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Abstract

Context-free grammars are fundamental for the description of linguistic syntax. However, most artificial grammar learning
experiments have explored learning of simpler finite-state grammars, while studies exploring context-free grammars have
not assessed awareness and implicitness. This paper explores the implicit learning of context-free grammars employing
features of hierarchical organization, recursive embedding and long-distance dependencies. The grammars also featured
the distinction between left- and right-branching structures, as well as between centre- and tail-embedding, both
distinctions found in natural languages. People acquired unconscious knowledge of relations between grammatical classes
even for dependencies over long distances, in ways that went beyond learning simpler relations (e.g. n-grams) between
individual words. The structural distinctions drawn from linguistics also proved important as performance was greater for
tail-embedding than centre-embedding structures. The results suggest the plausibility of implicit learning of complex
context-free structures, which model some features of natural languages. They support the relevance of artificial grammar
learning for probing mechanisms of language learning and challenge existing theories and computational models of
implicit learning.
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Introduction

Humans seem to possess a remarkable facility to grasp new

structures from the environment and generalise the use of this

knowledge to other stimuli and domains [1]. We are able to master

complex everyday activities such as steering a car along bends and

in traffic [2], intercepting thrown objects [3], playing sports [4],

hearing words in continuous speech [5], or improvising music in

an ensemble [6–9] without full awareness of the knowledge

enabling such activities. Similarly, native speakers of a language

are able to understand and produce sentences without being able

to fully articulate the grammatical rules they are applying.

Children acquire and use grammatical knowledge from mere

exposure or interaction with very little explicit input or teaching

[10]. First and second language acquisition thus constitutes a

prototypical case and one main example for implicit learning (e.g.

[11–15]).

Most artificial grammar learning studies apply finite-state

grammars, using letters, syllable sequences, tones, melodies,

timbres, or visual symbols as terminals, producing strong evidence

for implicit learning [16–24]. Similarly, numerous studies have

investigated the acquisition of linguistic phrase structure using

finite state grammars [25–32]. In the same context many studies

have found that adults and children are able to learn different

features of language based on their statistical properties and

features such as word segmentation and word categories, without

needing to refer to phrase structure grammar per se [5,33–40].

Such research raises the question of what needs to be shown to

demonstrate the implicit acquisition of linguistic syntax. Are finite

state grammars and statistical learning sufficient to account for

human implicit learning and language learning? However, as

argued by [41–42], finite state grammars are not sufficiently

expressive to capture linguistic syntactic recursion and the

modularity and hierarchical organisation of constituents and

phrases. The complexity of at least context-free grammars is

required to capture these features (see e.g. [41,43–46] for a

discussion). To our knowledge, only a few studies have explored

implicit learning beyond finite-state complexity (see below, [47–

51]).

The purpose of this study is to investigate implicit learning of a

linguistic context-free grammar above finite-state grammar

complexity. The structure of the sequences produced by the

grammars used in the study embody distinctive features of

recursion [52], in particular, nested or tail recursion (see below),

and hence involve hierarchical organisation and long-distance

dependencies (note that we use the notion of hierarchical structure

in the sense of hierarchically nested dependency relationships according

with the definitions of recursion in [53] and the distinctions

between formal languages drawn by [54]). In this context the study

links to the recent debates about the learnability of recursive,

centre-embedded structures in the cognitive sciences (see below).

Background

One central aspect of language syntax concerns the organisation

of words, constituents and phrases in nested, recursive ways

[43,55]. An example would be ‘‘the old garden at the rear of the

house’’ which acts as a noun phrase like the single ‘‘the garden’’; as

a noun phrase both could fit the context ‘‘… is beautiful’’.

Similarly, the words in the sentence ‘‘the Labrador which chased
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the poodle that was hiding barked’’ fall into recursively dependent

constituents: the Labrador [which chased the poodle [that was

hiding]] barked. The understanding of a sentence like the above

requires the correct parse of the syntactic and semantic

dependencies to reconstruct the appropriate sentence meaning

(which of the two dogs barked?). Generally, however, parsing of

semantic and syntactic dependencies interact (see also [56]).

Another example of a recursive German sentence would be:

‘‘Hans sagte, dass Peter Maria dem Mann den Zaun streichen

helfen sah.’’ (‘‘Hans said that Peter saw Maria help the man paint

the fence.’’). Embedded relative clauses like the English or German

examples involve recursive nested hierarchical embedding and

nonadjacent dependencies (e.g. ‘‘the Labrador …. barked’’,

‘‘Maria … helfen’’). In the English example there are two

instances of nested tail-recursion (each embedded sequence

adjacent to the end of a sequence, e.g. ‘‘the poodle [that was

hiding]’’; we henceforth refer to embedded structures generated by

tail-recursion as ‘‘tail-embedding’’) and one instance of centre-

embedding (‘‘the Labrador […] barked’’). In contrast the German

sentence features three instances of recursive nested centre-

embedding (‘‘[Peter [Maria [dem Mann … streichen] helfen]

sah]’’). The fact that the dependencies in either language are

generated recursively entails that they are potentially unbounded

and infinite in the sense that there is no theoretical upper limit for

the number of tail- or centre-embedded structures if the pattern

would be continued (not considering limitations of performance

such as working memory). These potentially unbounded nested

dependencies constitute the core of the argument for recursion at

the heart of the human language faculty ([41], cf [44–46,57–58]).

Finite-state grammars can express simple forms of tail-recursion

and limited nonadjacent dependencies. This constitutes a differ-

ence between finite-state grammars (as defined by rewrite rules

that only add elements to one side) and Markov models (i.e. as

represented by a table of transition probabilities). While they

largely overlap, they are different [41]. demonstrates that a finite-

state grammar (in notable contrast to n-th order Markov or n-

gram models) can express an unbounded nonlocal dependency

using tail recursion (e.g. AX*B | CX*D). In words, the expression

means: a set of sequences in which either A is followed by any

number of X and B or C followed by any number of X and D.

Hence an initial A implies B after any number of X, and the same

for C and D. Therefore any Markov or n-gram model of finite

length will not be able to express this (unlimited) nonlocal

dependency although it easily be constituted by a simple finite-

state grammar.

Context-free grammars in contrast can express forms of nested

dependencies that can be proven not to be finite-state. Unbounded

recursively nested dependencies like UAnVBnW (where U, V, W

may be any sequence of terminal events or empty) can be

expressed by context-free, but not finite-state grammars. The

German example above constitutes a sentence that exhibits this

type of dependency ‘‘Peter1 Maria2 dem Mann3 streichen3 helfen2

sah1’’.

Research exploring learning or processing of recursion and

context-free grammars bears one particular caveat: The difference

between context-free and finite-state grammars relates to poten-

tially unbounded dependencies while, trivially, a finite set of

sequences can be expressed by an all encompassing finite-state

grammar. However, an unlimited number of dependencies cannot

be explored experimentally. On the other hand, finite-state

grammars expressing nonadjacent dependencies or finite examples

of context-free sequences are redundant: for instance, AX*B |

CX*D encodes the identical intermitting X* twice, and a finite-

state grammar encoding general nonlocal dependencies between n

pairs of symbols has to represent the intermitting sequences n times

(second or third order embeddings would accordingly let the

number of multiple representations grow exponentially). Thus,

although it may be possible to express such bounded structures by

a finite-state grammar, a context-free grammar achieves a more

parsimonious representation. Sometimes the simpler psychological

explanation for what has been learned will involve a grammar

higher up the Chomsky hierarchy.

Various research has been performed in this line of research

linking the field of implicit learning with syntax acquisition and

recursion (cf [59–60]). In order to put our study in context we

systematically review existing research on (not necessarily implicit)

learning of recursion, nonadjacent dependencies and word classes.

Recursion and context-free structure
The exploration of the learning of realistic features of context-

free grammars is linked with one current cognitive debate

concerning the processing and learnability of recursive structures.

Recursion is argued to be situated at the heart of the human

faculty of language (e.g. [54,57,61]. Hierarchically nested struc-

tures and recursion in various forms of human communication,

such as language, music [62–66] as well as planned action have

been argued to be unique to human cognition [48–49,67]. [67–68]

situates the hierarchical organisation of language and music within

a broader human capacity of recursion, a position that is similarly

argued by [69]. In this context, the question of how humans form,

acquire and manage complex recursively embedded hierarchical

structures constitutes a core question in the area. Again, in line

with [53], hierarchical organisation entails the representation of

dependency relationships between constituents (at multiple levels

but not necessarily based on the same principles or rules).

Recursive embedding entails the representation of dependency

relationships based on the same rule or principle; the recursive

nature of the embedding step further entails that the resulting

hierarchical organisation generalises to levels of embedding that

are potentially unbounded and may not be observed.

Context-free grammars, or phrase-structure grammars, consti-

tute the simplest form of grammars to embody features of

unbounded nested embeddings in the Chomsky hierarchy [41,70].

The Chomsky hierarchy characterises four types of formal

languages [70–71] of increasing complexity: regular or finite state

languages, context-free languages, context-sensitive languages and

recursively enumerable languages. The types of grammar which

produce these languages differ by systematic steps of generalisation

of the form of the rewrite rules. Whereas finite-state grammar rules

embody the most restrictions, the top level (type-0) rules are

entirely unrestricted. By virtue of dropping restrictions, every more

complex grammar and language becomes a superset of the less

complex grammar or language. Accordingly, context-free gram-

mars include all finite-state grammars, and context-sensitive

grammars include all context-free grammars and finite state

grammars. Thus, there are grammars employing context-free rules

which are in fact expressible by finite-state grammars. The core

differences between finite-state and context-free languages lie in

the features of recursive, centre-embedded structures [71].

The current empirical evidence about the learning and

perception of hierarchical recursive structures is ambiguous, and,

as a result, discussion in the area is ongoing. Several studies

employed very simple grammars of the type AnBn and variants of

it: [48] argued to have found evidence for learning of simple

regular (finite-state) and nonregular structures (AB)n vs. AnBn in

two species. [72–75], using similar methodology, found two

different brain regions are associated with the acquisition of finite-

state and context-free grammars. In contrast [76], did not find that

Implicit Learning of Recursion
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participants were able to acquire specific features of the grammar

used by Fitch and Hauser. Similarly [77], argued that Fitch and

Hauser’s original experiments contained a methodological flaw

and found people could not learn the grammar A1A2A3B3B2B1

which forced hierarchical embedding for its recognition under

incidental learning conditions (the grammar AnBn could be simply

distinguished based on mere word class counting). Similarly [78]

argued that participants using the Friederici et al material engaged

explicitly in counting strategies and did not learn the hierarchical

structure per se. Thus, the simplistic and reduced case of an AnBn

language may not provide sufficient context and grammatical

complexity for people to generalise a genuine context-free

grammar. In a recent study, however [79], (see also [80]) argued

that sufficient exposure to exemplars without embedding (zero

level embedding) and staged input may explain found differences

regarding the learnability of AnBn grammars [81]. argued that an

increase in complexity could help rather than hinder people to

learn grammatical structures. This provides the motivation why

the present study adopted more complex context-free grammatical

structures which employed more features of a natural syntax as

materials.

In an impressive study [50], trained subjects for 30 minutes on

letter strings instantiating crossed or nested dependencies (as

indexed variants of AnBn) on each of nine days. People could

discriminate grammatical from non-grammatical strings after this

extensive training, yet could not say which letters were paired as

dependents. While their results may be due to people uncon-

sciously learning hierarchical structure, there remains a confound

in their materials. We know already that people learn the

repetition structures of letter strings, i.e. in which positions of a

string letters are repeats of which other positions [82–84].

Grammaticality was completely confounded with repetition

structure, and if people had consciously learned repetition

structure, it would explain people’s classification performance

and poor verbal report of the hierarchical dependencies. Thus, the

issue of whether people can unconsciously learn hierarchical

structure remains open.

As discussed above, there are several other studies which

employ sequences which are produced from context-free gram-

mars: the structures used by [72] and by [34,85]. Whereas the

above AnBn structures were proved to be irreducibly context-free,

the grammars used by [34] and [85] can be expressed by a finite-

state grammar. For instance [31], showed a finite-state represen-

tation of the grammar they used in several studies (called

BROCANTO) and a similar step could be done for the studies

by Saffran [34,85] (see Appendix S1). Accordingly, although

Saffran’s grammars and BROCANTO incorporate features of

realistic sequential linguistic word order, they do not incorporate

the prototypical context-free features of nested centre-embedding

and multiple (potentially unbounded) long-distance dependencies

that are required for context-free grammar complexity and that

characterise one distinctive feature of human linguistic structures.

Moreover, most of the studies relevant to learning context free

grammars do not integrate measures of awareness to investigate

the extent to which the acquired knowledge is implicit (uncon-

scious) or explicit (conscious) into their methodology [15]. Further,

only a few studies relating to second language acquisition employ

conditions known to be conducive to implicit learning (for good

examples see [13,86–91].

Learning long-distance dependencies
A feature that is closely related to the above debate is

nonadjacent dependencies, as centre-embedding context free

grammars imply long distance dependencies [14]. pointed out

that nonadjacent dependencies have not been sufficiently explored

yet from a statistical or implicit learning perspective. Using letters

as stimuli, people can learn repetition patterns across stimuli

[84,92], a simple form of nonadjacent dependency. However,

under the standard conditions used in artificial grammar learning

studies, people do not implicitly learn nonlocal distance associa-

tions between letters which are not repeats (in the biconditional

grammars of [93], and [94]. [95] also did not find evidence of

learning of nonadjacent dependencies in syllable sequences.

However, they found adults could acquire long-distance depen-

dency relationships, only between literally nonadjacent vowels (or

consonants) which actually constituted successive vowels (or

consonants). [96] found learning of nonadjacent dependencies in

tone sequences only when the relevant structures were separated

from the surrounding structures by auditory streaming. Consis-

tently [97], also found that nonadjacent dependencies between

non-musical noises could be learnt only when perceptual similarity

cues were introduced.

In sum, it has been difficult to find learning of long distance

dependencies in the lab when simple perceptual cues did not direct

attention to corresponding elements. Such research does not bode

well for finding implicit learning of phrase structure in the lab, as

the long distance dependencies in the research just reviewed were

not even as complex as those instantiating phrase structure

grammar. However, when dependencies have been put into a

context of more structure, long distance dependencies have been

learned in the lab. [98] found leaning across an intervening

element when the intervening element was variable. [47] and [99]

found that when the long distance dependencies were structured

(namely, by forming a musical inversion, retrograde or transpose,

which cannot be expressed through finite state grammars), they

were learned (see also [51,100,101]). Perhaps placing long distance

dependencies in certain ecological context-free structures actually

helps learning.

Implicit learning of word classes
Learning a natural phrase-structure grammar involves not only

the learning of the syntactic dependency structure, but also

distinguishing terminal elements (i.e. the elements forming the

sequence: words in a sentence, notes in a melody, etc) from

grammatical classes and acquiring knowledge about the relation-

ships between terminals and grammatical class. For example,

when learning English, one needs to infer which word class (i.e.

noun, verb, adjective etc) each word (the terminals) belongs to, and

the relationship between the word classes. Several studies have

explored learning of word classes. A few studies have investigated

the learning of classes in the artificial grammar learning paradigm.

For example [102], applied a simple finite state grammar

(Q)AXB(B) in which any of the categories were realised by two

or three words each. They found that participants trained on

sequences from that system were able to generalise to new (unseen)

strings that conformed to the abstract classes. However, the study

did not test for awareness or implicitness of the acquired

knowledge. One of our aims will be to explore whether relations

between grammatical classes can be implicitly learned.

Motivation
To explore whether people can unconsciously learn context-free

structures that are more advanced than AnBn and reflect some

natural linguistic patterns (following [81], as above), the present

study adopts simplified linguistic context-free grammars, which

generate recursive, centre-embedded structures. The artificial

context-free grammars were designed to resemble some natural

linguistic structures in an abstract way and also to feature a set of

Implicit Learning of Recursion
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different word classes and terminals. To condense the discussed

linguistic features into a small set of artificial grammar rules, we

chose grammars similar to [34,85]. However, the aim of this study

was to model specifically embedded structures such as ‘‘The dog

[who chased the cat [that was hiding]] barked’’. The surface

structures were chosen to be sentences of monosyllabic words in

the auditory domain to correspond roughly to ecological listening

conditions.

A key difference between phrase-structure grammars is whether

they are right branching (as in English) or left branching (as in

Chinese). Thus, we will use two variants of a grammar, i.e. a right

branching grammar and a left branching grammar, to explore the

relevance of this distinction for adult implicit learning. In addition,

we will have two further variants of each of these grammars,

reflecting another distinction between natural language grammars

[103,104], namely centre-embedding or tail-embedding (or nested

recursion vs. tail recursion). The structures we are using will

feature up to three levels of embedding, which we refer to

henceforth as ‘‘layer’’ 1,2 and 3. Their difference amounts to

whether or not the third layer is centre or tail embedded in the

second. For example, consider the English sentence ‘‘The dog,

[who chased the cat, [who caught the mouse]], barked’’. ‘‘The dog

barked’’ would be the first layer; ‘‘who chased the cat’’ would be

the second, and ‘‘who caught the mouse’’ would be the third. Note

the third relative clause is tail-embedded and hence adjacent to the

second (in terms of word order) rather than being centre-

embedded. Now consider its German equivalent ‘‘Der Hund,

[der die Katze, [die die Maus fing], jagte], bellte’’(transliteration:

‘‘The dog, [who the cat, [who the mouse caught], chased],

barked’’), where the third relative clause is embedded in the

middle of the second. From a cognitive perspective we would

predict that the word order of the simpler former (adjacent) case

would be easier to learn than the latter (centre-embedded)

structure. With respect to our grammars, we will refers to this

difference as ‘‘tail-embedding’’ versus ‘‘centre embedding’’ gram-

mars.

The following grammar was chosen as the tail embedding, right

branching grammar (in analogy with English):

(1) SRNP VP

(2) VPRV1 | V2 NP

(3) NPRN | N CP

(4) CPRR VP

The rules of this abstract grammar intend to model simple

linguistic relationships: it describes main sentence (S), consisting of

a noun phrase (NP) and a verbal phrase (VP), and a simple

complementiser phrase (CP). The grammar contains three classes

of words that we have glossed as verbs (V), nouns (N) and a

relative-clause marker/relative pronoun (R), which model the

corresponding natural language classes in an abstract way. Here,

S, VP, NP, and CP denote nonterminals and V, N, R denote

terminals. Rule 1 indicates that the sentence consists of a noun

phrase and a verbal phrase. Rule 2 indicates a verbs can be

combined with an additional noun (modelling a distinction similar

to transitive or intransitive verbs). The rule distinguishes verbs that

entail another NP (V2) or verbs that do not (V1). Rule 3 indicates

that noun phrases can consist of a single noun or a noun with a

complementiser phrase attached. Rule 4 indicates that a

complementiser phrase is made by a verbal phrase and a marker

R which creates the potential of recursive generation, as it enables

a VP to recursively be attached to an NP. This optional recursive

production ensures that the production process terminates. Thus,

the grammatical rules are similar to realistic structures in an

abstract way.

When rules (4) and (2) are used to rewrite rule (3), there are

three forms of NP with increasing complexity: NPRN | N R V |

N [R V NP]. The third form shows clearly the centre-embedding

of the relative clause with respect to the main clause (only). This

structure is exemplified in the sequence ‘‘[The dog [who chased

the cat [that was hiding]] barked]’’. The sentence is made by an

NP ‘‘The dog who chased [the cat that was hiding]’’ with the

structure of ‘‘N [R V N [R V]]’’ and a VP which is made by a V

‘‘barked’’. Figure 1 displays two different sequences created by the

grammar. The tree structure illustrates how non-adjacent depen-

dencies are produced in this grammar, and how the structure ‘‘R

V (N)’’ is generated. The grammar creates right-branching

dependencies as the relative clause ‘‘R V N’’ is joined to the right

of a noun (like ‘‘The boy who kissed the girl’’).

For the tail embedding left-branching condition, the corre-

sponding rules are:

(1) SRNP VP1

(2) VP1RV1 | V2 NP

(3) VP2RV1 | NP V2

(4) NPRN | CP N

(5) CPRVP2 R

Now consider the centre embedding grammars. For the right-

branching grammar (in analogy with embedding structures in

German), the corresponding rules are:

(1) SRNP VP1

(2) (2a) VP1RV1 | V2 N

(3) (2b) VP2RV1 | NP V2

(4) NPRN | N CP

(5) CPRR VP2

To generate centre embedding left-branching grammatical

structures (in analogy with embedding structures in Chinese) the

corresponding rules are:

(1) SRNP VP

(2) VPRV1 | V2 NP

(3) NPRN | CP N

(4) CPRVP R

Figure 2 displays two different sequences created by the centre-

embedding left-branching grammar. The tree structure illustrates

the way in which nonlocal dependencies are produced in the left-

branching grammar, and how the structure ‘‘V NP R’’ is

recursively embedded. To generate the final surface sentences,

each of the terminal symbols V, N, R in each abstract structure

was randomly replaced by one of a set of corresponding

monosyllabic words for each class.

As outlined above, the purpose of the experiment was to use

these four different artificial grammars to investigate whether

people can become unconsciously sensitive to different types of

recursive context-free grammars.To explore whether people can

be sensitive to violations of the nested recursive structure, two

thirds of the ungrammatical structures were designed violating

only one embedded structure with the other levels remaining

grammatically intact. Accordingly, a violation may span across an

embedding. Sensitivity to such a violation would provide prima

facie evidence of learning long-distance dependencies created by a

recursive hierarchical grammar. However, we already know from

Implicit Learning of Recursion
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past research that people are sensitive to bigram and trigram

frequencies [105–107] and to repetition structure [82–84]. Thus,

we statistically control these variables (contrast e.g. [50,108];

further, a preliminary computational analysis suggested that it was

not possible to balance grammatical and ungrammatical stimuli

for indistinguishable bi- and trigram frequencies). The variables

will be controlled at both the level of terminals (e.g. the actual

word bigrams people were exposed to) and classes (e.g. the

sequence noun-verb is a particular bigram). Implicit sensitivity to

class-level n-grams and repetitions independent of terminal-level

n-grams and repetition is itself an interesting independent question

important for implicit learning research. In this context the present

experiment contributes to research on the limits of what can be

learned implicitly, as well as the role of implicit learning in first

and second language learning (cf [13–15]). In addition, secondary

questions concerned whether branching type and grammatical

complexity would influence the acquisition of the phrase structures

and whether participants’ native language (Chinese) would affect

the proficiency of learning of the type of grammar. The centre

embedding left-branching structures were consistent with the

grammatical structures of participants’ native language while the

right-branching and tail embedding structures were not. On the

other hand, finding that people can incidentally and implicitly

learn context-free grammars will be an interesting challenge for

Figure 1. Right-branching grammatical structure trees allowed by the tail-embedding right branching grammar. Each subordinate CP
corresponds with an embedded layer ( e.g. layer 2 on the left tree, and layer 2 & 3 on the right tree). Note that there is no centre-embedding on the
left tree, while there is centre-embedding in the right tree with respect to the top NV structure).
doi:10.1371/journal.pone.0045885.g001

Figure 2. Left-branching grammatical structure trees allowed by the centre-embedding left branching grammar. (note that the
subordinate CP embedding creates a nonlocal dependencies on the superordinate level).
doi:10.1371/journal.pone.0045885.g002

Implicit Learning of Recursion
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computational models of implicit learning (cf [109]), since they

predominantly tend to be good at learning chunks and associations

[110].

We are interested in the structures that can be learnt implicitly or

unconsciously. The fact that people learn programming languages

intentionally and consciously means there is little novelty in

showing people can consciously learn artificial context-free gram-

mars. People manifestly do this every day. However, whether

structures more complex than chunks, and in this case produced

by context-free grammars, can be learned implicitly by adults

remains an important open question. For this purpose we chose to

employ the Process Dissociation Procedure (cf [111]) as well as

additional confidence judgments for assessing the conscious status

of the acquired knowledge.

Materials and Methods

Participants
We recruited four groups to be trained on either tail or centre

embedding structures and either left-branching or right-branching

grammatical structures in the training phase. Correspondingly, we

recruited four control groups for these conditions. One hundred

and sixty-one undergraduate students (77 male, 84 female) in

Beijing participated in the experiment. The mean age of the group

was 22.3 years. The participants were randomly assigned to

experimental or control groups for one of the four conditions

combining tail or centre embedding left-branching and right-

branching (n = 20 or 21 for each condition). Each participant was

paid a 20 attendance fee (about three US dollars). The

experimental protocol was approved by the institutional review

board of the Institute of Psychology, Chinese Academy of

Sciences, China. All participants provided informed consent prior

to the experiment.

Materials
Stimulus structures. With a maximum number of three

embeddings, each of the four grammars produced 18 different

abstract structures with a length from two to nine words. To

generate the final surface sentences, each of the terminal symbols

V, N, R in each abstract structure was subsequently replaced by

one of a set of corresponding monosyllabic words for each class.

There were four words for the V class, four words for the N class,

and one word for the R class. An exhaustive recursive

enumeration of all possible surface structures created a pool of

several thousand different terminal sequences for each of the

grammars.

To assess participants’ ability to recognise abstract grammatical

structures (order of word classes) independently of whether they

belonged to the training set, we divided the abstract grammatical

structures into old-grammatical structures which were presented in

both training and test phases and new-grammatical structures which

were presented only in the testing phase. The old and new

grammatical structures each featured five 2-layer structures and

three 3-layer structures. The two 1-layer structures were assigned

purely to the old-grammatical set because of the small number of

structure types. The 2- and 3-layer structures were randomly and

equally assigned to old- and new-grammatical structures.

The training set consisted of 168 different sentences which

included 16 1-layer structures (i.e. two old-grammatical structures

instantiated randomly with terminals in eight different ways each),

80 2-layer structures (i.e. five 2-layer old grammatical structures

instantiated randomly with terminals in 16 different ways) and 72

3-layer structures (i.e. three 3-layer old grammatical structures

instantiated randomly with terminals in 24 different ways). The 2-

and 3-layer structures were repeated two and three times because

they are plausibly more difficult to learn than 1-layer structures.

In order to assess the acquisition of structural knowledge, we

constructed two kinds of ungrammatical structures: layer-ungram-

matical structures which violated only one layer of the grammat-

ical structures and random-ungrammatical structures. The length

of ungrammatical stimuli always matched that of the correspond-

ing grammatical structure. There were 22 random-ungrammatical

structures which matched six 1-layer structures (i.e. the two 1-layer

structures repeated twice), ten 2-layer structures and six 3-layer

structures (i.e. each abstract 2-layer and 3-layer structure repeated

once). There were 44 layer-violating structures which featured the

systematic violation of one of the embedded layers in each

grammar. For instance, if the grammar belongs to the centre

embedding left-branching, its first layer would be either ‘‘N V N’’

or ‘‘N V’’ and its second and third layer would be either ‘‘V R’’ or

‘‘V N R’’. The violation of the first layer of ‘‘N V N’’ was either ‘‘V

N N’’ or ‘‘N R V’’; similarly,‘‘N V’’ became either ‘‘R V’’ or ‘‘V

N’’. Thus, a grammatical structure ‘‘N V (V N R) N’’, in which the

first layer ‘‘N V N’’ is to be violated, became either ‘‘V N (V N R)

N’’ or ‘‘N R (V N R) V’’. Similarly, the violation of a second or

third layer of ‘‘V N R’’ was either ‘‘V V R’’ or ‘‘N R V’’; and ‘‘V

R’’ became either ‘‘R V’’ or ‘‘N R’’. Thus, a grammatical structure

‘‘N V (V N R) N’’, in which the second layer ‘‘V N R’’ was to be

violated, became either ‘‘N V (V V R) N’’ or ‘‘N V (N R V) N’’.

Accordingly, the violations of the layer 1 and layer 2 could induce

long-distance (nonlocal) dependencies when there was (correct)

centre-embedding because the superordinate ungrammatical layer

would be intermitted. Altogether the layer-violating structures for

each condition included six 1-layer structures (i.e. the two 1-layer

structures violated in their one layer in different ways), 20 2-layer

structures (i.e. ten 2-layer structures violated in their first or second

layer, respectively) and 18 3-layer structures (i.e. six 3-layer

structures violated in their first, second and third layer, respec-

tively). Appendix S2 lists the stimulus sequences used for training

and testing.

Stimulus rendering. In analogy to the paradigms by Saffran

et al., as well as for the sake of simplicity, monosyllabic words were

used as terminals. All terminal monosyllabic words were recorded

from a professional Chinese Native speaker. The words used were

‘‘wao’’, ‘‘yai’’, ‘‘piu’’, ‘‘shin’’, ‘‘bam’’, ‘‘fai’’, ‘‘ti’’, ‘‘ra’’, ‘‘ki’’. These

phonemes/words were pronounced without tone (words were

pronounced without tone in order to make a future experiment

with Western participants possible). The combination of pho-

nemes in a syllabic word violated Chinese rules for sequencing.

Hence the words were not meaningful, in Chinese. Four words

were randomly chosen for the V class, four words for the N class,

and one word for the R class. For the construction of the stimulus

sentences, the monosyllabic words were computationally concat-

enated to the respective auditory sequences using CSOUND. The

sequences were automatically concatenated in order to avoid

speaker produced intonation patterns, timing, etc. (cf. [112] for a

detailed formal analysis of potential interactions between intona-

tional effects with parsing). The CSOUND score files which

specified the respective order of syllables were created using a

MATLAB script that converted the randomly chosen set of

terminal sequence structures into CSOUND score file format.

Procedure
The experiment was run using a Flash-environment. There

were two phases in the experimental procedure: a training phase

and a testing phase.

Training phase. Participants were exposed to the set of 168

training stimuli under incidental learning conditions using a word
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counting distractor task. Before participants gave their word count,

the sentence could be repeated as often as the participant wanted.

The possibility of repeating stimuli according to the participant is

analogous to one standard method in artificial grammar learning

to let participants repeat stimuli (e.g. letter sequences) until they

could recall them correctly (e.g., [1]). All training sentences were

randomly divided into 8 blocks; each block included 21 sequences.

There was an interval of at least 30 seconds between any two

blocks. For the experimental group, the sentences were all old-

grammatical structures. For the control group, the sentences were

all random-ungrammatical structures.

Testing phase. Both experimental and control groups

received identical instructions throughout the entire experiment.

Following the Process Dissociation Procedure (PDP), the testing

phase involved two tests: an inclusion and an exclusion test (While

conscious and unconscious knowledge both contribute to picking

the familiar item in inclusion performance, they conflict in the

exclusion condition (as explicit knowledge would lead the

participant to choose the unfamiliar item). Hence unconscious

but not conscious knowledge of the grammaticality of the item

could lead to the grammatical item nonetheless being chosen in

exclusion; the difference between inclusion and exclusion perfor-

mance makes it possible to estimate the amount of conscious

knowledge, cf [111,113–114]). In the inclusion test, participants

listened to 66 pairs of sentences. Each trial pair featured one

grammatical and one ungrammatical sentence. Participants were

asked to choose the one that sounded familiar to them with respect

to whether it appeared in the training phase. Subsequently

participants specified their level of confidence on a scale from 50%

to 100%, where 50% meant completely guessing, and 100%

meant absolutely certain (i.e. to give a confidence rating; see [115–

117], for discussion of such subjective measures of awareness). The

subsequent exclusion test was carried out precisely as the inclusion

test, except that participants were asked to pick the one sentence

which sounded unfamiliar to them. Following the methodological

conclusions by [118] the exclusion test always followed the

inclusion test ([119] found that the order did not affect

performance). There were 132 sequences in each test for both

the experimental and control groups. As outlined above, half of the

sequences were ungrammatical including 22 random-ungrammat-

ical and 44 layer-ungrammatical structures; half were grammatical

including 39 old-grammatical and 27 new-grammatical structures.

Each grammatical structure matched a corresponding ungram-

matical structure in length. The stimulus pairs appeared in a

different random order for each participant.

Finally, participants were given a category identification test.

They were told that the words in the training contained words

from different categories such as nouns or verbs. They were then

given 14 trials, in each trial they were presented with three words

(two belonging to the same category) and were asked to try their

best to choose two out of the three words which belonged to the

same category.

Results

We will consider the following questions in order: what have

people learned, as shown by what violations they can detect? In

particular, can people learn long distance dependencies? Is such

knowledge modulated by the type of grammar (left vs. right

branching, tail versus centre embedding)? Is the knowledge

conscious or unconscious? And if we control for chunking and

repetition structure, are people still sensitive to the long distance

dependencies inherent in the grammars? Finally, can people

classify the words that belong to one class? We focus the results

section on these key questions.

What was learned?
Figure 3 shows mean accuracy rates for old vs. new grammatical

structure and random- vs. layer-ungrammatical structures. Table 1

shows mean accuracy rates organised according to the old-/new-

grammatical distinction (novelty) or the violation type (layer

violations vs. random) under inclusion and exclusion instructions

for each group. The difference between inclusion and exclusion

will be analyzed below, as will the difference between the different

grammars. The analyses in this section are on just the inclusion

items, pooling over different types of grammar. Firstly, to examine

whether people can generalize the knowledge they acquired in the

training to new grammatical structures, we divided the perfor-

mance for test pairs into performance for old and new

grammatical items. A mixed model ANOVA on accuracy rates

with grammatical (new vs. old) as a within-participant variable and

training (trained vs. control) as a between-participants variable

revealed that overall the trained participants classified more

accurately than the control participants, F(1, 159) = 88.83, p,.001,

gp
2 = .36, indicating that training result in learning something

about the structure of the grammars. It is important to note here

that the range of the results (between 50 and 70%) may appear low

with respect to traditional (explicit) learning measures. For

experiments exploring unconscious, implicit knowledge, these

results are relatively high (cf [1,18]). There was no main effect of

old versus new, F(1, 153) = .51, p = .48; further, for just the trained

participants, there was no difference detected between new and

old items, t(79) = .57, p = .57. Old versus new did not interact with

any effect of interest, so we will not explicitly consider this factor

further.

To explore whether people can detect the specific violations in

layer-ungrammatical items as well as the gross violations in

random-ungrammatical ones, a mixed model ANOVA with

ungrammatical (layer- vs. random-ungrammatical) and training

(trained vs. control) as independent variables revealed that overall

the trained participants classified more accurately than the control

participants, F (1, 159) = 114.02, p,.001, gp
2 = .42, confirming

that learning about the grammatical structure did occur. Further

analysis revealed that performance in the trained was greater than

that in the control condition for both layer-ungrammatical, t

(159) = 5.66, p,.001, d = .90, and random-ungrammatical, t

(159) = 11.45, p,.001, d = 1.82, indicating that participants in

the trained condition acquired not only broad differences between

grammatical and non-grammatical items, as indicated by the

sensitivity to random baseline structures, but subtle differences as

well, as indicated by the sensitivity to layer violations. We will

explore these subtle differences further.

Figure 4 shows accuracy rates for the different types of structural

violation under Inclusion. Trained participants were more

accurate than controls for when the violation occurred in each

of the first and second layers, t (159) = 4.67, p,.001, d = .74, t

(159) = 3.67, p,.001, d = .58, respectively (both significant after

Hochberg’s, 1988, sequential Bonferroni correction), though not

in the third layer. The sensitivity to violations in different layers

does not necessarily imply that participants must have parsed the

sequence into the embedded parts per se, nor that participants

have learnt the long distance dependencies created by the

recursive nature of the grammar. Crucially, however, stimuli with

layer violations can be divided into local and nonlocal dependency

structures based on whether or not the ungrammatical stimulus

involves a nonlocal violation (of a nonlocal structure). Trained

participants performed better than controls on both local
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dependencies, t (159) = 3.86, p,.001, d = .61, and nonlocal

dependencies, t (159) = 5.16, p,.001, d = .82 (see Table 2). This

key result is explored further below. The performance for nonlocal

dependencies surprisingly turns out to be higher than for local

dependencies. This might be because non-local violations have an

intermitting structure and therefore potentially an irregular

transition at more than one location (We should not presume

that local n-gram structure is always the easiest. In a yet

unpublished study, where sequences of letters were explicitly

constructed as obeying or violating either global repetition

structure or bigrams, participants learnt the repetition structure

considerably better than the bigram structure).

Were some types of grammars easier than others?
Figure 5 shows the means and standard deviations for

proportion of correct classifications of long range dependencies

in the inclusion test, according to type of grammar. We subjected

the classification of long-distance dependencies in the inclusion test

to a 2 (branching: left vs. right)62 (tail vs. centre embedding)

between participants ANOVA. It revealed a significant centre

embedding effect, F (1, 76) = 4.03, p,.05, gp
2 = .05, indicating

that the tail embedding grammar was better learned than the

centre embedding one. The interaction of centre embedding by

branching reached significance, F (1, 76) = 5.77, p,.05, gp
2 = .07.

Further analysis revealed that the tail embedding grammar was

better learned than the centre embedding grammar when the

branching was left-branching, t (38) = 3.37, p,.01, d = 1.09; and

the left-branching was better learned than the right-branching

when the grammar was tail embedding, t (38) = 2.15, p,.05,

d = .70.

Was the knowledge conscious or unconscious?
The conscious status of the knowledge can be investigated by

the difference between inclusion and exclusion performance [111]

and also by the relation of confidence to performance [116]. We

consider each method in turn. Although the exclusion instruction

was opposite to inclusion instruction, we computed accuracy rates

of both inclusion and exclusion performance on the basis of the

rate with which grammatical stimuli were chosen.

Figure 6 shows the means and standard errors for proportion

correct separated by inclusion and exclusion. An ANOVA on

totaracy rates with instruction (inclusion vs. exclusion) a awihin-

subject variable and training (trained vs. control), as between-

subjects revealed a significant instruction by training interaction, F

(1, 159) = 8.07, p,.01, gp
2 = .05. Overall, trained participants

selected more grammatical items in inclusion than exclusion, t

(79) = 2.60, p,.05, dz = .29, indicating some control over the use

of their knowledge. The effect, though significant, is small.

Crucially, exclusion performance was still significantly better than

the control group, t (159) = 7.46, p,.001. d = 1.09. That is, when

asked to pick the non-grammatical items the trained participants

still picked the grammatical items, a result inconsistent with

Figure 3. Accuracy rates for old vs. new-grammatical sequences and random- vs. layer-ungrammatical structures under inclusion.
doi:10.1371/journal.pone.0045885.g003

Table 1. Accuracy Rates for Grammatical and Ungrammatical Structures under Inclusion and Exclusion in Each Group.

Trained Control

Grammatical Ungrammatical Grammatical Ungrammatical

Old New Layer Random Old New Layer Random

Tail embedding Left-branching Inclusion .59(.02) .62(.02) .56(.02) .67(.03) .52(.03) .52(.02) .53(.02) .50(.02)

Exclusion .60(.02) .60(.02) .56(.01) .68(.03) .51.02) .54(.02) .52(.02) .52(.02)

Right-branching Inclusion .64(.02) .62(.02) .59(.02) .73(.03) .51(.03) .55(.02) .52(.02) .53(.03)

Exclusion .62(.02) .61(.03) .59(.02) .68(.03) .54(.02) .55(.02) .55(.02) .55(.03)

Centre
embedding

Left-branching Inclusion .67(.02) .66(.02) .63(.02) .74(.03) .51(.02) .55(.03) .51(.02) .54(.02)

Exclusion .64(.01) .59(.02) .57(.02) .73(.02) .54(.02) .59(.02) .54(.02) .62(.02)

Right-branching Inclusion .69(.03) .65(.03) .62(.03) .78(.03) .51(.02) .51(.02) .52(.01) .48(.02)

Exclusion .65(.03) .65(.02) .62(.02) .73(.03) .51(.01) .53(.02) .52(.02) .51(.03)

doi:10.1371/journal.pone.0045885.t001
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participants consciously knowing that the grammatical items were

grammatical.

In terms of the confidence measures of the conscious status of

knowledge, when participants said they were purely guessing,

inclusion performance was better than that of the control group

(M = .60, SE = .03 vs. M = .50, SE = .03), t (131) = 2.44, p,.05,

d = .43, indicating again that participants were not aware of

knowing the grammatical status of the items. When participants

had some confidence (.50%), inclusion performance was better

than when people said they were guessing (M = .66, SE = .01 vs

M = .60, SE = .03), t (62) = 2.51, p,.05, d = .64, indicating that

people were sometimes aware of knowing an item was grammat-

ical, consistent with the small amount of control that participants

exerted. However, when participants had some confidence, the

inclusion-exclusion difference was not greater than when partic-

ipants said they were guessing (M = .02, SE = .01 vs. M = .06,

SE = .04), t (58) = 1.09, p = .28, consistent with people not knowing

when they had control over the use of their knowledge.

For the classification of long-distance dependencies, a compa-

rable ANOVA revealed a significant instruction by training

interaction, F (1, 159) = 8.13, p,.01, gp
2 = .05. Trained partici-

pants selected more grammatical items in inclusion than exclusion,

t (79) = 2.92, p,.01, dz = .32, indicating some control over the use

of their knowledge. Importantly, exclusion performance was also

significantly better than that of the control group, t (159) = 3.07,

p,.01, d = .49, indicating that participants did not consciously

know that the grammatical items were grammatical. There were

only about 14, 18, 12 and 8 long distance dependency trials per

subject in the centre and tail embedding left- and branching

groups, respectively, so they were not subdivided further into

confidence bins. Nonetheless, the exclusion performance demon-

strates participants’ knowledge of long distance dependencies was

largely unconscious.

What was learnt, controlling for n-grams and repetition
structure at word and class levels?

Although the stimuli were generated based on the discussed

context-free grammars, participants’ performance may not neces-

sarily based on the knowledge of the grammar but on other

acquired structures [22,120]. In particular, we aimed to explore

the extent to which participants’ responses indicated sensitivity to

nonlocal dependencies when other factors were controlled for. For

this purpose we employed a (logistic) regression analysis as is

common in implicit learning research (e.g. [47,100,121]). In order

to establish that participants’ sensitivity to long distance structure

(violations which involved a layer that was intermitted) was not

(just) based on knowledge of bigrams or trigrams of words in the

training phase we determined for each test item the total (summed)

frequency of its bigrams and trigrams of words (word chunk

strength) as well as bigrams and trigrams of grammatical classes

(class chunk strength) representing grammatical class. Anchor

positions (stimulus beginnings and endings) are known to provide

important cues which participants pick up [93,122]. These

features were controlled for by the fact that our n-gram analysis

coded stimulus beginnings and endings with two different padding

symbols, so that anchor positions would be accounted for as

potential predictors. We also controlled repetition structure, which

can be coded in a number of ways [83]. showed a particularly

strong predictor of responding in artificial grammar learning was

Figure 4. Accuracy rates for different types of structural violation under inclusion.
doi:10.1371/journal.pone.0045885.g004

Table 2. Accuracy Rates for the different types of structures:
number of layers (i.e. complexity), the layer where the
violation occurred, and dependency type (local vs. nonlocal)
under Inclusion.

Violated layer Dependency

First Second Third local nonlocal

Experimental .61(.01) .61(.02) .56(.02) .58(.01) .65(.02)

Control .52(.01) .53(.02) .51(.02) .52(.01) .53(.02)

doi:10.1371/journal.pone.0045885.t002

Figure 5. Accuracy rates for nonlocal and local dependencies in
the inclusion test, according to type of grammar.
doi:10.1371/journal.pone.0045885.g005
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adjacent repetition structure [123]. Adjacent repetition structure

reflects the similarity of a given terminal element to that

immediately preceding it, for example, the adjacent repetition

structure of AABBCC is 10101. The initial 1 represents the fact

that the second letter is the same as the first letter; the following 0

indicates that the third letter is different to the second letter, and so

forth. The frequency of the adjacent repetition pattern of words as

well as classes of each test item in the training phase was

determined. In addition we also controlled for global repetition

structure in a similar way. For instance, the item AABBCC has

global repetition structure 112233, meaning the first element also

appears in the second position, the third position contains a new

type of element, which repeats in the fourth, and so on. The two

structures ABABC and BCBCD share the identical global

repetition structure: viz 12123.

For all test choices and for each participant, the participant’s

choice (correct/incorrect) was logistically regressed on the

difference between the grammatical and non-grammatical items

in: Word and class chunk strength, word and class local repetition

structure, word and class global repetition structure, as well as a

dummy predictor variable which coded whether the violation in

the ungrammatical stimulus involved a local (rather than a long-

distance) violation (1 for local vs. 0 for long distance). Since local

violation was a controlled dummy variable complementary to

nonlocal dependencies, the intercept encodes the effect of nonlocal

dependencies (see Table 3). Results in the exclusion condition were

scored as if they were under inclusion instructions, i.e. ‘‘correct’’

means selecting the grammatical item. The intercept represents

the person’s ability to classify long distance dependencies with

chunk strength, local and global repetition structure controlled on

word and class levels, i.e. the intercept is the predicted

performance when all these other variables are zero. T-tests over

participants showed that participants were not sensitive to word

chunk strength as far as we could detect, t (79) = 1.11, p = .27, but

were sensitive to class chunk strength, t (79) = 2.30, p,.05,

dz = .26, word local repetition structure, t (79) = 3.15, p,.01,

dz = .35, word global repetition structure, t (79) = 3.98, p,.001,

dz = .44. Crucially we show that people were sensitive to long

distance dependencies with other factors controlled, t (79) = 2.43,

p,.05, dz = .27. The latter result is the key result and key reason

for performing the analysis: We show learning of long distance

dependencies controlling a range of other structures we already

know people can implicitly learn. In particular, while global

repetition structure is a type of long distance dependency, we show

that people are sensitive to the long distance dependencies in the

grammar in a way that goes beyond sensitivity to global repetition

structure as such. That is, our interpretation of the performance

results above in terms of local vs. nonlocal dependencies remains

after controlling relevant variables.

Note we demonstrate sensitivity to class chunk strength

controlling for word chunk strength, a finding that goes beyond

the now common demonstration that people are sensitive to

chunks of terminal elements, e.g. letters (e.g. [106]; cf [21]).

However, the effect size is tiny. The evidence from this analysis

therefore that people learnt classes is people’s sensitivity to long

distance dependencies between word classes controlling for a

range of word level variables. Indeed a Bayes factor was run

comparing the null hypothesis of no effect to a theory that

expected class chunk strength to affect classification by up to 3%.

The Bayes factor showed the evidence was 100 times stronger for

the null! The predictions of the theory was represented by a half-

normal with a standard deviation of 1.5%, i.e. the theory allowed

effects between 0 and about 3%; see [124–125] for the technique.

This is an example of a case where an effect is so tiny that a

significant result is actually evidence for the null over a theory

predicting a difference as small as is often picked up with abstract

implicit learning (cf [18]).

However, the sensitivity to nonlocal dependencies might arise

because of sensitivity to nonlocal dependencies between words and

not classes. Accordingly the purpose of the next analysis was to

examine whether fixed nonlocal chunks (i.e. chunks which would

be intermitted) rather than flexible nonlocal dependencies would

be potential predictors for participants’ responses. The span of

Figure 6. Accuracy rates comparing inclusion and exclusion performance with respect to left- and right-branching grammars.
doi:10.1371/journal.pone.0045885.g006

Table 3. Logistic Regression Analyses Regressing
Participants’ Responses Applying Surface and Deep-structure
Chunk Strength, Local and Global Repetition Structure and
Local Dependencies as Predictors.

Regression coefficient p t (79)

Nonlocal dependency (intercept) 0.150* 0.018 2.43

2–3-grams (word) 0.004 0.270 1.11

2–3-grams (class) 0.002* 0.024 2.30

Local dependencies 0.163 0.071 1.83

Global repetition (word)* 0.032 0.000 3.98

Global repetition (class) 20.004 0.285 21.08

Local repetition (word) 0.170* 0.002 3.15

Local repetition (class) 20.002 0.280 21.09

*: p,.05.
doi:10.1371/journal.pone.0045885.t003
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intervening material for nonlocal dependencies was 2 or 3 words.

Thus we conducted another regression in which bigrams were

coded as a) A - - B, where A and B are words and the dashes can

be any intervening word: These are long distance word bigrams

with two intervening items; and b) A - - - B, long distance word

bigrams with three intervening items. If overall sensitivity to long

distance dependencies remains, it shows such sensitivity was not

based just on learning long distance word bigrams. In the same

regression we considered another question. If people are sensitive

to the phrase structure, they will be sensitive to phrases as such:

Their sensitivity to long distance dependencies will not be for fixed

lengths, but to lengths that vary from item to item depending on

phrase length. Thus, as a stricter test of people learning long

distance dependencies as a consequence of learning hierarchical

embedding, we added two more variables to the regression: c) ) A -

- B, where A and B are classes and the dashes can be any

intervening class: These are long distance class bigrams with two

intervening items; and d) A - - - B, long distance class bigrams with

three intervening items. Note that c) and d) encode sensitivity to

fixed length dependencies; if people have learnt the phrase

structure per se, their sensitivity to long distance dependencies will

exceed the variance accounted by these fixed-length predictors

because there will be variance in when sensitivity is to 2 versus 3

words long not explained by either fixed-length variable. a)–d)

could not be added to the regression already performed because

there would be too many predictor variables and the regression

becomes unstable. Thus we set up a new regression with a) to d) as

predictors, as well as a control variable coding whether the item

has short distance or long distance dependencies at all. The

intercept codes whether there is sensitivity to the long distance

dependencies when all these predictors are controlled. Table 4

displays the results. The long distance word bigrams had no

predictive power; but long distance class bigrams (for fixed

distances) had some. Crucially, the intercept was still significant

controlling all of a) to d). Thus, sensitivity to long distance

dependencies was not just based on sensitivity to long distance

dependencies to words for fixed lengths (2 and 3 intervening

items); this is evidence that there was sensitivity to word classes.

Further, sensitivity to long distance dependencies was not just

based on sensitivity to long distance dependencies to classes for

fixed lengths (2 and 3 intervening items); this is consistent with

people learning the phrase structure per se. Ideally, one regression

would be performed with all predictors in, so our conclusion

regarding learning phrase structure per se must await further

testing; but we have at least found (unconscious) long distance

dependency learning of classes (which goes beyond what has been

previously demonstrated).

Category identification test
Overall the trained participants could not pick two out of three

words of the same category at above baseline levels (baseline being

.33; M = .31, SE = .01), t (79) = 21.79, p = .084, and similar to the

control groups (M = .31, SE = .01 vs. M = .32, SE = .01), t

(159) = 2.84, p = .40. Further, no group individual was above

baseline (all ps..27) and nor was better than their control group

(all ps..05). The upper limit of the 95% confidence interval for

trained participants is .33, so whatever knowledge trained

participants have available for classifying this task, it is not enough

to classify more than a percent above chance baseline. The test

very sensitively rules out knowledge allowing discrimination of

class. Thus, not only were participants not conscious of the

grammatical classes they were sensitive to in parsing the structure

of sentences, their knowledge of the classes was in such an implicit

or embedded form it could not allow first order discrimination of

what words had the same class.

Discussion

The aim of the experiment was to investigate whether

participants could implicitly acquire hierarchical recursive struc-

tures that resemble natural language word order on an abstract

level. A second aim was to further explore the effects of branching-

type and centre embedding. Our results showed that trained

participants performed much better than the controls with respect

to the layer-ungrammatical structures, including long-distance

dependencies, under both inclusion and exclusion tests, suggesting

that they did implicitly acquire knowledge that enabled them to

distinguish the hierarchical structures. Importantly, people’s

unconscious knowledge of long-distance dependencies goes

beyond the now common demonstration that people are sensitive

to chunks of terminal elements. Based on the present results we

cannot infer which mental representation participants had

acquired, however, the findings suggest that it is a form of

representation that incorporates long-distance dependencies and

likely nested structures. Finally, participants learned better when

the grammar featured tail rather than centre embedding (in the

sense of [103–104,126]), showing a variable argued to affect

preferential learning in natural languages also affects learning of

artificial languages in the lab.

Can people learn recursive structures?
Our approach to determining whether people had acquired

distinctively recursively embedded structures was to show that

people could become sensitive to the long distance dependencies

generated by context-free grammars; and further to show that this

sensitivity remained after controlling for n-grams and repetition

Table 4. Logistic Regression Analyses Regressing Participants’ Responses Applying Surface and Deep-structure Nonlocal Chunks
as Predictors.

Regression coefficient p t (79)

Nonlocal dependency (intercept) 0.280* 0.000 5.85

Nonlocal bigram with two intervening (word) 0.003 0.660 0.44

Nonlocal bigram with three intervening (word) 0.009 0.290 1.06

Nonlocal bigram with two intervening (class) 0.006* 0.000 4.49

Nonlocal bigram with three intervening (class) 0.000 0.873 0.16

Local versus Nonlocal 0.019 0.757 0.31

*: p,.05.
doi:10.1371/journal.pone.0045885.t004
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structure. Thus, in a sentence with multiple levels of recursive

embedding, we showed participants could learn to become

sensitive to violations of nested embedded structures. As the

violation spans the embedding there is suggestive evidence of

learning and representing recursively-generated long-distance

dependencies. In this respect our results differ from the findings

by [77]. While [77] found that people were not able to acquire

indexed AnBn grammars, the grammar they employed was highly

abstract (and requires indexing in order to avoid a counting

confound). The grammar used in our study was modelled to be

more complex than the simple AnBn grammar and to be a more

general example of a context-free grammar, with further analogies

to some realistic features of constituent order. The variety of

structures and greater redundancy of our grammars rather than

AnBn grammars may in fact render our grammar more learnable

than the AnBn grammar.

However, although we showed people can discriminate

grammaticality, this finding alone does not demonstrate the

learning of recursive rules or recursive parsing. We know that

people are also sensitive to bigram and trigram frequencies [105–

107] and repetition structure [82], the latter being a type of long

distance dependency which does not need to be recursively

specified. To further explore whether participants’ knowledge only

included bigrams or trigrams of terminal elements or classes in the

training phase, we determined for each test item the total

(summed) frequency of its bigrams and trigrams of terminal

elements (word chunk strength) as well as bigrams and trigrams of

grammatical classes (class chunk strength). The performance for

long-distance dependencies was significantly above chance when

chunk and repetition structure knowledge was controlled for. We

suggest the explanation is the acquisition of abstract knowledge at

the complexity level of long-distance dependencies and hierarchi-

cal, embedded structures. The explanation is admittedly only

indirectly supported by the evidence in that we have not decisively

shown the psychological reality of the structural hierarchy per se.

It should be further stressed that our results do not demand that

the stimuli were parsed and processed recursively, as outlined in

the introduction. The present training sequences (as all finite sets

of sequences) could be entirely represented by a (much less

parsimonious) finite-state grammar (encoding every single stimu-

lus) or by mere whole-sequence memorisation. The fact, however,

that the set used novel new-grammatical sequences (generated by

the context-free rules) plausibly rules out a catch-all finite-state

representation or whole-sequence memorisation. The fact that

participants performed well for new-grammatical structures (and

therefore were generalising) indicates that a more complex

explanation for their learning behaviour is required. Accordingly,

we controlled for other known alternative explanations of

participants’ response patterns and that they only account in a

limited way for the performance. Nonetheless, if a potential

explanation which involves learning and matching recursive

structure is right, people trained on some depth of embeddings

should be able to generalise to other novel structures and to other

levels of embedding, to within the limit of the relevant memory

buffer. Further research, for example click experiments or

segmentation tasks in which participants are instructed to group

word sequences that belong together, should also be able to

provide evidence of levels of embedding being psychologically

relevant structural units. Our paradigm provides an ideal starting

point for such further research as well as neuroscientific research

exploring whether the neural pathways involved in processing

during this experiment resemble other results based on context-

free structures.

Many computational models of implicit learning tend to be

good at learning chunks and associations [110]. For example, the

SRN is good at learning conditional probabilities of successive

elements [127]. Nonetheless it can learn the musical inversions of

[99], but only by learning them as long-distance associations [109]

rather than as a recursively generated structure per se. How the

SRN might cope with learning hierarchically embedded struc-

tures, as in the current material, remains to be determined in

future work. Chunking models (e.g. [106,128–129]) are challenged

by the data because such models assume that learning involves

chunking of adjacent elements. For example, the competitive

chunk (CC) model assumes that the probability of a letter string is

judged grammatical on the basis of the network of chunks

acquired during the memorization task. Although the CC model

can successfully reproduce some findings with the artificial finite

grammar task, it is unlikely to learn the relations between

grammatical classes over long distances when bigrams and

trigrams are controlled. A further issue to be explored in future

research is the impact of left or right branching and potential for

centre embedding on model performance.

Is the learning unconscious?
In order to demonstrate that people implicitly learnt the

grammars, we need to show people acquired unconscious

knowledge [116]. We employed both the PDP method and

confidence ratings to determine people’s awareness of knowing the

grammaticality of items. As applied to this experiment, PDP is

based on the assumption that if one consciously knows whether or

not an item has the same structure as the training items, one

should be able to control whether the item is endorsed as familiar

or unfamiliar. Confidence ratings directly measure whether one

consciously knows whether or not an item has the same structure

as the training items. Both methods indicated substantial amounts

of unconscious knowledge and some, but very limited, conscious

knowledge. Specifically, people were quite likely to pick the

grammatical item (and reject the non-grammatical) when delib-

erately trying to pick the item which violated the structure of the

training items; and when people thought they were guessing and

trying to pick the well structured item, they tended to pick the

grammatical item (and reject the non-grammatical). These

conclusions apply overall and for non-grammatical items violating

only long distance dependencies. The finding that the learning

outcome is in fact implicit (contrast e.g. [50]) is important since it

demonstrates that the implicit learning mechanism can develop

sensitivity to structures that are beyond mere chunks. Importantly,

explicit learning of context-free structures would be less surprising

since, for instance, the learning of a programming language

involves dealing with an artificial language of this type of

grammar. Thus testing for awareness of the learned structures is

crucial in this context.

Did participants acquire word classes?
An important contribution of the study is in providing evidence

for the implicit learning of relations over classes. People were

apparently processing more than just mere surface based features

of the stimulus sentences and were able to infer some knowledge

about syntactic categories from the surface word sequences in an

unsupervised manner. The fact that they, on the other hand, were

at chance at the word class tests at the end of each experiment

shows that they could not directly or consciously access their

knowledge of these classes even though their response patterns

indicated they applied it. This finding takes previous findings that

people can learn word classes in artificial grammar learning
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experiments [102] one step further by showing such knowledge

can be unconscious.

Is the learning affected by the type of grammar?
Natural grammars differ in a number of structural ways, some

of which have been argued to affect their ease of learning (e.g.

[103–104,126]). One such structural feature is the extent to which

the grammar produces centre embedded clauses. The less centre

embedding the grammar has the potential to produce, the easier

the grammar should be learn and use. On the other hand, from a

theoretical perspective there is no structural difference between left

and right branching per se in terms of complexity. Consistently

and as one would expect, participants trained on the tail rather

than centre embedding grammars performed better, which

accords with our predictions. But to be more precise, participants

performed best with the left-branching tail-embedding grammar

than any of the other grammars. Strikingly, the participants’ own

native (left-branching) grammar is centre embedding, yet the

easiest grammar was one with tail-embedding, suggesting that

fundamental cognitive factors could override extensive experience

with a centre embedding grammar.

From a psycho-linguistic perspective, the findings regarding the

performance interactions with branching type and centre embed-

ding link with linguistic findings. The performance advantage for

left-branching structures probably reflects the fact that their native

language is left branching – a fact to be further explored with

participants of different native language in future work. The

advantage of tail versus centre embedding grammatical structures

is, on a basic level, strongly related to Hawkins’s performance and

correspondence hypothesis for natural grammars [104]. Typolog-

ical studies find a preference towards tail embedding (or

‘‘consistent’’) structures in languages of the world (cf [130]) and

this difference seems to accord with our findings that in both, the

left- and right-branching cases the structures which do not feature

centre-embedding are better learned than the centre embedding

ones. This seems to suggest a potential performative or structural

effect that impacts on the learning of syntactic word order and

might ultimately constitute a driving force in the way how

grammars are selected or evolve (cf [104,131]).

The very fact that structural properties affected the learning of

our artificial grammars in explicable ways given general cognitive

constraints and the participant’s native grammar supports our

contention that the hierarchical structures of our grammars were

learnt as such. This fact also illustrates how issues in linguistics can

both motivate and be explored by the use of artificial grammars.

Conclusion

Overall, our findings suggest that people can implicitly acquire

knowledge of tail- and centre-embedding structures (involving

long-distance dependencies) as well as word classes drawn from

recursive context-free grammars in the lab that are similar at an

abstract level to those in natural language. The knowledge

includes relations between grammatical classes even for depen-

dencies over long distances, in ways that go beyond simple

relations (e.g. n-grams) between individual words. Even though in

real world, the interaction between syntax and semantics affects

and facilitates the parsing as well as the acquisition of language,

the finding of learning and processing of such hierarchical

dependencies on a structural level is an important contribution.

Our study shows how such complex forms of word sequences are

potentially acquired incidentally from exposure and represented

implicitly, i.e. based on unconscious knowledge. Notably, inciden-

tal learning is not the same as implicit learning; while reading this

paper you incidentally acquired much conscious knowledge, e.g.

on roughly which pages were certain points made. Implicit

learning is the acquisition of unconscious knowledge, which can

occur both incidentally and intentionally [117]. For an example of

implicit learning that is intentional, the dynamic control tasks of

Berry and Broadbent provide an example (see, for instance, [132]).

Second language learning potentially provides another example of

intentional implicit learning, albeit a (more) controversial one (cf.

[14,15]). While explicit knowledge of complex context-free

languages (such as explicitly acquired knowledge of programming

languages like ML or C) is less surprising, showing the ability that

participants incidentally acquire implicit knowledge of context-free

languages is novel and relates to natural acquisition processes like

language or music acquisition (e.g. [14,15,8]). We further found

that the differences in grammatical complexity between tail- and

centre-embedding and right or left branching affect the learning

performance. This accords with Hawkins’s performance and

correspondence hypothesis for natural grammars and provides a

hint towards a cognitive preference for adjacent tail- rather than

centre-embedding structures which afford some ease of processing.
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37. Gómez RL, Gerken LA (1999) Artificial grammar learning by one-year-olds
leads to specific and abstract knowledge. Cognition 70: 109–135.

38. Finch S, Chater N (1992) Bootstrapping syntactic categories using statistical

methods. Proceedings of the 1st SHOE Workshop on Statistical Methods in
Natural Language. pp. 229–235. ITK Proceedings 92/1, Institute for

Language Technology and AI: The Netherlands: Tilburg University.

39. Redington M, Chater N (1998) Connectionist and statistical approaches to

language acquisition: A distributional perspective. Language and Cognitive
Processes 13: 129–191.

40. Redington M, Chater N, Finch S (1993) Distributional information and the

acquisition of linguistic categories: A statistical approach. In: Proceedings of the

15th Annual Conference of the Cognitive Science Society. Hillsdale, NJ:
Erlbaum. pp. 848–853.

41. Chomsky N (1956) Three models for the description of language. IRE

Transactions on Information Theory IT-2: 113–124.

42. Chomsky N (1957) Syntactic Structures. The Hague: Mouton.

43. Pullum GK (1986) Footloose and context-free. Natural Language and

Linguistic Theory 4: 409–414.

44. Lobina DJ (2011) Recursion and the competence/performance distinction in
AGL tasks. Language and Cognitive Processes.

45. Lobina DJ (2010) Recursion and Linguistics: an addendum to Marcus

Tomalin’s Reconsidering Recursion in Syntactic Theory. Interlingüı́stica XX.
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