
90) = 5.098, p < .001, MSe = 3479.17]. Closer examination
of the figure reveals that these effects are in fact artifactual.
Indeed, the neutral trials presented during the first session
elicit much faster RTs than either valid or invalid trials.
However, this is merely a result of the fact that these trials
were presented at the end of the first session. Hence they
benefit from previous unspecific training on the other trials
during the first session. This artifact is absent from the
subsequent sessions, and analyses that exclude the first
session produce non significant effects of Cue Validity.
Finally, in contrast with the HV data, the ANOVA also
revealed a significant interaction between Grammaticality
and Practice [F(9, 45) = 3.311, p < .01, MSe = 601.642].

A further ANOVA on the data from both conditions
revealed significant main effects of Practice [F(9, 90) =
80.780, p < .001, MSe = 210466.871], of Cue Validity [F(2,
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Figure 1: Finite-state grammar (from Jiménez &
Cleeremans, 1994) used to generate the stimulus
material. Note that the first and last nodes are
one and the same.



20) =155.355, p < .001, MSe = 925690.239], and of
Grammaticality [F(1, 10) = 35.898, p < .001, MSe =
136840.939]. Condition failed to reach significance. Cue
validity interacted significantly with Condition [F(2, 20) =
157.367, p < .001, MSe = 937681.239], but not
Grammaticality (p = .0654).

To summarize these data, subjects appear to remain
sensitive to the sequential structure even when a far more
reliable source of information is available to anticipate the
next event. Recall that in the HV condition, the cue will
reliably predict the next event in 80% of the cases. By
contrast, a simple examination of the FSA illustrated in
Figure 2 shows that even full knowledge of a deterministic
version of the grammar would only allow for about 50% of
the trials to be correctly anticipated, as most nodes have two
equiprobable outgoing arcs.

The fact that neutral trials were interspersed throughout
training makes strong inferences difficult, however. It
remains possible that these trials provided enough training
for subjects to learning about the sequential structure of the
material.

To test this hypothesis, a further condition was run in
which subjects were exposed exclusively to valid cued trials
throughout the first 9 sessions, and subsequently transferred

to a final session consisting exclusively of neutral trials. The
corresponding data are presented in the rightmost panel of
Figure 2. One can see that even though grammatical and
ungrammatical trials fail to elicit different RTs throughout
training, a significant difference of 23 msec [One-tailed t(4)
= 2.79, p < 0.1] reappears in the last session.

To determine whether this difference could be attributed to
learning within the last session, I conducted this analysis
again but restricted it to the first 300 trials of this session.
The difference between grammatical and ungrammatical
trials now averaged 30.2 msec and was significant [One-
tailed t(4) = -4.371, p < 0.1]. This suggests that subjects did
acquire knowledge about the sequential structure of the
material during training but were unable to express it because
of the presence of the cue.

Finally, Figure 3 represents reaction times to grammatical
and ungrammatical neutral trials during the last sessions of
all three conditions. The figure shows that these differences
tend to be very similar in all three conditions. An ANOVA
conducted on these data confirmed this impression, with a
significant main effect of Grammaticality [F(1, 15) = 45.844,
p < .001, MSe = 2976.250] and no interaction between
Grammaticality and Condition (p = 0.57). Overall then,
subjects appear to learn about the sequential structure of the
material regardless of the validity of the cue.

Space limitations prevent a full treatment of the generation
task data, but subjects were consistently unable to better
predict grammatical elements over ungrammatical elements.
This indicates that whatever knowledge was acquired over
training with the RT task was of limited use in helping
subjects produce explicit prediction responses.

Simulation Results

What kind of mechanism may account for these data? A
natural starting point is the Simple Recurrent Network (SRN)
model first proposed by Elman (1990), and shown in Figure
4 (inside the frame). The task of this back-propagation
network is to predict the next element of a sequence based on
the current element and on a representation of the temporal
context that the network has elaborated itself. Over training,
the network’s responses come to approximate the optimal
conditional probabilities associated with each successor to
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Figure 3: Reaction times for grammatical (filled
symbols) and ungrammatical (open symbols)
neutral trials presented during the last session of
each the three conditions (LV: Low validity; HV:
High Validity; HV100: 100% validity).
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Figure 2: Reaction times for the Low Validity (left panel), High Validity (middle panel) and 100% Validity (right
panel) conditions. RTs are represented separately for valid (squares), invalid (circles), and neutral (triangles) cues, as
well as for grammatical trials (filled symbols) and non-grammatical trials (open symbols).



the current context, and can thus be interpreted as
representing preparation for the next event. Previous work
(see Cleeremans & McClelland, 1991; Cleeremans, 1993a,
for detailed analysis of both processing in such networks and

correspondence with human data) has shown that the SRN is
able to account for about 80% of the variance in SRT data.

To model performance in the experiments described above
it is necessary to augment the SRN architecture with
mechanisms that enable it to process the information
conveyed by the cue. There are several different ways of
doing this according to which assumptions one has about the
way in which learning about the cue and learning about the
sequential structure of the material interact. First, one may
assume that processing of the cue is fully independent from
processing of the sequential structure. Thus, learning
proceeds independently in each processing pathway, just as if
two separate networks were trained independently, and
information conveyed by each pathway is only combined at
response time.

Second, one may assume that learning of one dimension
interacts with learning of the other dimension. This is the
case in backpropagation architectures where both pathways
feed into a single output module. Indeed, in such arhitectures,
the pathway that transmits more information will tend to
develop larger connection weights and exert an increasingly
larger influence on performance, at the expense of the other
pathway.

The network represented in Figure 4 is an instance of this

latter class of models: The SRN is simply augmented with an
additional processing pathway consisting of input units to
represent the cue. These units feed into a set of hidden units
which are in turn connected with the output units.

To assess how well this kind of network was able to
account for SRT performance in this experiment, I conducted
simulations in which the model was trained on the same
material as human subjects and for the same number of trials,
with the parameters used by Cleeremans and McClelland
(1991). The network used local representations on both the
input and output pools (i.e., each unit corresponded to one of
the 6 stimuli or cues). To account for short-term priming
effects, the network used dual connection weights and
running average activations on the output units, as described
in Cleeremans and McClelland (1991).

The network was trained to predict each element of a
continuous sequence of stimuli generated in exactly the same
conditions as for human subjects. On each step, both a label
and a cue were generated as described before and presented
to the network by setting the activation of the corresponding
input units to 1.0. Activation was then allowed to spread to
the other units of the network, and the error between its
response and the actual successor of the current stimulus was
then used to modify the weights.

During training, the running average activation of each
output unit was recorded on every trial and transformed into
Luce ratios (Luce, 1963) to normalize the responses. For the
purpose of comparing the model’s and the subject’s
responses, I assumed (1) that the normalized running average
activations of the output units represent response tendencies,
and (2) that there is a linear reduction in RT proportional to
the relative strength of the unit corresponding to the correct
response. The network’s responses were subtracted from 1.0
to make increases in response strength compatible with
reduction in RT.

The resulting data are shown in Figures 5 and 6. One can
see that the model’s performance approximates human
performance quite well, at least qualitatively. Indeed, just as
human subjects, the model appears to be sensitive to the
sequential structure of the material at all levels of cue
validity in all three conditions. The relative size of the
differences between performance on neutral trials during the
last session of each of the three conditions is also well
preserved in the simulations (Figure 6).
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Figure 4: The simple recurrent network (framed)
augmented with an additional pathway to process
cue information.
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Note however that there are also discrepancies. In
particular, the model fails to account for unspecific practice
effects, that is, changes in reaction times that do not result
specifically from the presence of sequential structure. This is
a flaw shared by previous versions of the SRN model, but
one that is not crucial to the arguments develoved in this
paper.

Work in progress is aimed at contrasting these results with
those produced by architectures in which the two processing
pathways are trained completely independently.

Conclusion

In this paper I presented three experiments aimed at
exploring to what extent implicit learning of sequential
structure in RT tasks proceeds independently of the
availability of explicit knowledge about the stimulus
material. By contrast to standard dual-task procedures that
have been used in the past to explore this issue, I used a dual-
stimulus setting where on each trial, subjects were exposed to
both the current stimulus and to a cue of varying validity that
indicated where the next stimulus would appear. The results
indicated that even in conditions where the cue was a much
better source of information about the next event, subjects
still seemed to be sensitive to the sequential structure of the
material. Hence acquisition of sequential structure can
proceed even in conditions where vastly superior and fully
explicit sources of information about relevant task
information are available.

However, simulation work using a model based on the
Simple Recurrent Network indicated that these results also
obtain in architectures where the two processing pathways
(sequential structure ➞ next event, and cue ➞ next event) are
not fully independent. This suggests that preserved learning
along one dimension does not necessarily entail that the
underlying structures are themselves fully independent.

Further empirical research and modeling work is needed to
increase our understanding of the relationship between
performance and underlying processing modules, but the
empirical data clearly suggest that implicit learning of
sequential structure is a resilient process that is little sensitive

to the availability of other, more reliable, and fully explicit
sources of information about the stimulus material.
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Figure 6: Simulated SRN responses (see text for
details) for grammatical (filled symbols) and
ungrammatical (open symbols) neutral trials
presented during the last session of each the three
conditions (LV: Low validity; HV: High
Validity; HV100: 100% validity).


