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Preface

Nonlinear partial differential equations has become one of the main tools
of modern mathematical analysis; in spite of seemingly contradictory ter-
minology, the subject of nonlinear differential equations finds its origins in
the theory of linear differential equations, and a large part of functional
analysis derived its inspiration from the study of linear pdes.

In recent years, several mathematicians have investigated nonlinear equa-
tions, particularly those of the second order, both linear and nonlinear and
either in divergence or nondivergence form. Quasilinear and fully nonlinear
differential equations are relevant classes of such equations and have been
widely examined in the mathematical literature.

In this work we present a new family of differential equations called “im-
plicit partial differential equations”, described in detail in the introduction
(c.f. Chapter 1). It is a class of nonlinear equations that does not include the
family of fully nonlinear elliptic pdes. We present a new functional analytic
method based on the Baire category theorem for handling the existence of
almost everywhere solutions of these implicit equations. The results have
been obtained for the most part in recent years and have important appli-
cations to the calculus of variations, nonlinear elasticity, problems of phase
transitions and optimal design; some results have not been published else-
where.

The book is essentially self-contained, and includes some background
material on viscosity solutions, different notions of convexity involved in
the vectorial calculus of variations, singular values, Vitali type covering
theorems, and the approximation of Sobolev functions by piecewise affine
functions. Also, a comparison is made with other methods — notably the
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method of viscosity solutions and briefly that of convex integration. Many
mathematical examples stemming from applications to the material sci-
ences are thoroughly discussed.

The book is divided into four parts. In Part 1 we consider the scalar
case for first (Chapter 2) and second (Chapter 3) order equations. We also
compare (Chapter 4) our approach for obtaining existence results with the
celebrated viscosity method. While most of our existence results obtained
in this part of the book are consequences of vectorial results considered in
the second part, we have avoided (except for very briefly in Section 3.3)
vectorial machinery in order to make the material more readable.

In Part 2 we first (Chapter 5) recall basic results on generalized notions
of convexity, such as quasiconvexity, as well as on some important lower
semicontinuity theorems of the calculus of variations. Central existence
results of Part 2 are in Chapter 6, where Nth order vectorial problems are
discussed.

In Part 3 we study in great detail applications of vectorial existence re-
sults to important problems originating, for example, from geometry or
from the material sciences. These applications concern singular values, po-
tential wells and the complex eikonal equation.

Finally, in Part 4 we gather some nonclassical Vitali type covering theo-
rems, as well as several fine results on the approximation of Sobolev func-
tions by piecewise affine or polynomial functions. These last results may
be relevant in other contexts, such as numerical analysis.
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1
Introduction

1.1 The first order case

1.1.1 Statement of the problem

One of the main purposes of this book is to study the Dirichlet problem{
Fi(x, u(x), Du(x)) = 0, a.e. x ∈ Ω, i = 1, . . . , I
u(x) = ϕ(x), x ∈ ∂Ω, (1.1)

where Ω ⊂ Rn is an open set, u : Ω → R
m and therefore Du ∈ Rm×n (if

m = 1 we say that the problem is scalar and otherwise we say that it is
vectorial), Fi : Ω × Rm × Rm×n → R, Fi = Fi(x, s, ξ), i = 1, . . . , I, are
given. The boundary condition ϕ is prescribed (depending of the context
it will be either continuously differentiable or only Lipschitz-continuous).

As is well known, it is not reasonable to expect the solutions to be
C1 (Ω;Rm) (even when m = n = 1). We will however investigate through-
out this book the existence of W 1,∞ (Ω;Rm) solutions of (1.1). The nature
of the question excludes automatically from our investigation quasilinear
problems (i.e., equations where the derivatives appear linearly) since as
well known solutions of such problems cannot satisfy the Dirichlet bound-
ary condition. The equations that we will consider in this monograph will
therefore be called of implicit type, i.e., they exclude the quasilinear case.
The approach we will discuss here is a functional analytic method based
on the Baire category theorem and on weak lower semicontinuity of convex
and quasiconvex integrals.
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1.1.2 The scalar case

We now discuss the case m = 1, i.e., there is only one unknown scalar func-
tion u. This case is much simpler than the vectorial one and has received
much more attention. The prototype of first order implicit equations is the
eikonal equation which is of importance in geometrical optics.

Example 1.1 (Eikonal equation) The problem is to find u ∈W 1,∞ (Ω)
satisfying {

|Du(x)| = a (x, u(x)) , a.e. in Ω
u = ϕ, on ∂Ω,

where Ω is an open set (bounded or unbounded) of Rn, a : Ω × R → R

is a bounded continuous function and the boundary datum ϕ ∈ W 1,∞ (Ω)
satisfies the compatibility condition

|Dϕ(x)| ≤ a (x, ϕ(x)) , a.e. in Ω.

A natural generalization of this example leads to the following result (c.f.
Theorem ??, for a more general version).

Theorem 1.2 Let Ω be an open set of Rn. Let F : Ω × R × Rn → R be
a continuous function, convex with respect to the last variable and coercive
(i.e., limF (x, u, ξ) = +∞, if |ξ| → ∞ uniformly with respect to (x, u)).
Let ϕ ∈W 1,∞ (Ω) be a function satisfying

F (x, ϕ(x), Dϕ(x)) ≤ 0, a.e. in Ω. (1.2)

For every ε > 0 there exists u ∈W 1,∞ (Ω) such that ‖u− ϕ‖L∞ ≤ ε and{
F (x, u(x), Du(x)) = 0, a.e. in Ω
u = ϕ, on ∂Ω. (1.3)

Apart from the conclusion on the density and from the fact that no other
hypothesis than continuity on the behavior of the function F with respect
to the variable u is made, this theorem is well known (and also much more
precise, because some explicit formulas for a solution are known in special
cases) since the pioneering work of Hopf [188], Lax [211], Kruzkov [208]
(see also Benton [39], Crandall-Lions [96] and for a thorough treatment
Lions [218]). We will come back to it below when we will briefly speak of
viscosity solutions of (1.3). Theorem 1.2 is a consequence of the general
results obtained in this book (c.f. also [111] and De Blasi-Pianigiani [127]).

We will also be able to treat a generalization of the eikonal equation,
which we call the eikonal system of the following type.



1.1 The first order case 3

Example 1.3 (Eikonal system) We look for solutions u ∈ W 1,∞ (Ω) of
the following problem{ ∣∣∣ ∂u∂xi ∣∣∣ = ai (x, u(x)) , i = 1, . . . , n, a.e. in Ω

u = ϕ, on ∂Ω,

where Ω is an open set of Rn, ai : Ω×R→ R, with ai ≥ a0 > 0, i = 1, . . . , n,
are bounded continuous functions and the boundary datum ϕ ∈W 1,∞ (Ω)
satisfies the compatibility conditions∣∣∣∣ ∂ϕ∂xi

∣∣∣∣ < ai (x, ϕ(x)) , i = 1, . . . , n, a.e. in Ω.

The example can be considered either as a nonconvex version of (1.3) by
setting, for instance,

F (x, s, ξ) = −
n∑
i=1

||ξi| − ai (x, s)|

or as a system of convex functions (in the gradient variable) of the implicit
type (1.1), with Fi (x, s, ξ) = |ξi| − ai (x, s).

In the nonconvex case our approach will lead to the following theorem
(c.f. Theorem ??), which is in optimal form when the Hamiltonian F is
independent of the lower order terms (x, u). Setting

E = {ξ ∈ Rn : F (ξ) = 0} (1.4)

the problem is then transformed into a differential inclusion.

Theorem 1.4 Let Ω ⊂ Rn be open and E ⊂ Rn. Let ϕ ∈W 1,∞ (Ω) satisfy

Dϕ (x) ∈ E ∪ int coE, a.e. x ∈ Ω; (1.5)

then there exists (a dense set of) u ∈W 1,∞ (Ω) such that{
Du (x) ∈ E, a.e. x ∈ Ω
u (x) = ϕ (x) , x ∈ ∂Ω. (1.6)

Remark 1.5 (i) The interior of the convex hull of E is denoted by int coE.
Observe also that (when compared with Section 1.1.4 for the vectorial case)

int coE = int coE.

(ii) The density, in the L∞-norm, is to be understood in the sense of the
Baire category theorem.
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(iii) Note that when F is convex and coercive and E is given by (1.4)
then

E ∪ int coE = {ξ ∈ Rn : F (ξ) ≤ 0} .

Similarly, in Example 1.3,

int coE = {ξ ∈ Rn : |ξi| < ai, i = 1, . . . , n} .

Observe also that if F is linear, then int coE = ∅ and thus, as already
mentioned, our analysis excludes linear (and quasilinear) equations.

This theorem has been established by many authors depending on fur-
ther assumptions on the boundary datum. When ϕ is linear an explicit
construction can be made, which by analogy with the case n = 2 we call
a pyramid, c.f. Cellina [78], Friesecke [162]. When ϕ is nonlinear we refer
to [108], [110] and to Bressan-Flores [55] and De Blasi-Pianigiani [127].
Theorem 1.4 extends to the case with explicit dependence on (x, u), c.f.
Theorem ??.

Returning to Theorem 1.4 one should observe that the compatibility
condition (1.5) is also necessary in the sense described below (c.f. Section
2.4). First note that if ϕ is linear, i.e.,

ϕ (x) = 〈ξ0;x〉+ q

for some ξ0 ∈ Rn and q ∈ R, then necessarily any solution of Du (x) ∈ E ⊂
coE verifies, by the Jensen inequality,

ξ0 =
1

meas Ω

∫
Ω

Du (x) dx ∈ coE.

Thus a necessary condition for the solvability of problem (1.6) is

Dϕ ∈ coE. (1.7)

Moreover, in Section 2.4, we show in an example that in general the con-
dition

ξ0 = Dϕ (x) ∈ E ∪ int coE, a.e. x ∈ Ω

cannot be replaced by (1.7). The necessary condition (1.7) can also be
considered when ϕ is nonlinear and we refer to the discussion of Section ??
for more details.

1.1.3 Some examples in the vectorial case

When we turn to the vectorial case the problem becomes more delicate
because the classical notion of convexity is too strong and has to be re-
placed by weaker notions such as quasiconvexity and rank one convexity.
Before entering into some details about the extension of Theorem 1.4 to
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the vectorial case, we point out some examples that will be treated in this
book.

The first example (c.f. Chapter 7) that we will consider is the problem
of singular values. It is of importance in nonlinear elasticity and in optimal
design (c.f. [107]).

We recall that, given a matrix ξ ∈ Rn×n, we denote by 0 ≤ λ1 (ξ) ≤
λ2 (ξ) ≤ · · · ≤ λn (ξ) its singular values; these are the eigenvalues of the
symmetric matrix

(
ξtξ
)1/2

. They satisfy

|ξ|2 =
n∑

i,j=1

ξ2
ij =

n∑
i=1

(λi (ξ))2
,

|adjsξ|2 =
∑

i1<···<is

(λi1 (ξ))2 · . . . · (λis (ξ))2
,

|det ξ| =
n∏
i=1

λi (ξ) ,

where adjsξ ∈ R(ns)×(ns) denotes the matrix obtained by forming all the
s× s minors, 2 ≤ s ≤ n− 1, of the matrix ξ (if n = 3, adj2ξ ∈ R3×3 is the
usual adjugate matrix). In particular, if n = 2, then

|ξ|2 =
2∑

i,j=1

ξ2
ij = (λ1 (ξ))2 + (λ2 (ξ))2

,

|det ξ| = λ1 (ξ)λ2 (ξ) .

We will then get the following existence theorem (c.f. Theorem ??).

Theorem 1.6 Let Ω ⊂ Rn be an open set, ai : Ω×Rn → R, i = 1, . . . , n, be
bounded continuous functions satisfying 0 < c ≤ a1 (x, s) ≤ . . . ≤ an (x, s)
for some constant c and for every (x, s) ∈ Ω×Rn. Let ϕ ∈ C1

(
Ω;Rn

)
(or

piecewise C1) satisfy
n∏
i=ν

λi (Dϕ (x)) <
n∏
i=ν

ai (x, ϕ (x)) , x ∈ Ω, ν = 1, . . . , n

(in particular ϕ ≡ 0 satisfies the above condition); then there exists (a
dense set of) u ∈W 1,∞ (Ω;Rn) such that{

λi (Du (x)) = ai (x, u (x)) , a.e. x ∈ Ω, i = 1, . . . , n
u (x) = ϕ (x) , x ∈ ∂Ω.

Remark 1.7 The above theorem has been established in [108], [109], [110],
[111] when n = 2 and, with the same proof, in [117] for the general case.
When n = 3, ai ≡ 1 and ϕ ≡ 0, this theorem can be found in Cellina-
Perrotta [80]; see also Celada-Perrotta [74].
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It is interesting to see some implications of the theorem when n = 2. The
problem is then equivalent to |Du (x)|2 = a2

1 + a2
2, a.e. x ∈ Ω

|detDu (x)| = a1a2, a.e. x ∈ Ω
u (x) = ϕ (x) , x ∈ ∂Ω.

(1.8)

Therefore the system can be seen as a combination of the vectorial eikonal
equation and of the equation of prescribed absolute value of the Jacobian
determinant. The first equation is, as we just saw, at the origin of the
study of nonlinear first order pdes and an important motivation for the
introduction of the notion of viscosity solutions. The second equation says
that the absolute value of the Jacobian determinant is given. This last
equation, without the absolute value, has also been studied (c.f. Moser [247]
and in many other articles since then and in particular Dacorogna-Moser
[115]); it has important applications for example in dynamical systems and
in nonlinear elasticity.

If we now consider in (1.8) the case a1 = a2 = 1 and if we set

u = u (x, y) =
(
u1, u2

)
, Du =

(
u1
x u1

y

u2
x u2

y

)
,

we find that (1.8) implies that
[(
u1
x − u2

y

)2 +
(
u1
y + u2

x

)2] [(
u1
x + u2

y

)2 +
(
u1
y − u2

x

)2] = 0, a.e. in Ω

(
u1, u2

)
=
(
ϕ1, ϕ2

)
, on ∂Ω.

The theorem then means that we can find, under appropriate compatibility
conditions, a Lipschitz map u that is either conformal or anticonformal
(i.e., it satisfies either the Cauchy-Riemann equation or the anti Cauchy-
Riemann equation) and on the boundary of the domain has both real and
imaginary parts given. Of course if we have classical complex analysis in
mind this result is quite surprising.

The second example that will be treated in detail in this book (c.f. Chap-
ter 8) is the problem of two potential wells in two dimensions.

First let us introduce some notation. We let Ω ⊂ Rn be a bounded open
set and SO (n) (the set of special orthogonal matrices) denote the set of
matrices U ∈ Rn×n such that U tU = UU t = I and detU = 1.

Let us be given N matrices Ai ∈ Rn×n. The problem of potential wells
consists in finding u ∈ ϕ+W 1,∞

0 (Ω;Rn) such that{
Du (x) ∈ E =

N
∪
i=1

SO (n)Ai
u (x) = ϕ (x) , x ∈ ∂Ω.

(1.9)

The N wells are SO (n)Ai, 1 ≤ i ≤ N .
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Before going further we should note that in the case of singular values
considered in the preceding example, if we take ai = 1 for every i = 1, . . . , n,
then the problem is also of potential wells type, i.e., N = 2 and

E = SO(n)I ∪ SO(n)I−, where I− = diag (−1, 1, 1, . . . , 1) ,

or, in other words E = O(n) (the set of orthogonal matrices).
The general problem of potential wells has been intensively studied by

many authors in conjunction with crystallographic models involving fine
micro-structures. The reference papers on the subject are Ball-James [31],
[32]; see also Bhattacharya-Firoozye-James-Kohn [42], De Simone-Dolzmann
[131], Dolzmann-Müller [135], Ericksen [145], [146], Firoozye-Kohn [153],
Fonseca-Tartar [158], Kinderlehrer-Pedregal [200], Kohn [204], Luskin [219],
Müller-Sverak [249], Pipkin [263], Sverak [289].

The mathematical problem (1.9) is very difficult and the difficulty in-
creases drastically with the dimension and/or the number of wells. One
of the main difficulties is to characterize the quasiconvex (or the rank one
convex ) hull of the set E; c.f. below for the definition of these hulls. The
case that is best understood is when n = N = 2, i.e., the case of two po-
tential wells in two dimensions. For (1.9) we will prove an existence result
of Lipschitz solutions under the appropriate compatibility condition on the
boundary datum (c.f. Theorem 1.16 and Theorem ??). The same result has
also been obtained by Müller-Sverak in [249] using convex integration (c.f.
Section 1.3.2 below).

The third example (c.f. Chapter 9) that we want to mention is the
complex eikonal equation. The problem has recently been introduced by
Magnanini-Talenti [221], motivated by the study of harmonic functions in
3 dimensions and by problems of geometrical optics with diffraction. The
question under consideration is to find a complex function

w (x, y) = u (x, y) + iv (x, y)

such that {
w2
x + w2

y + f2 = 0, a.e in Ω
w = ϕ, on ∂Ω,

where f : Ω × R2 → R (f = f (x, y, u, v)) is continuous and Ω ⊂ R2 is an
open set. This is therefore equivalent to the system |Dv|

2 = |Du|2 + f2, a.e in Ω
〈Du;Dv〉 = 0, a.e in Ω
(u, v) = (ϕ1, ϕ2) , on ∂Ω.

(1.10)

We will prove the following existence result (c.f. Theorem ??)

Theorem 1.8 For every ϕ ∈ W 1,∞ (Ω;R2
)

there exists a (dense set of)
function w = (u, v) ∈W 1,∞ (Ω;R2

)
satisfying (1.10).
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1.1.4 Convexity conditions in the vectorial case

In the context of vectorial problems we need to replace the notion of convex-
ity by the concepts of quasiconvexity, rank one convexity or polyconvexity.
We now introduce the first two notions and we refer to Chapter 5 for more
details.

We say that a Borel measurable function f : Rm×n → R is quasiconvex
if

f (A) ≤ 1
meas Ω

∫
Ω

f (A+Dϕ (x)) dx ,

for every bounded domain Ω ⊂ R
n, every A ∈ Rm×n, and every ϕ ∈

W 1,∞
0 (Ω;Rm). Moreover, a function f : Rm×n → R = R∪{+∞} is said to

be rank one convex if

f (tA+ (1− t)B) ≤ tf (A) + (1− t) f (B) ,

for every t ∈ [0, 1] and every A,B ∈ Rm×n with rank {A−B} = 1.
It is well known that

f convex =⇒ f quasiconvex =⇒ f rank one convex.

Note also that when m = 1 (i.e., in the scalar case) the three notions
are equivalent. The classical example of a quasiconvex (and also rank one
convex) function that is not convex is (when m = n)

f (A) = detA, A ∈ Rn×n.

Given a set E ⊂ Rm×n, the convex hull of E, denoted coE, is classically
defined as the smallest convex set that contains E. By analogy we define
the rank one convex hull of E, denoted RcoE, to be the smallest rank one
convex set that contains E; more precisely

RcoE =
{
ξ ∈ Rm×n : f(ξ) ≤ 0, ∀f : Rm×n → R = R∪{+∞} ,

f |E = 0 , f rank one convex

}
.

Similarly we define the (closure of the) quasiconvex hull of E as

QcoE =
{
ξ ∈ Rm×n : f(ξ) ≤ 0, ∀ f : Rm×n → R,

f |E = 0 , f quasiconvex

}
.

In the first example (c.f. Theorem 1.6) considered above we have

QcoE = RcoE =

{
ξ ∈ Rn×n :

n∏
i=ν

λi (ξ) ≤
n∏
i=ν

ai , ν = 1, . . . , n

}
.

These two concepts allow us to discuss extensions of Theorem 1.4 to
the vectorial case. The natural generalization is: given E ⊂ R

m×n and
ϕ ∈W 1,∞ (Ω;Rm) satisfying

Dϕ (x) ∈ E ∪ int QcoE, a.e. x ∈ Ω,
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there exists u ∈W 1,∞ (Ω;Rm) such that{
Du (x) ∈ E, a.e. x ∈ Ω
u (x) = ϕ (x) , x ∈ ∂Ω.

However there are several obstacles to obtaining such a theorem in this
full generality. The first problem concerns the regularity assumption on the
boundary datum ϕ. In most of our theorems, with some exceptions such
as Theorem 1.8, we will be obliged to assume that ϕ ∈ C1

(
Ω;Rm

)
(or

piecewise C1, denoted by C1
piec) since we lack in the vectorial case good

approximation theorems by piecewise affine functions (c.f. Chapter 10 for
more details). The main problem is however that quasiconvex hulls are
poorly understood, contrary to the convex ones. We will therefore need in
our theorems to require some further structure on the quasiconvex hulls.
With such restrictions we will be able to obtain the claimed generalization.

1.1.5 Some typical existence theorems in the vectorial case

We have selected two results that are relatively simple to express and that
apply to the first and third examples quoted above (c.f. Theorem 1.6 and
Theorem 1.8). The proofs of these results can be found in Section 6.5 of
Chapter 6. The first one is (c.f. Theorem ??).

Theorem 1.9 Let Ω ⊂ Rn be open. Let Fi : Ω × Rm × Rm×n → R, Fi =
Fi(x, s, ξ), i = 1, . . . , I, be continuous with respect to (x, s) ∈ Ω × Rm and
quasiconvex and positively homogeneous of degree αi > 0 with respect to
the last variable ξ ∈ Rm×n.

Let ai : Ω × Rm → R, i = 1, . . . , I, be bounded continuous functions
satisfying for a certain a0 > 0

ai (x, s) ≥ a0 > 0, i = 1, . . . , I, ∀ (x, s) ∈ Ω× Rm.

Assume that, for every (x, s) ∈ Ω× Rm,

Rco
{
ξ ∈ Rm×n : Fi(x, s, ξ) = ai (x, s) , i = 1, . . . , I

}
=
{
ξ ∈ Rm×n : Fi(x, s, ξ) ≤ ai (x, s) , i = 1, . . . , I

}
and is bounded in Rm×n uniformly with respect to x ∈ Ω and to s in a
bounded set of Rm. If ϕ ∈ C1

piec(Ω;Rm) satisfies

Fi(x, ϕ(x), Dϕ(x)) < ai (x, ϕ(x)) , a.e. x ∈ Ω, i = 1, . . . , I,

then there exists (a dense set of) u ∈W 1,∞(Ω;Rm) such that{
Fi(x, u(x), Du(x)) = ai (x, u(x)) , a.e. x ∈ Ω, i = 1, . . . , I
u(x) = ϕ(x), x ∈ ∂Ω.
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The second result is (c.f. Theorem ?? and Remark ??).

Theorem 1.10 Let Ω ⊂ R
n be open. Let Fi : Ω × Rm × Rm×n → R,

Fi = Fi(x, s, ξ), i = 1, . . . , I, be continuous with respect to (x, s) ∈ Ω×Rm
and convex with respect to the last variable ξ ∈ Rm×n.

Assume that, for every (x, s) ∈ Ω× Rm,

Rco
{
ξ ∈ Rm×n : Fi(x, s, ξ) = 0, i = 1, . . . , I

}
=
{
ξ ∈ Rm×n : Fi(x, s, ξ) ≤ 0, i = 1, . . . , I

}
and is bounded in Rm×n uniformly with respect to x ∈ Ω and s in a bounded
set of Rm. Let ϕ ∈ C1

piec(Ω;Rm) satisfy

Fi(x, ϕ(x), Dϕ(x)) < 0, a.e. x ∈ Ω, i = 1, . . . , I,

or ϕ ∈W 1,∞(Ω;Rm) be such that

Fi(x, ϕ(x), Dϕ(x)) ≤ −θ, a.e. x ∈ Ω, i = 1, . . . , I,

for a certain θ > 0.
Then there exists (a dense set of) u ∈W 1,∞(Ω;Rm) such that{

Fi(x, u(x), Du(x)) = 0, a.e. x ∈ Ω, i = 1, . . . , I
u(x) = ϕ(x), x ∈ ∂Ω.

1.2 Second and higher order cases

In fact, second order equations can be reduced to a system of first order
equations and therefore the problems considered in this section are vectorial
even though they might appear as if they were scalar.

Vectorial calculus of variations gives an interesting motivation to study
second order implicit pdes. An example is proposed in Section 1.4.4, in
the application to optimal design of an existence theorem for some second
order implicit differential problem.

1.2.1 Dirichlet-Neumann boundary value problem

We consider second order equations (in Chapters ?? and ?? we will also
deal with second order systems) of the form

F (x, u(x), Du(x), D2u(x)) = 0, x ∈ Ω, (1.11)

where F : Ω × R × Rn × Rn×ns → R is a continuous function. Since the
matrix D2u(x) of the second derivatives is symmetric, then for every fixed
x ∈ Ω this matrix is an element of the subset

R
n×n
s =

{
ξ ∈ Rn×n : ξ = ξt

}
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of the n× n matrices Rn×n.
We say that (1.11) is a second order partial differential equation of im-

plicit type, since our hypotheses exclude that it is a quasilinear equation,
i.e., it is not possible to write it as an equivalent equation which is linear
with respect to the matrix of the second derivatives D2u(x).

We can consider, for example, the equation

|∆u| = 1, a.e. in Ω, (1.12)

together with a boundary datum u = ϕ on ∂Ω. Instead, we could simply
solve the Dirichlet problem with the same boundary datum for the linear
equation ∆u = 1. But, the interesting fact is that, if we remain with the
original nonlinear equation, then we can solve even a Dirichlet-Neumann
problem of the type  |∆u| = 1, a.e. in Ω

u = ϕ, on ∂Ω
∂u/∂ν = ψ, on ∂Ω.

Independently of the differential equation, if a smooth function u is given
on a smooth boundary ∂Ω, then its tangential derivative is automatically
determined. Therefore to prescribe Dirichlet and Neumann conditions at
the same time is equivalent to give u and Du together.

This means that the Dirichlet-Neumann problem that we consider will
be written, in the specific context of (1.12), under the form |∆u| = 1, a.e. in Ω

u = ϕ, on ∂Ω
Du = Dϕ, on ∂Ω

(1.13)

(note the compatibility condition that we have imposed on the boundary
gradient to be equal to the gradient Dϕ of the boundary datum ϕ; of
course we assume that ϕ is defined all over Ω). In terms of Sobolev spaces
the boundary condition is to be understood as u− ϕ ∈W 2,∞

0 (Ω).
Returning to the equation (1.11), we will consider Dirichlet-Neumann

problems in Chapter ?? of the form (1.14){
F (x, u(x), Du(x), D2u(x)) = 0, a.e. in Ω
u = ϕ, Du = Dϕ, on ∂Ω. (1.14)

We look for solutions u in the class W 2,∞(Ω) and in general we cannot
expect that u ∈ C2(Ω).

Before stating an existence theorem, we need to introduce the notion
of coercivity in a rank one direction for the function F . We say that
F (x, s, p, ξ) is coercive with respect to the last variable ξ in the rank one
direction λ, if λ ∈ Rn×ns with rank {λ} = 1, and for every x ∈ Ω and every
bounded set of R× Rn × Rn×ns , there exist constants m, q > 0, such that

F (x, s, p, ξ + t λ) ≥ m |t| − q (1.15)
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for every t ∈ R, x ∈ Ω and for every (s, p, ξ) that vary on the bounded set
of R× Rn × Rn×ns .

The function involved in (1.12), namely F (ξ) = |trace (ξ)| − 1, is indeed
coercive in the rank one direction e1 ⊗ e1 where

e1 ⊗ e1 =


1 0 . . . 0
0 0 . . . 0
. . . . . . . . . . . .
0 0 . . . 0

 .

The theorem that we will obtain, following [112], is (c.f. Theorem ??)

Theorem 1.11 Let Ω ⊂ Rn be open. Let F : Ω× R× Rn × Rn×ns → R be
a continuous function, convex with respect to the last variable and coercive
in a rank one direction λ. Let ϕ ∈ C2

piec(Ω) be such that

F
(
x, ϕ(x), Dϕ(x), D2ϕ(x)

)
≤ 0, a.e. x ∈ Ω (1.16)

or ϕ ∈W 2,∞ (Ω) satisfy, for a certain θ > 0

F
(
x, ϕ(x), Dϕ(x), D2ϕ(x)

)
≤ −θ, a.e. x ∈ Ω.

Then there exists (a dense set of) u ∈W 2,∞ (Ω) such that{
F (x, u(x), Du(x), D2u(x)) = 0, a.e. in Ω
u = ϕ, Du = Dϕ, on ∂Ω.

We need the compatibility condition (1.16) first to be sure that the func-
tion F is equal to zero somewhere (consequence of the compatibility condi-
tion and the coercivity assumption). More relevant, however is the impli-
cation by the convexity assumption through the Jensen inequality: in fact,
for example, if we assume that the problem (1.14) without the lower order
terms and with special boundary datum ϕ equal to a polynomial of degree
two (i.e., D2ϕ (x) = ξ0 for some ξ0 ∈ Rn×ns and for every x ∈ Ω) has a
solution u ∈ W 2.∞(Ω), then, since F

(
D2u

)
= 0 a.e. in Ω and Du = Dϕ

on ∂Ω, we obtain the necessary compatibility condition

0 =
1
|Ω|

∫
Ω

F
(
D2u (x)

)
dx ≥ F (

1
|Ω|

∫
Ω

D2u (x) dx)

= F (
1
|Ω|

∫
Ω

D2ϕ (x) dx) = F (ξ0) = F (D2ϕ) .

1.2.2 Fully nonlinear partial differential equations

Let us make a remark related to the important case of second order elliptic
fully nonlinear partial differential equations. The coercivity condition that
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we will assume (c.f. (1.15)) prohibits the equations we consider here to be
elliptic in the sense of Caffarelli-Nirenberg-Spruck [65], Crandall-Ishii-Lions
[95], Evans [147], Trudinger [301]. To prove this claim we first recall that
ellipticity of F = F (ξ) where ξ ∈ Rn×ns , means

F (ξ) < F (ξ + η) , ∀ η ≥ 0, η 6= 0, (1.17)

where the notation η ≥ 0 means that η ∈ Rn×ns is a positive semidefinite
matrix (note that some authors use the same definition with F replaced by
−F ). If F is differentiable, it turns out (see for example Trudinger [301])
that (1.17) is equivalent to the positivity of the n× n matrix DF , that is∑

ij

∂F

∂ξij
λiλj > 0, ∀ (λi) ∈ Rn − {0} . (1.18)

We now show that (1.18) excludes the coercivity of F in any rank one
direction. In fact we have that∑

ij

∂F (ξ)
∂ξij

λiλj =
d

dt
F (ξ + tλ)

∣∣∣∣
t=0

where ξ =
(
ξij
)

is a generic n × n matrix while λ = (λiλj) is a generic
n × n matrix of rank one. Therefore the condition (1.18) means that F is
monotone in all directions λ of rank one; while coercivity in a rank one
direction λ implies that F is not monotone in this direction.

1.2.3 Singular values

The preceding result can be extended to systems and we give here only one
example (c.f. Theorem ??). We recall that, for ξ ∈ Rn×ns , we denote by
0 ≤ λ1 (ξ) ≤ . . . ≤ λn (ξ) its singular values, which are now, because of the
symmetry of the matrix, the absolute value of the eigenvalues.

Theorem 1.12 Let Ω ⊂ Rn be an open set, ai : Ω × R × Rn → R, i =
1, . . . , n be continuous bounded functions satisfying

0 < c ≤ a1 (x, s, p) ≤ . . . ≤ an (x, s, p)

for some constant c and for every (x, s, p) ∈ Ω×R×Rn. Let ϕ ∈ C2
piec

(
Ω
)

be such that

λi
(
D2ϕ (x)

)
< ai (x, ϕ (x) , Dϕ (x)) , a.e. x ∈ Ω, i = 1, . . . , n (1.19)

(in particular ϕ ≡ 0). Then there exists (a dense set of) u ∈ W 2,∞ (Ω)
such that{

λi
(
D2u (x)

)
= ai (x, u (x) , Du (x)) , a.e. x ∈ Ω, i = 1, . . . , n

u (x) = ϕ (x) , Du (x) = Dϕ (x) , x ∈ ∂Ω.
(1.20)
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As a consequence we find that the following Dirichlet-Neumann problem
(1.21) admits a solution.

Corollary 1.13 Let Ω ⊂ R
n be open. Let f : Ω × R× Rn → R be a

continuous function such that

f (x, s, p) ≥ f0 > 0,

for some constant f0 and for every (x, s, p) ∈ Ω× R× Rn. Let ϕ ∈ C2(Ω)
(or C2

piec(Ω)) satisfy∣∣detD2ϕ(x)
∣∣ < f (x, ϕ (x) , Dϕ (x)) , x ∈ Ω.

Then there exists (a dense set of) u ∈W 2,∞(Ω) such that{ ∣∣detD2u(x)
∣∣ = f (x, u (x) , Du (x)) , a.e. x ∈ Ω,

u = ϕ, Du = Dϕ, on ∂Ω. (1.21)

Observe that because of the Dirichlet-Neumann boundary data, the above
problem cannot be handled as a corollary of the results on the Monge-
Ampère equation.

1.2.4 Some extensions

The results on second order equations carry to higher order equations (c.f.
Chapter 6). We give here only one example which concerns the Nth order
eikonal equation. Let us first introduce the following notation for u : Rn →
R; we let

DNu =
(

∂Nu

∂xj1 . . . ∂xjN

)
1≤j1,...,jN≤n

and
D[N−1]u =

(
u,Du, . . . ,DN−1u

)
.

Finally RMs denotes the space where D[N−1]u lies (see Chapter 5 for more
details).

Theorem 1.14 Let Ω ⊂ Rn be open. Let a : Ω×RMs → R+ be bounded and
continuous and ϕ ∈ CNpiec(Ω) satisfy∣∣DNϕ(x)

∣∣ ≤ a(x,D[N−1]ϕ(x)
)
, a.e. x ∈ Ω;

then there exists (a dense set of) u ∈WN,∞(Ω) satisfying{ ∣∣DNu(x)
∣∣ = a

(
x,D[N−1]u(x)

)
, a.e. x ∈ Ω

Dαu(x) = Dαϕ(x), x ∈ ∂Ω, α = 0, . . . , N − 1.
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1.3 Different methods

There are, roughly speaking, three general methods to deal with the prob-
lems that we consider in this book and we will describe them briefly now.
The third one will be the one used throughout this monograph. Of course
for some particular examples there are some ad hoc methods; we think, for
instance, of the pyramidal construction mentioned above (c.f. also Chapter
2) or of the confocal ellipses construction of Murat and Tartar [295] (c.f.
Chapter 3 and for applications of this construction [107] and Section 1.4).

1.3.1 Viscosity solutions

The first method is the oldest and the one that has received the most at-
tention. It deals essentially with scalar problems, although there are some
results on some particular vectorial equations. We here discuss only viscos-
ity solutions of first order equations since it is mainly in this case that the
two methods, which will be discussed below, are comparable. The advan-
tage over those two other methods is that it gives much more information
than existence of solutions; for instance, uniqueness, stability, maximality
and, last but not least, explicit formulas (such as the Hopf-Lax formula,
which in the case of the eikonal equation will be given below). However,
because of the many extra properties that it carries with it, the viscosity
approach applies to many fewer equations than the two other methods that
we will present below. The justification of this last statement is the purpose
of Chapter 4 and will be briefly discussed now.

We recall that the problem under consideration is{
F (x, u (x) , Du (x)) = 0, a.e. x ∈ Ω
u (x) = ϕ (x) , x ∈ ∂Ω, (1.22)

where Ω ⊂ Rn is an open set, F : Ω×R×Rn → R and ϕ is a given function.
We should immediately point out that in this monograph we will be

concerned only with viscosity solutions that are locally Lipschitz (the def-
inition has been extended to functions that are even discontinuous) and
that satisfy the boundary condition everywhere.

The notion of viscosity solution arose in the pde context by attempting
to find solutions as limits of solutions of{

F (x, uε (x) , Duε (x)) = ε∆uε (x) , a.e. x ∈ Ω
uε (x) = ϕ (x) , x ∈ ∂Ω,

when ε→ 0; hence the name of viscosity solutions. The concept of viscosity
solution is now, following Crandall-Lions [96] and Crandall-Ishii-Lions [95],
more general, and we will give the precise definition in Chapter 4. It turns
out that in optimal control the value function of certain problems is a



16 1. Introduction

viscosity solution of (1.22). For example if we consider the eikonal equation{
|Du(x)| = 1, a.e. in Ω
u = ϕ, on ∂Ω,

where Ω is a bounded, open and convex set of Rn and the boundary datum
ϕ ∈W 1,∞ (Ω) satisfies the compatibility condition

|Dϕ(x)| ≤ 1, a.e. in Ω,

we find that the viscosity solution is then given by

u (x) = inf
y∈∂Ω

{ϕ (y) + |x− y|} ,

which is, when ϕ = 0, nothing but the distance to the boundary, namely

u (x) = dist (x; ∂Ω) .

In Chapter 4 we will recall the definition of viscosity solutions, give some
examples, properties, and discuss the Hopf-Lax formula. We do not in-
tend to give any detailed presentation of this method; there are several
excellent articles and books on this subject and we mention only a few
of them: Bardi-Capuzzo Dolcetta [34], Barles [35], Benton [39], Capuzzo
Dolcetta-Evans [67], Capuzzo Dolcetta-Lions [68], Crandall-Evans-Lions
[94], Crandall-Ishii-Lions [95], Crandall-Lions [96], Douglis [137], Fleming-
Soner [154], Frankowska [160], Hopf [188], Ishii [193], Kruzkov [208], Lax
[211], Lions [218] and Subbotin [286].

We now come back, following Cardaliaguet-Dacorogna-Gangbo-Georgy
[71], to the fact that, if we are only interested in existence of locally Lips-
chitz functions of (1.22), then the viscosity approach is too restrictive. To
be more precise, we will discuss the case where F does not depend explicitly
on x and u, namely {

F (Du (x)) = 0, a.e. x ∈ Ω
u (x) = ϕ (x) , x ∈ ∂Ω. (1.23)

We have seen in Theorem 1.4 that if

E = {ξ ∈ Rn : F (ξ) = 0}

and if ϕ ∈ C1
(
Ω
)

is such that

Dϕ (x) ∈ E ∪ int coE, ∀x ∈ Ω, (1.24)

then (1.23) has a (dense set of) W 1,∞ solutions (we recall that int coE
denotes the interior of the convex hull of E). This condition is close to
necessary, therefore a natural question is to know whether, under this con-
dition, a W 1,∞ viscosity solution exists. We will show in Chapter 4 that
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the answer is in general negative unless strong geometric restrictions on Ω
and ϕ are assumed.

For instance, if we consider the example (c.f. Example 1.3) −
[(

∂u
∂x1

)2

− 1
]2

−
[(

∂u
∂x2

)2

− 1
]2

= 0, a.e. in Ω

u = 0, on ∂Ω
(1.25)

then, since 0 ∈ int coE, we have by Theorem 1.4 that there are W 1,∞

solutions of (1.25); but we will show (c.f. Theorem ??) that, if Ω is convex,
there is no W 1,∞ viscosity solutions unless Ω is a rectangle whose normals
are elements of E = {(±1,±1)} ; in this case the viscosity solution will be

u (x1, x2) = inf
(y1,y2)∈∂Ω

{|x1 − y1|+ |x2 − y2|} .

In particular, for any smooth domain (such as the unit disk) the Dirichlet
problem (1.25) has no viscosity solution. This example shows also that the
existence of viscosity solutions does not depend on the smoothness of the
data (in the case where Ω is the unit disk, then all the data are analytic).

1.3.2 Convex integration

This method is due to Gromov [181] (see also the notion of P -convexity
in Section 2.4.11 in the book by Gromov [182], where partial differential
relations are considered). It was introduced for solving some problems of
geometry and topology, in particular the Nash-Kuiper C1 isometric immer-
sion theorem. Gromov’s method was developed essentially to get smooth
solutions, although Lipschitz solutions are also considered in the context
of isometric immersions. We refer to the book of Spring [283] for an other
presentation of the method (see Chapter 9 of [283] for the treatment of sys-
tems of partial differential equations, where in particular underdetermined
systems, triangular systems and C1-isometric immersions are studied). We
will discuss here only the first order case, but the method applies also to
higher orders.

Müller-Sverak [249] (see also Celada-Perrotta [74], De Simone-Dolzmann
[131]) have applied this method for solving the problem of two potential
wells in two dimensions that we presented in (1.9). We now sketch their
approach, which is more analytical in its presentation than the one of Gro-
mov.

We first introduce the following notion. We say that a set K ⊂ Rm×n
admits an in-approximation by open sets Ui if the three following properties
hold:

(i) Ui ⊂ RcoUi+1 (RcoU stands for the rank one convex hull of U defined
above);

(ii) the Ui are uniformly bounded;
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(iii) if a sequence ξi ∈ Ui converges to ξ as i→∞, then ξ ∈ K.
A typical theorem (c.f. Müller-Sverak [249], [250]) that can be established

is then the following.

Theorem 1.15 Let Ω ⊂ Rn be a bounded open set and K ⊂ Rm×n admit
an in-approximation by open sets Ui. Let ϕ ∈ C1

(
Ω;Rm

)
such that

Dϕ (x) ∈ U1.

Then there exists u ∈W 1,∞ (Ω;Rm) such that{
Du (x) ∈ K, a.e. x ∈ Ω
u (x) = ϕ (x) , x ∈ ∂Ω.

The difficulty rests on the fact that the sets K and Ui, i ∈ N, are not
convex, not even rank one convex. Thus, if ui is a generic sequence of
approximate solutions such that Dui(x) ∈ Ui a.e. x ∈ Ω, i ∈ N, since by
(ii) Dui are uniformly bounded in L∞ (Ω;Rm×n) then, up to a subsequence,
ui weakly∗ converges to a function u. However the weak∗ convergence is
not enough to guarantee that Du (x) ∈ K, a.e. x ∈ Ω, because, as already
said, K is not a quasiconvex set.

The proof of the theorem is obtained instead by constructing an appro-
priate sequence ui such that Dui(x) ∈ Ui a.e. x ∈ Ω and show strong
convergence in W 1,1 (Ω;Rm) of this sequence to a solution u.

Of course a main difficulty is to find an in-approximation. The papers
quoted above ([249], [74], [131]) deal with such a construction in some
particular examples. We now present a typical result that can be obtained
by this method. It concerns the problem of two potential wells in dimension
two described in (1.9) (c.f. Theorem ??).

Theorem 1.16 Let Ω ⊂ R
2 be open. Let A,B ∈ R2×2 be two matrices

such that rank {A−B} = 1 and detB > detA > 0. Let ϕ ∈ C1
piec(Ω;R2)

satisfy

Dϕ(x) ∈ int
{
ξ ∈ R2×2 : ξ = αRaA+ βRbB, Ra, Rb ∈ SO(2),

0 ≤ α ≤ detB−det ξ
detB−detA , 0 ≤ β ≤ det ξ−detA

detB−detA

}
,

for almost every x ∈ Ω. Then there exists u ∈W 1,∞(Ω;R2) such that{
Du(x) ∈ SO(2)A ∪ SO(2)B a.e. in Ω
u(x) = ϕ(x) on ∂Ω.

The representation formula for the rank one convex hull is due to Sverak
[289], while the theorem has been proved by Müller-Sverak [249], using
convex integration, and by the authors (in [109], [111]), using the method
presented in this book (c.f. Chapter 8).
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1.3.3 The Baire category method

The approach that we will present can be characterized as a functional
analytic method, in contrast with the more geometrical one of Gromov,
although some constructions are very similar. It is based on the Baire cat-
egory theorem. It was introduced by Cellina [76] to prove density (in the
sense of the Baire category theorem) of solutions for the differential inclu-
sion {

x′ (t) ∈ {−1, 1} , a.e. t > 0
x (0) = x0.

The method, still for differential inclusions, was further developed by De
Blasi-Pianigiani [125], [126] and by Bressan-Flores [55]. The authors of
the present book, in a series of papers [108], [109], [110], [111] and [112],
extended the method to the present framework.

We will now very roughly present the idea of the proof in the simplest
case which is the one of Theorem 1.2. We recall that ϕ ∈W 1,∞ (Ω) satisfies

F (x, ϕ(x), Dϕ(x)) ≤ 0, a.e. in Ω (1.26)

and that we wish to show the existence of (a dense set of) u ∈ W 1,∞ (Ω)
such that {

F (x, u(x), Du(x)) = 0, a.e. in Ω
u = ϕ, on ∂Ω. (1.27)

We start by introducing the functional space

V =
{
u ∈ ϕ+W 1,∞

0 (Ω) : F (x, u(x), Du (x)) ≤ 0, a.e. x ∈ Ω
}

which in this particular case is the set of subsolutions of (1.27). Note also
that V is nonempty since (1.26) holds. We next endow V with the C0

metric. We claim that V is then a complete metric space. This follows
from the coercivity and the convexity of F . Indeed the coercivity condition
ensures that any Cauchy sequence in V has uniformly bounded gradient
and therefore has a subsequence that converges weak* in W 1,∞ to a limit.
Since the convexity of F implies lower semicontinuity, we get that the limit
is indeed in V .

We next introduce, for every integer k, the subset V k of V

V k =
{
u ∈ V :

∫
Ω

F (x, u(x), Du (x)) dx > −1
k

}
.

The same argument as above implies that V k is open in V . The difficult
step is then to show that V k is dense in V ; the proof of this property is
in the spirit of the necessary conditions for weak lower semicontinuity and
of relaxation theorems in the calculus of variations (c.f. below for some
historical comments).
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Once these results have been established, we can conclude from the Baire
category theorem (see for example Brezis [57] or Yosida [306]) that

∩
k
V k =

{
u ∈ V :

∫
Ω

F (x, u(x), Du (x)) dx ≥ 0
}

=
{
u ∈ ϕ+W 1,∞

0 (Ω) : F (x, u(x), Du (x)) = 0, a.e. x ∈ Ω
}

is dense, and hence nonempty, in V .
This is the outline of the proof of Theorem 1.2 and of the method used

throughout this book.
The proof of the density resembles the in-approximation of the convex

integration method outlined above, but for those familiar with the calculus
of variations it looks, as mentioned above, much more like a relaxation type
result, or the study of necessary conditions for weak lower semicontinuity
(convexity in the scalar case and quasiconvexity in the vectorial case) which
are well known since the pioneering work of Leonida Tonelli in 1921.

More precisely, the convexity of F, with respect to the gradient variable,
as a necessary condition for weak lower semicontinuity in the scalar case
m = 1, was first discovered by Tonelli ([299], Section 1 of Chapter X) for
n = 1 and then obtained by Caccioppoli-Scorza Dragoni [64] for n = 2 and
by McShane [220] for general n ≥ 1 in the smooth case (see also the book
by L.C. Young [307]); while Carathéodory functions F have been treated
by Ekeland-Témam [142] and Marcellini-Sbordone [232]. Moreover Morrey
[245] (see also Theorems 4.4.2 and 4.4.3 in the book by Morrey [246], the
papers by Acerbi-Fusco [3], Marcellini [227] and the books by Dacorogna
[101] and Giusti [178]) introduced the concept of quasiconvexity of F, with
respect to the gradient variable, to prove that it is a necessary condition
for weak lower semicontinuity in the vector-valued case m > 1. Finally,
relaxation results of the integral of F , as appearing in (1.28), concern

either
∫

Ω

F ∗∗ (x, u(x), Du (x)) dx when m = 1,

or
∫

Ω

QF (x, u(x), Du (x)) dx if m > 1,

where F ∗∗ and QF are respectively the convex and the quasiconvex enve-
lope of F (c.f. Chapter 5). In this context when m = 1, we refer to Ekeland-
Témam ([142], Chapter X), Marcellini-Sbordone [231], [232]; while if m > 1
we quote Dacorogna [100] [101] and Acerbi-Fusco [3] (see also some related
results by Buttazzo-Dal Maso [62], Goffman-Serrin [179], Rockafellar [272],
Serrin [281]).

To conclude, we should stress that the main reason for getting density
of V k in V is that the equations under consideration possess, locally, more
than one solution. This is why linear and uniformly elliptic equations are
excluded from our analysis.
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1.4 Applications to the calculus of variations

Our first motivation for studying first order implicit equations, besides their
intrinsic interest, comes from the calculus of variations. In this context, first
order pdes have been intensively used, c.f. for example the monographs of
Carathéodory [69], Giaquinta-Hildebrandt [173] and Rund [275].

We start with a heuristic consideration, explaining the link between the
existence of minimizers of integrals of the calculus of variations and first
order implicit differential equations. Let u : Ω ⊂ Rn→ R

m, n,m ≥ 1, be a
minimizer in a Sobolev class of functions of an integral of the calculus of
variations of the form ∫

Ω

f (x, u(x), Du(x)) dx . (1.28)

Then, if f is not quasiconvex with respect to the gradient variable, di-
rect methods do not apply. In this case we denote by Qf the quasiconvex
envelope of f (c.f. Chapter 5), i.e.,

Qf (x, s, ξ) = sup {g (x, s, ξ) : g ≤ f, g (x, s, ξ) quasiconvex in ξ} .

In the scalar case, when m = 1, then Qf = f∗∗ is the classical convex
envelope of f (see for example Ekeland-Témam [142] and Rockafellar [273]).

A general relaxation theorem (due to Dacorogna [100] [101] and to Acerbi-
Fusco [3], who extended to the vector-valued case a result proved in the
scalar case by Ekeland-Témam [142] and Marcellini-Sbordone [232]) states
that, in the given class of functions,

inf
{∫

Ω

f (x, u(x), Du(x)) dx
}

= inf
{∫

Ω

Qf (x, u(x), Du(x)) dx
}
.

Therefore any minimizer u of the integral in (1.28) satisfies∫
Ω

f (x, u(x), Du(x)) dx =
∫

Ω

Qf (x, u(x), Du(x)) dx ,

which implies, since f ≥ Qf , that

f (x, u(x), Du(x)) = Qf (x, u(x), Du(x)) , a.e. x ∈ Ω. (1.29)

This is a first order equation for u which holds almost everywhere in Ω.
We will show below that (1.29) can be fitted into our general theory of

first order implicit differential equations and systems. We will also show
that, in the vector-valued case m > 1, we are led in some cases to study
implicit partial differential equations of order N greater than 1.

These heuristic considerations can be made precise, in the form of the-
orems, in some special cases; see in particular Theorems 1.17 and 1.18
below.
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1.4.1 Some bibliographical notes

As already mentioned above, we will briefly describe some problems in the
calculus of variations which may or may not have a solution, depending
on the context and on the assumptions. The main characteristic of the
variational problems that we consider in this section is the lack of convexity
(even the lack of quasiconvexity in the vector-valued case m > 1) of the
integrand with respect to the gradient variable. We will study some model
problems of this type in the next subsections.

We follow (in particular for the vector-valued case) the authors’ ap-
proach in [107], [114], although we recall that the mathematical literature
on this subject is broad, a large part of it being dedicated to the one di-
mensional scalar case n = m = 1, the vectorial case n,m > 1 being at
the moment understood only in special situations. We quote for example:
Allaire-Francfort [9], Aubert-Tahraoui [21], [22], [23], [24], Ball-James [31],
[32], Bauman-Phillips [36], Buttazzo-Ferone-Kawohl [63], Celada-Perrotta
[75], Cellina [77], [78], Cellina-Colombo [79], Cellina-Zagatti [82], [81],
Cesari [84], [85], Chipot-Kinderlehrer [86], Cutr̀ı[98], Dacorogna [99], [101],
Dacorogna-Marcellini [107], Ekeland-Témam [142], Firoozye-Kohn [153],
Fonseca-Tartar [158], Fusco-Marcellini-Ornelas [165], Friesecke [162],
Giachetti-Schianchi [171], Kinderlehrer-Pedregal [200], Kohn [204], Kohn-
Strang [205], Marcellini [224], [225], [226], [230], Mascolo [235], Mascolo-
Schianchi [238], [239], [240], Monteiro Marques-Ornelas [244], Müller [248],
Müller-Sverak [249], Olech [256], Ornelas [259], Raymond [265], [266], [267],
[268], Sverak [289], Sychev [290], Tahraoui [292], [293], Treu [300], Zagatti
[309].

1.4.2 The variational problem

Similar to the first part of this section, we could study integrals of
f (x, u(x), Du (x)), related to a function f depending on x and u(x) too.
However we have chosen to consider here (and below in this section) only
dependence on the gradient variable Du(x) as in (1.30), with the aim of
proposing the variational problem in the simplest context. It would be
of interest to generalize these results to a wider class of integrals with
f = f (x, u(x), Du (x)), and in fact some partial results have been already
obtained in the literature on this subject quoted in the previous subsection.

Let Ω be a bounded open set of Rn (n ≥ 1). In general we will consider
a variational problem related to vector-valued unknown functions u : Ω ⊂
R
n→ R

m, m ≥ 1, and to an integrand f : Rm×n→ R that we assume to
be lower semicontinuous in Rm×n, not necessarily convex, and satisfying
the condition f(ξ) ≥ c1 |ξ|p − c2 for some constants c1 > 0, c2 ∈ R and
p > 1. The variational problem that we study is: to minimize the functional
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integral ∫
Ω

f (Du(x)) dx (1.30)

in the class of vector-valued functions

u ∈ u0 +W 1,p
0 (Ω;Rm) ,

where u0 ∈W 1,p (Ω;Rm) is a given boundary datum.
Because of the lack of quasiconvexity of f , the integral functional in

(1.30) is not lower semicontinuous in the weak topology of W 1,p (Ω;Rm).
Thus it is not possible to apply the direct methods (based on lower semi-
continuity and on the relative compactness of minimizing sequences in the
weak topology of W 1,p (Ω;Rm)) in order to obtain the existence of the min-
imum. Nevertheless the integral functional in (1.30) may have a minimum
in spite of the lack of (quasi)convexity.

In the next subsection we first consider the (nonconvex) scalar case m =
1, and we give some sufficient conditions (which are also necessary in some
cases) to obtain the existence of the minimum; under some assumptions we
will find solutions in the class u ∈W 1,∞ (Ω), i.e., with p = +∞.

In the last subsection we study an application to optimal design in the
vector-valued case. We note explicitly that nonconvex (and even not qua-
siconvex) variational problems in the vector-valued case are far from being
solved in a general context.

1.4.3 The scalar case

In general we can lack solutions for a nonconvex variational problem. Well
known is the classical example of Bolza (see Section 2.5) in the one dimen-
sional scalar case n = m = 1 for integrals of f (u, u′) (note that, when
n = 1, then the dependence of the integrand f on u, other than u′, is
necessary to exhibit examples of lack of attainment of minima of coercive
integrals). Other examples for n > 1 are proposed in Section 2.5.

Here we consider a bounded open set Ω ⊂ Rn for some n ≥ 2. Let us
also assume that Ω is a uniformly convex set, in the sense that there exists
a positive constant c and, for every x0 ∈ ∂Ω, a hyperplane πx0 containing
x0 such that

dist (x;πx0) ≥ c · |x− x0|2 , ∀ x ∈ ∂Ω .

Note that, for every x0 ∈ ∂Ω, πx0 is a supporting hyperplane, i.e., it is a
hyperplane passing through x0 and leaving the set Ω on one of the two half
spaces delimited by πx0 . A ball is a uniformly convex set.

Let f : Rn→ R be a lower semicontinuous function, not necessarily con-
vex, bounded from below. Let us denote by f∗∗ the largest convex function



24 1. Introduction

which is less than or equal to f on Rn. We assume that f∗∗ is affine on the
(open) set A, where f 6= f∗∗, i.e., there exist η ∈ Rn and q ∈ R such that{

f∗∗(ξ) = 〈η; ξ〉+ q, ∀ ξ ∈ A = {ξ ∈ Rn : f(ξ) > f∗∗(ξ)} ,
f∗∗(ξ) = f(ξ), ∀ ξ ∈ Rn −A .

We also assume that A is bounded (for more general assumptions see The-
orem ??). Then, in Chapter 2, we will prove the following existence result.

Theorem 1.17 Under the stated assumptions, for every boundary datum
u0 ∈ C2

(
Ω
)
, the integral ∫

Ω

f (Du(x)) dx (1.31)

has a minimizer in the class of functions u ∈ u0 +W 1,∞
0 (Ω).

The proof starts with the minimization of the associated relaxed varia-
tional problem related to the integral over Ω of f∗∗ (Du(x)). If we denote
by u∗∗ a minimizer of the relaxed problem, then we are led to solve the
differential problem {

Du (x) ∈ ∂A, a.e. x ∈ Ω′

u (x) = u∗∗ (x) , x ∈ ∂Ω′ , (1.32)

where Ω′ is a suitable open subset of Ω. Moreover, the boundary datum
u∗∗ in (1.32) satisfies the compatibility condition

Du∗∗(x) ∈ A ⊂ int co ∂A, a.e. x ∈ Ω′ .

We can apply Theorem 1.6 (c.f. Theorem ??) with E = ∂A and obtain the
existence of a function u ∈ W 1,∞ (Ω′) which solves (1.32). This function
u, extended equal to u∗∗ out of Ω′, is a minimizer of the integral in (1.31)
in the class u0 + W 1,∞

0 (Ω). Further details of the proof can be found in
Section 2.5.

Theorem 1.17 is specific for the scalar case n ≥ 2 and it generalizes
similar results obtained by Marcellini [225], Mascolo-Schianchi [238], [239],
[240], Mascolo [235], Cellina [77] and Friesecke [162]. Theorem 1.17 has been
recently proved by Sychev [290] in the form presented here (see also Zagatti
[309]). In particular Mascolo-Schianchi pointed out the condition of affinity
of the function f∗∗on the set where f 6= f∗∗, while Cellina and Friesecke
proved the necessity of this condition of affinity for linear boundary data
u0.

1.4.4 Application to optimal design in the vector-valued case

Following Kohn-Strang [205], we consider the two dimensional case n = 2
and m = 2 (here for simplicity we limit ourselves to m = 2; see [107] and
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Kohn-Strang [205] for a discussion of the case m > 2; see also Allaire-
Francfort [9] for the case n,m ≥ 2). More explicitly we consider a varia-
tional problem in optimal design, related to the lower semicontinuous (non-
convex) function f : R2×2 → R

f (ξ) =
{

1 + |ξ|2 if ξ 6= 0
0 if ξ = 0.

(1.33)

Kohn-Strang computed in [205] the quasiconvex envelope Qf : R2×2 → R

of f (Qf is the largest quasiconvex function on R2×2 less than or equal to
f ; c.f. Chapter 5). It turns out that Qf is given by

Qf (ξ) =

{
1 + |ξ|2 if |ξ|2 + 2 |det ξ| ≥ 1

2
√
|ξ|2 + 2 |det ξ| − 2 |det ξ| if |ξ|2 + 2 |det ξ| < 1.

(1.34)

We consider a bounded open set Ω of R2 and a boundary datum u0

linear in Ω, with detDu0 6= 0 and, just to consider one case, we assume
that detDu0 > 0. To avoid the trivial situation Qf (Du0) = f (Du0), we
also assume that u0 satisfies the condition

|Du0|2 + 2 |detDu0| < 1. (1.35)

Finally, we assume that Du0 is a symmetric 2×2 matrix. This implies that
there exists ϕ, polynomial of degree 2, such that

u0 =
(
ϕx
ϕy

)
, with detD2ϕ(x) = detDu0 > 0.

By considering explicitly the components of u ∈ W 1,∞ (Ω;R2
)
, a generic

function with detDu ≥ 0, we have

Du =
(
u1
x u1

y

u2
x u2

y

)
, |Du|2 + 2 |detDu| =

(
u1
x + u2

y

)2
+
(
u1
y − u2

x

)2
.

A crucial step in the resolution of the variational problem that we consider
here, related to the integrand f in (1.33), is obtained by restricting ourselves
to vector-valued functions u which are gradients of functions v ∈W 2,∞ (Ω);

i.e., u =
(
u1

u2

)
=
(
vx
vy

)
; thus we obtain

Du =
(
vxx vxy
vxy vyy

)
, |Du|2 + 2 |detDu| = (vxx + vyy)2 = (∆v)2

.

(1.36)
The compatibility condition (1.35) on the boundary datum ϕ becomes

ϕ ∈ C2
(
Ω
)

and 0 < ∆ϕ(x) < 1, detD2ϕ(x) > 0. (1.37)
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By applying Theorem ?? of Chapter 3 with a = 0 and b = 1, we can find
w ∈ ϕ+W 2,∞

0 (Ω) such that{
∆w(x) ∈ {0, 1} , a.e. x ∈ Ω,
detD2w(x) ≥ 0, a.e. x ∈ Ω. (1.38)

Since either ∆w = 0 or ∆w = 1, a.e. in Ω, by (1.34), (1.36) we obtain

Qf
(
D2w(x)

)
= f

(
D2w(x)

)
, a.e. x ∈ Ω.

Then, as stated in Theorem 1.18, we can easily prove (see Section 3.3.3 for

more details) that the function u =
(
wx
wy

)
is a minimizer of the integral∫

Ω
f (Du (x)) dx in the class of functions u ∈ W 1,∞ (Ω;R2

)
such that

u = u0 = Dϕ on ∂Ω.

Theorem 1.18 Let Ω be a bounded open set of R2. Let u0 : R2 → R
2 be a

linear boundary datum, such that Du0 is a constant symmetric 2×2 matrix
satisfying the conditions

0 < traceDu0 < 1, detDu0 > 0.

Let f be defined in (1.33). Then the nonconvex variational problem

min
{∫

Ω

f (Du (x)) dx : u ∈W 1,∞ (Ω;R2
)
, u = u0 on ∂Ω

}
has a solution u ∈ u0 +W 1,∞

0

(
Ω;R2

)
. Moreover there exists w ∈W 2,∞ (Ω)

satisfying (1.38) such that u = Dw.

1.5 Some unsolved problems

In this section we propose some open problems that are related to the
material of this book.

1.5.1 Selection criterion

The Baire category approach, as well as the convex integration method, are
purely “existential” contrary to the viscosity method, which in the convex
scalar case gives, among other properties, uniqueness.

A natural question, particularly in the vectorial context, is the choice,
among the many solutions, of a special one.

In some scalar cases the viscosity solution is the pointwise maximal (or
minimal) solution among all Lipschitz ones. Another characterization of
viscosity solutions is by passing to the limit, using the maximum principle,
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in some elliptic regularized problems; indeed this is the historical approach.
The maximum principle and the notion of maximality are not clearly de-
fined for vectors.

The question is whether one can find a simple criterion of selection in the
vectorial case or, incidentally, in the scalar case when there is no viscosity
solution. The selection of one special solution is, of course, of importance
also for numerical purposes.

1.5.2 Measurable Hamiltonians

Consider the problem{
F (x, u(x), Du(x)) = 0, a.e. in Ω
u = ϕ, on ∂Ω, (1.39)

where F : Ω×R×Rn → R is a Carathéodory function F = F (x, s, ξ) , i.e.,
F is measurable in x and continuous in (s, ξ).

The question is: does there exist W 1,∞ solutions of (1.39)?
In this book we consider continuous functions F . Almost the same proofs

could handle semicontinuity with respect to x but not general measurabil-
ity. This problem also arises in the viscosity context, even for the eikonal
equation {

|Du(x)| = a (x) , a.e. in Ω
u = ϕ, on ∂Ω (1.40)

(see for example Newcomb-Su [255] for bounded lower semicontinuous func-
tions a).

The same problem can be posed either in the vectorial context, or for
systems, or for higher order equations.

1.5.3 Lipschitz boundary data

Most of our vectorial existence theorems require the boundary datum to
be C1 or piecewise C1 (CN in the Nth order case). Only those involving
convex sets (c.f. Theorem 1.8, 1.10 and 1.11) allow for W 1,∞ data (WN,∞

in the Nth order case), with in addition a compactness inclusion.
The question is: can we treat W 1,∞ compatibility conditions? In the

scalar case this can be achieved, c.f. Theorem 1.4.

1.5.4 Approximation of Lipschitz functions by smooth
functions

Related to the previous question is the following one concerning approxi-
mation of W 1,∞ functions by either smooth functions or piecewise affine
ones, under some constraints. Before formulating precisely the problem, we
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start with the scalar case. In Corollary ?? we prove that given open sets
Ω, A ⊂ Rn, ε > 0, and a function u ∈W 1,∞ (Ω) with

Du(x) ∈ A, a.e. x ∈ Ω,

there exists a function v ∈W 1,∞(Ω) such that
v is piecewise affine on Ω;
v = u on ∂Ω;
‖v − u‖L∞(Ω) < ε;
Dv(x) ∈ A, a.e. x ∈ Ω.

(1.41)

Can this be done in the vectorial case? A similar question can be asked
for approximation by smooth functions instead of piecewise affine ones. We
achieve this, in the vectorial context, (c.f. Corollary ??) only when A is
convex and Du is compactly contained in the interior of A.

1.5.5 Extension of Lipschitz functions and compatibility
conditions

When solving, for example, a problem of the form{
Du (x) ∈ E, a.e. x ∈ Ω
u (x) = ϕ (x) , x ∈ ∂Ω ,

we require that the boundary datum ϕ ∈W 1,∞ (Ω) satisfies

Dϕ (x) ∈ E ∪ int coE, a.e. x ∈ Ω,

or, in the vectorial case (with some extra hypotheses),

Dϕ (x) ∈ E ∪ int QcoE, a.e. x ∈ Ω.

Of course it is, a priori, not completely natural to ask that the boundary
datum ϕ be defined on the whole of Ω; one should give necessary and/or
sufficient conditions only in terms of values of ϕ given on the boundary ∂Ω.
This can be achieved (c.f. Section 2.4) when ϕ is scalar; for example, for
the eikonal equation (when the domain Ω is convex){

|Du (x)| = 1, a.e. x ∈ Ω
u (x) = ϕ (x) , x ∈ ∂Ω;

the condition is the Lipschitz continuity of ϕ with constant 1, i.e.,

|ϕ (x)− ϕ (y)| ≤ |x− y| , ∀ x, y ∈ ∂Ω.

However in the vectorial case, it is an open problem to give necessary
and/or sufficient conditions only in terms of values of ϕ on the boundary
∂Ω, except in some special cases; c.f. Kirszbraun theorem (Theorem 2.10.43
in Federer [151]).
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1.5.6 Existence under quasiconvexity assumption

We have already pointed out that the natural condition to solve{
Du (x) ∈ E, a.e. x ∈ Ω
u (x) = ϕ (x) , x ∈ ∂Ω

could be
Dϕ (x) ∈ E ∪ int QcoE, a.e. x ∈ Ω. (1.42)

In the present book we are able to do this only under further assumptions on
the quasiconvex hull of E; in particular we require the so-called relaxation
property which is, in general, difficult to verify. The question is therefore
to know if (1.42) is sufficient for existence.

1.5.7 Problems with constraints

We start by mentioning one case which might be relevant to nonlinear
elasticity, although the question of constraints is more general.

Given ϕ ∈W 1,∞ (Ω;Rn) satisfying{
F (x, ϕ(x), Dϕ(x)) ≤ 0, a.e. x ∈ Ω,
detDϕ(x) > 0, a.e. x ∈ Ω, (1.43)

with some appropriate hypotheses on F , we ask if we can find a function
u ∈W 1,∞ (Ω;Rn) such that F (x, u(x), Du(x)) = 0, a.e. x ∈ Ω,

detDu(x) > 0, a.e. x ∈ Ω,
u(x) = ϕ(x), x ∈ ∂Ω.

(1.44)

We achieve this result (c.f. Theorem ??; see also (1.38)) in a particular case
of second order equations.

A similar question arises if we assume that{
F (x, ϕ(x), Dϕ(x)) ≤ 0, a.e. x ∈ Ω,
detDϕ(x) = 1, a.e. x ∈ Ω; (1.45)

in this case we look for a function u ∈W 1,∞ (Ω;Rn) such that F (x, u(x), Du(x)) = 0, a.e. x ∈ Ω,
detDu(x) = 1, a.e. x ∈ Ω,
u(x) = ϕ(x), x ∈ ∂Ω.

(1.46)

In a more general context, under appropriate compatibility conditions
on the boundary datum ϕ, the question is to find a map u ∈W 1,∞ (Ω;Rm)
satisfying  F (x, u(x), Du(x)) = 0, a.e. x ∈ Ω,

G(x, u(x), Du(x)) < 0, a.e. x ∈ Ω,
u(x) = ϕ(x), x ∈ ∂Ω.
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A similar question arises if we replace the constraint with strict inequality
by either G(x, u,Du) ≤ 0 or by G(x, u,Du) = 0.

The problem (1.46) can be considered as a case where

int QcoE = ∅.

This phenomenon also happens in the linear (or quasilinear) case. For ex-
ample, second order problems can be considered as first order systems with
the linear constraints

∂ui
∂xj

=
∂uj
∂xi

, i, j = 1, 2, . . . , n;

consequently second order equations, when seen as first order systems, have
int QcoE = ∅. The last one is a case already solved in this book.

1.5.8 Potential wells

The problem of potential wells is described in Chapter 8 (see also Section
1.1.3). Under the notation of Chapter 8, the problem of potential wells
consists in finding a function u ∈ ϕ + W 1,∞

0 (Ω;Rn) , Ω ⊂ Rn, satisfying
the differential problem (the N wells are SO (n)Ai, 1 ≤ i ≤ N){

Du (x) ∈ E =
N
∪
i=1

SO (n)Ai
u (x) = ϕ (x) , x ∈ ∂Ω.

(1.47)

The problem has been solved when N = 2 (i.e., two potential wells) and
n = 2 (i.e., dimension two). The question is: can problem (1.47) be solved
when N ≥ 3 and/or n ≥ 3 ?

The problem is already at the algebraic level of computing the rank one
convex hull.

1.5.9 Calculus of variations

A question in the scalar case is: can Theorem 1.17 be generalized to inte-
grands f which also depend on (x, u), searching more generally for W 1,p

solutions?
In the vectorial case, can we give a sufficiently general class of nonquasi-

convex functions for which there is attainment of the minimum?
For example, when n = m ≥ 2, integrals of the calculus of variations

related to functions of the form

f(ξ) = g (det ξ) ,

even with g not convex, are relatively well understood (c.f. [107]). However,
for n,m ≥ 2, functions of the type
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f(ξ) = g (|ξ|) ,

with g not convex, are treated only in some particular cases, such as the
one of Theorem 1.18. See also [107] for some necessary conditions.

Relevant functions for applications, which combine the two previous
cases, when n = m ≥ 2 are of the form

f(ξ) = g (|ξ| ,det ξ) . (1.48)

If g is not convex, the question is to find sufficient conditions on g to obtain
minimizers of the related integral.

In particular, the phenomenon of cavitation in nonlinear elasticity (in-
troduced by Ball [28]) enter in this context. Realistic mathematical as-
sumptions for the problem of cavitation, related to a nonconvex function g
in (1.48), have been introduced and studied by Marcellini [229], [230] (see
also Section 2.6.3, Volume 2, of the recent book by Giaquinta, Modica and
Soucek [176]). The existence of minimizers under realistic assumptions is
still an open problem.
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non convexe, Appl. Anal. 18 (1984), 75–100.

[25] Aubert G. and Tahraoui R., Sur la faible fermeture de certains en-
sembles de contraintes en élasticité non linéaire plane, Arch. Rational
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a Carathéodory integrand, J. Math. Pures Appl. 64 (1985), 337–361.

[63] Buttazzo G., Ferone V. and Kawohl B., Minimum problems over sets
of concave functions and related questions, Math. Nachrichten 173
(1995), 71–89.

[64] Caccioppoli R. and Scorza Dragoni G., Necessità della condizione di
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Analyse Non Linéaire 11 (1994), 661–691.

[74] Celada P. and Perrotta S., Functions with prescribed singular values
of the gradient, Nonlinear Differential Equations Appl. 5 (1998), 383–
396.

[75] Celada P. and Perrotta S., Minimizing nonconvex, multiple integrals:
a density result, Preprint SISSA, 1998.

[76] Cellina A., On the differential inclusion x′ ∈ {−1, 1} , Atti Accad.
Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 69 (1980), 1–6.

[77] Cellina A., On minima of a functional of the gradient: necessary con-
ditions, Nonlinear Analysis 20 (1993), 337–341.

[78] Cellina A., On minima of a functional of the gradient, sufficient con-
ditions, Nonlinear Analysis 20 (1993), 343–347.

[79] Cellina A. and Colombo G., On a classical problem of the calculus
of variations without convexity conditions, Annales Institut Henri
Poincaré, Analyse Non Linéaire 7 (1990), 97–106.



References 39

[80] Cellina A. and Perrotta S., On a problem of potential wells, J. Convex
Analysis 2 (1995), 103–115.

[81] Cellina A. and Zagatti S., A version of Olech’s lemma in a problem of
the calculus of variations, SIAM J. Control Optimization 32 (1994),
1114–1127.

[82] Cellina A. and Zagatti S., An existence result for a minimum problem
in the vectorial case of the calculus of variations, SIAM J. Control
Optimization 33 (1995), 960–970.

[83] Cesari L., A necessary and sufficient condition for lower semicontinu-
ity, Bull. Amer. Math. Soc. 80 (1974), 467–472.

[84] Cesari L., An existence theorem without convexity conditions, SIAM
J. Control Optimization 12 (1974), 319–331.

[85] Cesari L., Optimization – Theory and applications, Sringer Verlag,
1983.

[86] Chipot M. and Kinderlehrer D., Equilibrium configurations of crys-
tals, Arch. Rational Mech. Anal. 103 (1988), 237–277.

[87] Chipot M. and Li W., Variational problems with potential wells and
nonhomogeneous boundary conditions, in Calculus of variations and
continuum mechanics, ed. Bouchitté G. et al., World Scientific, Sin-
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1993.



42 References

[121] Dal Maso G. and Modica L.,A general theory of variational function-
als, Topics in Funct. Analysis 1980-81, Quaderni della Scuola Normale
Sup. di Pisa, 1982.

[122] Dal Maso G. and Mosco U., Wiener’s criterion and Gamma-
convergence, Appl. Math. Optim. 15 (1987), 15–63.

[123] Dal Maso G. and Sbordone C., Weak lower semicontinuity of poly-
convex integrals: a bordeline case, Math. Zeit. 218 (1995), 603–609.

[124] De Arcangelis R. and Trombetti C., On the Relaxation of Some
Classes of Dirichlet Minimum Problems, Communications in Partial
Differential Equations, to appear.

[125] De Blasi F.S. and Pianigiani G., A Baire category approach to the
existence of solutions of multivalued differential equations in Banch
spaces, Funkcialaj Ekvacioj 25 (1982), 153–162.

[126] De Blasi F.S. and Pianigiani G., Non convex valued differential inclu-
sions in Banach spaces, J. Math. Anal. Appl. 157 (1991), 469–494.

[127] De Blasi F.S. and Pianigiani G., On the Dirichlet problem for
Hamilton-Jacobi equations. A Baire category approach, Annales In-
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[230] Marcellini P., Non convex integrals of the calculus of variations, in:
Methods of nonconvex analysis, ed. Cellina A., Lecture Notes in Math.
1446, Springer-Verlag, Berlin, 1990, 16–57.

[231] Marcellini P. and Sbordone C., Relaxation of nonconvex variational
problems, Rend. Acc. Naz. Lincei 63 (1977), 341–344.

[232] Marcellini P. and Sbordone C., Semicontinuity problems in the cal-
culus of variations, Nonlinear Analysis 4 (1980), 241–257.

[233] Marcus M. and Mizel V.J., Lower semicontinuity in parametric varia-
tional problems, the area formula and related results, American Jour-
nal of Math. 99 (1975), 579–600.

[234] Marino A., Micheletti A.M. and Pistoia A., A nonsymmetric asymp-
totically linear elliptic problem, Topol. Methods Nonlinear Anal. 4
(1994), 289–339.

[235] Mascolo E., Some remarks on nonconvex problems, in: Material in-
stabilities in continuum mechanics, ed. Ball J.M., Oxford Univ. Press,
1988, 269–286.

[236] Mascolo E. and Papi G., Local boundness of minimizers of integrals
of the calculus of variations, Ann. Mat. Pura Appl. 167 (1994), 323–
339.



50 References

[237] Mascolo E. and Papi G., Harnack inequality for minimizers of inte-
gral functionals with general growth conditions, Nonlinear Differen-
tial Equations Appl. 3 (1996), 231–244.

[238] Mascolo E. and Schianchi R., Existence theorems for nonconvex prob-
lems, J. Math. Pures Appl. 62 (1983), 349–359.

[239] Mascolo E. and Schianchi R., Nonconvex problems in the calculus of
variations, Nonlinear Analysis, Theory Meth. Appl. 9 (1985), 371–
379.

[240] Mascolo E. and Schianchi R., Existence theorems in the calculus of
variations, J. Differential Equations 67 (1987), 185–198.

[241] Meyers N.G., Quasiconvexity and the semicontinuity of multiple in-
tegrals, Trans. Amer. Math. Soc. 119 (1965), 125–149.

[242] Miranda M., Un teorema di esistenza e unicità per il problema
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[252] Murat F., Compacité par compensation II, in: Internat. Meeting
on Recent Methods in Nonlinear Analysis, ed. De Giorgi E. et al.,
Pitagora, Bologna, 1979, 245–256.

[253] Nash J., C1 isometric embeddings, Ann. Math. 60 (1955), 383–396.
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[314] Zhou X.P., Weak lower semicontinuity of a functional with any order,
J. Math. Anal. Appl. 221 (1998), 217–237.

[315] Zhikov V.V., Kozlov S.M. and Oleinik O.A., Homogenization of dif-
ferential operators and integral functionals, Springer-Verlag, Berlin,
1994.

[316] Ziemer W.P., Weakly differentiable functions, Graduate Texts in
Math., Springer-Verlag, New York, 1989.



56 References


