
IMPLICIT OPERATING SYSTEM AWARENESS

IN A VIRTUAL MACHINE MONITOR

by

Stephen T. Jones

A dissertation submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

Computer Sciences

at the

UNIVERSITY OF WISCONSIN–MADISON

2007

For my family

i

ii

ACKNOWLEDGMENTS

So many people have contributed to the success of this endeavor. I am indebted to them all.

I will mention just a few by name here.

First and most importantly I want to thank my wife and best friend Alyson whose

persistent faith, love, encouragement, and support have been essential to all of my successes

and have helped me learn from each of my failures. She got me started on this path and has

seen me through to yet another beginning. My children Emma, Abbi, and Ian provide me

with constant inspiration and perspective, often when I expect it least and need it most.

My advisors Andrea and Remzi gently and deftly shepherded me through the some-

times uncomfortable realization of what high quality research actually is. Their curiosity

and enthusiasm about computer systems and, most importantly to me, their humanity form

the core of what I take away from Wisconsin.

I thank my Parents Ben and Shirley Jones for giving me life, teaching me the value of

work, and nurturing a love of discovery and learning. I also appreciate the diverse examples

of all my wonderful siblings who continue to teach me whenever we are together. My

brother Benjamin contributed especially to my love of design and elegant technology by

generously sharing his time and ideas with me when I was young.

I want to gratefully acknowledge the financial support provided to me by Sandia Na-

tional Laboratories and the collective friendship and wisdom of all of my Sandia colleagues

with whom I am privileged to work. My manager Roxana Jansma deserves special men-

tion. She has repeatedly stepped up to provide me both material and moral support for

which I am deeply grateful. The amazing technical prowess of my friend and mentor Doug

Ghormley originally motivated me to return to school and I have asymmetrically benefited

from his example and advice.

While in Madison I have had the good fortune to interact with a fantastic group of

people. Randy Smith has been a great friend with whom I have enjoyed sharing the travails

and triumphs of graduate student life. My great research group colleagues Nitin Agrawal,

Lakshmi Bairavasundaram, John Bent, Nathan Burnett, Tim Denehy, Haryadi Gunawi,

Swetha Krishnan, Vijayan Prabhakaran, Florentina Popovici, and Muthian Sivathanu have

taught me more than I ever cared to know about disk drives and storage systems.

Finally, I would like to thank my many friends in the Madison first ward who have

made my time in Madison a spiritual as well as an intellectual journey.

iii

iv

Contents

ABSTRACT xv

1 Introduction 1

1.1 Overcoming the Semantic Gap . 2

1.2 Research Statement . 2

1.3 Process Information . 3

1.4 Buffer Cache Information . 4

1.5 Security Applications . 4

1.6 Contributions . 5

1.7 Outline . 5

2 Virtualization Background 7

2.1 The Role of the Virtual Machine . 7

2.2 Deprivileged Operation . 8

2.3 Virtualizing Memory . 9

2.4 Virtualizing Disk I/O . 9

2.5 Trap and Emulate Limitations . 9

2.5.1 Paravirtualization . 10

2.5.2 Hardware Trends . 10

2.6 Summary . 10

3 Implicit Operating System Awareness 13

3.1 Goals . 13

3.2 Approach . 13

3.2.1 Limitations . 14

3.3 Alternative Approaches . 14

3.3.1 New Interfaces . 15

3.3.2 Explicit Information . 15

3.4 Summary . 16

v

vi

4 Tracking Guest Operating System Processes 17

4.1 Background . 18

4.1.1 x86 Virtual Memory Architecture 18

4.1.2 SPARC Virtual Memory Architecture 19

4.2 Process Identification . 19

4.2.1 Techniques for x86 . 20

4.2.2 Techniques for SPARC . 21

4.3 Resource Association . 22

4.3.1 Context Association . 22

4.3.2 Event Chaining . 23

4.3.3 Data Structures . 23

4.4 Antfarm Implementation . 24

4.4.1 Antfarm for Xen . 24

4.4.2 Antfarm for Simics . 24

4.5 Process Awareness Evaluation . 25

4.5.1 x86 Evaluation . 25

4.5.2 Overhead . 30

4.5.3 SPARC Evaluation . 32

4.5.4 Association Evaluation . 35

4.5.5 Evaluation Summary . 38

4.6 Case Study: Anticipatory Scheduling . 38

4.6.1 Background . 38

4.6.2 Information . 39

4.6.3 Implementation . 39

4.6.4 Evaluation . 40

4.7 Assumptions . 42

4.8 Summary . 43

5 Monitoring the Guest Buffer Cache 45

5.1 Geiger Techniques . 46

5.1.1 Basic Techniques . 46

5.1.2 Techniques for Unified Caches . 48

5.1.3 Techniques for Storage . 49

5.2 Implementation . 51

5.3 Evaluation . 52

5.3.1 Workloads . 52

5.3.2 Metrics . 53

5.3.3 Microbenchmarks . 53

5.3.4 Application Benchmarks . 55

5.3.5 Overhead . 57

5.4 Case study: Working Set Size Estimation 58

5.4.1 MemRx Design . 58

5.4.2 Evaluation . 60

5.5 Case study: Eviction-Based Cache Placement 62

vii

5.5.1 Implementation . 63

5.5.2 Evaluation . 63

5.6 Assumptions . 65

5.7 Summary . 66

6 Detecting and Identifying Hidden Guest Processes 67

6.1 Process Hiding . 69

6.2 Detection . 70

6.2.1 Approach . 70

6.2.2 Details . 71

6.3 Identification . 72

6.3.1 Approach . 72

6.3.2 Details . 73

6.3.3 CPU Inflation . 74

6.4 Threat Model . 75

6.4.1 Definition of Success . 75

6.5 Evasion . 75

6.6 Implementation . 76

6.7 Evaluation . 77

6.7.1 Experimental Environment . 77

6.7.2 Detection Evaluation . 77

6.7.3 Identification Evaluation . 84

6.8 Attacks on Lycosid . 89

6.8.1 Desynchronization . 89

6.8.2 Countermeasures . 90

6.9 Assumptions . 90

6.10 Summary . 91

7 Related Work 93

7.1 Gray-box systems . 93

7.2 Guest Information in a VMM . 94

7.2.1 Paravirtualization and Explicit Interfaces 94

7.2.2 Explicit Information . 94

7.2.3 Implicit Information . 95

7.3 Statistical Techniques . 95

7.4 Case Studies . 95

7.4.1 Working Set Size . 96

7.4.2 Secondary-level Caching . 96

7.4.3 Hidden Process Detection . 97

8 Conclusion 99

8.1 Lessons Learned . 99

8.2 Future Work . 101

8.2.1 Targeting Other Guest Abstractions 101

viii

8.2.2 Resource Association . 102

8.2.3 Observing Memory Structure . 102

8.3 Closing Remarks . 103

List of Tables

4.1 Process identification techniques. The table lists the techniques used by Antfarm

to detect each process event on the x86 and SPARC architectures. 22

4.2 Completeness for x86. The table shows the total number of creations and exits for

processes and address spaces reported by the operating system. The total number of

process creations and exits inferred by Antfarm are shown in comparison. Antfarm

detects all process creates and exits without false positives or false negatives on

both Linux 2.4 and Windows. Fork and exec, however, lead to false positives under

Linux 2.6 (bold face values). All false positives are due to the mismatch between

address spaces and processes, which is indicated by matching counts for address

space creates and inferred creates. Actual and inferred context switch counts are

also shown for completeness and are accurate as expected. 26

4.3 Completeness for SPARC. The table shows the results for the same experiments

reported for x86 in Table 4.2, but for SPARC/Linux 2.4. False positives occur for

each fork due to an implementation which uses copy-on-write. Antfarm also infers

an additional, non-existent exit/create event pair for each exec. This error is not

due to multiple address spaces per process as on x86, but rather stems from the

flush that occurs to clear the caller’s address space upon exec. 32

6.1 Detection Runtime Overhead. The table shows runtimes and overheads for three

benchmarks run under Lycosid and under a pristine version of Xen. 87

6.2 Identification under Reduced Runtime. The table reports the identification ac-

curacy of Lycosid for a set of experiments in which a single hidden process must be

identified among 10 active processes when the hidden process runs exponentially

less and less often. As the relative runtime decreases, Lycosid’s ability to classify a

process as hidden or benign is impaired. 87

6.3 Effect of CPU Inflation. The table shows how CPU inflation can help make hid-

den processes that run relatively little identifiable by Lycosid. In the experiments, a

single hidden process must be identified among 10 active processes when the hid-

den process runs very little or infrequently. CPU inflation forces the hidden process

to run more, providing Lycosid with the information it needs to make a positive

identification. When average sleep time exceeds the maximum sample period, Ly-

cosid naturally fails to reliably identify all hidden processes. 88

ix

x

List of Figures

4.1 Effects of error. The figure shows where each type of process identification error

occurs for each tested platform. Error is either lag between when the true event oc-

curs and when the VMM detects it, (e.g., A and B in the figure) or consists of falsely

partitioning a single OS process into multiple inferred processes. In Linux 2.6/x86,

this only occurs on exec, which typically happens immediately after fork. On

SPARC this partitioning happens whenever a process calls either fork or exec. . 28

4.2 Lag vs. System Load. The figure shows average and maximum create and exit lag

time measurements for a variety of system load levels in each of our x86 evaluation

environments. Average and worst case create lag are affected by system load in

Linux 2.4 and Windows, but are small and nearly constant under Linux 2.6. Except

for a large exit lag with no competing processes on Linux, exit lag does not appear

to be sensitive to system load. 29

4.3 Compilation Workload Timelines. For x86/Linux 2.4, x86/Linux 2.6 and x86/Windows

a process count timeline is shown. Each timeline depicts the OS-reported process

count, the VMM-inferred process count and the difference between the two versus

time. Lag has a larger impact on accuracy than false positives. x86/Linux 2.6,

which exhibits significantly smaller lag than x86/Linux 2.4 is able to track process

counts more accurately. 31

4.4 Lag vs. System Load, SPARC. The figure shows average and maximum create

and exit lag time measurements for the same experiments described in Figure 4.2.

Create lag grows with system load. Exit lag is small and nearly constant, indepen-

dent of load. 34

4.5 Compilation Workload Timeline. SPARC/Linux compilation timeline. Compare

to Figure 4.3. 35

4.6 Context ID Overflow. When more processes exist than can be represented by the

available SPARC context IDs our techniques fail to detect context ID reuse. 36

4.7 I/O Association Accuracy. The figure plots the percentage of I/O requests that

were correctly associated with their process on the y-axis as the number of process

groups is increased along the x-axis. In the top graph, each process group consists

of one process issuing sequential I/Os and one compute-bound process. In the

bottom graph, we add one process per group that issues random I/Os. Two lines

are plotted: simple context-based association and event-chain association. 37

xi

xii

4.8 Benefit of process awareness for anticipatory scheduling. The graph shows the

aggregate throughput for various configurations of I/O scheduler, number of vir-

tual machines and number of processes per virtual machine. The experiment uses

the Linux deadline scheduler (DL), the standard anticipatory scheduler (AS), and

our VMM-level anticipatory scheduler (VMAS). Adding process awareness enables

VMAS to achieve single process sequential read performance in aggregate among

competing sequential streams. AS running at the guest layer is somewhat effective

in the 1 VM / 2 process case since it has global disk request information. 41

5.1 Microbenchmark Workloads. This table describes the four microbenchmarks

used to isolate a specific type of page eviction. 52

5.2 Application Workloads. This table describes each of the four application workloads. 52

5.3 Application Workload Eviction Mix. This table reports the percentage of total

eviction events caused by each eviction type. 53

5.4 Eviction Inference Counts. The figure compares inferred vs. actual eviction

counts over time for microbenchmarks that isolate each eviction type inferred by

Geiger. 54

5.5 Eviction Lag. The figure shows the cumulative lag distribution for microbench-

marks that isolate each eviction type. 55

5.6 Microbenchmark Heuristic Accuracy. The table reports the false positive and

false negative ratios for the complete set of eviction heuristics for each of the mi-

crobenchmark workloads. 56

5.7 Effect of Journaling. The table reports the false positive and false negative ratios

for the write-eviction microbenchmark workload when run with no journaling, with

metadata journaling (ordered mode), and data journaling with the Linux ext3 file

system. The table shows the benefits of turning on the Geiger specialization to

detect writes to the journal. 56

5.8 Application Heuristic Accuracy. The table reports the false positive and false

negative ratios for Geiger on the four application workloads. For the Dbench and

Mogrify workloads, we evaluate Geiger both without and with the optimizations to

detect whether a block is live on disk. 57

5.9 Geiger Runtime Overhead. The figure shows that Geiger imposes very small

runtime overheads for two workloads that stress its inference heuristics. 58

5.10 MemRx Operation. The figure shows a schematic of the cache simulation imple-

mented by MemRx. A) When a page is evicted by a guest, this event is detected

by MemRx and an entry is added to the head of a series of queues. B) If neces-

sary, queue entries ripple from the tail of one queue to the head of the next. C)

Upon reload, the associated queue entry is removed and an array entry associated

with that queue is incremented. Each entry tracks which sub-queue it appears in to

enable fast depth estimation. 59

5.11 Calibrated Microbenchmarks. The table describes each of the microbenchmarks

used to evaluate VMM-MemRx. 60

xiii

5.12 VMM-MemRx Predicted vs. Actual Miss Ratio. The figure shows the miss ratio

predicted by VMM-MemRx vs. the actual miss ratio measured for varying memory

sizes. The known working set of 256 MB is marked by a vertical dashed line. 61

5.13 Application Predicted vs. Actual Miss Ratio. The figure shows the miss ratio

curve predicted by MemRx vs. the actual miss ratio measured for varying memory

sizes for two application workloads. Results from MemRx implemented in the VMM

(left) and MemRx implemented in the OS (right) are shown. 62

5.14 Secondary Cache Hit Ratio. The figure compares the cache hit ratio in a sec-

ondary storage cache for various workloads when demand placement (Demand),

eviction placement based on inferred evictions (Eviction-Buffer and Eviction-Geiger),

and eviction placement based on actual evictions (Eviction-OS) is used. Experi-

ments are performed using cache sizes from 32 MB to 512 MB. 64

6.1 Sample Identification Data. The figure shows a notional data set used to identify

hidden processes. There is no correlation between VMM and guest process IDs. . . 74

6.2 Process Count Difference Timelines. The figure shows a timeline of the differ-

ence between the process list length obtained within the VMM and from the guest

operating system for various levels of process creation and exit activity. As process

activity increases the variability in the measured difference increases. 78

6.3 Detection Timelines. The figure shows a timeline of the hypothesis test p-values

used in the detection process for each of several levels of process creation/exit ac-

tivity. The p-values approach the detection threshold over time. 79

6.4 Time to Detection. The figure shows how the time to detect a hidden process varies

for Windows as process creation and exit activity increases from 0 processes/second

to 100 processes/second. The values shown are an average of 10 trials. Error bars

show the standard deviation of detection time. 81

6.5 Estimating the Number of Hidden Process. The figure shows how the estimate

of the number of hidden processes obtained from the detection phase varies for

Windows as process creation and exit activity increases from 0 processes/second to

100 processes/second when a single process has been hidden. The values shown

are an average of 10 trials. Error bars show the minimum and maximum hidden

process estimate observed. 82

6.6 Time to Detection. The figure shows how the time to detect a hidden process varies

for Linux as process creation and exit activity increases from 0 processes/second to

100 processes/second. The values shown are an average of 10 trials. Error bars

show the standard deviation of detection time. 83

6.7 Estimating the Number of Hidden Process. The figure shows how the estimate

of the number of hidden processes obtained from the detection phase varies for

Linux as process creation and exit activity increases from 0 processes/second to

100 processes/second when a single process has been hidden. The values shown

are an average of 10 trials. Error bars show the minimum and maximum hidden

process estimate observed. 84

xiv

6.8 Timeline without Hiding. The figure shows an approximately 11 hour detection

timeline when no processes are hidden and very aggressive process creation/exit

activity (100 processes/second) is present. The top graph shows the single-sided

hypothesis test p-value. The bottom graph shows the difference between the VMM

and guest process counts. No false detections occur. 85

6.9 Time to Identification. The figure shows how the time to identify hidden processes

grows as the number of total active processes increases from 1 to 50 processes for

both Windows (upper graph) and Linux (lower graph). The values shown are an

average of 10 trials. Lycosid identified the correct hidden processes in all cases on

both platforms. Error bars show the standard deviation of identification time. The

left bar corresponds to trials in which a single process was hidden. The right bar

shows results when 5 processes were hidden. 86

6.10 Desynchronization Attack. The figure demonstrates the desynchronization attack

concept against Lycosid hidden process detection. 89

ABSTRACT

Commodity server and desktop computer systems have become powerful enough in recent

years to profitably make use of system virtualization technology. System software vendors

are enthusiastically embracing system virtualization to address some of the key issues fac-

ing today’s enterprises like manageability, rapid service deployment, and disaster recovery.

Widespread adoption of virtualization has a disruptive influence on system organiza-

tion. In a virtualized environment, the virtual machine monitor (VMM) supplants the op-

erating system as the primary resource manager. When a virtualization layer is present,

certain system features like resource scheduling, cache management, and security monitor-

ing can often be implemented most naturally within the VMM.

While a VMM understands and controls system hardware resources, it currently knows

very little about the high-level software abstractions implemented within guest operating

systems, a fact referred to as the “semantic gap”. Information pertaining to OS constructs

like processes, threads, users, and caches is often useful, however, when implementing

services at the VMM layer. Hence, researchers have invented ways of directly exporting

relevant information from the operating system to an underlying VMM. This direct ap-

proach, while effective, has some important drawbacks. For example, it leads to close

coupling between VMM-layer services and specific OS vendors and versions, reducing the

applicability of services and complicating deployment and management.

We have invented and implemented techniques that can be used by a VMM to infer

useful information about selected operating system abstractions and achieve a level of im-

plicit operating system awareness. Our approach uses observation of architectural events

and the fact that modern operating systems share many basic features and responsibilities.

This dissertation describes our techniques in detail and presents the results of a careful ex-

perimental evaluation of them. Using case studies, we show that implicit operating system

awareness within a VMM can be used to implement a variety of useful applications like

sophisticated I/O scheduling, flexible memory management, efficient caching, and reliable

security monitoring that significantly enhance the value of the virtualization layer.

xv

xvi

Chapter 1

Introduction

System virtualization technology has arrived on every major server and desktop computing

platform [3, 4, 46, 93]. High quality virtual machine implementations for servers [4, 101]

and desktop PCs [27, 91] allow system managers to consolidate servers [103], support mul-

tiple operating systems [36], provision resources on-demand [99], perform security isola-

tion, monitoring, and authentication [34, 56], provide fault tolerance [11], and optimize for

specialized architectures [12]. As both software [27] and hardware [37, 46] support for

near zero overhead virtualization develops, and as virtualization is included in dominant

commercial operating systems [8], it appears that virtualized computing environments will

become ubiquitous.

As virtualization becomes prevalent, the virtual machine monitor (VMM), naturally

supplants the operating system as the primary resource manager for a machine. In a virtu-

alized environment, all physical system resources like CPUs, memory, and I/O peripherals

are owned and managed by a VMM. Today, the operating system is the main target for in-

novation in system services. In a world where virtualized environments are the norm, one

should consider how to implement some traditional operating system services like resource

allocation, scheduling, and security monitoring within a VMM [15].

The transition of some functionality from the operating system into the VMM has many

potential benefits. For example, VMM-based services can be portable across different op-

erating systems. By implementing a feature a single time within a VMM, it is logically

available to all operating systems running above. Further, the VMM may be the only place

where new features can be introduced into a system, because the operating system is legacy

or closed-source or both. The VMM is also the only locale in a virtualized system that has

total control over system resources and can likely make the most informed resource man-

agement decisions.

1

2

1.1 Overcoming the Semantic Gap

However, pushing functionality down one layer, from the OS into the VMM, has its draw-

backs as well. One significant problem is the lack of higher-level knowledge within the

VMM, sometimes referred to as a semantic gap [15]. The semantic gap is a result of the

narrow interface provided by the virtual architecture. The virtual machine interface isolates

the VMM from guest operating systems and hides a guest’s internal state from the VMM.

For example, a VMM is not inherently privy to the semantics of a guest operating system’s

basic abstractions (e.g., processes, threads, and users), its policies, or its performance goals.

No standard interfaces exist that allow a VMM to query a guest operating system for these

details. The semantic gap fundamentally limits the kinds of features a VMM-level service

can provide.

Previous work in virtualized environments has partially recognized this dilemma and

other researchers have developed techniques to infer information about one aspect of a

guest operating system, namely, how it makes use of the hardware resources allocated to

it [12, 85, 101]. Techniques that provide resource utilization information to a VMM are

useful because they allow a VMM to manage the resources of the system more effectively.

For example, armed with memory utilization information, a VMM can reallocate an other-

wise idle page in one virtual machine to a different virtual machine that could use it more

effectively [101].

In addition, some recently proposed VMM-based services use information about the

software abstractions of the operating systems running above them. VMI [35], for exam-

ple, uses debugging information about the specific version of its guest operating systems

to extract implementation details like the memory addresses of private operating system

variables and the layout of compound data structures. IntroVirt [52], requires a priori se-

mantic information about key operating system functions like fork, exec, and mmap to

stay informed of important guest events. These explicit approaches are effective, but have

significant disadvantages. Explicit information closely couples a VMM-level service to a

specific operating system version. A service based on externally provided, explicit guest

implementation information must also trust that the guest operating system it observes has

not been corrupted or compromised.

1.2 Research Statement

In response to these shortcomings, this dissertation explores how a VMM can indepen-

dently obtain information about the software abstractions of the guest operating systems

running above it in the software stack. Techniques that can be used to implicitly extract

information about hardware or software components across a system layer boundary using

observation and measurement are known as gray-box [5] techniques. When explicit in-

formation about a guest OS is inconvenient to obtain, unavailable, or unreliable, gray-box

techniques can help bridge the semantic gap. In this dissertation, we describe, implement,

and evaluate new gray-box techniques and algorithms that can be used by a VMM to im-

plicitly obtain valuable information about two important software abstractions: operating

3

system processes and the unified buffer cache and virtual memory system. In addition to

obtaining information, we employ several case studies to show that our implicitly obtained

information can be used as the basis of VMM-level services that enhance overall system

performance.

One important finding of our work is that implicit information obtained within a VMM

about a guest OS can be highly variable or noisy. Variability and noise can complicate

making definitive statements about the current state of a guest. For some kinds of ap-

plications implemented at the VMM layer, like security monitoring, incorrect decisions

can have disastrous results. In this dissertation, we show how statistical inference tech-

niques can transform the naturally noisy implicit information available to a VMM into a

reliable indicator of unwanted malicious activity. As a case study, we have built a highly

accurate hidden process detection and identification service within a VMM that uses this

transformed information to protect guest operating systems.

1.3 Process Information

The process is a key operating system concept. Processes provide many of the fundamental

abstractions that programmers rely on, like private address spaces, and serve as the basic

resource container and security isolation boundary for user tasks. We have developed a

set of techniques that enable a virtual machine monitor to implicitly discover and exploit

information about processes. By monitoring low-level interactions between guest operating

systems and the memory management structures on which they depend, we show that a

VMM can accurately determine when a guest operating system creates processes, destroys

them, or context-switches between them.

Antfarm is the implementation of our process identification techniques for two dif-

ferent virtualization environments, Xen [27] and Simics [60]. We evaluate Antfarm as

applied to multiple architecture and operating system combinations including x86/Linux,

x86/Windows, and SPARC/Linux. This range of environments spans two processor fami-

lies with significantly different virtual memory management interfaces and two operating

systems with very different process management semantics.

We demonstrate the utility and efficacy of VMM-level process awareness by building

an anticipatory disk scheduler [47] within a VMM. In a virtual machine environment, an

anticipatory disk scheduler requires information from both the VMM and operating sys-

tem layers and so cannot be implemented exclusively in either. Making a VMM process

aware overcomes this limitation and allows an OS-neutral implementation at the VMM

layer without any modifications or detailed knowledge of the operating system above. Our

implementation within the VMM is able to improve throughput among competing sequen-

tial streams from processes across different virtual machines or within a single guest oper-

ating system by a factor of two or more. Antfarm imposes only a small runtime overhead of

about 2.4% in a worst case scenario and about 0.6% in a more common, process-intensive

compilation environment.

4

1.4 Buffer Cache Information

The unified operating system buffer cache and virtual memory system is critical to overall

system performance. We have developed techniques to obtain information about the buffer

cache by carefully observing guest operating system interactions with virtual hardware like

the MMU and storage devices. Our methods detect when pages are inserted into or evicted

from the buffer cache.

Geiger is an implementation of these techniques within the Xen VMM. Geiger signifi-

cantly extends previous buffer cache related gray-box techniques by showing that a VMM

must track more than just disk requests to accurately infer buffer cache evictions on modern

operating systems. A VMM must also account for anonymous memory allocation to detect

a whole new class of evictions when the buffer cache is unified with the virtual memory

system. A VMM must also take basic file system behavior into account to accurately report

certain cache events. For example, the VMM must track whether a particular data block

is live or dead on disk in order to avoid reporting many spurious evictions. In addition,

journaling file systems, such as ext3 in Linux, require the VMM to distinguish between

writes to the journal and writes to other parts of storage to avoid an aliasing problem that

leads to reporting false evictions.

We demonstrate how the inferred eviction information provided by Geiger can enable

useful services inside a VMM by building multiple applications as case studies. The first

case study represents a novel, VMM-based working set size estimator called MemRx [51]

that complements existing techniques [101] by allowing estimation in the case that a VM

is thrashing in virtual memory. A second study explores how Geiger-inferred evictions can

be used by a VMM to enable remote storage caches to implement eviction-based cache

placement [104] without changing the application or operating system storage interface,

hence enhancing the adoption of this feature.

1.5 Security Applications

Stealth rootkits that can hide processes are a current and important security issue. Half

of unpatched Windows systems surveyed by the Microsoft Malicious Software Removal

Tool [63] are infested with a single stealth rootkit alone [67]. The ability to detect and

respond to malicious hidden processes is a clear advantage in the race to defend network-

attached computers.

Lycosid is our VMM-based security service that detects and identifies hidden processes.

Lycosid is resilient to malicious guest attack by virtue of its location within a VMM. Unlike

previous VMM-based security services, Lycosid does not depend on the guest operating

system for trusted information, rendering it less susceptible to guest evasion attacks.

We have evaluated Lycosid using both Windows and Linux guests and show that it can

accurately detect and identify hidden processes in a wide range of extremely challenging

environments despite the fact that the implicitly obtained information about guest virtual

machines it uses is noisy and sometimes wrong [49, 50]. Accuracy is achieved via a tar-

geted use of statistical inference techniques like hypothesis testing and linear regression

5

that trade time for accuracy. Despite uncertain inputs, Lycosid provides a robust, highly

accurate service usable even in security environments where the consequences for wrong

decisions can be high.

1.6 Contributions

The primary contributions of this dissertation are:

• The formulation and design of new gray-box techniques which allow a VMM to

implicitly obtain accurate information about key events and the current state of guest

operating system processes and the unified buffer cache and virtual memory system.

• The implementation of those techniques in a real virtual machine monitor and the

evaluation of the implementation along several axes including accuracy, timeliness,

and runtime overhead.

• The design and implementation of several case studies that demonstrate the feasibil-

ity of using implicit information to build real VMM-level optimizations and services.

• The identification of key system features and parameters that influence the accuracy

and practical value of implicit information obtained at the VMM-level.

• The development and evaluation of algorithms, based on statistical inference, to over-

come the fundamental variation and uncertainty in our VMM-based process infor-

mation that enables us to use implicit information in a high consequence security

environment.

1.7 Outline

The rest of this dissertation is organized as follows. In Chapter 2 we review the key fea-

tures of virtual machine technology. In Chapter 3 we provide an overview of our implicit

approach. Chapter 4 describes techniques to implicitly track guest OS processes. In Chap-

ter 5 we present techniques that allow a VMM to observe guest OS buffer cache events.

Chapter 6 presents our VMM-based hidden process detection and identification service.

We survey related work in Chapter 7. Chapter 8 summarizes our findings, discusses lessons

learned, and presents future work.

6

Chapter 2

Virtualization Background

Virtual machine techniques have been around for a long time. In fact, the earliest robust

virtual machine implementations were essentially co-incident with the first multi-user op-

erating systems [23, 65]. In this chapter we review the basic ideas behind virtualization

technology. We will especially emphasize virtualization features that underlie our VMM-

based gray-box techniques.

2.1 The Role of the Virtual Machine

There are several varieties of virtualization [87]. Process-level virtual machines virtualize

a limited set of computer system features, including the user-level instruction set and ap-

plication binary interface, for a single process. Examples of process-level virtual machines

include the Java virtual machine runtime or the Microsoft CLR. System-level virtualization

provides a complete virtualized computer system to a full operating system including the

user and supervisor CPU instruction sets, memory, firmware, and peripheral devices. The

primary purpose of system-level virtualization is to allow multiple operating systems to

transparently share a single host computer system. This dissertation deals exclusively with

system-level virtualization.

The motivation for running multiple operating systems on a single hardware host was

originally to allow an expensive machine to be safely shared by independent organizations

with different hardware and software requirements. For example, a department running a

critical batch-oriented accounting system could share a computer with an engineering de-

partment developing the next series of application or system software. Sharing remains

a primary application of system virtualization today where consolidating many underuti-

lized, single purpose servers onto a smaller number of more fully utilized hosts can reduce

procurement, management, and energy costs.

In a virtualized environment, safe sharing of resources among concurrently executing

operating system instances is accomplished via strong isolation. Each operating system in-

stance executes within a virtual machine (VM). Operating systems running within a virtual

7

8

machine are called guests. Each VM is provided with virtual copies of system resources

like CPUs, memory, disk storage, and network interfaces. The virtual copies are multi-

plexed in time or space onto the real physical resources by a thin layer of control software

called the virtual machine monitor (VMM) or hypervisor. The VMM is the primary re-

source manager for a virtualized system, i.e., it has the responsibility of allocating and

scheduling access to all physical resources.

Virtual machine technology has advanced considerably in the past 40 years and is set

to become a core feature in most server platforms. Virtualization has expanded its scope

from large centralized computers like mainframes [23], to mini-computers [88], and (more

recently) to PC-based servers and desktops [91]. Virtual machine techniques are experi-

encing a research and commercial renaissance and are being used to enable interesting new

features like flexible resource management [101], workload migration [19, 82], service and

device driver isolation [31, 59], security services [34, 35, 52], and fault tolerance [11].

All of IBM’s POWER5-based server platforms now include an always-on, firmware-based

hypervisor, the main-line Linux kernel now includes hosted virtualization features, and

Microsoft plans to include a hypervisor as a core component in its next generation server

operating system.

2.2 Deprivileged Operation

One of the key techniques that enables a virtual machine monitor to safely support multi-

ple, concurrent operating systems is deprivileged operation. Normally, an operating system

has complete and sole control over the underlying system hardware. That level of control

cannot be shared safely among multiple operating systems. Hence, a VMM deprivileges all

guest operating systems by executing them, including the kernel, in an unprivileged mode

of the host computer’s CPU. Sensitive operations, like those that affect system configura-

tion or that directly access a shared resource, are not allowed in unprivileged modes. When

a deprivileged operating system attempts to invoke a sensitive operation, the CPU generates

an exception or trap. On startup, a VMM registers itself as the handler for all interrupts

and exceptions. Thus, a VMM is informed via a trap whenever a guest operating system

uses a sensitive instruction. Within the trap handler, a VMM may emulate the effects of

the trapping instruction by, for example, updating virtual CPU registers, updating a page

table entry, or initiating an I/O request. This general technique is called trap and emulate

virtualization and is the most common virtualization technique used by VMMs today.

The techniques described in this dissertation rely on the ability of a VMM to observe

certain exceptions delivered to it and to derive useful information about the internal states

of its guest operating systems. Deprivileged operation ensures that the VMM gets that

opportunity. The next sections describe the specific events we use and why a VMM is

informed when they occur.

9

2.3 Virtualizing Memory

Inside a VMM, we make special use of information about how a guest operating system

manages virtual address spaces. Specifically, we need to be informed about all page faults,

page table updates, TLB flushes, and address space context switches.

A VMM receives notification of page faults because of its role in virtualizing system

interrupts and exceptions. Delivery of page faults to the VMM is a natural consequence of

interrupt processing. Information about TLB flushes, and address space context switches is

available within a VMM because of its role in virtualizing the CPU’s memory management

unit (MMU).

To observe page table updates, however, a VMM must often employ additional tech-

niques. The most common approach is called shadow page tables and ensures that a VMM

retains control over virtual to physical address translation. In shadow paging, guest page

tables are never used directly by the processor to perform address translation. A VMM em-

ploys its own page tables, called shadow page tables, to cache selected portions of a guest’s

page tables. In the shadow tables used by the processor, memory used for guest page tables

is marked read-only so that a VMM is informed via a page fault when entries are updated.

This allows the VMM to maintain consistency between its cached version and the original

guest page tables. See Adams and Agesen’s description of the VMware VMM [2] for a

detailed description of one implementation of shadow page tables. By employing shadow

page tables, a VMM can observe all relevant page table updates.

2.4 Virtualizing Disk I/O

Some of our techniques also use information about how a guest operating system utilizes

disk storage. Information about disk requests is available to a VMM because it implements

the virtual disk I/O devices that are available to a guest. An I/O request can be initiated

by a guest in two different ways. A VMM may provide a virtual model of a real hardware

device. An unmodified guest OS device driver communicates with such a device using

memory mapped or programmed I/O [91]. The VMM can configure the underlying hard-

ware to ensure that all such accesses are privileged. Hence, the VMM is informed when

each operation occurs. Alternatively, a VMM may provide a high-level virtual device with

which a virtual machine aware device driver within the guest communicates using a private

interface similar to a system call [31]. In either case, the VMM can always observe the

memory address, the disk address, and the operation type (read or write) of each disk I/O

request.

2.5 Trap and Emulate Limitations

Some architectures, notably the Intel x86, include sensitive instructions which do not trap

when invoked in an unprivileged mode. Instead, they fail silently. This type of instruction

set is not formally virtualizable using only trap and emulate techniques [73]. To virtualize

the x86, additional techniques like binary analysis and dynamic code translation are used

10

by popular x86 VMMs like VMware and Microsoft Virtual Server [2, 45, 62]. Robin and

Irvine [77] provide a comprehensive discussion of the problematic x86 instructions. By

using binary analysis and code translation, a VMM like VMware receives the same set of

notifications as a pure trap and emulate VMM.

2.5.1 Paravirtualization

Another virtualization approach called paravirtualization [27, 103] solves the problems as-

sociated with the x86 architecture by defining them away. A paravirtual VMM implements

a slight different virtual architecture than the underlying host. It replaces problematic in-

structions with equivalent VMM operations similar to system calls. Hence, a significant

benefit of paravirtualization on platforms like the x86 is reduced VMM complexity. A par-

avirtual VMM can also reduce virtualization overhead on any architecture by introducing

private, streamlined interfaces for certain high-cost operations. The benefits of paravirtu-

alization come at the cost of porting guest operating systems to the modified paravirtual

architecture. One of our implementation platforms (Xen) has a paravirtual mode. Paravir-

tual Xen is notified of the same architectural events as a more conventional x86 VMM like

VMware. The notification mechanism, however, is slightly different. Our results using

paravirtual Xen are equally applicable to other VMMs that use trap and emulate or hybrid

techniques.

2.5.2 Hardware Trends

More recent processors from Intel and AMD include virtualization extensions that trans-

form the x86 into a formally virtualizable platform where classic trap and emulate vir-

tualization can be used directly [3, 46]. The new processors also include features meant

to improve virtualization performance by reducing the frequency of virtualization-related

traps. These optimizations can, in some configurations, prevent a VMM from observing

certain events. For example, when these features are in use it is no longer guaranteed that a

VMM will observe every guest page fault. The techniques we describe in this dissertation

depend on the ability of the VMM to observe events like page faults. Modifications to our

techniques may be required if a CPU is configured to hide information from the VMM.

This dissertation, as well as other research [2] show that software techniques have much to

offer virtual machine performance and security. Commodity x86 processors that include

virtualization extensions are still new and it remains to be seen which of their features will

be used by VMMs in practice.

2.6 Summary

Our implicit techniques exploit the principle of deprivileged operation to ensure that the

VMM is notified of critical configuration, exception, and I/O events, such as page faults,

page table updates, and disk requests. There are different ways to implement deprivileged

11

operation including trap and emulate, paravirtualization, and hardware assisted virtualiza-

tion. In each case, the VMM and the underlying architecture can be configured to provide

low overhead access to the notification events we rely on.

12

Chapter 3

Implicit Operating System

Awareness

In this chapter we provide a high-level overview of our research goals and approach. We

also discuss alternatives to our approach and how their advantages and disadvantages com-

pare to ours in general.

3.1 Goals

Our primary research goal is to develop and evaluate techniques that enable the construc-

tion of practical VMM-level system services. We believe that a VMM is a natural place to

implement certain kinds of system services because of the rapid spread of system virtual-

ization technology. A practical VMM-level service should be easy to deploy and manage,

impose low overhead, and retain the strong isolation and security properties of a VMM.

Our techniques strive to enable easy deployment and management of VMM-based services

through portability without compromising system performance or security.

3.2 Approach

Portability is one major factor leading to easy deployment of VMM-based services. A

portable service can be installed in more diverse environments than an OS-specific solution.

Planning and provisioning for a portable service can be accomplished independent of which

operating system is selected to provide guest services. Ideally, a portable VMM-layer

service should be implemented once and apply to any guest operating system the VMM

encounters.

We have designed our techniques to be portable by avoiding the use of vendor or

version-specific guest implementation information. Instead, we observe the stream of

architecturally-defined events like page faults, hardware interrupts, configuration register

13

14

updates, page table modifications, and I/O requests that are intrinsically visible to a VMM

in its role as a service provider to guest operating systems. We employ a gray-box approach

that applies a top-down, generic understanding of the common responsibilities and goals of

modern operating systems to interpret the events delivered to a VMM and to infer useful

information about the internal state of a guest OS. Limiting our use of guest knowledge to

features and responsibilities that are generic across all the operating systems that a VMM

supports means we can decouple our VMM-based services from guest peculiarities.

Our approach requires no new, non-standard interfaces between guests and the VMM.

No modifications to the guest operating system or application software are required, which

makes our approach equally applicable to legacy or closed guest software.

An additional benefit of the implicit approach is that the information we obtain reflects

actual guest activity. A corrupt or compromised guest cannot hide information from or

mislead the VMM except by changing its externally visible behavior, which is more diffi-

cult than simply supplying incorrect information. By way of analogy, it is easier to hide a

building on a map provided to an adversary than it is to hide the building from an adversary

standing next to the building. As we show in Chapter 6, this property can be especially

useful in a security context.

3.2.1 Limitations

Our approach, however, is not perfect. It is unlikely that information on every aspect of

a guest operating system that a VMM could find useful will be available implicitly. In

this dissertation, we have limited ourselves to extracting information about two guest ab-

stractions (processes and the buffer cache) that cast a strong architectural shadow, i.e., for

which virtual hardware is intimately involved. We believe, however, that information about

additional abstractions can be implicitly obtained. For example, we have preliminary ap-

proaches for obtaining information about guest operating system threads and users. The

well of implicit guest information is not yet dry.

We have also found that implicit information can be delayed or, in limited cases, wrong.

A major contribution of our work is measuring this aspect of implicit information and

demonstrating that many services are resilient to delay or short-term errors. Statistical

techniques like hypothesis testing and regression have also proven effective in transforming

highly variable implicit information into reliable intelligence about the internal state of a

guest.

3.3 Alternative Approaches

There are other approaches for obtaining information about guest operating systems in sup-

port of VMM-services. These techniques can be divided into two categories. The first in-

troduces new VMM-to-guest interfaces. The second uses explicitly provided details about

how a specific guest operating system is implemented.

15

3.3.1 New Interfaces

New interfaces, through which arbitrary information about guest activities and state may

be passed, can be added to a VMM. This approach has the significant advantage of being

straightforward to implement and use. Information provided via such interfaces is timely

and reflects the guest’s true instantaneous state. The kinds of guest information available to

a VMM is not limited when arbitrary interfaces between the VMM and guests exist. Any

information the guest operating system has and is willing to export can be made available.

Adding new interfaces also has some interesting disadvantages; most importantly, these

interfaces do not exist today. Current interface standardization efforts suggest that the pro-

cess to define a standard VMM-to-guest interface will likely be long and contentious, leav-

ing a large window of time in which alternative approaches will be required. Determining

what types of guest information are most useful and how to provide that information to a

VMM in a safe and portable way is an interesting question that researchers have begun to

explore in related contexts [6, 38].

Guest operating systems must be modified to take advantage of new VMM interfaces.

The cost of porting an operating system and subsequently maintaining a VMM-aware ver-

sion can be high. Proponents of paravirtualization claim that the required changes to guest

operating systems are minor [27]. Unfortunately, the changes required are often in the

most complex and error-prone portions of an OS like the virtual memory and I/O systems.

Other researchers cite the high engineering cost of porting operating systems to a paravir-

tual VMM as motivation for a clever, but complex, automated porting architecture [58]. In

either case, the cost of creating and maintaining yet another operating system version is

non-trivial.

Finally, adding interfaces may have negative security implications. Adding interfaces

enlarges the attack surface of a VMM and tends to reduce the security advantages a VMM

enjoys relative to other locations in a system. In addition, a VMM that depends on a guest to

provide information about itself enters into an implicit relationship of trust with the guest.

A buggy or compromised guest could mislead the VMM and thwart a VMM-based security

monitoring service. Adding generic public interfaces to a VMM should be undertaken with

extreme caution.

3.3.2 Explicit Information

A second approach for obtaining high-level guest information uses knowledge of explicit

guest OS implementation details. Memory addresses of variables and the semantic infor-

mation needed to interpret those variables are examples of the kind of explicit information

a VMM can use to extract current guest state. Such information can often be derived from

debugging symbols and debugging libraries. Additional information about the semantics of

specific operating system functions can be obtained by reading source code or from binary

reverse engineering.

Similar to the new interfaces technique, the explicit information approach provides ac-

cess to timely information that corresponds exactly to the guest’s view of its own current

state. Rich, detailed information is available. Any information that is encoded in an inter-

16

pretable guest data structure and any event that corresponds to a known guest function is

available for consumption by the VMM.

Unfortunately, it may be inconvenient to get and maintain the explicit information that

a VMM requires. If the guest operating system is legacy or closed, such information may

simply be unavailable. Since implementation details can change between versions or even

between patch-levels of a guest OS, keeping the information about guest memory and func-

tion locations up-to-date can be challenging. Microsoft’s distributed, web-based debugging

symbol repository is a testimony to how difficult it is to keep the debugging information

that its partners use up-to-date for the many hundreds of active operating system versions

and patch-levels it supports.

Reading information from OS data structures without understanding the locking proto-

col used to protect them from concurrent update could lead to inconsistent or corrupt data.

Uhlig et al. [98], show that a processor in an unprivileged mode implies that no kernel locks

are held and that all kernel data structures are consistent. On today’s increasingly parallel

hardware and multi-threaded applications, waiting for all processor cores to enter an un-

privileged mode may severely restrict the opportunities of the VMM to access guaranteed

consistent guest data directly.

3.4 Summary

Using implicit information to implement VMM-based services represents an unexplored

region of the design space. It may be harder for the VMM to get the information it needs

using only implicit techniques and that information may be subtly inaccurate. However, a

VMM can use implicit information without knowing any details about its guest operating

systems and no changes to those operating systems are required.

From a security standpoint, implicit information is less vulnerable to evasion attacks

by a compromised guest OS because it is based on external observations of a running

system rather than information supplied explicitly or implicitly by the guest itself. By

using implicit techniques, a VMM need not trust the guest OS it observes.

Chapter 4

Tracking Guest Operating

System Processes

This chapter introduces a set of techniques that enable a virtual machine monitor to im-

plicitly discover and exploit information about one of the most important operating system

abstractions, the process. Processes provide some of the basic simplifying illusions that

help programmers manage complexity like large, flat, private address spaces and private

CPUs. The process is the container within which each user program runs. Operating sys-

tems allocate and schedule resources to processes. The boundaries defined by a process are

used to ensure program isolation. Each logical unit of a user’s work is often encapsulated

within by a process. Hence, knowledge about operating system processes can reveal useful

information about resource usage, workload organization, scheduling policies, and security

goals.

We show how a VMM can accurately infer when a guest operating system creates pro-

cesses, destroys them, or context-switches between them. The basic mechanism consists of

monitoring low-level interactions between guest operating systems and the memory man-

agement structures, like page tables and TLBs, on which they depend. These techniques

achieve our portability goals by operating without any explicit information about the guest

operating system vendor, version, or implementation details.

We demonstrate the utility and efficacy of VMM-level process awareness by building

an anticipatory disk scheduler [47] within a VMM. In a virtual machine environment, an

anticipatory disk scheduler requires information from both the VMM and the operating

system layers, so it cannot be implemented exclusively in either. Making a VMM process

aware overcomes this limitation and allows an OS-neutral implementation of anticipatory

scheduling at the VMM layer without any modifications or detailed knowledge of the guest

OS. Our implementation within the VMM is able to improve throughput among competing

sequential streams of disk read requests from processes across different virtual machines

or within a single guest operating system by a factor of two or more.

In addition to I/O scheduling, process information within the VMM has several other

17

18

important applications, especially in the security domain. For example, it can be used to de-

tect that processes have been hidden from system monitoring tools by malicious software,

an application we discuss at length in Chapter 6. Code and data from particularly sensitive

or vulnerable processes can be identified that should be monitored for runtime modifica-

tion [35]. Patterns of system calls associated with a process can be used to recognize when a

process has been compromised [33, 84]. In addition to just detecting intrusions, techniques

exist to slow or thwart intrusions at the process level by affecting process scheduling [89].

Finally, process information can be used as the basis for discovering other high-level OS

abstractions. For example, the parent-child relationship between processes can be used to

identify groups of related processes associated with a user. All of these applications are

feasible within a VMM only when process information is available.

Antfarm is the implementation of our process identification techniques for two differ-

ent virtualization environments, Xen and Simics. We have evaluated Antfarm as applied

to a range of platform and guest-OS combinations including x86/Linux, x86/Windows,

and SPARC/Linux. This range of environments spans two processor families with signif-

icantly different virtual memory management interfaces and two operating systems with

very different process management semantics, providing empirical evidence for our claim

of portability. Antfarm imposes only a small runtime overhead of about 2.4% in a worst

case scenario and about 0.6% in a more common, process-intensive compilation environ-

ment.

4.1 Background

The techniques we describe in this paper are based on the observations that a VMM can

make of the interactions between a guest OS and virtual hardware. Specifically, Antfarm

monitors how a guest uses a virtual MMU to implement virtual address spaces. In this

section we review some of the pertinent memory management details of the Intel x86 and

the SPARC architectures used by Antfarm.

4.1.1 x86 Virtual Memory Architecture

Our first implementation platform is the Intel x86 family of microprocessors. We chose the

x86 because it is the most frequently virtualized processor architecture in use today. This

section reviews the features of the x86 virtual memory architecture that are important for

our inference techniques.

The x86 architecture uses a two-level, in-memory, architecturally-defined page table.

The page table is organized as a tree with a single 4 KB memory page called the page

directory at its root. Each 4-byte entry in the page directory can point to a 4 KB page of

the page table for a process.

Each page table entry (PTE) that is in active use contains the address of a physical page

for which a virtual mapping exists. Various page protection and status bits are also available

in each PTE that indicate, for example, whether a page is writable or whether access to a

page is restricted to privileged software.

19

A single address space is active per processor at any given time. System software

informs the processor’s MMU that a new address space should become active by writing

the physical address of the page directory for the new address space into a processor control

register (CR3). Since access to this register is privileged the VMM must virtualize it on

behalf of guest operating systems.

TLB entries are loaded on-demand from the currently active page tables by the proces-

sor itself. The operating system does not participate in handling TLB misses.

An operating system can explicitly remove entries from a TLB in one of two ways.

A single entry can be removed with the INVLPG instruction. All non-persistent entries

(those entries whose corresponding page table entries are not marked “global”) can be

flushed from the TLB by writing a new value to CR3. Since no address space or process

ID tag is maintained in the TLB, all non-shared entries must be flushed on context switch.

4.1.2 SPARC Virtual Memory Architecture

In this section we review the key aspects of the SPARC MMU, especially how it differs

from the x86. We chose the SPARC as our second implementation architecture because it

provides a significantly different memory management interface to system software than

the x86.

Instead of architecturally-defined, hardware-walked page tables as on the x86, SPARC

uses a software managed TLB, i.e., system software implements virtual address spaces

by explicitly managing the contents of the hardware TLB. When a memory reference is

made for which no TLB entry contains a translation, the processor raises an exception,

which gives the operating system the opportunity to supply a valid translation or deliver an

error to the offending process. The CPU is not aware of the operating system’s page table

organization.

In order to avoid flushing the entire TLB on process context switches, SPARC supplies a

tag for each TLB entry, called a context ID, that associates the entry with a specific virtual

address space. For each memory reference, the current context is supplied to the MMU

along with the desired virtual address. In order to match, both the virtual page number and

context in a TLB entry must be identical to the supplied values. This allows entries from

distinct address spaces to exist in the TLB simultaneously.

An operating system can explicitly remove entries from the TLB at the granularity of

a single page or at the granularity of an entire address space. These operations are called

page demap and context demap respectively.

4.2 Process Identification

The key to our process inference techniques is the logical correspondence between the

abstraction process, which is not directly visible to a VMM, and the virtual address space,

which is. This correspondence is due to the traditional single address space per process

paradigm shared by all modern operating systems.

20

There are three major process events we seek to observe: creation, exit, and context

switch. To the extent address spaces correspond to processes, these events are approxi-

mated by address space creation, destruction, and context switch. Hence, our techniques

track processes by tracking address spaces.

Our approach to tracking address spaces on both x86 and SPARC is to identify a VMM-

visible value with which we can associate a specific address space. We call this value an

address space identifier (ASID). Tracking address space creation and context switch then

becomes simply observing the use of a particular piece of VMM-visible operating system

state, the ASID.

For example, when an ASID is observed that has not been seen before, we can infer that

a new address space has been created. When one ASID is replaced by another ASID, we

can conclude that an address space context switch has occurred. We identify address space

deallocation by detecting when an ASID is available for reuse. We assume that the address

space, to which an ASID refers, has been deallocated if its associated ASID is available for

reuse.

4.2.1 Techniques for x86

On the x86 architecture we use the physical address of the page directory as the ASID. A

page directory serves as the root of the page table tree that describes each address space.

The address of the page directory is therefore characteristic of a single address space.

Process Creation and Context Switch

To detect address space creation on x86 we observe how page directories are used. A

page directory is in use when its physical address resides in CR3. The VMM is notified

whenever a guest writes a new value to CR3 because it is a privileged register. If we observe

an ASID value being used that has not been seen before, we can infer that a new address

space has been created. When an ASID is seen for the first time, the VMM adds it to an

ASID registry that it maintains for tracking purposes. The ASID registry is similar to an

operating system process list.

When a new value is written to CR3 it implies an address space context switch. By

monitoring writes to this privileged register, a VMM always knows which ASID is cur-

rently “active”.

Process Exit

To detect address space deallocation, we use knowledge about the generic responsibilities

of an operating system to maintain address space isolation. Isolation requirements lead

to distinctive operating system behavior that can be observed and exploited by a VMM to

infer when an address space has been destroyed.

Operating systems must strictly control the contents of page tables being used to im-

plement virtual address spaces. Process isolation could be breached if a page directory

or page table page were reused for distinct processes without first being cleared of their

21

previous contents. To ensure that no stale page table entries that point outside a process’s

allocated memory exist in reused page tables, Windows and Linux systematically clear the

non-privileged portions of page table pages used by a process when it exits. Privileged por-

tions of the page tables, which are used to implement the protected kernel address space,

do not need to be cleared because they are shared between processes and map memory that

is not accessible to untrusted software.

An operating system must also ensure that no stale entries remain in any TLB once

an address space has been deallocated. Since the x86 architecture does not provide a way

for entries from multiple address spaces to coexist in a TLB, a TLB must be completely

flushed prior to reusing address space structures like the page directory. On x86, the TLB

is flushed by writing a value to CR3, an event the VMM can observe.

Hence, to detect user address space deallocation, a VMM can keep a count of the num-

ber of user virtual mappings present in the page tables describing an address space. When

this count drops to zero, the VMM can infer that one requirement for address space reuse

has been met. It is simple for a VMM to maintain such a reference count because the VMM

must be informed of all updates to a process’s page tables so that it can reflect the changes

in its shadow page tables. Multi-threading does not introduce additional complexity, be-

cause updates to a process’s page tables are always be synchronized within the VMM for

correctness.

By monitoring TLB flushes on all processors, a VMM can detect when the second

requirement for address space deallocation has been met. Once both events have been

observed for a particular ASID, the VMM can consider the corresponding address space

dead and its entry in the ASID registry can be removed. A subsequent use of the same

ASID implies the creation of a new and distinct process address space.

4.2.2 Techniques for SPARC

The key aspect that was used to enable process awareness on x86 is still present on SPARC.

Namely, there is a VMM-visible identifier associated with each virtual address space. On

x86 this was the physical address of the page directory. On SPARC we use the virtual

address space context ID as an ASID. Making the obvious substitution leads to a process

detection technique for SPARC similar to that for x86.

Creation and Context Switch

On SPARC, installing a new context ID is a privileged operation; hence, it is always visible

to a VMM. By observing context ID switches, a VMM can maintain a registry of known

ASIDs. When a new ASID is observed that is not in the ASID registry, the VMM can infer

the creation of a new address space. Context switch is detected on SPARC whenever the

context ID is changed on a processor.

22

x86 SPARC

ASID Page directory PA Context ID

Creation New ASID New ASID

Exit No user mappings and Context demap

TLB flushed

Context switch CR3 change Context ID change

Table 4.1: Process identification techniques. The table lists the techniques used by Antfarm to

detect each process event on the x86 and SPARC architectures.

Exit

The only requirement for the reuse of a context ID on SPARC is that all stale entries from

the previously associated address space be removed from each processor’s TLBs. SPARC

provides the context demap operation for this purpose. Instead of monitoring page table

contents, as on x86, a VMM can observe context demap operations. If all entries for a

context ID have been flushed from every processor it implies that the associated address

space is no longer valid.

4.3 Resource Association

In addition to detecting process creation, exit, and context switch, associating other sys-

tem events with particular processes is important to effectively utilize process information

within a VMM. Processes are primarily important to the VMM in their role as containers

for resources. Hence, associating resource consumption at the granularity of a process en-

ables the VMM to make more informed and precise allocation and scheduling decisions.

Examples of resource association that could be useful to a VMM include CPU processor

time, disk and network I/O, and memory events like page cache insertion and eviction.

4.3.1 Context Association

The simplest and most generic means of associating resources with processes is to associate

them in time. We call this method context association. Using the process identification and

context switching inferences described previously, we can associate a specific process with

a series of time intervals. The interval during which context association will attribute an

event to a process begins when its address space is installed on the processor and ends when

it is replaced by another process’s address space or the virtual machine is de-scheduled.

The advantages of this technique are its extreme simplicity and its generality: any event

detectable by a VMM can be associated with a process using context association.

Unfortunately, context association is not always accurate, due to the asynchrony that is

common within operating systems. Consider the case of a process making a disk request. If

the operating system chooses to forward the request to the virtual disk device immediately,

23

context association will attribute the request correctly to the issuing process. If, on the

other hand, the operating system delays issuing the request, for example because other

requests are ahead of it in the disk queue, the originating process is likely to be suspended

and another process will be chosen to run. Hence, the request and the process have become

decoupled in time.

4.3.2 Event Chaining

To overcome the inaccuracy of asynchronous event association, we develop a new tech-

nique: event chaining. The idea is to link synchronous events that occur in the context of

the issuing process with the event of interest.

To improve the accuracy of disk read associations, for example, event chaining based

on memory accesses can be used. When a read operation completes, the requesting process

will likely access the resulting data in memory at some point in the future. This access may

occur inside the operating system, for example, when the kernel copies the data into a user-

supplied buffer; conventional read system call semantics lead to this behavior. Alternately,

the access may occur at the resolution of a page fault, incurred by the process when it

touches a page of a memory-mapped file for the first time. If we can identify any of these

access events (which likely occur in the process’s context that initiated the read), we can

associate the related disk read more accurately with the issuing process.

One drawback of event chaining is that the more accurate results it provides are nec-

essarily delayed. This can be problematic if the VMM wishes to make a decision based

on process association at the time the event is detected and postponing the decision is not

practical. However, even in such cases, event chaining can be used to detect and correct

event misassociation, hence enabling recovery in some situations.

We have implemented event chaining for association of disk read requests, using access

to the memory buffer where the read results are deposited as the chaining event. When the

VMM receives a disk read request, the physical memory buffer into which the requested

data is to be placed by the disk controller is recorded. When the request is ready to com-

plete, all known existing virtual mappings for that physical page are invalidated such that

any access using one of those mappings will result in a page fault and will be visible to

the VMM. When such a fault occurs, the process in whose context the faulting address

is located is associated with the original disk read request. The affected mapping is then

returned to its original status, and the process can transparently proceed as normal.

4.3.3 Data Structures

To implement simple context association, all we need to track is which process is currently

running, something we already do for basic process awareness.

Implementing I/O event chaining is more complex. To enable modification of all exist-

ing mappings for a given physical page frame, the VMM must maintain a reverse mapping

data structure; this structure is roughly the same size as the normal set of page tables for

each actively tracked process.

24

4.4 Antfarm Implementation

Antfarm is the name of the implementation of our process-awareness techniques. Antfarm

has been implemented for two virtualization environments. The first, Xen [27], is a true

VMM. The other is a low-level system simulator called Simics [60] which we use to explore

process awareness for operating systems and architectures not supported by the version of

Xen used in this research.

4.4.1 Antfarm for Xen

Xen is an open source virtual machine monitor for the Intel x86 architecture. Xen provides

a paravirtualized [103] processor interface, which enables lower overhead virtualization at

the expense of porting system software. We explicitly do not make use of this feature of

Xen; hence, the mechanisms we describe are equally applicable to a more conventional

virtual machine monitor such as VMWare [91, 101]. Because operating systems must be

ported to run on Xen, proprietary commercial operating systems like Microsoft Windows

are not currently supported.

Antfarm for Xen is implemented as a set of patches to the Xen hypervisor version 2.0.6.

Changes are concentrated in the handlers for events like page faults, page table updates, and

privileged register access. Additional hooks were added to Xen’s back-end block device

driver. The Antfarm patches to Xen, including debugging and measurement infrastructure,

total approximately 1200 lines across eight files.

4.4.2 Antfarm for Simics

Simics [60] is a full system simulator capable of executing unmodified, commercial oper-

ating systems and applications for a variety of processor architectures. While Simics is not

a virtual machine monitor in the strict sense of native execution of user instructions [73],

it can play the role of a VMM by allowing Antfarm to observe and interpose on operating

system and application hardware requests in the same way a VMM does. Simics allows us

to explore process awareness techniques for SPARC/Linux and x86/Windows which would

not be possible with a Xen-only implementation.

Antfarm for Simics is implemented as a Simics extension module. Simics extension

modules are shared libraries dynamically linked with the main Simics executable. Exten-

sion modules can read or write OS and application memory and registers in the same way

as a VMM.

Simics provides hooks called “haps” associated with various hardware events for which

extension modules can register callback functions. Antfarm for Simics/x86 uses a hap

to detect writes to CR3 and Antfarm for Simics/SPARC uses a hap to detect when the

processor context ID is changed. Invocation of a callback is akin to the exception raised

when a guest OS accesses privileged processor registers on a true VMM. A memory write

breakpoint is installed by Antfarm for Simics/x86 on all pages used as page tables so that

page table updates can be detected. A VMM like Xen marks page tables read-only to detect

the same event.

25

Antfarm for Simics/x86 consists of about 800 lines of C code. For Simics/SPARC the

total is approximately 450 lines.

4.5 Process Awareness Evaluation

In this section we explore the accuracy of Antfarm in each of our implementation environ-

ments. We also characterize the runtime overhead of Antfarm for Xen. Our analysis of

accuracy is decomposed into two components. The first measures the ability of Antfarm

to correctly detect process creations, exits, and context switches. We call this aspect com-

pleteness. The second component we explore is the time difference or lag between process

events as they occur within the operating system and when they are detected by the VMM.

4.5.1 x86 Evaluation

We evaluate Antfarm for x86 as implemented within the Xen hypervisor version 2.0.6.

Version 2.6.11 of the Linux kernel was used in Xen’s privileged control VM. Linux kernel

version 2.4.30 and 2.6.11 are used in unprivileged VMs as noted. Our evaluation hardware

consists of a 2.4 GHz Pentium IV PC with 512 MB of RAM. Virtual machines are each

allocated 128 MB of RAM in this environment.

We also evaluate our techniques as applied to Microsoft Windows NT4 guests. Since

Windows is not supported by Xen 2.0, Simics/x86 is used for this purpose. Our Simics/x86

virtual machines were configured with a 2.4 GHz Pentium IV CPU and 256 MB of RAM.

Completeness

To quantify completeness, each guest operating system was instrumented to explicitly re-

port process creation, exit, and context switch. The resulting event records include the

appropriate ASID, as well as the time of the event obtained from the processor’s cycle

counter. These OS traces were compared to similar traces generated by Antfarm. Guest

OS traces are functionally equivalent to the information that would be provided by a par-

avirtualized OS that included a process event interface. Hence, our evaluation implicitly

compares the accuracy of Antfarm to the ideal represented by a paravirtual interface.

In addition to process creation, exit, and context switch, guests report address space

creation and destruction events so that we can discriminate between errors caused by a

mismatch between processes and address spaces and errors caused by inaccurate address

space inferences made by Antfarm.

We categorize incorrect inferences as either false negatives or false positives. A false

negative occurs when a true process event is missed by Antfarm. A false positive occurs

when Antfarm incorrectly infers events that do not exist.

To determine if false negatives occurred, one-to-one matches were found for every

OS-reported event in each pair of traces. To be considered a match we require that the

Antfarm event have the same ASID, and that it occur within the range for which the event

is plausible. For example, to match an OS process-creation event, the corresponding event

26

Proc ASpc Inf Proc ASpc Inf Ctxt CS

Create Create Create Exit Exit Exit Switch Inf

Linux 2.4

Fork Only 1000 1000 1000 1000 1000 1000 3331 3331

Fork + Exec 1000 1000 1000 1000 1000 1000 3332 3332

Vfork + Exec 1000 1000 1000 1000 1000 1000 3937 3937

Compile 815 815 815 815 815 815 4447 4447

Linux 2.6

Fork Only 1000 1000 1000 1000 1000 1000 3939 3939

Fork+Exec 1000 2000 2000 1000 2000 2000 4938 4938

Vfork + Exec 1000 1000 1000 1000 1000 1000 3957 3957

Compile 748 1191 1191 748 1191 1191 2550 2550

Windows

Create 1000 1000 1000 1000 1000 1000 74431 74431

Compile 2602 2602 2602 2602 2602 2602 835248 835248

Table 4.2: Completeness for x86. The table shows the total number of creations and exits for pro-

cesses and address spaces reported by the operating system. The total number of process creations

and exits inferred by Antfarm are shown in comparison. Antfarm detects all process creates and exits

without false positives or false negatives on both Linux 2.4 and Windows. Fork and exec, however,

lead to false positives under Linux 2.6 (bold face values). All false positives are due to the mismatch

between address spaces and processes, which is indicated by matching counts for address space cre-

ates and inferred creates. Actual and inferred context switch counts are also shown for completeness

and are accurate as expected.

inferred by Antfarm must occur after any previous OS-reported process exit events with the

same ASID and before any subsequent OS-reported process creation events with the same

ASID.

Table 4.2 reports the process and address space event counts gathered by our guest OSes

and by Antfarm during an experiment utilizing two process-intensive workloads. The first

workload is synthetic. It creates 1000 processes, each of which runs for 10 seconds then

exits. The process creation rate is 10 processes/second. On Linux, this synthetic workload

has three variants. The first creates processes using fork only; the second uses fork followed

by exec; the third employs vfork followed by exec. Under Windows, processes are created

using the CreateProcess API.

The second workload is a parallel compile of the bash shell sources using the command

“make -j 20” in a clean object directory. A compilation workload was chosen because it

creates a large number of short-lived processes, stressing Antfarm’s ability to track many

concurrent processes that have varying runtimes.

Antfarm incurs no false negatives in any of the tested cases, i.e., all process-related

events reported by our instrumented OSes are detected by the VMM. The fact that inferred

counts are always greater than or equal to the reported counts suggests this, but we also

verified that each OS-reported event is properly matched by at least one VMM-inferred

event.

Under Linux 2.4 and Windows, no false positives occur, indicating Antfarm can pre-

cisely detect address space events and that there is a one-to-one match between address

27

spaces and processes for these operating systems. Under Linux 2.6, however, false posi-

tives do occur, indicated in Table 4.2 by the inferred event counts that are larger than the

OS-reported counts. This discrepancy is due to the implementation of the Linux 2.6 fork

and exec system calls.

UNIX programs create new user processes by invoking the fork system call which,

among other things, constructs a new address space for the child process. The child’s

address space is a copy of the parent’s address space. In most cases, the newly created

child process immediately invokes the exec system call which replaces the child’s virtual

memory image with that of another program read from disk.

In Linux 2.4, when exec is invoked the existing process address space is cleared and

reused for the newly loaded program. In contrast, Linux 2.6 destroys and releases the ad-

dress space of a process invoking exec. A new address space is allocated for the newly

exec’d program. Hence, under Linux 2.6, a process that invokes exec has two distinct ad-

dress spaces associated with it, which do not overlap in time. In other words, the runtime

of the process is partitioned into two segments. One segment corresponds to the period

between fork and exec and the other corresponds to the period between exec and process

exit. Antfarm, because it is based on address space tracking, concludes that two differ-

ent processes are created leading to twice as many inferred process creations and exits as

actually occurred.

Due to the idiomatic use of fork and exec, however, a process is partitioned in a distinc-

tive way. The Linux 2.6/x86 case in Figure 4.1 depicts the temporal relationship between

the two inferred pseudo-processes. The duration of the first pseudo-process will nearly

always be small. For example, in the case of our compilation workload, the average time

between fork and exec is less than 1 ms, compared to the average lifetime of the second

pseudo-process, which is more than 2 seconds, a difference of three orders of magnitude.

The two pseudo-processes are separated by a short time period where neither is active.

This interval corresponds to the time after the original address space is destroyed and before

the new address space is created. During the compilation workload this interval averaged

less than 0.1 ms and was never larger than 2.3 ms. Since no user instructions can be exe-

cuted in the absence of a user address space, the combination of the two pseudo-processes

detected by Antfarm encompasses all user activity of the true process. Conventional use of

fork and exec imply that nearly all substantive activity of the true user process is captured

within the second pseudo-process.

Lag

The second aspect of process identification accuracy that we consider is the time difference

between a process event and when the same event is detected by the VMM. We define a

process to exist at the instant the fork (or its equivalent) system call is invoked. Exit is

defined as the start of the exit system call. These definitions are maximally conservative.

In Figure 4.1 create lag is labeled A and exit lag is labeled B.

Lag is similar in nature to response time, so we expect it to be sensitive to system

load. To evaluate this sensitivity, we conduct an experiment that measures lag times for

various levels of system load on Linux 2.4, Linux 2.6, and Windows. In each experiment,

28

Figure 4.1: Effects of error. The figure shows where each type of process identification error occurs

for each tested platform. Error is either lag between when the true event occurs and when the VMM

detects it, (e.g., A and B in the figure) or consists of falsely partitioning a single OS process into

multiple inferred processes. In Linux 2.6/x86, this only occurs on exec, which typically happens

immediately after fork. On SPARC this partitioning happens whenever a process calls either fork
or exec.

29

 0
 500

 1000
 1500
 2000
 2500
 3000

501010

C
re

at
e

La
g

(m
s)

Linux 2.4

Avg
Max

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

501010

E
xi

t L
ag

 (
m

s)

0.018
0.020
0.022
0.024
0.026
0.028
0.030
0.032

501010

Linux 2.6

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

501010

Concurrent Processes

 10
 20
 30
 40
 50
 60
 70
 80

501010

Windows NT

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35

501010

Figure 4.2: Lag vs. System Load. The figure shows average and maximum create and exit lag time

measurements for a variety of system load levels in each of our x86 evaluation environments. Average

and worst case create lag are affected by system load in Linux 2.4 and Windows, but are small and

nearly constant under Linux 2.6. Except for a large exit lag with no competing processes on Linux,

exit lag does not appear to be sensitive to system load.

0, 1, 10, or 50 CPU-bound processes were created. 100 additional test processes were then

created and the create and exit lag time of each were computed. Test process creations were

separated by 10 ms and each test process slept for one second before exiting.

The results of these experiments are presented in Figure 4.2. For each graph, the x-

axis shows the number of concurrent CPU-bound processes and the y-axis shows lag time.

Create lag is sensitive to system load on both Linux 2.4 and Windows, as indicated by the

steadily increasing lag time for increasing system load. This result is intuitive since a call

to the scheduler is likely to occur between the invocation of the create process API in the

parent (when a process begins) and when the child process actually runs (when the VMM

detects it). Linux 2.6, however, exhibits a different process creation policy that leads to

relatively small and constant creation lag. Since Antfarm detects a process creation when

a process first runs, the VMM will always be informed of a process’s existence before any

user instructions are executed.

Exit lag is typically small for each of the platforms. The exception is for an otherwise

idle Linux which shows a relatively large exit lag average of 10 ms. The reason for this

30

anomaly is that most Linux kernel tasks, including the idle task, do not need an associated

user address space and therefore borrow the previously active user address space when

they need to run. This mechanism allows a kernel task to run without incurring the expense

of a TLB flush. In the case of this experiment, test processes were started at intervals of

10 ms and each process sleeps for one second; hence, when no other processes are ready

to run, approximately 10 ms elapse between process exit and when another process begins.

During this interval, the Linux idle task is active and prevents the previous address space

from being released, which leads to the observed delay.

The Big Picture

Figure 4.3 shows a set of timelines depicting how Antfarm tracks process activity over time

for a parallel compilation workload on each of our x86 platforms. The top curve in each

graph shows the true, current process count over time as reported by the operating system.

The middle curve shows the current process count as inferred by Antfarm. The bottom

curve shows the difference between the two curves calculated as Inferred − Actual.

The result of the relatively large creation lag under Linux 2.4 is apparent in the larger

negative process count differences compared to Linux 2.6. For this workload and met-

ric combination, creation lag is of greater concern than the false positives experienced by

Linux 2.6. In another environment such as a more lightly loaded system, which would tend

to reduce lag, or for a metric like total cumulative process count, the false positives incurred

by Linux 2.6 could be more problematic.

Exit lag is not prominent in any of the graphs. Large, persistent exit lag effects would

show up as significant positive deviations in the difference curves. The fact that errors due

to fork and exec do not accumulate over time under Linux 2.6 is also apparent because no

increasing inaccuracy trend is present.

4.5.2 Overhead

To evaluate the overhead of our process awareness techniques we measure and compare the

runtime of two workloads under Antfarm and under a pristine build of Xen. The first work-

load is a microbenchmark that represents a worst case performance scenario for Antfarm.

Experiments were performed using Linux 2.4 guests.

Since our VMM extensions only affect code paths where page tables are updated, our

first microbenchmark focuses execution on those paths. The program allocates 100 MB

of memory, touches each page once to ensure a page table entry for every allocated page

is created and then exits, causing all of the page tables to be cleared and released. This

program is run 100 times and the total elapsed time is computed. The experiment was

repeated five times and the average duration is reported. There was negligible variance

between experiments. Under an unmodified version of Xen this experiment required an

average of 24.75 seconds to complete. Under Antfarm for Xen the experiment took an

average of 25.35 seconds to complete. The average slowdown is 2.4% for this worst case

example.

31

 0
 10
 20
 30
 40
 50
 60
 70

P
ro

ce
ss

 C
ou

nt

VMM

 0
 10
 20
 30
 40
 50
 60
 70

Linux 2.4 Bash Compile

OS

-10

 0

 10

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Time (s)

Diff

 0
 10
 20
 30
 40

P
ro

ce
ss

 C
ou

nt

VMM

 0
 10
 20
 30
 40

Linux 2.6 Bash Compile

OS

-10

 0

 10

 0 1 2 3 4 5 6 7 8 9 10 11 12 13

Time (s)

Diff

 0
 10
 20
 30
 40
 50
 60
 70
 80

P
ro

ce
ss

 C
ou

nt

VMM

 0
 10
 20
 30
 40
 50
 60
 70
 80

NT Bash Compile

OS

-10

 0

 10

 0 3 6 9 12 15 18 21 24 27 30 33

Time (s)

Diff

Figure 4.3: Compilation Workload Timelines. For x86/Linux 2.4, x86/Linux 2.6 and x86/Windows

a process count timeline is shown. Each timeline depicts the OS-reported process count, the VMM-

inferred process count and the difference between the two versus time. Lag has a larger impact on

accuracy than false positives. x86/Linux 2.6, which exhibits significantly smaller lag than x86/Linux

2.4 is able to track process counts more accurately.

32

Proc ASpc Inf Proc ASpc Inf Ctxt CS

Create Create Create Exit Exit Exit Switch Inf

SPARC/Linux

Fork Only 1000 1000 2000 1000 1000 2000 3419 3419

Fork & Exec 1000 1000 3000 1000 1000 3000 3426 3426

Vfork 1000 1000 1000 1000 1000 1000 4133 4133

Compile 603 603 1396 603 603 1396 1678 1678

Table 4.3: Completeness for SPARC. The table shows the results for the same experiments re-

ported for x86 in Table 4.2, but for SPARC/Linux 2.4. False positives occur for each fork due to an

implementation which uses copy-on-write. Antfarm also infers an additional, non-existent exit/create

event pair for each exec. This error is not due to multiple address spaces per process as on x86, but

rather stems from the flush that occurs to clear the caller’s address space upon exec.

The runtime for configuring and building bash was also compared between our modified

and unmodified versions of Xen. In the unmodified case the average measured runtime of

five trials was 44.49 s. The average runtime of the same experiment under our modified

Xen was 44.74 s. The variance between experiments was negligible yielding a slowdown

of about 0.6% for this process-intensive application workload.

4.5.3 SPARC Evaluation

Our implementation of process tracking on SPARC uses Simics. Each virtual machine

is configured with a 168 MHz UltraSPARC II processor and 256 MB of RAM. We use

SPARC/Linux version 2.4.14 as the guest operating system for all tests. We instrumented

the guest operating system to report the same information as described for x86.

Completeness

We use the same criteria to evaluate process awareness under SPARC as under x86. Table

4.3 lists the total event counts for our process creation micro-benchmark and for the bash

compilation workload.

As on x86, no false negatives occur. In contrast to x86, the fork-only variant of the

microbenchmark incurs false positives. The reason for this is the copy-on-write implemen-

tation of fork under Linux. During fork all of the writable portions of the parent’s address

space are marked read-only so that they can be copy-on-write shared with the child. Many

entries in the parent’s page tables are updated and all of the corresponding TLB entries

must be flushed. SPARC/Linux accomplishes this efficiently by flushing all of the parent’s

current TLB entries using a context demap operation. The context demap is incorrectly

interpreted by Antfarm as a process exit. As soon as the parent is scheduled to run again,

we detect the use of the address space and signal a matching spurious process creation.

The false positives caused by the use of fork under SPARC are different in character

than those caused by exec under x86. These errors are not limited (by convention) to

the usually tiny time interval between fork and exec. They will appear whenever fork is

33

invoked, which for processes like a user shell can occur repeatedly throughout the process’s

lifetime. The Linux 2.4/SPARC case in Figure 4.1 depicts how a process that repeatedly

invokes fork might be partitioned into many inferred pseudo-processes by Antfarm.

When exec is used we see additional false positives, but for a different reason than under

x86/Linux 2.6. In this case the process inference technique falsely reports the creation of

new address spaces that don’t really exist. The cause of this behavior is a TLB demap

operation that occurs when a process address space is cleared on exec. This error mode is

different than under x86 where observed errors were due to a faulty assumption of a single

address space per process. On SPARC, the error occurs because our chosen indicator,

context demap, can happen without the corresponding address space being deallocated.

Given these two sources of false positives, one would expect our compilation workload

to experience approximately the same multiple of false positives as seen for the fork+exec

synthetic benchmark. We see, however, fewer false positives than we expect, due to the use

of vfork by both GNU make and gcc. Vfork creates a new process but does not duplicate

the parent’s address space. Since no parent page tables are changed, no flush is required.

When exec is invoked we detect the creation of the single new address space. Hence, when

vfork and exec are used to create new processes under SPARC/Linux, Antfarm experiences

no false positives. The build process, however, consists of more than processes created by

make and gcc. Many processes are created by calls to an external shell and these process

creations induce the false positives we observe.

Lag

Lag between OS-recorded and VMM-inferred process events under SPARC/Linux is com-

parable to Linux on x86. The average and maximum lag values for SPARC/Linux under

various system loads are shown in Figure 4.4. Create lag is sensitive to system load. Exit

lag is unaffected by load as on x86.

Limitations

While the SPARC inference technique is simple, it suffers drawbacks relative to x86. As

shown, the technique incurs more false positives than the x86 techniques. In spite of the

additional false positives, Figure 4.5 shows that the technique can track process events

during a parallel compilation workload at least as accurately as x86/Linux 2.4.

Unlike the x86, where one can reasonably assume that a page directory page would

not be shared by multiple runnable processes, one cannot make such an assumption for

context IDs on SPARC. The reason is the vastly smaller space of unique context IDs. The

SPARC provides only 13 bits for this field which allows up to 8192 distinct contexts to be

represented concurrently. If a system exceeds this number of active processes, context IDs

must necessarily be recycled. In some cases, system software will further limit the number

of concurrent contexts it supports. For example, Linux on SPARC architectures uses only

10 of the available 13 context bits, so only 1024 concurrent address spaces are supported

without recycling.

34

0.00
500.00

1000.00
1500.00
2000.00
2500.00
3000.00

501010C
re

at
e

La
g

(m
s)

SPARC-Linux 2.4

Avg
Max

 0
 0.02
 0.04
 0.06
 0.08
 0.1

501010

E
xi

t L
ag

 (
m

s)

Concurrent Processes

Figure 4.4: Lag vs. System Load, SPARC. The figure shows average and maximum create and

exit lag time measurements for the same experiments described in Figure 4.2. Create lag grows with

system load. Exit lag is small and nearly constant, independent of load.

Figure 4.6 shows the behavior of our SPARC process detection techniques when more

processes exist than can be distinguished by the available context IDs. Once the limit is

reached at 1024, the technique fails to detect additional process creations.

The importance of this second limitation is somewhat reduced because even very busy

servers rarely have more than 1000 active processes, a fact which no doubt influenced the

selection of the context ID field’s size.

Overhead

Since our SPARC techniques are implemented external to a simulated machine, they do

not contribute overhead to its execution. For this reason we do not experimentally evaluate

their overhead. Intuitively the overheads should be very small. One hash table lookup

is added to two operations. The first is when a new context ID is written. This happens

during context switch, which is already a fairly heavyweight action. The second is context

demap. Context demaps most often occur during process creation and exit, which are also

heavyweight and relatively infrequent operations.

35

 0

 10

 20

 30

P
ro

ce
ss

 C
ou

nt

VMM

 0

 10

 20

 30

SPARC/Linux 2.4 Bash Compile

OS

-10

 0

 10

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Time (s)

Diff

Figure 4.5: Compilation Workload Timeline. SPARC/Linux compilation timeline. Compare to

Figure 4.3.

4.5.4 Association Evaluation

In this section we evaluate our association techniques. Our analysis focuses on I/O associ-

ation, as we have found that to be the most challenging association to maintain, due to its

asynchrony. We focus on accuracy, time overhead, and space overhead.

Accuracy

To measure the accuracy of I/O associations within the VMM, we instrumented the Linux

guest operating system to trace the individual requests issued from each process address

space. These traces were compared to corresponding traces of inferred VMM associations

to calculate the accuracy of the mechanisms.

To stress the I/O association ability of the VMM, we increase the load on the system

and plot the resulting I/O association accuracy. Figure 4.7 shows our results.

For low levels of concurrency, the simple context association method achieves a high

degree of accuracy. With a large number of process groups, however, the accuracy of

the context method declines dramatically; increased queuing delays between an I/O being

issued and its observation by the VMM cause a majority of the requests to be incorrectly

associated with other (CPU-bound) processes.

Event chaining, on the other hand, is able to achieve nearly perfect accuracy regardless

of the level of concurrency. Hence it is a robust technique for associating asynchronous I/O

36

 0

 400

 800

 1200
P

ro
ce

ss
 C

ou
nt

VMM

 0
 400
 800

 1200
 1600
 2000

SPARC Context ID Overflow

OS

-1200
-800
-400

 0

 0 10 20 30 40

Time (s)

Diff

Figure 4.6: Context ID Overflow. When more processes exist than can be represented by the

available SPARC context IDs our techniques fail to detect context ID reuse.

events with the issuing process.

Time Overhead

To measure the overhead imposed by I/O association, we measure the runtime and through-

put achieved by an I/O bound process when executed with event-chaining association en-

abled and again when executed on an unmodified Xen/Linux system. The test program

sequentially reads 200 MB of data with minimal think time between read requests. Each

experiment was repeated five times and the results averaged. Since all association activity

is initiated by I/O, an I/O-bound workload represents a worst case performance scenario

for the technique.

No significant difference in runtime or throughput between the experiments was de-

tected. Low overhead is expected because copy-based event chaining adds only a small

number of minor page faults to each heavyweight I/O operation.

Space Overhead

The storage requirements for the reverse map are comparable to the storage required for the

forward mapping, i.e., the system’s page tables; hence there is a noticeable space overhead

(e.g., roughly 12 bytes per active mapping). However, these data structures need only

37

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 2 4 6 8 10 12 14 16 18 20

C
or

re
ct

 A
ss

oc
ia

tio
ns

 (
%

)

Process Groups (Seq+Cpu)

I/O Association Accuracy

Event-Chain
Context

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 1 2 3 4 5 6 7 8 9 10

C
or

re
ct

 A
ss

oc
ia

tio
ns

 (
%

)

Process Groups (Seq+Rand+Cpu)

I/O Association Accuracy

Event-Chain
Context

Figure 4.7: I/O Association Accuracy. The figure plots the percentage of I/O requests that were

correctly associated with their process on the y-axis as the number of process groups is increased

along the x-axis. In the top graph, each process group consists of one process issuing sequential

I/Os and one compute-bound process. In the bottom graph, we add one process per group that issues

random I/Os. Two lines are plotted: simple context-based association and event-chain association.

38

be maintained for processes that are actively running and generating enough I/O to be of

interest, likely lowering the space overhead quite substantially in practice.

4.5.5 Evaluation Summary

Our evaluation shows that a VMM can infer process creation, exit and context switch

using simple observations of guest OS MMU operations in three different environments

(x86/Linux, x86/Windows, and SPARC/Linux). On x86 under Windows and Linux 2.4,

Antfarm precisely identifies the desired process events. As one might expect for any in-

ference technique the accuracy is not always perfect. Under x86/Linux 2.6 and under

SPARC/Linux some false positives occur. However, the false positives are stylized and

affect the ability of Antfarm to keep an accurate process count very little.

Context association is a simple and generic technique for associating any event observ-

able by a VMM with a process. It is accurate for synchronous events where the actual

occurrence of an event is not separated from the VMM’s detection of the event in time.

Event chaining enhances the accuracy of context association by tracking chains of related

events until one of them is known to occur in the context of the process of interest. Event

chaining incurs delay while the consumer of the event waits for the chain being used to

resolve itself. We found that event chaining is especially useful for enhancing the accuracy

of I/O associations as their processing inside the operating system is highly asynchronous.

4.6 Case Study: Anticipatory Scheduling

The order in which disk requests are serviced can make a huge difference to disk I/O perfor-

mance. If requests to adjacent locations on disk are serviced consecutively, the time spent

moving the disk head unproductively is minimized. Avoiding unnecessary seeks is the pri-

mary performance strategy of most disk scheduling algorithms. This case study explores

the application of one innovative scheduling algorithm called anticipatory scheduling [47]

in a virtual machine environment. The implementation makes use of Antfarm for Xen.

4.6.1 Background

Iyer et al.[47] have demonstrated a phenomenon they call deceptive idleness for disk ac-

cess patterns generated by competing processes performing synchronous, sequential reads.

Deceptive idleness leads to excessive seeking between locations on disk. Their solution,

called anticipatory scheduling, introduces a small amount of waiting time between the com-

pletion of one request and the initiation of the next if the process whose disk request just

completed is likely to issue another request for a nearby location. This strategy leads to

substantial seek savings and throughput gains for concurrent disk access streams that each

exhibit spatial locality.

Anticipatory scheduling makes use of process-specific information. It decides whether

to wait for a process to issue a new read request and how long to wait based on statistics

the disk scheduler keeps for all processes about their recent disk accesses. For example,

39

the average distance from one request to the next is stored as an estimate of how far away

the process’s next access will be. If this distance is large, there is little sense waiting for

the process to issue a request nearby. Statistics about how long a process waits after one

request completes before it issues another are also kept in order to determine how long it

make sense to wait for the next request to be issued.

Anticipatory scheduling does not work well in a virtual machine environment. System-

wide information about disk requests is required to estimate where the disk head is located,

which is essential in deciding if a request is nearby. Information about individual process’s

I/O behavior is required to determine whether and how long to wait. This information is not

completely available to either a single guest, which only knows about its own requests, or to

the VMM, which cannot distinguish between guest-level processes. While guests and the

VMM could cooperate to implement anticipatory scheduling, this requires the introduction

of additional, specialized VMM-to-guest interfaces. New interfaces may not be possible

in the case of legacy or binary-only components. In any case, such interfaces do not exist

today.

4.6.2 Information

To implement anticipatory scheduling effectively in a VMM, the VMM must be able to

distinguish between guest processes. Additionally, it must be able to associate disk read re-

quests with specific guest processes. Given those two pieces of information, a VMM imple-

mentation of anticipatory scheduling can maintain average seek distance and inter-request

waiting time for processes across all guests. We use Antfarm to inform an implementation

of anticipatory scheduling inside of Xen.

To associate disk read requests to processes, we employ a simple context association

strategy that associates a read request with whatever process is currently active. This simple

strategy does not take potential asynchrony within the operating system into account. For

example, due to request queuing inside the OS, a read may be issued to the VMM after

the process in which it originated has blocked and context switched off the processor. This

leads to association error. The relatively low concurrency generated by the experiments

in this section do not merit the more complicated event-chaining techniques described in

Section 4.3.

4.6.3 Implementation

Xen implements I/O using device driver virtual machines (DDVM) [31]. A DDVM is a vir-

tual machine that is allowed unrestricted access to one or more physical devices. DDVMs

are logically part of the Xen VMM. Operationally, guests running in normal virtual ma-

chines make disk requests to a DDVM via an idealized disk device interface and the DDVM

carries out the I/O on their behalf. In current versions of Xen, these driver VMs run Linux

to take advantage of the broad device support it offers. A device back-end in the driver VM

services requests submitted by an instance of a front-end driver located in all normal VMs.

The standard Linux kernel includes an implementation of anticipatory scheduling. We

implement anticipatory scheduling at the VMM layer by enabling the Linux anticipatory

40

scheduler within a Xen DDVM that manages a disk drive. To make this existing implemen-

tation process-aware, we introduce a foreign process abstraction that represents processes

running in other VMs. When a disk request arrives from a foreign virtual machine, the

Xen back-end queries our process-aware Xen hypervisor about which process is currently

active in the foreign virtual machine. Given the ability to distinguish between processes we

expect that our VMM-level anticipatory scheduler (VMAS) will improve synchronous read

performance for competing processes whether they exist in the same or different VMs.

4.6.4 Evaluation

To demonstrate the effectiveness of our implementation of VMAS, we repeat one of the ex-

periments from the original anticipatory scheduling paper in a virtual machine environment.

Our experiment consists of running multiple instances of a program that sequentially reads

a 200 MB segment of a private 1 GB file. We vary the number of processes, the assignment

of processes to virtual machines, and the disk scheduler used by guests and by the VMM

to explore how process awareness influences the effectiveness of anticipatory scheduling

in a VMM. We make use of the Linux deadline I/O scheduler as our non-anticipatory base-

line. Results for each of four scheduler configurations combined with three workloads

are shown in Figure 4.8. The workloads are: (1) one virtual machine with two processes,

(2) two virtual machines with one process each, and (3) two virtual machines with two

processes each.

The first experiment shows the results from a configuration without anticipatory schedul-

ing. It demonstrates the expected performance when anticipation is not in use for each of

the three workloads. On our test system this results in an aggregate throughput of about

8 MB/sec.

The second configuration enables anticipatory scheduling in the guest while the dead-

line scheduler is used by Xen. In the one virtual machine/two process case, where the

guest has complete information about all processes actively reading the disk, we expect

that an anticipatory scheduler at the guest level will be effective. The figure shows that

this is in fact the case. Anticipatory scheduling is able to improve aggregate throughput by

75% from about 8 MB/sec to about 14 MB/sec. In the other cases, guest-level anticipatory

scheduling performs about as well as the deadline scheduler due to its lack of information

about processes in other virtual machines.

Our third experiment demonstrates the performance of unmodified anticipatory schedul-

ing at the VMM layer. Similar to the case of anticipatory scheduling running at the guest

layer we would expect performance improvement for the two-virtual-machine/one-process-

each case to be good because a VMM can distinguish between virtual machines just as an

operating system can distinguish between processes. The improvement does not occur,

however, because of an implementation detail of the Xen DDVM back-end driver. The

back-end services all foreign requests in the context of a single dedicated task so the antici-

patory scheduler interprets the presented I/O stream as a single process making alternating

requests to different parts of the disk. The performance is comparable to the configuration

without anticipation for all workloads.

The final configuration shows the benefit of process awareness to anticipatory schedul-

41

Figure 4.8: Benefit of process awareness for anticipatory scheduling. The graph shows the

aggregate throughput for various configurations of I/O scheduler, number of virtual machines and

number of processes per virtual machine. The experiment uses the Linux deadline scheduler (DL),

the standard anticipatory scheduler (AS), and our VMM-level anticipatory scheduler (VMAS). Adding

process awareness enables VMAS to achieve single process sequential read performance in aggregate

among competing sequential streams. AS running at the guest layer is somewhat effective in the 1

VM / 2 process case since it has global disk request information.

42

ing implemented at the VMM layer. In each of the workload configurations anticipatory

scheduling works well, improving aggregate throughput by more than a factor of two, from

about 8 MB/sec to about 20 MB/sec. Because it is implemented at the VMM layer, anticipa-

tory scheduling in this configuration has complete information about all requests reaching

the disk. Our process awareness extensions allow it to track statistics for each individual

process enabling it to make effective anticipation decisions.

4.7 Assumptions

As is the case for any inference technique, Antfarm requires that certain assumptions hold

to produce correct results. This section lists and discusses the assumptions Antfarm makes

about the guest operating systems it observes. There are relatively few assumptions and

we believe they hold for nearly all widely available operating systems in common use on

workstation and server class computing systems today.

Processes: Antfarm assumes that an operating system uses heavy-weight processes to de-

fine the basic execution environment of all user-level programs including an address space

and I/O environment.

Hardware memory protection: Antfarm assumes that an operating system employs hard-

ware memory protection to implement isolated process address spaces. While nearly all

current operating systems take this approach, other options exist. The recent Singular-

ity [43] research operating system uses programming language techniques like type check-

ing to ensure that processes do not interfere with each other even when they share a single

hardware address space.

One address space per process: Antfarm uses address space events as a proxy for process

events. This implies a one-to-one correspondence between address spaces and processes.

This is typically true for most operating systems, but we observed a subtle violation of

this assumptions by the implementation of exec under Linux 2.6. When exec is invoked

a new address space is created so a process that is created via fork followed by exec
effectively uses two address spaces for a single logical process. This pattern is highly

stylized. The lifetime of the initial address space is nearly always tiny compared to that of

the second. For the applications of process information we have developed this violation

had no practical effect.

ASIDs are not multiplexed among active processes: Antfarm assumes that the value it

uses as an address space identifier (ASID) is used by a single process while that process

is active. On SPARC we observed that, due to the limited space of our chosen ASID (the

SPARC context ID), these values are subject to reuse when a large number of processes

(more than 8192) exist concurrently.

Address space data structures cleared before reuse: Antfarm reports process exit when

the data structures used to represent a process address space have been cleared and are

ready to be reused. On x86 this corresponds to clearing of page tables in memory. On

SPARC it corresponds to a context demap operation. This requirement is derived from the

basic operating system responsibility to maintain memory isolation between processes.

Address space data structure clearing is timely: Antfarm assumes that an operating sys-

43

tem clears address space data structures in a timely manner. While an OS could arbitrarily

delay this operation for selected processes, in practice we have found that the operating sys-

tems we have tested, including Linux and the Windows NT family, eagerly reclaim these

resources and the lag between actual process exit and data structure clearing is small.

4.8 Summary

In this chapter, we have described and evaluated techniques that allow a VMM to indepen-

dently discover information about processes for the Windows and Linux operating systems

and for the x86 and SPARC architectures. To do so, we have exploited the correspondence

between processes and address spaces and the ability of the VMM to observe events like

privileged register updates, TLB flushes, and page table updates. Process creation and con-

text switch events can be deduced by simply tracking the use of an address space-specific

value like the physical address of the page directory or the SPARC context ID. We detect

process exit by tracking the status of memory management structures like the page tables

and noting when such resources can be safely reused.

The accuracy achieved by Antfarm is excellent. All true process events are detected

without error. For certain versions of Linux, matching pairs of spurious events are detected

because the “one address space per logical process” model does not hold. Because of the

self-correcting nature and the very brief lifetime of these errors, they have little effect on

the ability of Antfarm to track the true current process list.

Antfarm is careful to avoid interposing on high-frequency, critical-path operations;

hence, it imposes very little overhead. In our experiments a worst case performance sce-

nario results in a small 2.4% slowdown. Less pathological, but still demanding, workloads

impose only a tiny 0.6% overhead.

We used an I/O scheduling case study to demonstrate that process information can

be utilized by a VMM to transparently improve overall system performance. By taking

process-specific I/O patterns into account, our VMM-layer anticipatory scheduler is able

to increase throughput for competing sequential streams, even from different virtual ma-

chines, by a factor of more than two.

44

Chapter 5

Monitoring the Guest Buffer

Cache

In this chapter we describe a set of techniques that can be used by a VMM to infer in-

formation about a critically important OS sub-system, the unified buffer cache and virtual

memory system. The buffer cache’s job is deceptively straightforward. It simply caches

recently accessed blocks from disk. However, deciding which blocks to cache and for how

long involves a subtle trade-off between memory space and performance that depends on

workload, cache size, and user preference. The buffer cache is often the largest consumer of

memory in a modern system; hence, the memory used by the buffer cache must be carefully

balanced with the memory needs of other user processes. Since, disk accesses typically ex-

hibit spatial and temporal locality, a well-managed buffer cache can have a huge impact

on overall system performance by transforming glacially slow disk accesses into relatively

fast memory references.

A VMM is intimately involved in allocating and managing the memory resources in a

virtualized environment. We show in this chapter that a VMM can carefully observe guest

operating system interactions with virtual hardware like the MMU and storage devices to

detect when pages are inserted into or evicted from the operating system buffer cache. Such

information can then be used to more effectively manage local and remote disk caching

resources.

Geiger is an implementation of these techniques within the Xen virtual machine mon-

itor [27]. In this chapter, we discuss the details of Geiger’s implementation and perform a

careful evaluation of Geiger’s eviction detection techniques. A few of Geiger’s inferencing

techniques within the VMM are similar to those used by Chen et al. within a pseudo-device

driver [17]. Hence, our evaluation focuses on which of Geiger’s new techniques are needed

in different circumstances. First, we show that the unified buffer caches and virtual memory

systems found in modern operating systems require the VMM to track not only disk traffic,

but memory allocations as well. Second, we show that a VMM must take basic storage

system behavior into account to accurately detect cache eviction. For example, the VMM

45

46

must track whether a particular data block is live or dead on disk in order to avoid reporting

many spurious evictions. We also show that journaling file systems, such as ext3 in Linux,

require the VMM to distinguish between writes to the journal and writes to other parts of

storage to avoid an aliasing problem that leads to false eviction reporting. In summary, pas-

sively detecting cache events within modern operating systems requires new sophistication.

Without these techniques, passive inferencing can result in incomplete information which

can be worse than no information at all.

Via case studies, we demonstrate how the inferred eviction information provided by

Geiger can enable useful services inside a VMM. In the first case study we implement a

novel, VMM-based working set size estimator that complements existing techniques [101]

by allowing estimation in the case that a virtual machine is thrashing. A second study

explores how Geiger-inferred evictions can be used by a VMM to enable remote storage

caches to implement eviction-based cache placement [104] without changing the applica-

tion or operating system storage interface. Using existing interfaces increases the probabil-

ity that such a feature is adopted in practice.

5.1 Geiger Techniques

We will begin our discussion of Geiger by describing the basic techniques Geiger uses to

infer page cache promotion and eviction. We then describe how Geiger performs more

complex inferences, in particular, how it handles unified buffer caches and virtual memory

systems that are present in all modern operating systems, and how it handles issues that

arise due to storage system interactions.

5.1.1 Basic Techniques

Buffer cache promotion occurs when a disk page is added to the cache. Buffer cache

eviction occurs when a cache page is freed by the operating system and its previous contents

remain available to be reloaded from disk. For example, an eviction occurs if the contents

of an anonymous page are written to a swap partition and then the page is freed. Similarly,

an eviction occurs if a page that was read from the file system is later freed without writing

anything back to disk, since the data can be reloaded from the original location on disk.

However, an eviction does not occur if the OS frees a page and its contents are lost (e.g.,

an anonymous page when its associated process exits).

To detect promotion and eviction, Geiger performs two tasks. First, Geiger tracks

whether the contents of a page are available on disk and, if so, where on disk the con-

tents are stored. We call the on-disk location associated with a memory page the page’s

Associated Disk Location (ADL). Second, Geiger must detect when a page is freed by the

OS. We describe each of these steps in turn.

47

Associated Disk Locations

Geiger associates a disk location with each physical memory page, whenever appropriate.

An associated disk location (ADL) is simply the pair <device, block offset>,

representing the most recent disk location with which a VMM can associate the page. A

VMM associates a disk location with a memory page whenever that page is involved in a

disk read or write operation. For example, if a page is the target of a read from disk location

A, the page becomes associated with A. Similarly, if a page is the source of a write to disk

location B the page becomes associated with B. These associations persist until replaced

by another association, the memory page is freed, or the relevant disk blocks are freed.

Since the VMM virtualizes all disk I/O, disk reads and writes initiated by a guest are

explicitly visible to the VMM and no special action on the part of the VMM is required to

establish the ADL of a page. However, to correctly invalidate an ADL when the disk block,

to which it refers, is no longer in use requires detecting when the disk block is freed. We

discuss this further in Section 5.1.3.

Detecting Page Reuse

Geiger must also determine when a memory page has been freed by the OS. However,

the guest OS does not explicitly notify the VMM when it frees a page. Often the only

difference between an active and a free page is an entry in a private OS data structure, such

as a free list or bitmap. We assume that the VMM does not have the detailed, OS-specific

information required to locate or interpret these data structures. Hence, instead of detecting

that a page has been freed, Geiger detects that a page has been reused. Since reuse implies

that a page was freed between uses, it is an appropriate proxy for the page free event.

Geiger uses numerous heuristics to detect that a page has been reused. Each heuristic

corresponds to a different scenario in which a guest OS allocates a page of memory. If

Geiger detects a page allocation and the newly allocated page has a current ADL, then

Geiger signals that the previous contents of the page, as defined by the ADL, have been

evicted.

The two most basic techniques used by Geiger are monitoring disk reads and disk

writes. This builds on the previous work of Chen et al. [17] which monitors reads and

writes in a device driver within an OS.

Disk Read: Geiger uses disk reads to infer that a new page may have been allocated.

When a page is read from disk, a new page is allocated in the OS buffer cache. If the allo-

cated page has a current ADL that refers to a different disk location than the one currently

being read, Geiger reports that the page’s previous contents have been evicted. The ADL

of the affected page is updated to point to the new disk location as a consequence of this

kind of eviction.

Disk Write: Geiger uses disk writes to infer that a new page may have been allocated. If

a full page of data is written to disk and the page does not already reside in the page cache,

then the OS may allocate a new page to buffer the data until it is asynchronously written to

48

disk. Geiger detects this case by observing all disk writes and signaling an eviction if the

write source is a page with a current ADL that is different than the target disk location of

the write. Note that if a previous read or write caused the disk block to already exist in the

cache, Geiger will not erroneously signal a duplicate eviction since the page’s ADL will

not change. As with the read-eviction heuristic, the ADL of the affected page is updated to

refer to the target disk location.

5.1.2 Techniques for Unified Caches

Techniques from previous research [17] work well with old-style file system buffer caches,

which were kept distinct from the virtual memory system. However, virtually all modern

operating systems, including Linux, *BSD, Solaris, and Windows, have a unified buffer

cache and virtual memory system. Unification complicates inferences: Geiger must be

able to detect page reuse for additional cases associated with the virtual memory system.

Hence, we introduce two new detection techniques.

Copy On Write: Copy-on-write (COW) is a technique widely used in operating systems

to implement efficient read sharing of memory. A page shared using COW is marked read-

only in each process’s virtual address space that shares it. When one of these processes

attempts to write to a COW-shared page, the action causes a page fault. The operating sys-

tem then transparently allocates a new, private page and copies the data from the old page

into the new page. Subsequently, a new writable virtual memory mapping is established

which refers to the new page. Because the private copy requires allocation of a free page,

it can lead to page reuse.

Geiger detects page reuse that occurs as a result of COW by observing page faults

and page table updates. When Geiger detects a page fault whose cause is a write into a

read-only page, it saves the affected virtual address and page table entry in a small queue.

If, a short time later, the guest OS creates a new writable mapping for the same virtual

address, but a different physical page, Geiger infers that the new physical page was newly

allocated. If the newly allocated page has an active ADL, then Geiger signals an eviction.

This heuristic clears the ADL of the newly allocated page because it is a modified private

copy of an existing page and is not associated with any disk location.

Allocation: Most modern operating systems allocate memory lazily. When an applica-

tion requests memory (e.g., using brk or an anonymous mmap), the OS does not immedi-

ately allocate physical memory; instead the virtual address range is “reserved” and physical

memory is allocated on-demand when the page is actually accessed. This property means

that physical memory allocation nearly always occurs in the context of servicing a page

fault.

Similar to the COW heuristic, Geiger observes page faults that are due to a guest ac-

cessing a virtual page that has no virtual-to-physical mapping and saves the affected virtual

address in a small queue. If, a short time later, the guest OS creates a new writable map-

ping for the faulting virtual address, Geiger infers a page allocation. If the newly allocated

49

physical page has a current ADL, then Geiger signals an eviction.

The allocation eviction heuristic contains some simplifications that could lead to false

positive inferences. First, the technique makes use of the fact that memory is rarely write-

shared between address spaces. If a page is write-shared, however, the creation of a new

writable mapping as described above does not imply a page allocation, but will be counted

as such by our heuristic leading to false positives. Second, if a page belonging to an

mmapped disk file is initially brought into the page cache via a write operation, the disk

page will first be read from disk (potentially causing a read eviction) and a new writable

mapping will be created (causing an allocation eviction). Hence, a single write could lead

to two eviction reports, one of which is a false positive. The more common case of a shared,

read-only mapping of a disk file is handled correctly, however, since the allocation heuristic

ignores it and only a single read-eviction is generated when appropriate.

5.1.3 Techniques for Storage

Storage systems also introduce some nuances into the inferences made by Geiger. In par-

ticular, file system features like journaling lead to an aliasing problem; further, the fact that

disk blocks can be deleted leads to the problem of liveness detection. We now describe

these issues and how Geiger handles them in turn.

Journaling

The basic write heuristic signals an eviction whenever the contents of a page that has an

ADL are written to a location on disk which does not match that ADL. For example if

a page has ADL A and is written to disk location B an eviction will be reported for the

contents of disk location A. The basic write heuristic over-reports evictions in cases where

data are written from the same buffer cache page to multiple disk locations; we view this

as an aliasing problem, as the same page is wrongly associated with two disk addresses.

Journaling file systems, such as Linux ext3 [96], ReiserFS [76], JFS [10], and XFS [94],

routinely write to two locations on disk from the same cache page, namely the journal

location and the fixed disk location. In the worst-case journaling scenario, where both data

and metadata are first written to the journal, twice the actual number of write evictions will

be reported. In the more common case of metadata-only journaling, a much smaller penalty

is incurred.

The negative effect of journaling and virtual memory can be mitigated if the VMM

identifies writes to the file system journal. This is straightforward in most systems, since

the journal is either placed on a separate, easily identifiable partition or in a file within

a file system partition to which a reference is made from the file system superblock [97].

Hence, to avoid the problem of journal aliasing, Geiger monitors the disk addresses of write

requests and ignores writes directed to the journal.

50

Block Liveness

Geiger signals that a page has been evicted only if that page has a current ADL. It is

possible that the blocks to which an ADL refers are deallocated on disk between the time

that the ADL mapping is first established and when Geiger detects that the associated page

has been reused. In this case, Geiger will falsely report an eviction, because an ADL exists

but the data to which the ADL refers have been deallocated and are no longer accessible.

This problem of block liveness can lead to large numbers of false evictions for workloads

in which files are regularly deleted, truncated, or when processes die that have significant

parts of their virtual memory swapped to disk.

File systems: A virtual machine monitor can passively track file system block liveness

in the same way a smart disk system can track block liveness [85]. The allocation state

for each file system block is typically noted in some on-disk structure like a bitmap. The

file system superblock, which is stored at a known, fixed location on disk, can be used to

locate these bitmap structures. By examining guest operating system writes to these on-

disk areas, a VMM can snoop on the file system to determine when disk blocks to which

an ADL refers have been freed. If the blocks to which an ADL refers are deallocated, the

ADL must be invalidated so that a future reuse of the affected page is not misinterpreted as

an eviction.

Implementing block liveness by observing only disk writes has one significant draw-

back; there is often substantial lag between when a file system structure like an allocation

bitmap is updated in memory and when it is written to disk. In many operating systems

this interval can be 30 seconds or more. If Geiger does not observe that the file system

blocks, to which a page’s ADL points, have been deallocated until after the page has been

reused, a false eviction will occur. Hence, the timeliness of block deallocation notification

is important.

A VMM can improve the timeliness of block deallocation notification by tracking up-

dates to the in-memory versions of the allocation bitmaps. Given the known locations of the

bitmaps, the VMM can observe when bitmaps are loaded from disk into memory. At that

time, the VMM can mark all such buffers read-only. When a guest updates an in-memory

bitmap, a minor page fault will occur. The VMM can observe that the fault is due to an

attempted bitmap update and respond by invalidating affected ADLs.

Geiger implements this style of in-memory block liveness tracking. Bitmap blocks

are identified by reading and parsing the file system superblock for known file system

types. Pages used to cache file system allocation bitmaps are marked read-only in memory

by Geiger. When a write to such a page is detected, due to a page protection fault, the

effect of the faulting instruction is emulated on the guest memory and register state and

the faulting instruction is skipped; hence, every bitmap update is synchronously observed

and appropriate action is taken by the VMM. The overhead of block liveness tracking is

kept low in spite of additional minor page faults due to the relatively low frequency of disk

bitmap updates.

Like Sivathanu [86], we consider embedding file system layout information, such as

the format of the superblock, within a VMM a reasonable technique. There are few com-

51

monly used file systems and the on-disk data structure formats for those file systems change

slowly. A VMM can be provided with layout information for all commonly used file sys-

tems and the information can be expected to remain valid for a long time. The on-disk

format of ext2, for example, has not changed since its introduction in 1994. This is a far

longer interval than the typical system software upgrade cycle.

Swap space: The liveness tracking techniques Geiger uses for file system partitions do

not apply to disk space used as a swap area. As a rule, swap space does not contain any

on-disk data structures that track block allocation because data in swap is not expected to

persist across system restarts. All swap allocation information is managed exclusively in

volatile system memory. There are two swap liveness tracking techniques we have found

to be effective for some workloads in preventing false evictions due to ADLs that point to

deallocated swap space.

The first technique invalidates any ADL that points to a set of disk blocks that is over-

written. When disk blocks are overwritten, the data to which an ADL refers has been de-

stroyed; hence, ADL invalidation is appropriate. This technique is implemented by main-

taining a reverse mapping between cached disk blocks and ADLs.

The second technique makes use of implicitly obtained process lifetime information

like that provided by Antfarm [49]. Given accurate information about guest OS processes

and a mapping of memory pages to the owning OS process, many ADLs can be invalidated

when the process exits. Specifically, an ADL from a page belonging to a dead process

that points to a swap space disk block can be invalidated. This second technique appears

promising but has not been fully implemented in the current version of Geiger.

5.2 Implementation

Geiger is implemented as an extension to the Xen virtual machine monitor version 2.0.7.

Xen [27] is an open source virtual machine monitor for the Intel x86 architecture. Xen

provides a paravirtualized [103] processor interface, which enables lower overhead vir-

tualization at the expense of porting system software. We explicitly do not make use of

this feature of Xen; hence, the mechanisms we describe are equally applicable to a more

conventional virtual machine monitor such as VMWare [91, 101].

Geiger consists of a set of patches to the Xen hypervisor and Xen’s block device back-

ends. Changes are concentrated in the handlers for events like page faults, page table

updates and block device reads and writes. The Geiger patches consist of approximately

700 lines of code across three files. About 25 other files from the Xen hypervisor and the

Linux kernel required small changes in order to implement instrumentation and tracing.

All experiments described in this paper were performed on a PC with a 2.4 GHz Pen-

tium IV processor, 2 GB of system memory, and two WD1200BB ATA disk drives. We

used Linux kernel version 2.6.11 in the Xen control domain and Linux kernel version 2.4.30

for all unprivileged domains. We use either the ext2 or ext3 file system, depending upon

the experiment. The Xen control domain is configured with 512 MB of memory. Unless

otherwise noted, each unprivileged guest virtual machine is assigned 128 MB of memory.

52

5.3 Evaluation

In this section we evaluate the ability of Geiger to accurately infer page cache evictions

and promotions occurring within guest operating systems. We begin by describing our

workloads and metrics; we then evaluate Geiger using a set of four microbenchmarks and

four application workloads. We conclude by measuring the overheads that Geiger imposes

on the system.

Microbenchmark Description

Read Evict Sequentially reads a section of a file

larger than available memory multiple times

Write Evict Sequentially writes a file larger than

available memory. Repeated multiple times.

COW Evict Allocates a memory buffer approximately the

size of available physical memory, then writes to

each virtual page to ensure a physical page is

allocated, then forks and writes to each

page in the child.

Allocation Evict Allocates a memory buffer that exceeds the

size of available memory and writes to each

virtual page to ensure a page is allocated.

Figure 5.1: Microbenchmark Workloads. This table describes the four microbenchmarks used to

isolate a specific type of page eviction.

Application Description

Dbench [95] File system benchmark simulates load

on a network file server

Mogrify [44] Scales and converts a large bitmap image

OSDL-DBT1 [70] TPC-W-like web commerce benchmark

simulating web purchase transactions in

an online store.

SPC Web Search 2 [90] Storage performance council block device

traces from a web search engine server.

Traces are replayed to a real file system.

Figure 5.2: Application Workloads. This table describes each of the four application workloads.

5.3.1 Workloads

Throughout the experimental evaluation of Geiger, we use two sets of workloads. The first

workload set consists of four microbenchmarks. Each of these four microbenchmarks have

53

Application Read % Write% COW% Alloc%

Dbench 41.13% 58.85% 0.00% 0.00%

Mogrify 53.22% 22.31% 0.01% 24.25%

OSDL-DBT1 77.02% 2.14% 0.54% 20.29%

SPC Web Search 2 99.6 % 0.03% 0.00% 0.00%

Figure 5.3: Application Workload Eviction Mix. This table reports the percentage of total eviction

events caused by each eviction type.

been constructed to generate a specific type of page cache eviction: Read, Write, Copy-

On-Write (COW), or Allocate. Thus, these microbenchmarks isolate Geiger’s ability to

track evictions due to specific events. The microbenchmarks are described in more detail

in Figure 5.1.

The second set of workloads consists of four application benchmarks. These represent

more realistic workloads. Each workload contains a mix of eviction types, whether read,

write, COW, or allocation. Figure 5.2 describes the application workloads. Figure 5.3

shows the breakdown of eviction types generated by each application workload. Hence,

these application workloads stress Geiger’s ability to track evictions that may occur for

several different reasons.

5.3.2 Metrics

Our methodology for evaluating the accuracy of Geiger is to compare the trace of evictions

signaled by Geiger to a trace of evictions produced by the guest operating system; we have

modified the Linux kernel to generate this trace. Since the guest operating system has

complete information about which pages are evicted and when, our comparison is against

the ideal eviction detector. The eviction records in both traces contain the physical memory

address, the disk address of the evicted data, and a time stamp.

We consider three different metrics for accuracy. The first metric is simply the eviction

count reported by Geiger compared to that reported by the guest OS over time. The second

metric is detection lag, or the time between when a particular eviction takes place in the

OS and when it is detected by Geiger. Finally, the third metric is the detection accuracy,

which tracks the percentage of records from the inferred and actual traces that match in a

one-to-one mapping; we report both the percentage of false negatives (i.e., actual evictions

not detected by Geiger) and false positives (i.e., inferred evictions that did not correspond

to OS-reported evictions).

5.3.3 Microbenchmarks

We begin by running workloads consisting of the four microbenchmarks. Figure 5.4 shows

the resulting eviction count time-lines. For all microbenchmarks, the eviction counts in-

ferred by Geiger closely match the actual OS counts; however, depending upon the work-

54

 0
 10000
 20000
 30000
 40000
 50000
 60000
 70000
 80000

 0 1 2 3 4 5 6 7 8 9 10

E
vi

ct
io

n
C

ou
nt

Time (s)

Allocation Eviction

Actual
Inferred

 0

 5000

 10000

 15000

 20000

 25000

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

E
vi

ct
io

n
C

ou
nt

Time (s)

COW Eviction

Actual
Inferred

 0
 20000
 40000
 60000
 80000

 100000
 120000

 0 2 4 6 8 10 12 14 16

E
vi

ct
io

n
C

ou
nt

Time (s)

Read Eviction

Actual
Inferred

 0
 5000

 10000
 15000
 20000
 25000
 30000
 35000
 40000

 0 2 4 6 8 10 12

E
vi

ct
io

n
C

ou
nt

Time (s)

Write Eviction

Actual
Inferred

Figure 5.4: Eviction Inference Counts. The figure compares inferred vs. actual eviction counts

over time for microbenchmarks that isolate each eviction type inferred by Geiger.

load, some interesting differences may occur along the way. For example, during the COW

workload, the guest OS reclaims pages in groups, leading to a slight stair-step eviction pat-

tern; Geiger’s inferences lag slightly behind in this case. In the write workload, the guest

OS begins evicting pages early and continues to evict eagerly throughout the experiment.

Because the pages being evicted are dirty, they must be written to disk before they are freed

which significantly delays their reuse. Geiger’s inferences are based on page reuse; hence,

eviction is not detected until a page is reused, and inferred evictions lag noticeably behind

actual evictions when caused primarily by writes.

Figure 5.5 shows the cumulative distributions of eviction lag times for each of the mi-

crobenchmarks. As expected, the lag times for read, COW, and allocation eviction are

concentrated at very small values. However, the lag times for the write microbenchmark

are concentrated at about three seconds due to the glut of disk writes caused by dirty pages

being evicted.

Figure 5.6 reports Geiger’s detection accuracy in both false negatives and false posi-

tives. For all workloads, false negatives are uncommon: at worst, fewer than 2.5% of the

total number of evictions are missed by Geiger. False positives are even less common: at

worst, Geiger over-reports 1.45% of its inferred evictions.

In our final microbenchmark experiment, we explore Geiger’s ability to detect aliased

55

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 1000 2000 3000 4000 5000

F
ra

ct
io

n
of

 E
vi

ct
io

ns

Lag Time (ms)

Allocation Lag

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 1000 2000 3000 4000 5000

F
ra

ct
io

n
of

 E
vi

ct
io

ns

Lag Time (ms)

COW Lag

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 1000 2000 3000 4000 5000

F
ra

ct
io

n
of

 E
vi

ct
io

ns

Lag Time (ms)

Read Lag

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 1000 2000 3000 4000 5000

F
ra

ct
io

n
of

 E
vi

ct
io

ns

Lag Time (ms)

Write Lag

Figure 5.5: Eviction Lag. The figure shows the cumulative lag distribution for microbenchmarks

that isolate each eviction type.

writes to the file system journal. We use the write workload to stress this detection. Fig-

ure 5.7 shows the accuracy of Geiger with and without the specialization to disregard write

traffic to the file system journal. Without this specialization, Geiger performs satisfactorily

when journaling is disabled or when only metadata is journaled (i.e., Linux ext3 ordered-

mode); with metadata journaling, relatively few blocks have aliases. However, with data

journaling, many blocks have aliases and, as a result, more than half of the evictions re-

ported by the un-specialized Geiger are false positives. In contrast, the full version of

Geiger accurately handles all journaling modes of Linux ext3; even with data journaling,

Geiger has a false positive percentage of only 0.06%.

5.3.4 Application Benchmarks

We next consider workloads containing more realistic applications. Figure 5.8 reports the

detection accuracy of Geiger on these application workloads. For all workloads, false neg-

ative ratios are small: in the worst case, Geiger misses only 2.24% of the evictions reported

by the OS. However, the Dbench and Mogrify workloads have interesting behavior regard-

ing false positives.

56

Workload False Neg % False Pos %

Read Evict 0.96% 0.58%

Write Evict 1.68% 0.03%

COW Evict 2.47% 1.45%

Alloc Evict 0.17% 0.17%

Figure 5.6: Microbenchmark Heuristic Accuracy. The table reports the false positive and false

negative ratios for the complete set of eviction heuristics for each of the microbenchmark workloads.

Workload w/o Journal Opt w/ Journal Opt

F. Neg % F. Pos % F. Neg % F. Pos %

No Journal 1.68% 0.03% 1.68% 0.03%

Metadata 1.83% 0.33% 0.61% 0.08%

Data 1.43% 61.91% 2.51% 0.06%

Figure 5.7: Effect of Journaling. The table reports the false positive and false negative ratios for

the write-eviction microbenchmark workload when run with no journaling, with metadata journaling

(ordered mode), and data journaling with the Linux ext3 file system. The table shows the benefits of

turning on the Geiger specialization to detect writes to the journal.

Block Liveness

The Dbench and Mogrify workloads illustrate the benefit of having Geiger attempt to track

the liveness of each block on disk. Dbench creates and deletes many files; as a result,

many pages in memory are reused for different files (and different disk blocks). Mogrify

causes large amounts of swap to be allocated and deallocated during its execution. If the

VMM uses only the change in association between a memory page and its disk block to

infer an eviction, then the VMM concludes that many evictions have occurred that actually

have not (i.e., many false positives). Thus, without live block detection, Geiger has a

30.2% false positive rate for Dbench and a 23% false positive rate for Mogrify. However,

when Geiger tracks whether a particular disk block is free, it can detect when a page is

simply reused without the previous contents being evicted; as a result, the false positive rate

improves dramatically to 5.7% for Dbench and 2.46% for Mogrify. Thus, to adequately

handle delete-intensive (or truncate-intensive) workloads, Geiger includes techniques to

track disk block liveness.

Limitations

As mentioned previously, we do not expect our current techniques for tracking block live-

ness in swap space to be adequate in all situations. To demonstrate this remaining problem,

a microbenchmark was crafted that results in large numbers of false positives despite the

best efforts of Geiger to track block liveness. The program forces a large buffer (allocated

using mmap) to be swapped to disk and then the buffer is released. In Linux, as the buffer

57

Workload Geiger Opts False Neg % False Pos %

Dbench w/o block liveness 1.10% 30.23%

Dbench w/ block liveness 2.30% 5.72%

Mogrify w/o block liveness 0.05% 22.99%

Mogrify w/ block liveness 0.65% 2.46%

TPC-W 0.14% 3.12%

SPC Web 2 2.24% 0.32%

Figure 5.8: Application Heuristic Accuracy. The table reports the false positive and false negative

ratios for Geiger on the four application workloads. For the Dbench and Mogrify workloads, we

evaluate Geiger both without and with the optimizations to detect whether a block is live on disk.

is released, the associated swap space is also deallocated, but Geiger does not detect that

event. As additional memory is allocated by the program, pages are reused whose ADLs

point to deallocated swap space resulting in an eviction false positive ratio of about 37%.

5.3.5 Overhead

Geiger observes events that are intrinsically visible to a VMM like page faults, page table

updates, and disk I/O. Except in the case of disk block liveness tracking, no additional

memory protection traps or I/O requests are caused by Geiger. Liveness tracking imposes

one additional minor page fault for each disk bitmap update which occur relatively rarely.

Hence, we expect the runtime overhead imposed by Geiger to be small. To validate this

expectation, we compare the runtime of workloads running on an unmodified version of

Xen to that of Geiger. We are interested in two performance regimes. The first regime

is the more common case, in which a workload has sufficient memory and few evictions

occur. The second regime occurs when a machine is thrashing, since this implies that many

evictions are taking place and Geiger’s inference mechanisms are being stressed.

We evaluate each of these four cases using two carefully chosen workloads. Since

Geiger interposes on code paths for handling page faults, page table updates and disk I/O,

we use the microbenchmark “allocation-evict” described in Figure 5.1 and Dbench de-

scribed in Figure 5.2. Allocation-evict causes many page faults and page-table updates

stressing that portion of Geiger’s inference machinery. Dbench causes a large number of

file creations, reads, writes, and deletes which exercise those portions of Geiger’s heuris-

tics.

Figure 5.9 shows the results of the experiment. Each value shown is the average of five

runs; the standard deviation is shown with error bars. The largest observed overhead is

2.19%, which occurs for a thrashing Dbench. For all cases, the results for Geiger and the

unmodified Xen are comparable.

Geiger requires some extra space per physical memory page to track ADLs. In our

prototype this amounts to 20 bytes per memory page. In our test system, configured with

2 GB of physical memory, a total of 10 MB of additional memory is allocated by the VMM,

leading to a space overhead of approximately 0.5%. If this space overhead is a concern, it

58

 0

 100

 200

 300

 400

 500

 600

 700

Alloc-Evict
Thrash

Dbench
Thrash

Alloc-Evict
No Thrash

Dbench
No Thrash

R
un

tim
e

(s
)

Geiger Runtime Overhead

Unmodified Xen
Geiger

Figure 5.9: Geiger Runtime Overhead. The figure shows that Geiger imposes very small runtime

overheads for two workloads that stress its inference heuristics.

could be substantially reduced, given the preallocated, fixed size, and sparsely-populated

data structures of our prototype.

5.4 Case study: Working Set Size Estimation

Geiger’s eviction detection techniques are useful for implementing a number of pieces

of functionality. In our first case study, we show how Geiger can be used to implement

MemRx, a VMM service that tracks the working sets of guest VMs. We begin by describing

the implementation of MemRx and then present performance results.

5.4.1 MemRx Design

Previous research by Waldspurger [101] for ESX Server has shown how a VMM can deter-

mine the system working set size of a VM whose memory footprint fits in physical mem-

ory. MemRx complements the ESX Server technique by enabling a VMM to determine the

working set size for a thrashing virtual machine.

MemRx does this by simulating the buffer cache behavior of the guest operating system

as if more memory were allocated to it. Geiger allows MemRx to monitor buffer cache

evictions and promotions. Figure 5.10 shows a schematic of the page cache simulation

implemented by MemRx. Using the ADL mechanism, Geiger knows which blocks on

59

Figure 5.10: MemRx Operation. The figure shows a schematic of the cache simulation imple-

mented by MemRx. A) When a page is evicted by a guest, this event is detected by MemRx and an

entry is added to the head of a series of queues. B) If necessary, queue entries ripple from the tail

of one queue to the head of the next. C) Upon reload, the associated queue entry is removed and an

array entry associated with that queue is incremented. Each entry tracks which sub-queue it appears

in to enable fast depth estimation.

disk correspond to an evicted page. When a page is evicted, a reference to the page’s

location on disk is inserted at the head of a queue maintained in LRU order by MemRx.

Subsequent evictions push previous references deeper in the queue. When a previously

evicted page is read from disk, i.e., promoted into the page cache, the reference to that page

is removed from the queue and its distance D from the head of the queue is computed. The

distance is approximately equal to the number of evictions that have taken place between

that page’s eviction and its subsequent reload. MemRx then uses D to compute the amount

of memory that would have been required to prevent the original evictions from taking

place as sizepage × (D +1). This information is used to compute a miss-ratio curve [107].

The working set size can be read from the miss-ratio curve by locating the curve’s primary

knee.

For example, if a page is evicted and immediately reloaded before any other pages are

evicted, MemRx would record that the eviction could have been prevented by one addi-

tional page of physical memory. If a page’s eviction is followed by 1024 evictions of 4 KB

pages, MemRx would report that (1024 + 1) × 4 KB (roughly 4 MB) of additional

memory would be required to prevent the original eviction.

Our general strategy, which is similar to Patterson et al.’s ghost buffering scheme [71],

60

Benchmark Activity

FS Sequential Sequentially scan a 256 MB section

of a file system file 10 times

VM Sequential Sequentially scan 256 MB section

of allocated virtual memory 10 times

FS Random Randomly read page-sized blocks from

a 256 MB file system file two times

VM Random Randomly touch virtual memory pages from

256 MB virtual memory allocation 2 times

Figure 5.11: Calibrated Microbenchmarks. The table describes each of the microbenchmarks

used to evaluate VMM-MemRx.

relies upon certain properties of the operating system cache replacement policy to function

correctly. Specifically, the algorithm used must (roughly) preserve the inclusion or stack

property [61]. The key aspect of the stack property is that a cache of a size N + 1 has the

same contents as a cache of size N , plus the one additional buffer which has some other

block within it. LRU and LFU obey this property; FIFO does not [9]. By assuming the

stack property holds, the VEC can efficiently simulate the contents of larger caches, safe

in the knowledge that the buffers of the main page cache would be comprised of the same

contents even if more memory were available.

Neither Linux, nor most other operating systems, employ a page replacement strategy

that perfectly maintains the stack property. Our evaluation demonstrates, however, that

MemRx is quite robust to these deviations under Linux for many useful cases.

5.4.2 Evaluation

We first evaluate the accuracy of MemRx by using it to measure the working set size of

microbenchmark workloads for which the working set size is approximately known. Ta-

ble 5.11 lists each of the microbenchmarks and the actions they perform; the working set

size for each is approximately 256 MB and the virtual machine is configured with 128 MB

of memory. Second, we compare the working set size predicted by MemRx to the working

set size determined by trial and error for more realistic application workloads, in particular,

Mogrify and Dbench.

Figure 5.12 shows the predicted and actual miss ratio curves for the four microbench-

mark workloads. The miss ratio curve shows the fraction of the capacity cache misses

occurring in the smallest memory configuration (i.e., 128 MB) that remain misses in larger

memory configurations. The predicted curve is calculated by MemRx using measurements

taken during a single run at the smallest memory configuration and then simulating the

page cache behavior of the guest operating system on-line for several larger memory con-

figurations in increments of 32 MB. The actual curve is calculated by running the workload

at each of the noted memory sizes and counting actual capacity misses in the page cache.

These calibrated tests show that MemRx can locate the working set size of simple

61

 0

 0.2

 0.4

 0.6

 0.8

 1

 128 192 256 320 384 448 512

M
is

s
R

at
io

Memory size (MB)

FS Sequential

Predicted
Actual

 0

 0.2

 0.4

 0.6

 0.8

 1

 128 192 256 320 384 448 512

M
is

s
R

at
io

Memory size (MB)

VM Sequential

Predicted
Actual

 0

 0.2

 0.4

 0.6

 0.8

 1

 128 192 256 320 384 448 512

M
is

s
R

at
io

Memory size (MB)

FS Random

Predicted
Actual

 0

 0.2

 0.4

 0.6

 0.8

 1

 128 192 256 320 384 448 512

M
is

s
R

at
io

Memory size (MB)

VM Random

Predicted
Actual

Figure 5.12: VMM-MemRx Predicted vs. Actual Miss Ratio. The figure shows the miss ratio

predicted by VMM-MemRx vs. the actual miss ratio measured for varying memory sizes. The known

working set of 256 MB is marked by a vertical dashed line.

workloads very accurately. The prediction made by MemRx is identical to that found by

direct measurement using trial and error. The result is not surprising, because under these

simple workloads, Geiger incurs few eviction false positives.

Figure 5.13 shows the results for the two application workloads, Mogrify and Dbench.

The leftmost two graphs show the predicted and actual miss ratio curves. In these cases, the

inferred working set size predicted by MemRx is slightly larger than the actual working set

size found using trial and error. To determine whether the discrepancy was due to Geiger

(e.g., false positive/negative evictions or lag) or to MemRx (e.g., cache simulation error)

we implemented MemRx within Linux [51] and compared the predicted and actual miss

ratio curves produced by that version. Within the operating system, MemRx has access

to precise eviction and promotion information, which eliminates Geiger as a source of

error. The rightmost two graphs in Figure 5.13 show the miss ratio curves obtained for the

Mogrify and Dbench workloads using our operating system implementation of MemRx.

For the Dbench workload, the version of MemRx in the OS shows the same deviation

as the one produced by MemRx in the VMM; this leads us to conclude that the cause of the

deviation is MemRx simulation error. MemRx models the guest buffer cache using a strict

LRU policy that does not exactly match the policy used by Linux, which is something more

62

 0

 0.2

 0.4

 0.6

 0.8

 1

 64 128 192 256 320 384

M
is

s
R

at
io

Memory size (MB)

Dbench (VMM)

Predicted
Actual

 0

 0.2

 0.4

 0.6

 0.8

 1

 128 192 256 320 384 448 512

M
is

s
R

at
io

Memory size (MB)

Mogrify (VMM)

Predicted
Actual

 0

 0.2

 0.4

 0.6

 0.8

 1

 64 128 192 256 320 384

M
is

s
R

at
io

Memory size (MB)

Dbench (OS)

Predicted
Actual

 0

 0.2

 0.4

 0.6

 0.8

 1

 128 192 256 320 384 448 512

M
is

s
R

at
io

Memory size (MB)

Mogrify (OS)

Predicted
Actual

Figure 5.13: Application Predicted vs. Actual Miss Ratio. The figure shows the miss ratio curve

predicted by MemRx vs. the actual miss ratio measured for varying memory sizes for two application

workloads. Results from MemRx implemented in the VMM (left) and MemRx implemented in the OS

(right) are shown.

akin to 2Q [48]. The difference between the modeled policy and the true policy leads to

simulation errors like the one shown. In the case of Mogrify, however, the OS-based miss

ratio curve matches the actual curve closely, leading us to believe that the error observed

in the VMM-predicted working set size is due to the small inference errors imposed by

Geiger and the granularity of the experiment.

In summary, the information provided by Geiger enables a VMM to estimate the work-

ing set sizes of thrashing VMs. The predictions made by MemRx are accurate enough to be

highly useful when allocating memory between competing VMs on a single machine [101]

or when selecting an appropriate target host during virtual machine migration [105].

5.5 Case study: Eviction-Based Cache Placement

In our second case study, we show how Geiger can be used to convey eviction information

to a secondary cache. The basic idea is that the VMM uses Geiger to infer which pages have

been evicted from the OS buffer cache, then sends this information (e.g., with a DEMOTE

63

operation [104]) to the storage server, which is potentially remote. The storage server uses

this explicit information to perform eviction-based cache placement.

5.5.1 Implementation

Our implementation of an eviction-based secondary cache has two components. First, the

VMM interposes on the virtual block device interface provided by Xen to see the block

request stream generated by the workload. Second, the VMM uses Geiger to infer which

blocks have been evicted from the guest OS buffer cache; these events are then communi-

cated to the remote storage server. We simulate the behavior of a storage server by using

the actual trace gathered from running Geiger for a given workload as input. We refer to

our approach as Eviction-Geiger.

To evaluate our implementation, we compare it with three alternatives. In the first ap-

proach (Eviction-OS) the operating system is modified to report actual evictions; this rep-

resents the ideal case. In the second approach (Eviction-Buffer), the VMM performs only

the eviction detections that are possible using client buffer addresses as used by Chen et

al. [17] (i.e.read and write evictions). Finally, we simulate a storage cache that uses no

information about client evictions and performs traditional, demand-based placement. In

all cases we use an LRU-based replacement policy.

5.5.2 Evaluation

We use the application workloads listed in Figure 5.2 to evaluate our VMM implementation

of eviction-based cache placement. For each workload, we consider remote caches from

32 MB to 512 MB. We evaluate the four placement policies: Eviction-OS, Eviction-Geiger,

Eviction-Buffer, and Demand. Our metric is cache hit ratio.

Figure 5.14 shows graphs of the cache hit ratio vs. cache size for the four workloads

and four cache policies. In all cases, OS and Geiger eviction-based placement outperform

demand-based placement, sometimes significantly. The largest gains occur for moderate

cache sizes where the working set of the application fits neither in the client cache nor

in the storage cache individually, but does fit within the aggregate cache. OS and Geiger

eviction-based placement are able to improve cache hit rate by as much as 28 percentage

points for these workloads. For example, under the Mogrify workload using a secondary

cache size of 96 MB, the cache hit ratio goes from 14.9% under demand placement to

42.9% when eviction-based placement is used. When the secondary cache size is large

enough to contain the full system working set, OS and Geiger eviction-based placement

perform similarly to demand-based placement. In the case of SPC web search, the traces

exhibit almost no locality. The results are included for completeness only.

For one workload, Dbench, eviction-based placement with OS support outperforms

that with inferred evictions, even with Geiger. For example, with a secondary cache size of

416 MB, we observe a difference in hit rates of about 15 percentage points. This perfor-

mance difference is due to the significant time lag between the actual and inferred write-

eviction events (approximately 2 seconds for most events in this experiment). Because

some inferred evictions are delayed, the secondary cache loses the opportunity to place a

64

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 32 160 288 416

C
ac

he
 H

it
R

at
io

Cache Size (MB)

Mogrify

Eviction-OS
Eviction-Geiger
Eviction-Buffer

Demand
 0

 0.2

 0.4

 0.6

 0.8

 1

 32 160 288 416

C
ac

he
 H

it
R

at
io

Cache Size (MB)

Dbench

 0

 0.2

 0.4

 0.6

 0.8

 1

 32 160 288 416

C
ac

he
 H

it
R

at
io

Cache Size (MB)

TPC-W

 0

 0.2

 0.4

 0.6

 0.8

 1

 32 160 288 416

C
ac

he
 H

it
R

at
io

Cache Size (MB)

SPC Web Search 2

Figure 5.14: Secondary Cache Hit Ratio. The figure compares the cache hit ratio in a secondary

storage cache for various workloads when demand placement (Demand), eviction placement based

on inferred evictions (Eviction-Buffer and Eviction-Geiger), and eviction placement based on actual

evictions (Eviction-OS) is used. Experiments are performed using cache sizes from 32 MB to 512 MB.

block prior to the block being referenced by the client, and a cache miss occurs. How-

ever, the eviction-based approaches still perform significantly better than demand-based

placement.

Eviction-Geiger always performs as good or better than Eviction-Buffer. In fact, Eviction-

Buffer sometimes performs significantly worse than straightforward demand-based place-

ment. The problem occurs because Eviction-Buffer may detect fewer evictions than actu-

ally occur (i.e., large false negatives). For workloads, such as Mogrify and TPC-W, where a

significant number of non-I/O based evictions occur, missing evictions lead to poorer over-

all cache performance. Missing evictions are particularly a problem with large secondary

caches, because few blocks are placed effectively, even though adequate cache space is

available. In the case of TPC-W, missing eviction events change the cache hit rate by about

10 percentage points, while under Mogrify the difference is about 40 points.

In summary, Geiger can be used effectively to notify a secondary cache of the evictions

that have been performed by clients. As confirmed in other studies [17, 16, 104], secondary

caches using eviction-based placement can perform much better than those using demand-

based placement. Our results show that the eviction information provided by Geiger is

65

nearly as good as that which could be provided directly by the OS (if the OS were modified

to do so). The one exception occurs when a significant lag occurs in the time between the

actual eviction and the inference; however, even in this case, Geiger enables much better hit

rates than those with simple demand-based placement. With eviction-based placement, it is

essential to not miss evictions in the clients; eviction detection based only on I/O reads and

writes can miss important evictions, leading to hit rates that are actually worse than simple

demand-based placement. Therefore, the full set of techniques within Geiger should be

used for buffer cache inferences.

5.6 Assumptions

As is the case with Antfarm, described in Chapter 4, Geiger also makes some basic as-

sumptions about how operating systems work to form its inferences about the buffer cache.

This section enumerates and discusses those assumptions.

Memory allocation mechanisms: Geiger assumes that most memory is allocated by an

operating system via the small number of mechanisms listed below.

• Buffer-cache allocation during disk read and write

• Copy-on-write sharing

• Lazily in response to a not-present page fault

Geiger knowingly ignores other types of memory allocation as they are typically rare or

concern small amounts of memory. Examples of memory allocations that Geiger ignores

are non-cache kernel allocations (e.g., inodes, directory entries, and other special purpose

data structures).

Write sharing in memory is rare: The write and allocation eviction heuristics assume that

processes do not often write-share large amounts of memory. While this is typically true,

it would be simple to create a contrived workload that shared large amounts of writable

memory. If this occurs, Geiger will spuriously report an extra eviction whenever a memory

page within the writable buffer is lazily allocated by the operating system for any process,

except the first, sharing the buffer.

Filesystems update in place: Some of the filesystem optimizations employed by Geiger

to reduce false positives assume that the filesystem in use updates data in place. Nearly

all filesystems have this feature. Some special purpose filesystems like WAFL [40], which

is used on dedicated storage appliances, or ZFS [92], a new dynamic filesystem designed

for the Solaris operating system, do not overwrite existing data on update in order to easily

support filesystem features like creating and maintaining snapshots. WAFL is used in a

proprietary appliance environment where system virtualization is unlikely. ZFS is a general

purpose filesystem, but is quite new and not widely used.

Operating systems avoid unnecessary data copying: Some of Geiger’s heuristics assume

that operating systems avoid copying data around in memory. Such copying could break

the association that Geiger tracks between disk locations and memory pages. In practice

66

we have found that operating systems go to great lengths to avoid copying for performance

reasons. In some cases copying is unavoidable. For example, in legacy systems using the

ISA peripheral bus, devices are limited in the addresses they are allowed to use for DMA.

In such a situation, the OS must copy data from low to high memory when necessary, a

technique known as bounce-buffering.

5.7 Summary

In this chapter, we have explored techniques to make inferences about when pages are

added to or removed from a guest OS buffer cache. We have found that modern operating

systems, which typically incorporate unified system caches and journaling file systems,

require new inferencing techniques that account for some previously ignored subtleties like

anonymous memory allocation, aliasing and block liveness.

Geiger’s full range of inference techniques are needed under different circumstances.

For example, our COW and Allocation techniques are needed to handle an important class

of applications that allocate significant amounts of anonymous memory; live block detec-

tion improves the accuracy of workloads that delete or truncate files; finally, writes to the

journal must be isolated to handle file system data journaling. These features make a real

impact on performance. For example, in some cases the number of false positives can be

reduced by more than a factor of nine by taking block liveness into account.

Overall, our techniques are efficient. Our largest observed runtime overhead was 2.19%

and overheads for more typical workloads were much less than 1%. In some cases we

observed that the lag between actual and inferred events reduced the value of inferred in-

formation, but in general the information provided by Geiger is timely with average lag

measured in small numbers of milliseconds.

Geiger allows us to implement two useful prototype case studies: MemRx, a work-

ing set size estimator that compliments and extends existing commercial techniques, and

eviction-based cache placement for second-level caches. Recently, another group of re-

searchers have proposed using Geiger and MemRx as components in their dynamic, virtual

machine-based cluster management system [105].

Chapter 6

Detecting and Identifying Hidden

Guest Processes

Stealth rootkits that can hide processes are an important security issue. According to statis-

tics gathered from Microsoft’s widely deployed Malicious Software Removal Tool [63],

a significant fraction of the malware it encounters and removes consists of stealth rootk-

its with process and other resource hiding capabilities [67]. Half of unpatched Windows

systems surveyed by the Microsoft tool are affected by a single rootkit alone. Often the

stealth rootkit components are bundled and used by other kinds of destructive malware like

remote control programs for botnets and spyware, extending their capabilities and compli-

cating their detection and removal. The ability to detect and respond to malicious hidden

processes is a clear advantage in the race to defend network-attached computers.

One way to detect that processes have been hidden is by using a technique called cross-

view validation [102]. Cross-view validation works by observing a resource, like operating

system processes, from multiple perspectives and noting inconsistencies between them.

One view is obtained from an untrusted, high-level vantage point. The other is obtained

from a low level in the system that is unlikely to have been subverted by an attacker; hence,

its information is considered trustworthy. If a resource appears in the trusted view and does

not appear in the untrusted view, a detector based on the cross-view principle can conclude

that a resource has been hidden independent of the technique used to hide it.

One serious problem with cross-view validation is the inevitable race that develops be-

tween attackers and defenders to control the lowest reaches of a system. If an attacker sub-

verts the level from which the trusted view is obtained, cross-view validation fails. Clearly,

the deeper within a system a trusted view can be extracted the better. In this paper we

describe a cross-view technique for detecting hidden processes that obtains its trusted view

from deep within the system at the VMM-layer.

A virtual machine monitor (VMM) is an attractive place to deploy security monitoring

services like anomaly detection systems [35, 52]. By virtue of their location behind the

relative security of the virtual machine interface, VMM-based services are better shielded

67

68

from malicious attacks that originate from within a guest virtual machine [55], even if the

guest operating system kernel is compromised. In spite of being separated from guests by

a secure barrier, a VMM maintains good visibility into the the activities and state of its

guest virtual machines. For example, a VMM can easily read and write guest registers and

memory and can observe guest I/O like disk and network requests.

The VMM-based security services that have been proposed to date assume that the

VMM has detailed implementation information about the guest operating systems they

observe [35, 52]. These services use information about the memory locations of private

operating system variables and functions, the layout of compound structures, the call sig-

natures of important operating system functions, and detailed semantics of various operat-

ing system components to perform their work. Some of this information can be obtained

automatically from debugging symbols [35]. Other kinds of information are only available

via careful study of system source code or reverse engineering [52].

VMM-level services based on explicit implementation information are effective, but

there are drawbacks. One interesting consequence is that they may be just as susceptible

to evasion by an attacker that has subverted the guest operating system as if they were

located within the guest itself. In spite of their location at the VMM-layer, these services

depend on guest-level information which is still open to simple guest-level manipulation.

For example, if a service depends on the correctness of the guest operating system process

list, a kernel-resident attacker can modify the list to hide its presence. If a security system

depends on monitoring the location of a function like fork to be informed of process

creation, it may be thwarted by an attacker that re-directs invocations of the system call to

their own implementation.

In this chapter we present the design, implementation, and evaluation of Lycosid, a

VMM-based security service that detects and identifies hidden processes. Lycosid does not

depend on explicit guest operating system implementation information. Instead, general

operating system principles and observations of architecture-level activity are used to infer

required information about the activities and state of guest virtual machines. Like previous

VMM-based security services, Lycosid is resilient to malicious guest attack by virtue of its

location within a VMM. Unlike previous work, Lycosid obtains and uses true VMM-level

information about guest operating systems which should render it less susceptible to guest

evasion attacks. Additionally, by decoupling Lycosid from a specific operating system

version and patch-level, the service can be deployed in diverse environments without the

burden of maintaining version-specific implementation information.

The detection and identification of specific hidden processes provided by Lycosid en-

able a VMM to engage in a targeted response to this kind of malicious activity. A VMM

that knows which processes are hidden can provide more specific and detailed logging.

Per-process profiling information can be generated via a technique like on-demand emula-

tion [41]. This additional detail enables a more effective post-mortem malware analysis.

Finally, an aggressive VMM security policy might elect to pro-actively kill hidden pro-

cesses, while allowing untainted processes to continue running.

We evaluate our Lycosid implementation using both Windows and Linux guests and

find that it is highly accurate in a wide range of extremely challenging environments. This

result comes despite the fact that the implicitly obtained information about guest virtual

69

machines used by Lycosid is noisy and sometimes wrong [49, 50]. Accuracy is achieved

via a targeted use of statistical inference techniques like hypothesis testing and linear re-

gression that trade time for accuracy. Despite low quality inputs, Lycosid provides a robust,

highly accurate, and portable service usable even in security environments where the con-

sequences for wrong decisions can be high.

Lycosid bases most of its decisions on passively obtained information. In some cases,

however, we find that passive information is inadequate to reliably identify which of many

candidate processes has been hidden. Lycosid introduces a new technique called CPU

inflation that allows a VMM to influence the runtime of specific processes by carefully

patching a process’s executable code. Using CPU inflation, Lycosid can often transform

a detectable, but unidentifiable, hidden process into a hidden process that can be reliably

identified, enabling an appropriate response.

6.1 Process Hiding

When a system is compromised, it is common for an attacker to leave programs behind that

advance the attacker’s goals. This approach is especially favored when the attacker accesses

a machine from a remote location over a network. For example, an attacker will often leave

behind a back door program that listens to the network and allows the attacker to regain

a privileged presence on a compromised system without re-exploiting a vulnerability [81].

In other cases, key capture or file system scanning programs are left running to collect

additional useful information like login names, passwords, and financial records.

The presence of unexplained processes, network connections, or files is an indicator to

a system administrator or intrusion detection system that a successful attack has occurred.

To avoid tipping off a defender, an attacker will often attempt to hide their malicious pro-

cesses, network connections or data files [14]. Hiding is typically accomplished by modi-

fying some aspect of the system using a suite of tools called a stealth rootkit. For example,

some rootkits modify program binaries like ps, netstat, and ls [64]. Other rootkits

hook into the call path between a user application and the kernel by modifying libraries,

dynamic linker structures, system call tables, or operating system functions that report sys-

tem status [42]. Finally, some rootkits manipulate kernel data structures using so-called

direct kernel object manipulation (DKOM) [32]. Rootkit hooks and modified kernel data

structures lead to corrupted results of user requests, effectively hiding the presence of ma-

licious resources [20, 83]. The list of techniques available to hide system resources is long

and growing.

Long lived malicious processes are the most likely candidates for hiding. The proba-

bility of detecting a short lived malicious process via a process introspection tool like ps
is relatively small, so an attacker rarely goes to the trouble of hiding a short-lived process.

The long-lived nature of maliciously hidden processes has implications for the kinds of

detection techniques that are feasible.

70

6.2 Detection

The Lycosid service is partitioned into detection and identification components. We discuss

the detection component in this section. Detection consists of determining if any processes

running within a guest virtual machine have been hidden. The detection algorithm does not

identify which specific processes are hidden. Identification is discussed in Section 6.3.

6.2.1 Approach

If a process has been hidden using any of the methods described in Section 6.1, it will

not appear on a user-level process listing. It will, however, appear on a suitably obtained,

trusted process list. Hence, to detect a hidden process we can compare the lengths of

process lists obtained at a trusted and an untrusted level. If the trusted list is longer than the

untrusted list we can conclude that at least one process has been hidden.

On an idle system, simply obtaining a single instance of the two process lists and com-

paring them would suffice to detect hidden processes. On an active system, however, where

processes are being created and destroyed, the situation becomes more complicated. For

example, Lycosid cannot perfectly synchronize the times at which it makes its two process

list observations, so they may reflect different process-related states of the system. Addi-

tionally, the measurements taken within the VMM can be delayed, further complicating the

inference. As the system experiences higher levels of process creation and exit activity, the

problem becomes worse.

Lycosid overcomes these issues by employing statistical inference techniques. Specif-

ically, it obtains many pairs of measurements over time and performs a series of paired-

sample hypothesis tests [75]. Each pair consists of a process count obtained from within

the VMM and a process count obtained from within the guest. Using a hypothesis test, we

can determine if the two process lists differ in length even when the system process state

is in dramatic flux. The test procedure also provides the ability to quantitatively limit the

chance that we assert one or more processes are hidden when in fact no hiding is taking

place, i.e., the false positive rate can be explicitly controlled.

Formally, let T be the length of the trusted process list and let U be the length of the

untrusted process list. Our null and alternative hypotheses are then:

H0 : T − U ≤ 0 (6.1)

H1 : T − U > 0 (6.2)

We use the non-parametric Wilcoxon rank-sign statistic [75] in our tests because it

makes no assumptions about the distribution of the population from which our samples are

drawn. Data analysis indicates that the distribution of T − U is quite symmetric, but has a

slight negative skew and is not normally distributed.

If we can reject the null hypothesis H0 in favor of the alternative hypothesis H1 at an

appropriate level of confidence, we can quantitatively conclude that one or more processes

is being hidden. The hypothesis test p-value indicates the probability of a false positive,

i.e., indicating hiding when the null hypothesis H0 (no processes are hidden) is true. As

71

with most anomaly detection systems, the consequences for false positives in the detection

performed by Lycosid are significant. Too many false positives degrade the confidence

in the system and render the information it provides less valuable. Hence, we choose a

conservative threshold confidence value (α = 2×10−6). If the one-sided p-value computed

during the hypothesis test falls below α, Lycosid reports that one or more processes have

been hidden.

In addition to a hidden process indicator, the average difference observed between the

two lists during the detection phase provides an estimate of the number of processes that

have been hidden. This point estimate is used as input to the hidden process identification

algorithm described in Section 6.3.

6.2.2 Details

Lycosid obtains a trusted view of guest processes from within a VMM. The VMM-based

approach has advantages over any technique that obtains trusted information from within

the guest itself because a VMM is typically much harder to subvert than guest software

services or even the guest operating system kernel. This fact follows from the relatively

smaller and well-defined virtual machine interface that separates the guest from the VMM [55].

VMI [35], for example, uses this advantage to provide various resilient security services

within a VMM, one of which is hidden process detection. Lycosid differs from VMI in the

way it obtains trusted information about the guest operating system. VMI exploits detailed

information about the location and semantics of private kernel data structures to obtain a

low-level guest process list. In contrast, Lycosid obtains its low-level guest information

implicitly. This is a key advantage of Lycosid. No detailed implementation information

about the guest is required. As a result, Lycosid can be deployed without taking versions

and patch levels of the target operating systems into account.

Lycosid uses Antfarm [49] to obtain its low-level view of guest operating system pro-

cesses. Antfarm is a VMM component that implicitly obtains information about guest oper-

ating system events like process creations and exits by observing closely related events like

virtual address space creation and destruction. Information about virtual address spaces is

explicitly visible to a VMM. Antfarm can also provide estimates of other process-related

quantities like CPU time consumed, working set size, and context switch counts by observ-

ing their virtual address space analogues.

Lycosid obtains its untrusted view of guest operating system processes the same way

that VMI does. A network connection is made from the VMM to the guest and a user-level

program within the guest is invoked to enumerate processes. On a UNIX-like system the

ps command can provide this information. On Windows systems, various utilities like

pslist.exe [21] or the built-in tasklist.exe can be used. To minimize the data

that must be transported over the network, Lycosid uses a custom process enumeration

utility that returns only the information it requires. We use a custom utility to reduce the

time required to obtain information from a guest, improving the synchronization between

VMM and guest measurements.

Lycosid obtains trusted and untrusted process lists at short random intervals. A window

of the most recent samples is preserved for use in hypothesis testing. The size of the

72

window and the sample interval are configurable. In our implementation, samples are

obtained every one second on average. Up to the most recent 600 samples are used in

each hypothesis test. Approximately every minute, we test the null hypothesis that the two

lists are the same length. Given the detection threshold α = 2 × 10−6, our configuration

corresponds to about one expected false positive per year.

6.3 Identification

After detecting that one or more processes have been hidden, the natural next step is to

identify which processes have been hidden. By identifying the specific processes that have

been hidden we enable a more effective VMM response to the malicious activity.

Given only the information provided by the hiding detector, each process visible from

within the VMM is equally likely to be the culprit. Our approach for identifying which pro-

cesses have been hidden is to select a measurable quantity associated with hidden processes

and use it to select from the set of candidate processes.

6.3.1 Approach

As a process executes, it consumes CPU time. Both the operating system and a process-

aware VMM like Lycosid can account CPU time to specific processes. Let Gi denote

the CPU time for process i as observed from within a guest. Let Vj be the CPU time

accumulated by process j as seen by the VMM. Then, when hiding occurs, the quantity

H =
∑

j

Vj −
∑

i

Gi (6.3)

represents the total CPU time observed within the VMM that is not accounted for by pro-

cesses visible to the guest, i.e., it is the CPU time used by hidden processes. We can

construct a linear equation using H and the per-process CPU times we have obtained from

within the VMM.

H = β1V1 + β2V2 + ... + βnVn (6.4)

Equation 6.4 holds if the coefficients βj take the value 1 for processes that are hidden

and 0 for non-hidden processes. We can identify likely hidden processes by fitting a multi-

ple variable linear model using least-squares regression on Equation 6.4 and choosing the

N variables from the model that best explain the variance observed in H , where N is the

estimated number of hidden processes obtained during the detection phase. Hence, hidden

process identification in Lycosid is a multiple linear regression variable selection problem.

There is no universal, automated technique available for variable selection in multiple

regression that is guaranteed to select the best set of variables to include in a model. Step-

wise procedures attempt to refine an over-specified or under-specified model iteratively, but

often choose bad models. All-possible-subsets regression is guaranteed to choose the best

model as long as the number of variables to include is known in advance. As the name

73

implies, all-possible-subsets does this by trying all possible variable combinations of the

specified size and maximizing a provided model statistic like the multiple R2 measure. Un-

fortunately the cost of all-possible-subsets variable selection grows like
(

N

E

)

where N is the

total number of processes and E is our estimate of the number of hidden processes. Since

the number of processes to choose from is often large in our environment, this technique is

usually far too expensive.

Lycosid uses a simple variable selection heuristic that incorporates what we know about

the form of the true model. We know that the coefficients of the variables representing

hidden processes should be close to 1.0 and we have an estimate for the total number

of hidden processes. Once an initial model has been fit, those variables corresponding

to processes that are obviously not related to the extra observed CPU time are removed

from the model. Specifically, variables with negative estimated slopes and variables whose

estimated slopes are much greater than 1.0 (e.g., greater than 5 in our implementation)

are removed. A new model is then fit using only the remaining variables. Finally, the N

variables whose positive relationship to the extra CPU time is strongest are chosen. The

strength of a variable’s relationship to the extra CPU time is represented by the p-value

that results from testing the null hypothesis that the variable’s estimated coefficient is zero.

Note that we do not attempt to interpret the resulting p-value as a probability related to

our identification task. The p-value is simply used to order the variables according to the

strength of their relationship to the extra observed CPU time. The top N variables from the

ordered list are selected. As in the detection case, we employ a conservative threshold p-

value (α = 1×10−5) to reduce the chance of false positives, i.e., of incorrectly identifying

a process as hidden when it is not. If we do not find N variables with sufficiently small p-

values, additional samples are taken and the procedure continues until a configurable upper

limit of samples is reached.

6.3.2 Details

Lycosid obtains CPU time information about processes from both the VMM and from the

guest operating system. CPU times for VMM-visible processes are obtained using Ant-

farm. As in the detection phase, Lycosid uses a custom network utility that calls docu-

mented APIs to obtain and return per-process CPU time information.

Samples are obtained from the VMM and from the guest operating system at small

random intervals. In our prototype, samples are obtained about once per second on average.

A sample consists of a set of process identifiers and the CPU time used by each associated

process since the last measurement interval.

Figure 6.1 shows a notional data set used for identification purposes. Note that Ly-

cosid is unaware of the mapping from guest process IDs to the abstract internal process IDs

available within the VMM. No simple method of inferring this mapping currently exists.

Otherwise identification would consist of a simple set subtraction operation.

Over time, samples are collected and stored. Once adequate samples have been ob-

tained, a model can be fit and evaluated for hidden process identification. In our current

implementation, an initial model is fit once max(40, number of processes) sam-

ples has been obtained. Up to a maximum of 1000 samples are obtained for use in identifi-

74

VMM PID VMM proc runtime (s)
0x3a40 1.219
0xad3f 0.203
0xf003 0.491
...
Guest PID Guest proc runtime (s)
30 1.103
495 0.422
933 0.001
...

Figure 6.1: Sample Identification Data. The figure shows a notional data set used to identify

hidden processes. There is no correlation between VMM and guest process IDs.

cation.

6.3.3 CPU Inflation

The key feature used by our identification algorithm is the CPU time consumed by each

process as observed from within the VMM and from within the guest operating system. It is

important to note that the identification technique, unlike the detection technique, requires

that the hidden process actually runs. Lycosid can detect, but not identify a completely idle

hidden process.

Lycosid uses a new technique, called CPU inflation, that allows it to influence the CPU

time used by a process. It is an intrusive technique used only when the passive methods al-

ready described fail to reliably identify a hidden process. CPU inflation works by transpar-

ently placing patches in guest program code. By forcing processes to run more frequently

and more aggressively than they normally would, CPU inflation effectively increases the

resolving power of Lycosid’s identification techniques.

Details

When control is about to return from the VMM to a guest and CPU inflation is enabled,

Lycosid determines the address where execution will resume and places a small patch con-

taining a tight loop at that location. The patch forces the associated process to fully utilize

its scheduling quantum until it is removed, effectively maximizing the amount of CPU time

used by a process.

Patches are only placed when control returns to user-mode. In our VMM environment,

nearly all VMM-to-guest transitions return to kernel-mode. Lycosid must therefore manu-

facture situations where the VMM returns to user-mode. It accomplishes this by arranging

for high-resolution timer interrupts to occur a short time after a return to kernel-mode. The

small extra interval allows the operating system to complete its current task (e.g., inter-

rupt processing) and return to user-mode where the guest is ultimately interrupted. The

75

ideal length of the timer interval can be determined experimentally within the VMM by

repeatedly increasing the interval until most timer interrupts occur in user-mode. By lim-

iting patches to user-mode code, the normal guest operating system scheduler is free to

de-schedule a patched process and the system remains stable.

In our implementation, after a patched process accumulates a certain amount of CPU

time, chosen from a configurable, uniformly random interval, the patch is removed and

the process is allowed to continue its normal execution. Patches are installed repeatedly

according to a configurable patch schedule. Processes that are patched experience reduced

performance, but are still allowed to make progress. When CPU inflation is enabled, patch-

ing is applied across all running processes. Lycosid enables CPU inflation when the detec-

tion module indicates hiding but the identification module is unable to identify the hidden

processes.

6.4 Threat Model

Lycosid assumes few limitations on the abilities of an attacker. Our threat model allows

an adversary complete control of a virtual machine including full system administrator

privileges and the ability to observe and modify the operating system kernel. Indeed, hiding

processes often requires an attacker to possess these abilities because privileged utilities,

like ps on UNIX, operating system functions, like EnumProcesses on Windows, and

key OS structures, like the process list, must be modified to implement malicious hiding.

The only limitation we place on the abilities of an attacker is that the VMM itself cannot

be compromised. Clearly, an attacker that has control of the VMM could interfere with the

functionality of Lycosid, which is also implemented at the VMM layer. We believe this

limitation is reasonable because the architectural interface provided by a VMM to a guest

operating system is relatively lean and, so far, has proven resilient to misbehaving and

malicious guest software. While researchers have shown how to use a VMM to implement

malware [57, 79], to our knowledge there have been no verified cases where a commercial-

grade VMM has been compromised from outside by a guest.

6.4.1 Definition of Success

We consider it a success if Lycosid complicates successfully hiding malicious processes

sufficiently such that the cost of hiding is significantly increased. As process hiding be-

comes more complicated and dangerous, an attacker will typically select a different stealth

technique or forgo stealth altogether. We believe that Lycosid is a positive defensive step

that helps to gradually remove opportunities to be stealthy from attackers.

6.5 Evasion

We claim that Lycosid is less vulnerable to evasion by guest software than previously pre-

sented VMM-based security services. Demonstrating that one system is more secure than

76

another in general is notoriously difficult (or impossible). In this section we describe our

rationale for the claim and why we believe implicit techniques can represent a net benefit

for VMM-level system defense.

If a VMM-based security service depends on the correctness of any guest-level com-

ponent, it is vulnerable to malicious corruption of that component [28]. For example, if

a VMM uses the integrity of the guest operating system process list to determine when

processes have been hidden, it is subject to evasion when a rootkit based on direct kernel

object manipulation corrupts the list. The rootkit leaves the list in a consistent, but incorrect

state. A VMM could use additional explicit information about other system components

(e.g., thread scheduling queues) to detect inconsistency. The same approach has been taken

by guest-level hiding detectors [78], for which there are, unfortunately, malicious work-

arounds [1]. In this case, the VMM has no detection advantage over a guest-level tool

because the information the VMM uses is fundamentally obtained from the guest.

Lycosid is based on implicitly obtained information about the observed guest virtual

machine. The information is derived from the basic behavior of the guest operating system.

For example, Lycosid uses process information provided by Antfarm. Antfarm obtains its

process information by observing how a guest operating system manages its virtual address

spaces. To evade Antfarm, an attacker must modify how the operating system implements

a fundamental feature (virtual memory) and must do so in a way that remains consistent

with its desired user-level view of processes.

In summary, Lycosid is perhaps best described as “differently” subject to gaming and

evasion on the part of compromised guests. We believe the effort required to deceive Ly-

cosid about ongoing process hiding while still maintaining a fully consistent outward ap-

pearance exceeds that of earlier VMM-based detectors. This is a feature of VMM-based

security services based on implicitly obtained information and raises the bar against mali-

cious process hiding.

6.6 Implementation

Lycosid is an extension to the Xen [27] VMM. The implementation of Lycosid is split

between the Xen hypervisor and user-level programs that run in Xen’s privileged control

virtual machine.

Antfarm [49] is one hypervisor component. It infers information about guest operat-

ing system processes by observing architectural events like page table updates and context

switches. Antfarm provides the basis for Lycosid’s hidden process detection and identifi-

cation. CPU inflation is also implemented as a core hypervisor feature. It interposes on

Xen’s virtual CPU scheduling and shadow page table handling to selectively and safely

patch user-level program code. Lycosid adds approximately 850 lines of C code to the

hypervisor.

The data collection and analysis components of Lycosid that implement its hidden pro-

cess detection and identification features are implemented as user-level programs running

in a Linux guest virtual machine. They communicate with the hypervisor components of

Lycosid via private VMM interfaces that are only available in Xen’s privileged control VM.

77

The analysis components are written in python and total approximately 6000 lines of code

including statistics libraries and interfaces to libR.so [74], a statistical computing library.

By partitioning Lycosid, only necessary components are added to the hypervisor itself

allowing it to remain relatively small, which is a desirable security property. The analy-

sis components are normal user mode programs which can fail and be restarted without

compromising the integrity of the whole system. They operate in polled batch mode which

removes them from any synchronous critical path and allows them to amortize the cost of

their communication with the VMM over many observations.

6.7 Evaluation

In this section we evaluate the performance of Lycosid’s process detection and identifica-

tion. We want to measure accuracy, timeliness, and runtime overhead. Accuracy is the

ability of Lycosid to correctly detect and identify hidden processes measured in terms of

false positives and false negatives. Our timeliness experiments measure how long it takes

Lycosid to come to its conclusions.

6.7.1 Experimental Environment

Lycosid is an extension to the Xen [27] VMM version 3.0.3-testing. We use the Linux ker-

nel version 2.6.16 in Xen’s privileged control virtual machine. We evaluate Lycosid using

two guest operating systems. The first is the retail version of Microsoft Windows 2000 Pro-

fessional. The second is a default installation of Redhat Enterprise Linux 4.3. Both guests

run unmodified using Xen’s full virtualization support enabled by the Intel virtual machine

extensions (VTx) [46]. Our experimental host has a 3.0 GHz Pentium D processor and

is configured with 4 GB of system memory. Both privileged and unprivileged virtual ma-

chines are allocated 512 MB of memory. The system contains a single Seagate 7200 RPM

Barracuda SATA hard disk drive.

6.7.2 Detection Evaluation

In Section 6.2 we noted that hidden process detection is complicated by multiple factors.

For example, measurements make by the VMM cannot be perfectly synchronized, implicit

information can be subtly inaccurate, and unrelated process creation and exit activity make

the measurements obtained by Lycosid unstable. The key variable affecting the ability of

Lycosid to detect hidden processes is how much unrelated process creation and exit activity

is occurring within the monitored virtual machine. Process creation and exit activity tends

to inject variability into the quantities measured by Lycosid and can magnify other, latent

sources of variance inherent in the implicit measurement process like lag. To evaluate if

Lycosid can accurately detect a hidden process in spite of these concerns, we perform many

detection tests at various levels of process creation and exit activity.

78

-40
-20

 0
 20
 40

 0 30 60 90 120 150 180 210 240 270 300 330

Time (seconds)

100 procs/s

-40
-20

 0
 20
 40

 0 30 60 90 120 150 180 210 240 270 300 330

50 procs/s

-40
-20

 0
 20
 40

 0 30 60 90 120 150 180 210 240 270 300 330

P
ro

ce
ss

 C
ou

nt
 D

iff
er

en
ce

25 procs/s

-40
-20

 0
 20
 40

 0 30 60 90 120 150 180 210 240 270 300 330

10 procs/s

-40
-20

 0
 20
 40

 0 30 60 90 120 150 180 210 240 270 300 330

1 proc/s

Figure 6.2: Process Count Difference Timelines. The figure shows a timeline of the difference

between the process list length obtained within the VMM and from the guest operating system for

various levels of process creation and exit activity. As process activity increases the variability in the

measured difference increases.

79

1.0e-08
1.0e-06
1.0e-04
1.0e-02
1.0e+00

 0 30 60 90 120 150 180 210 240 270 300 330

Time (seconds)

100 procs/s

1.0e-08
1.0e-06
1.0e-04
1.0e-02
1.0e+00

 0 30 60 90 120 150 180 210 240 270 300 330

50 procs/s

1.0e-08
1.0e-06
1.0e-04
1.0e-02
1.0e+00

 0 30 60 90 120 150 180 210 240 270 300 330

p-
va

lu
e

(lo
g 1

0)

25 procs/s

1.0e-08
1.0e-06
1.0e-04
1.0e-02
1.0e+00

 0 30 60 90 120 150 180 210 240 270 300 330

10 procs/s

1.0e-08
1.0e-06
1.0e-04
1.0e-02
1.0e+00

 0 30 60 90 120 150 180 210 240 270 300 330

1 proc/s

Figure 6.3: Detection Timelines. The figure shows a timeline of the hypothesis test p-values used

in the detection process for each of several levels of process creation/exit activity. The p-values

approach the detection threshold over time.

80

Detection with Interference

Our detection experiments evaluate the accuracy and timeliness of Lycosid when detecting

a single hidden process. When more than one process has been hidden, the difference be-

tween the VMM and user process lists is larger, making detection easier. Hence, detecting

a single hidden process is a worst case detection scenario.

The tests we perform explore how sensitive the detection techniques used by Lycosid are

to unrelated process creation and exit activity. To generate process activity we use a syn-

thetic process generator that spawns processes randomly. Harchol-Balter and Downey in-

dicate in their study [39] that process arrivals are burstier than Poisson. We use a pareto

distribution with shape parameter k = 1 for process inter-arrival times. We control the

average rate of process creation by varying the pareto location parameter. This distribution

leads to large process creation bursts which stress the detection techniques. The process

lifetime distribution described by Harchol-Balter and Downey applies to processes whose

lifetime exceeds one second. The arrival rates we use to stress Lycosid, however, are too

high to support such long lived processes. As a result, we choose process lifetimes from

the uniform distribution on the interval from 0–1 second, which allows our test system to

remain stable.

To hide processes under Windows, we use the tool fu.exe and its accompanying

device driver msdirectx.sys [32]. This tool hides Windows processes by unlinking

the target process from the kernel process list. fu.exe is the most frequently encountered

stealth rootkit removed by Microsoft’s automated anti-malware tools [67]. Under Linux we

simulate hidden processes by filtering process information in our guest process reporting

tool. Unlike fu.exe, most recent Linux rootkits hide themselves and manipulate various

logging and security features making them inconvenient in a research setting.

To motivate our use of statistical techniques, Figure 6.2 shows how the magnitude of

the difference between VMM process count and guest process count used by Lycosid varies

over time when the system is subjected to different levels of process creation and exit

activity under Windows. As process activity increases from one to an average of 100 pro-

cesses/second, the variance and amplitude of the signal representing the difference increase.

This characteristic of the detection problem suggests the use of statistical inference tech-

niques to probabilistically determine if hiding is occurring.

Figure 6.3 provides intuition about how the p-value resulting from the hypothesis test

used by Lycosid incrementally approaches the detection threshold for the cases depicted

in Figure 6.2. The test process is hidden immediately when each experiment begins. De-

tection occurs when the p-value drops below α = 2 × 10−6, which is shown as a dashed

horizontal line. In each case an orderly progression toward detection can be seen.

Figure 6.3 also hints that detection time increases with process activity. To quantify this

effect, time to detection was measured for our various process activity levels. The results

for Windows are shown in Figure 6.4 where the Y-axis reports the time to detection and the

X-axis indicates the process activity level. The values shown for each level are the average

of 10 trials. The standard deviation of detection time is shown using error bars. Both

detection time and its variance increase with process creation and exit activity. In the worst

measured cases, under severe process load, Lycosid requires several minutes to detect the

81

 0

 100

 200

 300

 400

 500

10050251010

T
im

e
to

 D
et

ec
tio

n
(s

)

Average Process Creations / Second

Detecting Hiding (Windows)

Figure 6.4: Time to Detection. The figure shows how the time to detect a hidden process varies

for Windows as process creation and exit activity increases from 0 processes/second to 100 pro-

cesses/second. The values shown are an average of 10 trials. Error bars show the standard deviation

of detection time.

hidden process. Since hidden processes are typically long lived (on the order of hours or

days) detection times of several minutes are not a real concern. In all of the experiments

shown, Lycosid correctly detects the hidden process.

An important output of a positive detection result is an estimate of the number of pro-

cesses that have been hidden. In the detection experiments described above, a single pro-

cess was hidden, so, in each case a good estimate will be close to one. Figure 6.5 shows

a summary of the estimated number of hidden processes obtained when a single process

has been hidden under Windows. When process load is small to moderate, the estimated

number of hidden processes is good, leading to a correct inference of one hidden process.

Under extreme process creation and exit load, the estimates begin to experience larger er-

ror and greater variance. Under the most extreme (and most uncommon) load, 5 of 10

estimates are too high. This error may result in falsely identifying a non-hidden process

as hidden during the identification phase. However, our conservative p-value identification

threshold tends to reduce the chance of false positive identifications.

Portability

To explore the portability of Lycosid we repeat selected experiments performed for Win-

dows guests using Linux. The setup of the Linux experiments mirrors that for the Windows

82

 0

 1

 2

 3

10050251010

E
st

. H
id

de
n

P
ro

cs

Average Process Creations / Second

Estimating # Hidden Procs (Windows)

Figure 6.5: Estimating the Number of Hidden Process. The figure shows how the estimate of

the number of hidden processes obtained from the detection phase varies for Windows as process

creation and exit activity increases from 0 processes/second to 100 processes/second when a single

process has been hidden. The values shown are an average of 10 trials. Error bars show the minimum

and maximum hidden process estimate observed.

guests, i.e., a single process is hidden with varying levels of process creation and exit in-

terference. Figure 6.6 and Figure 6.7 show detect time and hidden process estimates. As

in the Windows experiments, the values shown are averages of 10 trials. Error bars show

the standard deviation of detection time and the minimum and maximum hidden process

estimates observed. Under Linux, Lycosid correctly detects the hidden process in all cases.

In most cases, detection occurs within the first 60 second test interval. For extreme inter-

ference levels, average detection time grows moderately with significantly larger variation

between trials.

Under Linux, Lycosid estimates the number of hidden processes accurately except for

very large process creation and exit activity. Interestingly, the direction of the error ex-

perienced by Lycosid when observing Linux guests is opposite of that experienced under

Windows. Under Windows, Antfarm detects process creation before the operating system

reports its creation, i.e., process creation lag is negative under Windows. The opposite

is true under Linux; Antfarm detects process creation after the OS reports it. High inter-

ference and load levels exacerbate the lag under both operating systems leading to larger

deviations, but in opposite directions. Detection is not hampered, however, as our test

statistic is not based on averages and does not depend on a specific distribution.

83

 0

 100

 200

 300

 400

 500

10050251010

T
im

e
to

 D
et

ec
tio

n
(s

)

Average Process Creations / Second

Detecting Hiding (Linux)

Figure 6.6: Time to Detection. The figure shows how the time to detect a hidden process

varies for Linux as process creation and exit activity increases from 0 processes/second to 100 pro-

cesses/second. The values shown are an average of 10 trials. Error bars show the standard deviation

of detection time.

False Positives

In addition to reliable detection, it is important that Lycosid not report hidden processes

spuriously, i.e., that its false positive rate is small. Our statistical procedure predicts about

one false positive result per year. To explore this question empirically, an experiment was

performed using a Windows guest in which no process was hidden in our most challenging

detection environment (100 process creations and exits/second). An 11 hour timeline from

the experiment is shown in Figure 6.8. As can be seen, no trend toward false detection is

apparent and no false detections occur. The experiment does not prove the formal claim of

few false positives, but provides graphic empirical support.

Performance Overhead

Lycosid detection is meant to run continuously, so it is important that it impose minimal

runtime overhead. To evaluate the overhead of the detection phase of Lycosid we compare

the runtimes for three Windows benchmarks when they are run under Lycosid in detection

mode and when run under an unmodified Xen hypervisor. Table 6.1 shows the results. Each

value is an average of five trials. We observed no significant variance between trials.

Lycosid primarily adds overhead to Xen’s shadow page table handling and virtual ad-

84

-1

 0

 1

 2

 3

10050251010

E
st

. H
id

de
n

P
ro

cs

Average Process Creations / Second

Estimating # Hidden Procs (Linux)

Figure 6.7: Estimating the Number of Hidden Process. The figure shows how the estimate of the

number of hidden processes obtained from the detection phase varies for Linux as process creation

and exit activity increases from 0 processes/second to 100 processes/second when a single process

has been hidden. The values shown are an average of 10 trials. Error bars show the minimum and

maximum hidden process estimate observed.

dress space switching. The first two benchmarks spend nearly all of their time performing

these two tasks and can be considered worst case scenarios for Lycosid’s detection perfor-

mance. The CreateProc benchmark creates and then destroys 1000 processes as quickly as

possible. The MemAlloc benchmark allocates a 200 MB segment of memory, then touches

each page, causing many minor page faults and page table updates. MemAlloc is repeated

five times in each trial. Our prototype experiences 5.3% overhead for CreateProc and 3.6%

overhead for MemAlloc. The final benchmark is representative of a more common, but still

demanding, workload. It consists of compiling a large C program using gcc. In this case,

Lycosid adds a tiny 0.7% overhead.

6.7.3 Identification Evaluation

In this section we evaluate the ability of the identification algorithm described in Section 6.3

to identify which processes have been hidden once the detection component provides a pos-

itive hiding indicator. As in the evaluation of the detection phase, this evaluation focuses

on Lycosid’s accuracy and timeliness. In this case, accuracy is Lycosid’s ability to cor-

rectly identify hidden processes. Our timeliness experiments quantify how long it takes to

positively identify the correct hidden processes.

85

 1e-07
 1e-06
 1e-05
 1e-04
 0.001
 0.01
 0.1

 1
 10

 0 1 2 3 4 5 6 7 8 9 10 11

p-
va

lu
e

(lo
g 1

0)
Detection without Hiding

 -80
 -60
 -40
 -20
 0
 20
 40
 60
 80

 0 1 2 3 4 5 6 7 8 9 10 11

P
ro

ce
ss

 C
ou

nt
 D

iff

Time (hours)

Figure 6.8: Timeline without Hiding. The figure shows an approximately 11 hour detection

timeline when no processes are hidden and very aggressive process creation/exit activity (100 pro-

cesses/second) is present. The top graph shows the single-sided hypothesis test p-value. The bottom

graph shows the difference between the VMM and guest process counts. No false detections occur.

Identification Among Many Running Processes

Our first experiment measures how Lycosid performs when forced to choose among vary-

ing numbers of active processes. In the experiments, a number of processes (from 1 to 50)

is created. Each of the test processes alternately runs and sleeps. The runtime is chosen

randomly from the range 0–500 ms using a uniform distribution. Similarly, a sleep interval

is chosen from the interval 0–1000 ms. One of the test processes is hidden using the same

techniques described in Section 6.7.2. Experiments were performed with 1, 10, 25, and 50

total processes. At each level, 10 identification trials were performed. Lycosid correctly

identifies the single hidden process in all cases. The time to identify the hidden process

for both Windows and Linux guests is shown in Figure 6.9. The left hand bars show how

identification time and standard deviation increase as the number of active processes grows

when one process has been hidden. Detection time and variance grow because larger num-

bers of competing processes decrease the effective runtime of the hidden process. Hence,

more samples are required to associate the runtime of the hidden process with the regres-

sion response variable in the face of measurement noise.

Hiding multiple processes is a common scenario when an attacker has several distinct

tasks to accomplish on a compromised system. For example, an attacker may leave behind

a network backdoor to enable remote control, a keylogger to steal passwords, and a network

sniffer to acquire the addresses and open ports for targets on the same network. Does iden-

tification become more difficult when more than one process has been hidden? Our second

86

 0
 100
 200
 300
 400
 500
 600
 700

50251021

T
im

e
to

 Id
en

tif
ic

at
io

n
(s

)

Total Processes

Time to Identify (Windows)

N
/A

N
/A

1 Hidden
5 Hidden

 0
 100
 200
 300
 400
 500
 600
 700

50251021

T
im

e
to

 Id
en

tif
ic

at
io

n
(s

)

Total Processes

Time to Identify (Linux)

N
/A

N
/A

1 Hidden
5 Hidden

Figure 6.9: Time to Identification. The figure shows how the time to identify hidden processes

grows as the number of total active processes increases from 1 to 50 processes for both Windows (up-

per graph) and Linux (lower graph). The values shown are an average of 10 trials. Lycosid identified

the correct hidden processes in all cases on both platforms. Error bars show the standard deviation

of identification time. The left bar corresponds to trials in which a single process was hidden. The

right bar shows results when 5 processes were hidden.

87

Benchmark Lycosid Xen % Overhead

Runtime Runtime

CreateProc 6.551 s 6.222 s 5.3%

MemAlloc 6.803 s 6.565 s 3.6%

Compile 25.386 s 25.210 s 0.7%

Table 6.1: Detection Runtime Overhead. The table shows runtimes and overheads for three bench-

marks run under Lycosid and under a pristine version of Xen.

Average Average

Runtime (s) Sleep (s) % True ID % False ID % No ID

0.25 0.5 100% 0% 0%

0.025 0.5 90% 0% 10%

0.0025 0.5 0% 0% 100%

0.25 5.0 100% 0% 0%

0.25 50.0 0% 0% 100%

Table 6.2: Identification under Reduced Runtime. The table reports the identification accuracy of

Lycosid for a set of experiments in which a single hidden process must be identified among 10 active

processes when the hidden process runs exponentially less and less often. As the relative runtime

decreases, Lycosid’s ability to classify a process as hidden or benign is impaired.

experiment is similar to the first, but in this case 5 out of the 10, 25, or 50 total processes

have been hidden. Again, Lycosid correctly identifies all hidden processes correctly for

both platforms. The right hand bars in Figure 6.9 show that the time to identification grows

for the multi-process case, but not significantly. Hence, Lycosid identification is accurate,

portable across guest operating systems and applicable in cases where multiple processes

have been hidden.

Identifying Mostly Idle Hidden Processes

Our next series of experiments demonstrates that a lower runtime bound exists beneath

which Lycosid cannot identify which of several processes is hidden. We then test the ability

of CPU inflation to overcome the issue.

We first perform two variants of an earlier experiment in which one process is hidden

among 10 total active processes under Windows. In each variant we change the runtime

of the hidden process along one of two axes. The first axis is busy time, i.e., the time

between sleep intervals. The second axis is run frequency, i.e., the length of the sleep

intervals. Reducing runtime along either axis decreases the signal-to-noise ratio between

hidden process CPU time and the measurement error experienced by Lycosid. The effect

is to make identification more challenging.

In the first set of experiments we exponentially reduce hidden process busy time by

factors of 10 and measure the ability of Lycosid to identify the hidden process. In the

88

Average Average

Runtime (s) Sleep (s) % True ID % False ID % No ID

0.025 0.5 100% 0% 0%

0.0025 0.5 100% 0% 0%

0.00025 0.5 100% 0% 0%

0.025 5.0 100% 0% 0%

0.025 50.0 100% 0% 0%

0.025 500.0 100% 0% 0%

0.025 5000.0 20% 0% 80%

Table 6.3: Effect of CPU Inflation. The table shows how CPU inflation can help make hidden

processes that run relatively little identifiable by Lycosid. In the experiments, a single hidden process

must be identified among 10 active processes when the hidden process runs very little or infrequently.

CPU inflation forces the hidden process to run more, providing Lycosid with the information it needs

to make a positive identification. When average sleep time exceeds the maximum sample period,

Lycosid naturally fails to reliably identify all hidden processes.

second round of experiments we exponentially increase the sleep interval by factors of 10

and again evaluate if Lycosid can identify the hidden process. Table 6.2 lists the runtime

parameters for the hidden process in each experiment and the percentage of 10 trials in

which Lycosid successfully identifies the single hidden process.

When the busy time is reduced from earlier experiments by a factor of 10 Lycosid cor-

rectly identifies the hidden processes in only 9 of 10 trials. After reducing the runtime

by a factor of 100, no process exceeds the identification threshold p-value before the im-

plementation sample limit of 1000 is reached; hence, no process is identified as hidden.

When the sleep time increases by a factor of 10 or 100, none of 10 trials produces a pos-

itive hidden process identification. Note that in no case do false positives occur, i.e., no

innocent processes are accused of being hidden. We see, however, that if a hidden process

runs for limited periods, even if it runs regularly, or if a hidden process runs infrequently,

Lycosid cannot identify it properly. Even in these cases, however, Lycosid correctly detects

that process hiding is taking place.

Table 6.3 shows the results of applying CPU inflation to identification tasks in which

the hidden process runs for short periods of time or rarely runs. Our evaluation shows that

CPU inflation enables Lycosid to identify processes whose average busy time is as low as

250 µs. The table also shows that even when a hidden process runs relatively rarely (e.g.,

once every 500 seconds on average) CPU inflation makes the hidden process identifiable

by Lycosid. Finally, when the hidden process’s average sleep time exceeds the amount of

time over which Lycosid makes observations (once every 5000 seconds vs. approximately

1000 seconds of observation time in this experiment) Lycosid is naturally unable to reliably

identify the hidden process. Our evaluation shows that CPU inflation is a powerful tool that

significantly extends the set of hidden processes that Lycosid can reliably identify.

89

6.8 Attacks on Lycosid

Lycosid depends on an untrusted, user-level process view. One way to attack Lycosid is to

manipulate its user-level view.

Figure 6.10: Desynchronization Attack. The figure demonstrates the desynchronization attack

concept against Lycosid hidden process detection.

6.8.1 Desynchronization

The attack works by desynchronizing the untrusted, user-level view used by Lycosid and

the user-level view used by a defender to detect unexpected processes (e.g., Windows task

manager). In the desynchronization attack, an adversary hides the presence of a malicious

process from a defender, but doesn’t hide it from Lycosid. In this way Lycosid fails to

detect hiding because, from its perspective, no hiding takes place. A defender fails to

detect the hidden process because, from their perspective, the malicious process does not

exist. Figure 6.10 shows a conceptual example of the desynchronization attack.

To successfully mount this style of attack, an adversary must be able to reliably identify

process enumeration requests made on behalf of Lycosid. In the general case, this task

will be difficult because Lycosid uses the same standard APIs to enumerate processes as

any other process introspection tool like ps or the Windows task manager. Additionally,

90

Lycosid is not limited to using a single tool with a fixed signature to obtain its user-level

process view, so an attacker cannot easily rely on a fixed signature database of known

Lycosid probe programs. In the same way, there are many different tools that can be used

by a defender to enumerate processes (e.g., ps, top, task manager pslist, tasklist). For the

sake of this discussion, we will assume an attacker can reliably identify and preferentially

handler any Lycosid process enumeration request.

6.8.2 Countermeasures

Lycosid is designed to be a part of a larger, comprehensive security monitoring framework.

Such a framework would include a process monitoring component that continuously ob-

serves the process list and generates an alert when unexpected or suspicious processes are

encountered. It is just such a security feature that an attacker hopes to deceive by hiding

their malicious processes. The desynchronization attack described above assumes that the

process view used by the process monitor component is different from the view used by

Lycosid. By integrating the process monitor and Lycosid so that they both use the same

user-level process view, the opportunity to desynchronize is removed and the attack fails.

6.9 Assumptions

Lycosid makes certain assumptions about operating systems and the attacker. Assumptions

made beyond the threat model stated in Section 6.4 are enumerated and discussed in this

section.

Whole-process hiding: Lycosid targets only whole-process hiding in which a malicious

user-level program is executed normally and the presence of that normal process is hidden,

using arbitrary techniques, from a defender. Other hiding techniques exist such as injecting

a thread into an already existing, long running process, hiding in plain sight by mimick-

ing the name and other characteristics of an existing, benign process, or dispensing with

a user-level process altogether by deploying completely operating system kernel-resident

malware. Lycosid, because it is based on user-level process information, does not detect

these less common, alternative hiding techniques.

Statistical inference assumptions: Lycosid uses hypothesis testing and linear regression

to detect and identify hidden processes. These techniques require certain assumptions to

produce reliable inferences. We use a non-parametric statistic during the Lycosid detec-

tion phase, so no distributional assumptions are required. Linear regression, used during

identification, assumes independence of errors, constant error variance, linearity, and nor-

mality of errors. Data analysis shows that the data used by Lycosid meets all regression

requirements except normality of errors.

Residuals obtained using the models created by Lycosid are not normal, but are quite

symmetric. Non-normality of errors affects the reliability of the p-value produced during

the hypothesis test of whether a model coefficient is zero. However, we do not directly

interpret these values as probabilities. They are only used to order the coefficients during

model selection. Hence, we believe this slight deviation is justified.

91

6.10 Summary

Stealth rootkits that allow attackers to hide malicious processes are a current and alarm-

ing security issue. In this chapter we have described, implemented, and evaluated a novel

VMM-based hidden process detection and identification service called Lycosid. Lycosid dif-

fers from prior VMM-layer process hiding detectors because it uses noisy information

about internal guest operating system state and events available implicitly to a VMM. Ly-

cosid provides an accurate and reliable service in spite of its noisy inputs by using statistical

inference techniques like hypothesis testing and regression to trade detection and identifi-

cation time for accuracy.

In our evaluation, Lycosid correctly detected process hiding in each of hundreds of

trials. Identification is similarly robust except in cases where a hidden process does not

run long enough or frequently enough. To overcome this limitation, we have introduced

CPU inflation to force processes into an execution regime in which a hidden process can

be positively identified.

The performance-critical portions of Lycosid are based on Antfarm and exhibit similar

runtime overheads. In a worst-case performance scenario, Lycosid’s detection phase ex-

hibits less than 6% overhead. For a more typical, process-intensive workload, Lycosid im-

poses a mere 0.7% penalty.

An interesting consequence of our use of implicit information is that Lycosid is likely

less susceptible to evasion attacks on the part of a compromised guest OS. To evade Ly-

cosid, an attacker must modulate externally visible behavior in very specific ways, and

achieve their hiding goals at the same time. This complicates hiding and may drive at-

tackers into more difficult, error-prone, or risky hiding scenarios like thread-injection or

kernel-resident malware.

Our implementation of Lycosid demonstrates that implicit operating system informa-

tion can be effectively used at the VMM-level even when the cost of being wrong is high

as in a security monitoring service.

92

Chapter 7

Related Work

The work described in this dissertation focuses on developing, implementing, and evalu-

ating techniques that allow a VMM to implicitly obtain and exploit information about im-

portant software constructs within the guest operating systems running above it. We have

benefited from previous research efforts that have explored how to obtain and use infor-

mation across layer boundaries in hierarchical layered systems. In this chapter we survey

related work and describe how our own research fits into the context that it provides.

7.1 Gray-box systems

The term gray-box [5] refers to any technique that uses observation and measurement to

obtain information about software or hardware across a system layer boundary. The system

call interface that separates an operating system from user applications is an example of

such a boundary. A system can use gray-box information to optimize its own performance

or to control the behavior of cross-layer components.

For example, gray-box information about operating system memory management can

be exploited by a user application to reorder its disk accesses to prefer blocks already

resident in the OS buffer cache [13] or to carefully manage its memory allocation to avoid

paging [5]. Overriding the default file system layout scheme to optimize for cross-directory

access patterns in a web server [69] is an example of exerting influence across a system

boundary using gray-box techniques when no explicit control interface exists.

Gray-box information has also proven itself useful to components logically below the

operating system. For example, Sivathanu et al., have shown that file system semantic in-

formation, such as how disk blocks are grouped to form files or metadata, and whether disk

blocks are live or dead in the file system, can be used to create RAID storage systems that

degrade gracefully in the face of multiple failures [86] and to reduce downtime resulting

from failure by recovering only live blocks [85]. Bairavasundaram et al., use gray-box

knowledge of file systems within a storage device to infer which blocks are resident in

a client buffer cache [7]. Gray-box information about client cache contents can be used

93

94

to implement an effective exclusive caching component [104] within the storage system

without modifying the storage interface.

The techniques described in this dissertation focus on inferring information across a

different system boundary, namely the virtual architecture interface that separates a VMM

from its guest operating systems. Like gray-box storage systems, our modified VMM re-

sides below the operating system and bases its inferences on interpreting the stream of

requests supplied by the OS and user applications. The types of information available to a

VMM are considerably richer than that available to a storage system and include processor

interrupts, virtual memory configuration, memory contents, and I/O requests. Richer infor-

mation enables additional applications not feasible or appropriate within a storage device.

7.2 Guest Information in a VMM

Other researchers have recognized the value of OS-level information in a VMM. We cate-

gorize this body of work by the method used to obtain information about the guest OS.

7.2.1 Paravirtualization and Explicit Interfaces

One straightforward and widely used method to obtain information about the internal state

of a guest operating system is to create new interfaces that provide the information di-

rectly. Paravirtualization [27, 103] is a virtualization technique that replaces expensive,

implicit guest requests like page table updates and I/O requests [31] by a virtualization-

aware interface similar to a system call. The primary goal of paravirtualization is to reduce

virtualization overhead. Overhead is typically reduced by streamlining guest-to-VMM in-

terfaces and via batching, which allows a guest to amortize the cost of VMM invocation

across many requests.

The goal of our work is to transparently enable useful VMM-level services. In many

cases our goal requires information about high-level guest OS abstractions like processes

and I/O caches. Paravirtual interfaces were not designed with this goal in mind and do

not include the ability for a guest OS to inform a VMM about its high-level internal state

or events. While explicit interfaces would greatly simplify the task of obtaining guest

information within a VMM, such interfaces do not exist today. Porting operating systems

to take advantage of new explicit interfaces requires significant engineering effort. Creating

standard, multi-vendor interfaces requires immense political effort. These costs will likely

hamper the creation and adoption of standard, multi-OS VMM interfaces.

7.2.2 Explicit Information

Several recent projects obtain guest level information by embedding details about the

version-specific memory layout and OS-specific data structure semantics of a guest into

a VMM [35, 52, 56, 72, 68]. Required implementation details can sometimes be automat-

ically extracted from debugging symbols and libraries [35], but often detailed source or

binary analysis is needed to obtain them [52, 72, 68]. Systems that take this approach read

95

kernel data structures, like the process list, program headers, and system call tables, di-

rectly. Some use information about the location and semantics of key kernel functions like

fork, exec, mmap, or try to swap out to stay informed of important guest events.

Reading and using data drawn directly from guest kernel memory ties a VMM to specific

guest OS vendors and versions, and creates an implicit relationship of trust between the

VMM and the guest. Implicit techniques, like those described in this dissertation, help to

combat these drawbacks at the expense of more limited and slightly less reliable informa-

tion.

7.2.3 Implicit Information

Other attempts to obtain implicit information about guest operating systems have mostly

been confined to determining how a guest utilizes the virtual resources it has been allo-

cated. Disco [12], for example, determines when a guest is not using is CPU allocation by

detecting when it enters a low-power processor mode. VMWare’s ESX Server [101] uses

page sampling to determine the utilization of physical memory assigned to each of its vir-

tual machines to aid in page reallocation. Work by Uhlig et al. [98] introduces techniques

to manage processor resources more intelligently in a multiprocessor VMM environment.

It is most similar to our own work because it infers the state of a guest software construct.

Specifically, they deduce when no kernel locks are held by observing when the guest OS

is executing in user versus kernel mode. The techniques we describe target different, more

complex software abstractions like processes and disk caches. Implicit techniques can be

easily composed to form more comprehensive solutions.

7.3 Statistical Techniques

Lycosid uses statistical techniques like hypothesis testing and regression to transform un-

certain, implicitly obtained input information into reliable intelligence that can be confi-

dently acted upon. Many other systems employ statistical techniques to infer behavior,

to provide input to control algorithms, and to implement security classifiers. For exam-

ple, MS Manners [26] uses hypothesis testing to regulate the scheduling of low-priority

background processes and to reduce their performance impact on high priority foreground

jobs. Jung et al. [54] use sequential hypothesis techniques to probabilistically determine

whether remote hosts are conducting port scanning by using sequential hypothesis testing

techniques [100]. Bayesian spam filters [80] and statistical anomaly detection systems [30]

use statistical learning techniques to build a model of normal behavior, then compare that

model to arriving email, network packets, or other measurable system features to determine

if they are abnormal.

7.4 Case Studies

To demonstrate the practical value of guest OS information within a VMM we have de-

veloped several applications as case studies. We drew these case studies from existing

96

applications implemented using different techniques or in a different system layer. In this

section we briefly discuss the origin of some of our case studies and how our VMM-based

variations compare with previous implementations.

7.4.1 Working Set Size

In a virtualized environment, knowing the working set size [24, 25] of a virtual machine is

useful for allocating the appropriate amount of memory to it. When migrating VMs [19, 82]

in a distributed computing environment [29, 106] working set size information enables

the job scheduler to intelligently select a new host with an adequate amount of available

memory.

Techniques for estimating the working set size of a virtual machine have been explored

by Waldspurger and are part of the VMware ESX Server product [101]. However, the ESX

Server technique can only determine the working set size for virtual machines that are using

less than their full allocation. Our working set size estimator complements the ESX Server

technique by directly supporting situations where a virtual machine needs more memory,

i.e., it is thrashing.

7.4.2 Secondary-level Caching

Knowledge of the contents of the OS buffer cache is useful in a virtualized environment

when implementing an effective secondary-level cache. For example, when multiple VMs

run on the same machine, the VMM can manage a shared secondary cache in its own mem-

ory, increasing the utilization of memory when the VMs share pages [12]. Additionally,

when the hosted OS is a legacy system that cannot address a large amount of memory, a

secondary cache can enable the legacy OS to exceed its natural addressing limits. Finally,

the VMM can explicitly communicate with a remote storage server cache, informing it of

which pages are currently cached within each VM [104].

Designing a secondary cache management policy is non-trivial. Secondary storage

caches exhibit less reference locality than client caches because the reference stream is

filtered through the client cache [66]. This, plus the fact that secondary storage caches

are often about the same size as client caches has led to innovations in cache replacement

policies [108] and in cache placement policies [104]. We have implemented one promis-

ing placement policy called “eviction-based placement” which inserts blocks into the sec-

ondary cache only when they have been evicted from the client cache. This approach

tends to make the caches overlap less and leads to more effective secondary cache utiliza-

tion [17, 104]. Eviction-based placement is similar to micro-architectural victim caches in

the processor cache hierarchy [53].

Passive eviction detection in support of exclusive secondary caching has been explored

to some extent by storage system researchers. For example, X-RAY [7] uses file system

semantic information (e.g., which storage blocks contain inodes) to snoop on updates to a

file’s accessed time field. Knowing which files have been recently accessed allows X-RAY

to build an approximate model of a client’s cache. However, X-RAY is somewhat limited

97

in its inferences because the storage system only has access to the I/O block stream outside

the OS.

Other exclusive caching work has assumed that one has access to more OS information;

for example, Chen et al. [16, 17] perform their inferencing within a pseudo-device driver

that has access to the addresses of the memory pages that are being read and written. Thus,

they are able to infer that an eviction has occurred when a memory page that is storing disk

data is reused for other disk data.

Our approach to secondary disk caching is most similar to that of Chen et al., but uses

additional information available to a VMM to improve its ability to accurately infer cache

events. The key differences include: handling unified buffer caches and virtual memory

systems, recognizing when blocks on disk are free to avoid false evictions, and taking file

system journaling into account to avoid disk block aliasing.

7.4.3 Hidden Process Detection

Cross-view validation for hiding detection has been studied and variously implemented in

user applications [22], within the operating system kernel [102], inside a virtual machine

monitor [35], and using dedicated coprocessor hardware [72]. The key aspect of cross-view

validation that differentiates these efforts is the mechanism used to obtain the low-level,

trusted view of the resource of interest.

Garfinkel et al., have shown the value of VMM-level cross-view validation for de-

tecting hidden processes with VMI [35]. VMI uses explicit operating system debugging

information like the memory addresses of variables and the layout and semantics of com-

pound structures to locate and interpret private kernel data types at runtime. This insight

into operating system data structures is used to obtain a trusted view of the guest operating

system process list. Lycosid extends the VMI concept by using only implicitly obtained

guest information within a VMM.

98

Chapter 8

Conclusion

Virtualization technology is rapidly penetrating commodity computing systems. Key mi-

croprocessor vendors like Intel, AMD, and IBM are supplying hardware virtualization as-

sistance that promises to vastly reduce the overheads imposed by virtualization. VMM

implementations like VMware and the POWER5 hypervisor are mature and robust. Lead-

ing operating systems like Microsoft Windows, Linux, Solaris, and i5/OS already include

or will soon include virtualization as a core feature.

In a system that includes a virtualization layer, the VMM is a natural place to implement

certain key features. For example, only the VMM has the necessary insight and control to

globally optimize resource allocation and scheduling, making these tasks a good match for

VMM-level implementation. VMM-based security services are another example; they can

monitor vulnerable, network-facing guest operating systems and applications from behind

the relative safety of the virtual machine interface.

We, and other researchers, have shown that many potential VMM-layer innovations

require information about high-level guest software abstractions–information that a VMM

does not intrinsically have. This dissertation has explored a portion of the VMM-service

design space that has been mostly ignored. We have shown how a VMM can independently

and implicitly obtain information about key guest OS software abstractions by observing

how the guest interacts with virtual hardware resources like the MMU and storage devices.

Our techniques have proven to be accurate, low overhead, and portable across multiple

guest operating systems.

8.1 Lessons Learned

In the process of developing our techniques and creating our prototype implementations

we have been able to make several general observations about building services within a

VMM.

99

100

OS responsibilities and available architectural features constrain guest

implementations

General purpose operating systems like Windows and Linux all share certain key constructs

and responsibilities. For example, all support the basic OS abstractions like processes,

threads, address spaces, and persistent data storage in file systems. All provide certain

characteristics like process memory isolation, starvation-free scheduling, and basic virtual

memory semantics. An OS must implement these features using the mechanisms provided

by the underlying hardware architecture, such as the memory management unit, timers,

memory, and disk devices. The constraints imposed by common architectural features and

OS requirements lead to generic, externally observable patterns in the behavior of guest

operating systems that a VMM can observe and use.

In general, the less implementation flexibility provided by the architecture to the OS,

the more constrained and easy to interpret the behaviors of the OS will be. For example,

the hardware-defined page tables of the x86 architecture provide a more concrete basis for

address space tracking than the software managed TLB provided by SPARC.

Reuse is a good proxy for release

The inference techniques described in this dissertation are often based on detecting when

a resource is allocated and deallocated. For example, process creation and exit correspond

to address space allocation and deallocation. We have found that detecting allocation is

often quite simple. Detecting deallocation is often more difficult. The principle that reuse

implies release has been helpful in detecting deallocation in several cases.

Time is of the Essence

In the process of building VMM-based services, we have found that when a certain guest

OS event has occurred is important. This stands in contrast to much previous gray-box

research which has focused on discovering static configuration parameters (e.g., the cache

replacement policy) or the current state of a resource (e.g., whether a file block is cached).

Invariably, the time at which a VMM observes that an event has occurred using implicit

techniques is different from the time the event occurred as defined by the guest OS. Lag

between actual and inferred events places practical limits on how implicit information can

be used. We have seen that delayed, but correct, process and cache information can be

useless, while short term errors cause no harm or even help certain applications. In general,

minimizing lag is just as or more important than rigidly reproducing the same set of events

as experienced by a guest OS.

Hardware that hides, hurts

Recent hardware-assisted virtualization [37] has the potential to significantly reduce the

overhead imposed by a VMM. The current implementation of hardware-assisted virtual-

ization for the x86 architecture [3, 46] can, in some cases, hide information about certain

101

events, like page faults and page table updates, from a VMM. This side effect inadvertently

complicates some powerful software-based optimization opportunities, including some dis-

cussed in this dissertation. Other research [2] shows that current hardware virtualization

can interfere with important features of a sophisticated software VMM and can ultimately

reduce overall performance. Hence, hardware virtualization features must be carefully de-

signed so that they do not unintentionally reduce the flexibility and power of a software

VMM to employ code and workload-specific optimizations.

Portability does not imply guest-independence

We have built portable VMM-based services; the same implementation can be applied suc-

cessfully to very different guest operating systems like Windows and Linux. The concrete

results obtained under each guest, however, can vary substantially. For example, Linux

kernel version 2.6 exhibits false positive process events not suffered by Windows or Linux

2.4. Creation lag under Linux 2.4 can be three orders of magnitude larger than under Linux

2.6. An application wishing to utilize implicit information within a VMM must take such

platform variations into account.

Online statistical inference helps manage uncertainty

Variation and uncertainty in the form of false positive events and lag are a recurring theme

in this dissertation. Elementary statistical inference techniques, like hypothesis testing, that

can be applied continuously and automatically within a VMM can transform uncertainty

due to variance into inferences about a guest that can be used with quantifiably high levels

of confidence.

8.2 Future Work

The space of possible applications implemented at the VMM layer or with VMM assistance

is large and has only begun to be explored. In this section we discuss some possible fu-

ture avenues of inquiry relating to OS-aware services within a VMM beginning with tasks

closely related to those we have already discussed and then wandering further afield.

8.2.1 Targeting Other Guest Abstractions

There are many other important guest operating system abstractions like threads, users, and

network protocols that we have not considered in our work, but which could be useful when

implementing services in a VMM. In the same way we have extended a VMM to observe

the MMU and disk devices to infer information about OS processes and caches, a VMM

can observe other virtual devices, like the microprocessor and network interface cards, to

inform itself about additional OS abstractions.

102

8.2.2 Resource Association

We were able to show in Section 4.3 how a VMM can reliably associate disk read requests

with their originating process. This is just one part of a much larger, general problem of log-

ically connecting asynchronous guest OS events (like I/O requests) to implicitly observed

entities (like processes, users, and threads). Our existing approach exploits the direction

of data movement through memory toward a user process to identify its destination and

make an association. The same technique cannot be used when data moves in the opposite

direction. A new approach is required.

Other asynchronous requests like network sends and receives are also difficult to asso-

ciate with a specific process from within a VMM. Does the typical approach to network

protocol processing employed by most operating systems provide opportunities for effi-

ciently associating network packets with a sending or receiving process? Accurate and

early network packet association can be used, for example, to selectively implement novel

VMM-based security features like process-specific filtering to protect applications from

exploits targeting known vulnerabilities and taint tracking [41] to prevent network-based

code injection attacks.

8.2.3 Observing Memory Structure

There are other sources of information about guest operating systems than the stream of

service requests and fault notifications that we use in our work. One that seems particularly

interesting is the content and structure of guest OS memory. An operating system’s memory

image is a collection of dynamic, interconnected structures. The organization and content

of these structures can reveal a great deal about the current state of the guest OS. A VMM

may be able to discover the location and the semantics of some of these structures on its

own, without resorting to external information sources like debugging symbols.

For example, an OS process is typically represented in memory by a compound memory

structure, often referred to as the process control block. The complete set of processes is

usually represented by a dynamic, pointer-based collection of process control blocks like

a list or a tree. By employing on-demand emulation [41] to selectively observe which

memory addresses are accessed temporally close to process-related architectural events,

like address space context switch, a VMM can identify many process management-related

memory locations.

Compound memory structures are often accessed using base plus offset variants of load

and store instructions which can be parsed to identify the base pointer of a structure and the

offsets of commonly used individual fields. Each field accessed within a structure also has

an implicit data type consisting of the size, range, and role of the memory operand (e.g.,

small integer, bit vector, pointer). By combining field offsets and data types, an implicit

compound type for a structure can be created and used to identify other structures of the

same type in memory. By analyzing the data types of individual fields and how structures

of similar type point to each other in memory it may be possible for a VMM to infer the

organization and partial semantics of important dynamic data structures like the guest OS

process list.

103

Chilimbi et al. [18], have employed similar techniques to discover invariants in appli-

cation heap memory like the average pointer in-degree and out-degree of heap allocated

data structures. They then use the invariants to discover bugs in pointer manipulating code.

Petroni et al. [68], scan kernel memory from within a PCI device for violations of pre-

defined correctness invariants using explicit, user-supplied kernel memory layout informa-

tion. Using the approach described above, these techniques could be extended to allow a

VMM to identify kernel data structures and check security invariants without requiring ex-

plicit implementation information. For example, a self-contained and independent VMM

service could ensure that all active processes are linked into the system process list.

8.3 Closing Remarks

In this dissertation we have focused on implicitly obtaining and exploiting information

about certain guest operating system abstractions. We assumed as our starting point the

basic organization and division of labor between the VMM and guest operating systems that

exist today. We have argued that the broad deployment of system virtualization suggests

that certain OS features should migrate from the OS into the VMM. Our approach has

been to implement these OS-like features within a VMM without changing the guest OS

by using implicit information.

Operating systems and VMMs will change over time. The question of if and how

the relationship between the operating system and the VMM should change is important.

Which features currently implemented in the operating system would make more sense

implemented within a VMM? How should the interfaces between the VMM and the OS

change to facilitate communication without compromising the key desirable features of

each?

The inclusion of a system virtualization layer as a core component in most system-level

software represents an exciting and fundamental evolution. Finding an acceptable balance

between isolation and cooperation among diverse operating systems and VMMs will re-

quire significant technical and political innovation. Until the perfect balance is discovered

and adopted, there will be room for implicit methods like those we have described here.

104

Bibliography

[1] 90210. Bypassing klister 0.4 with no hooks or running a controlled thread scheduler. http://hi-
tech.nsys.by/33/.

[2] K. Adams and O. Agesen. A comparison of software and hardware techniques for x86 vir-
tualization. In Proceedings of the 12th International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS XII), pages 2–13, San Jose,
California, October 2006.

[3] AMD. Amd64 programmer’s manual, volume 2: System programming.
http://www.amd.com/us-en/assets/content type/ white papers and tech docs/24593.pdf,
December 2005.

[4] R. L. Arndt, D. C. Boutcher, R. G. Kovacs, D. Larson, K. A. Lucke, N. Nayar, , and R. C.
Swanberg. Advanced virtualization capabilities of power5 systems. IBM Journal of Research
and Development, 49(4):523–532, sept 2005.

[5] A. C. Arpaci-Dusseau and R. H. Arpaci-Dusseau. Information and Control in Gray-Box Sys-
tems. In Proceedings of the 18th ACM Symposium on Operating Systems Principles (SOSP
’01), pages 43–56, Banff, Canada, October 2001.

[6] A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau, N. C. Burnett, T. E. Denehy, T. J. Engle, H. S.
Gunawi, J. Nugent, and F. I. Popovici. Transforming Policies into Mechanisms with Infok-
ernel. In Proceedings of the 19th ACM Symposium on Operating Systems Principles (SOSP
’03), pages 90–105, Bolton Landing (Lake George), New York, October 2003.

[7] L. N. Bairavasundaram, M. Sivathanu, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau. X-
RAY: A Non-Invasive Exclusive Caching Mechanism for RAIDs. In Proceedings of the 31st
Annual International Symposium on Computer Architecture (ISCA ’04), Munich, Germany,
June 2004.

[8] S. Ballmer. Keynote address. Microsoft Management Summit, April 2005.

[9] L. A. Belady, R. A. Nelson, and G. S. Shedler. An anomaly in space-time characteristics of
certain programs running in a paging machine. Communications of the ACM, 12(6):349–353,
June 1969.

[10] S. Best. JFS Overview. www.ibm.com/developerworks/library/l-jfs.html, 2000.

[11] T. C. Bressoud and F. B. Schneider. Hypervisor-based fault tolerance. ACM Trans. Comput.
Syst., 14(1):80–107, 1996.

[12] E. Bugnion, S. Devine, and M. Rosenblum. Disco: Running commodity operating systems on
scalable multiprocessors. In Proceedings of the 16th ACM Symposium on Operating Systems
Principles (SOSP ’97), pages 143–156, Saint-Malo, France, October 1997.

[13] N. C. Burnett, J. Bent, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau. Exploiting Gray-
Box Knowledge of Buffer-Cache Contents. In Proceedings of the USENIX Annual Technical
Conference (USENIX ’02), pages 29–44, Monterey, California, June 2002.

[14] J. Butler, J. L. Undercoffer, and J. Pinkston. Hidden processes: The implication for intrusion
detection. In Proceedings of the 2003 IEEE Workshop on Information Assurance, pages 116
– 121, June 2003.

[15] P. M. Chen and B. D. Noble. When virtual is better than real. In HOTOS ’01: Proceedings
of the Eighth Workshop on Hot Topics in Operating Systems, pages 133–138. IEEE Computer
Society, 2001.

105

106

[16] Z. Chen, Y. Ahang, Y. Zhou, H. Scott, and B. Schiefer. Empirical Evaluation of Multi-level
Buffer Cache Collaboration for Storage Systems. In Proceedings of the 2005 ACM SIGMET-
RICS Conference on Measurement and Modeling of Computer Systems (SIGMETRICS ’05),
Banff, Canada, June 2005.

[17] Z. Chen, Y. Zhou, and K. Li. Eviction-based Placement for Storage Caches. In Proceedings
of the USENIX Annual Technical Conference (USENIX ’03), pages 269–282, San Antonio,
Texas, June 2003.

[18] T. M. Chilimbi and V. Ganapathy. Heapmd: Identifying heap-based bugs using anomaly de-
tection. In Proceedings of the 12th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS XII), pages 219–228, San Jose,
California, October 2006.

[19] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt, and A. Warfield. Live
migration of virtual machines. In Proceedings of the 2nd Symposium on Networked Systems
Design and Implementation (NSDI ’05), Boston, Massachusetts, May 2005.

[20] J. Clemens. Knark: Linux kernel subversion. http://www.sans.org/resources/idfaq/knark.php.

[21] B. Cogswell and M. Russinovich. Pslist. http://www.microsoft.com/technet/ sysinter-
nals/utilities/pslist.mspx.

[22] B. Cogswell and M. Russinovich. Rootkit revealer.
http://www.sysinternals.com/Utilities/RootkitRevealer.html.

[23] R. Creasy. The origin of the vm/370 time-sharing system. IBM Journal of Research and
Development, 25(5):483–490, September 1981.

[24] P. J. Denning. The Working Set Model for Program Behavior. Communications of the ACM,
11(5):323–333, May 1968.

[25] P. J. Denning. Working Sets: Past and Present. IEEE Transactions on Software Engineering,
SE-6(1):64–84, January 1980.

[26] J. R. Douceur and W. J. Bolosky. Progress-based regulation of low-importance processes. In
Proceedings of the 17th ACM Symposium on Operating Systems Principles (SOSP ’99), pages
247–260, Kiawah Island Resort, South Carolina, December 1999.

[27] B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, I. Pratt, A. Warfield, P. Barham, and
R. Neugebauer. Xen and the Art of Virtualization. In Proceedings of the 19th ACM Sym-
posium on Operating Systems Principles (SOSP ’03), Bolton Landing (Lake George), New
York, October 2003.

[28] G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai, and P. M. Chen. Revirt: enabling intrusion
analysis through virtual-machine logging and replay. SIGOPS Oper. Syst. Rev., 36(SI):211–
224, 2002.

[29] R. Figueriredo, P. Dinda, and J. Fortes. A Case for Grid Computing on Virtual Machines.
In Proceedings of the International Conference on Distributed Computing Systems (ICDCS),
May 2003.

[30] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A. Longstaff. A sense of self for Unix pro-
cesses. In Proceedinges of the 1996 IEEE Symposium on Research in Security and Privacy,
pages 120–128. IEEE Computer Society Press, 1996.

[31] K. Fraser, S. Hand, R. Neugebauer, I. Pratt, A. Warfield, and M. Williamson. Safe Hardware
Access with the Xen Virtual Machine Monitor. In OASIS ASPLOS 2004 workshop, 2004.

[32] fuzen op. fu.exe and msdirectx.sys. http://www.rootkit.com/vault/
fuzen op/FU README.txt.

[33] D. Gao, M. K. Reiter, and D. Song. On gray-box program tracking for anomaly detection.
In Proceedings of the USENIX Security Symposium, pages 103–118, San Diego, CA, USA,
August 2004.

[34] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh. Terra: A Virtual Machine-Based
Platform for Trusted Computing. In Proceedings of the 19th ACM Symposium on Operating
Systems Principles (SOSP ’03), Bolton Landing (Lake George), New York, October 2003.

[35] T. Garfinkel and M. Rosenblum. A virtual machine introspection based architecture for in-
trusion detection. In Proc. Network and Distributed Systems Security Symposium, February
2003.

107

[36] R. Goldberg. Survey of Virtual Machine Research. IEEE Computer, 7(6):34–45, 1974.

[37] P. Gum. System/370 Extended Architecture: Facilities for Virtual Machines. IBM Journal of
Research and Development, 27(6):530–544, November 1983.

[38] H. S. Gunawi, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau. Deploying Safe User-Level
Network Services with icTCP. In Proceedings of the 6th Symposium on Operating Systems
Design and Implementation (OSDI ’04), pages 317–332, San Francisco, California, December
2004.

[39] M. Harchol-Balter and A. B. Downey. Exploiting process lifetime distributions for dynamic
load balancing. ACM Trans. Comput. Syst., 15(3):253–285, 1997.

[40] D. Hitz, J. Lau, and M. Malcolm. File System Design for an NFS File Server Appliance. In
Proceedings of the USENIX Winter Technical Conference (USENIX Winter ’94), San Fran-
cisco, California, January 1994.

[41] A. Ho, M. Fetterman, C. Clark, A. Warfield, and S. Hand. Practical taint-based protection
using demand emulation. In Proceedings of the 2006 ACM SIGOPS EUROSYS, Leuven, Bel-
gium, April 2006.

[42] Holy Father. HackerDefender. http://hxdef.org.

[43] G. C. Hunt, J. R. Larus, M. Abadi, P. Barham, M. Fahndrich, C. H. O. Hodson, S. Levi,
N. Murphy, B. Steensgaard, D. Tarditi, T. Wobber, and B. Zill. An Overview of the Singularity
Project. Technical Report 2005-135, Microsoft Research, 2005.

[44] ImageMagick Studio LLC. Imagemagick image processing software.
http://www.imagemagick.org.

[45] InnoTek. Virtualbox virtual machine monitor. http://www.virtualbox.org.

[46] Intel Corporation. ftp://download.intel.com/ technology/computing/vptech/C97063.pdf, 2005.

[47] S. Iyer and P. Druschel. Anticipatory scheduling: A disk scheduling framework to overcome
deceptive idleness in synchronous I/O. In Proceedings of the 18th ACM Symposium on Oper-
ating Systems Principles (SOSP ’01), pages 117–130, Banff, Canada, October 2001.

[48] T. Johnson and D. Shasha. 2Q: A Low-Overhead High Performance Buffer Management
Replacement Algorithm. In Proceedings of the 20th International Conference on Very Large
Databases (VLDB 20), pages 439–450, Santiago, Chile, September 1994.

[49] S. T. Jones, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau. Antfarm: Tracking Processes in
a Virtual Machine Environment. In Proceedings of the USENIX Annual Technical Conference
(USENIX ’06), Boston, Massachusetts, June 2006.

[50] S. T. Jones, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau. Geiger: Monitoring the Buffer
Cache in a Virtual Machine Environment. In Proceedings of the 12th International Conference
on Architectural Support for Programming Languages and Operating Systems (ASPLOS XII),
San Jose, California, October 2006.

[51] S. T. Jones, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau. MemRx: What-If Performance
Prediction for Varying Memory Size. Technical Report 1573, Department of Computer Sci-
ences, University of Wisconsin-Madison, February 2006.

[52] A. Joshi, S. T. King, G. W. Dunlap, and P. M. Chen. Detecting past and present intrusions
through vulnerability-specific predicates. In SOSP ’05: Proceedings of the twentieth ACM
symposium on Operating systems principles, pages 91–104. ACM Press, 2005.

[53] N. P. Jouppi. Improving Direct-Mapped Cache Performance by the Addition of a Small Fully-
Associative Cache and Prefetch Buffers. In Proceedings of the 17th Annual International
Symposium on Computer Architecture (ISCA ’90), pages 364–373, Seattle, Washington, May
1992.

[54] J. Jung, V. Paxson, A. W. Berger, and H. Balakrishnan. Fast Portscan Detection Using Se-
quential Hypothesis Testing. In IEEE Symposium on Security and Privacy 2004, Oakland,
CA, May 2004.

[55] P. Karger, M. Zurko, D. Bonin, A. Mason, and C. Kahn. A retrospective on the VAX VMM
security kernel. In IEEE Transactions on Software Engineering, volume 17, pages 1147–1165,
November 1991.

[56] S. T. King and P. M. Chen. Backtracking Intrusions. In Proceedings of the 18th ACM Sympo-
sium on Operating Systems Principles (SOSP ’01), Banff, Canada, October 2001.

108

[57] S. T. King, P. M. Chen, Y.-M. Wang, C. Verbowski, H. J. Wang, and J. R. Lorch. Subvirt:
Implementing malware with virtual machines. In 2006 IEEE Symposium on Security and
Privacy (S&P 2006), pages 314–327, Berkeley, California, USA, May 2006.

[58] J. LeVasseur, V. Uhlig, M. Chapman, P. Chubb, B. Leslie, and G. Heiser. Pre-virtualization:
Slashing the cost of virtualization. Technical Report 2005-30, Fakultät für Informatik, Univer-
sität Karlsruhe, November 2005.

[59] J. LeVasseur, V. Uhlig, J. Stoess, and S. Götz. Unmodified device driver reuse and improved
system dependability via virtual machines. In Proceedings of the 6th Symposium on Operating
Systems Design and Implementation (OSDI ’04), San Francisco, California, December 2004.

[60] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg, J. Hogberg, F. Lars-
son, A. Moestedt, and B. Werner. Simics: A full system simulation platform. IEEE Computer,
35(2):50–58, February 2002.

[61] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger. Evaluation Techniques for Storage
Hierarchies. IBM Systems Journal, 9, 1970.

[62] Microsoft. Microsoft virtual server. http://www.microsoft.com/windowsserversystem /virtu-
alserver/default.mspx.

[63] Microsoft. Windows malicious software removal tool.
http://www.microsoft.com/security/malwareremove.

[64] T. Miller. t0rn rootkit. http://www.ossec.net/rootkits/studies/t0rn.txt.

[65] P. Mulvany. Non-unix os history. www.oshistory.net.

[66] D. Muntz and P. Honeyman. Multi-Level Caching in Distributed File Systems - or - Your
Cache Ain’t Nuthin’ But Trash. Proceedings of the USENIX Winter Conference, pages 305–
313, January 1992.

[67] R. Naraine. Microsoft: Stealth Rootkits Are Bombarding XP SP2 Boxes.
http://www.eweek.com/article2/0,1895,1896605,00.asp.

[68] J. Nick L. Petroni, T. Fraser, A. Walters, and W. A. Arbaugh. An architecture for specification-
based detection of semantic integrity violations in kernel dynamic data. In Proceedings of the
USENIX Security Symposium, pages 289–304, Vancouver, British Columbia, Canada, July
2006.

[69] J. Nugent, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau. Controlling your PLACE in
the File System with Gray-box Techniques. In Proceedings of the USENIX Annual Technical
Conference (USENIX ’03), pages 311–324, San Antonio, Texas, June 2003.

[70] OSDL. Open source developement labs database test suite.
http://www.osdl.org/lab activities/kernel testing/ osdl database test suite.

[71] R. H. Patterson, G. A. Gibson, E. Ginting, D. Stodolsky, and J. Zelenka. Informed Prefetching
and Caching. In Proceedings of the 15th ACM Symposium on Operating Systems Principles
(SOSP ’95), pages 79–95, Copper Mountain Resort, Colorado, December 1995.

[72] N. L. Petroni, T. Fraser, J. Molina, and W. A. Arbaugh. Copilot - a coprocessor-based kernel
runtime integrity monitor. In Proceedings of the 13th USENIX Security Symposium, pages
179–194, August 2004.

[73] G. J. Popek and R. P. Goldberg. Formal requirements for virtualizable third generation archi-
tectures. Commun. ACM, 17(7):412–421, 1974.

[74] R Development Core Team. R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria, 2006. ISBN 3-900051-07-0.

[75] F. L. Ramsey and D. W. Schafer. The Statistical Sleuth: A Course in Methods of Data Analysis.
Duxbury Press, Boston, MA, 2nd edition, 2002.

[76] H. Reiser. ReiserFS. www.namesys.com, 2004.

[77] J. S. Robin and C. E. Irvine. Analysis of the Intel Pentium’s Ability to Support a Secure Virtual
Machine Monitor. In Proceedings of the USENIX Annual Technical Conference (USENIX ’00),
San Diego, California, June 2000.

[78] J. Rutkowska. klister. http://www.invisiblethings.org/tools/klister-0.4.zip.

[79] J. Rutkowska. Subverting vista kernel for fun and profit.
http://www.invisiblethings.org/papers/joanna rutkowska - subverting vista kernel.ppt.

109

[80] M. Sahami, S. Dumais, D. Heckerman, and E. Horvitz. A bayesian approach to filtering
junk E-mail. In Learning for Text Categorization: Papers from the 1998 Workshop, Madison,
Wisconsin, 1998. AAAI Technical Report WS-98-05.

[81] SANS Institute. Subseven trojan v 1.1. http://www.sans.org/resources/ idfaq/subseven.php.

[82] C. P. Sapuntzakis, R. Chandra, B. Pfaff, J. Chow, M. S. Lam, and M. Rosenblum. Optimiz-
ing the Migration of Virtual Computers. In Proceedings of the 5th Symposium on Operating
Systems Design and Implementation (OSDI ’02), pages 377–390, Boston, Massachusetts, De-
cember 2002.

[83] sd and devik. Suckit. Phrack #58, article 0x07.
[84] R. Sekar, T. F. Bowen, and M. E. Segal. On preventing intrusions by process behavior monitor-

ing. In Proceedings of the Workshop on Intrusion Detection and Network Monitoring, pages
29–40, Berkeley, CA, USA, 1999. USENIX Association.

[85] M. Sivathanu, L. N. Bairavasundaram, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau. Life
or Death at Block Level. In Proceedings of the 6th Symposium on Operating Systems Design
and Implementation (OSDI ’04), pages 379–394, San Francisco, California, December 2004.

[86] M. Sivathanu, V. Prabhakaran, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau. Improving
Storage System Availability with D-GRAID. In Proceedings of the Third USENIX Symposium
on File and Storage Technologies (FAST ’04), San Francisco, CA, March 2004.

[87] J. Smith and R. Nair. Virtual Machines: Versatile Platforms for Systems and Processes. Mor-
gan Kaufmann, San Francisco, CA, 1st edition, June 2005.

[88] F. G. Soltis. Inside the AS/400. 29th Street Press, October 1997.

[89] A. Somayaji and S. Forrest. Automated response using system-call delays. In Proceedings of
the USENIX Annual Technical Conference (USENIX ’00), San Diego, California, June 2000.

[90] Storage Performance Council. SPC web search engine storage traces.
http://traces.cs.umass.edu/storage.

[91] J. Sugerman, G. Venkitachalam, and B.-H. Lim. Virtualizing I/O Devices on VMware Work-
station’s Hosted Virtual Machine Monitor. In Proceedings of the USENIX Annual Technical
Conference (USENIX ’01), Boston, Massachusetts, June 2001.

[92] Sun Microsystems. ZFS: The Last Word in File Systems. http://www.sun.com/2004-
0914/feature/, 2004.

[93] Sun Microsystems. Sun consolidation and virtualization. http://www.sun.com/virtualization,
2007.

[94] A. Sweeney, D. Doucette, W. Hu, C. Anderson, M. Nishimoto, and G. Peck. Scalability in
the XFS File System. In Proceedings of the USENIX Annual Technical Conference (USENIX
’96), San Diego, California, January 1996.

[95] A. Tridgell. Dbench filesystem benchmark. http://samba.org/ftp/tridge/dbench.

[96] T. Ts’o and S. Tweedie. Future Directions for the Ext2/3 Filesystem. In Proceedings of the
USENIX Annual Technical Conference (FREENIX Track), Monterey, California, June 2002.

[97] S. C. Tweedie. EXT3, Journaling File System. olstrans.sourceforge.net/ release/OLS2000-
ext3/OLS2000-ext3.html, July 2000.

[98] V. Uhlig, J. Levasseur, E. Skoglund, and U. Dannowski. Towards scalable multiprocessor
virtual machines. In Proceedings of the 3rd Virtual Machine Research and Technology Sym-
posium (VM ’04), pages 43–56, San Jose, California, May 2004.

[99] M. Vrable, J. Ma, J. Chen, D. Moore, E. Vandekieft, A. C. Snoeren, G. M. Voelker, and S. Sav-
age. Scalability, fidelity, and containment in the potemkin virtual honeyfarm. In Proceedings
of the 20th ACM Symposium on Operating Systems Principles (SOSP ’05), pages 148–162,
Brighton, United Kingdom, October 2005.

[100] A. Wald. Sequential Analysis. John Wiley & Sons, Inc., New York, NY, 3rd edition, September
1952.

[101] C. A. Waldspurger. Memory Resource Management in VMware ESX Server. In Proceedings
of the 5th Symposium on Operating Systems Design and Implementation (OSDI ’02), Boston,
Massachusetts, December 2002.

[102] Y.-M. Wang, D. Beck, B. Vo, R. Roussev, and C. Verbowski. Detecting stealth software with
strider ghostbuster. In Proceedings of the International Conference on Dependable Systems
and Networks (DSN 2005), pages 368–377, June 2005.

110

[103] A. Whitaker, M. Shaw, and S. D. Gribble. Scale and Performance in the Denali Isolation Ker-
nel. In Proceedings of the 5th Symposium on Operating Systems Design and Implementation
(OSDI ’02), Boston, Massachusetts, December 2002.

[104] T. M. Wong and J. Wilkes. My Cache or Yours? Making Storage More Exclusive. In Proceed-
ings of the USENIX Annual Technical Conference (USENIX ’02), Monterey, California, June
2002.

[105] T. Wood, P. Shenoy, A. Venkataramani, and M. Yousif. Black-box and gray-box strategies
for virtual machine migration. In Proceedings of the 4th Symposium on Networked Systems
Design and Implementation (NSDI ’07), Cambridge, Massachusetts, April 2007.

[106] M. Zhao, J. Zhang, and R. Figueriredo. Distributed File System Support for Virtual Machines
in Grid Computing. In Proceedings of High Performance Distributed Computing (HPDC),
July 2004.

[107] P. Zhou, V. Pandey, J. Sundaresan, A. Raghuraman, Y. Zhou, and S. Kumar. Dynamically
Tracking Miss-Ratio-Curve for Memory Management. In Proceedings of the 11th Interna-
tional Conference on Architectural Support for Programming Languages and Operating Sys-
tems (ASPLOS XI), Boston, Massachusetts, October 2004.

[108] Y. Zhou, J. F. Philbin, and K. Li. The Multi-Queue Replacement Algorithm for Second Level
Buffer Caches. In Proceedings of the USENIX Annual Technical Conference (USENIX ’01),
pages 91–104, Boston, Massachusetts, June 2001.

