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Abstract

Implicit particle filters for data assimilation update the particles by

first choosing probabilities and then looking for particle locations that

assume them, guiding the particles one by one to the high probability

domain. We provide a detailed description of these filters, with illustra-

tive examples, together with new, more general, methods for solving the

algebraic equations and with a new algorithm for parameter identification.

1 Introduction

There are many problems in science, for example in meteorology and economics,
in which the state of a system must be identified from an uncertain equation
supplemented by noisy data (see e.g. [8, 22]). A natural model of this situation
consists of an Ito stochastic differential equation (SDE):

dx = f(x, t) dt + g(x, t) dw, (1)

where x = (x1, x2, . . . , xm) is an m-dimensional vector, f is an m-dimensional
vector function, g(x, t) is an m by m matrix, and w is Brownian motion which
encapsulates all the uncertainty in the model. In the present paper we assume
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for simplicity that the matrix g(x, t) is diagonal. The initial state x(0) is given
and may be random as well.

The SDE is supplemented by measurements bn at times tn, n = 0, 1, . . . .
The measurements are related to the state x(t) by

bn = h(xn) + GWn, (2)

where h is a k-dimensional, generally nonlinear, vector function with k ≤ m, G
is a matrix, xn = x(tn), and Wn is a vector whose components are independent
Gaussian variables of mean 0 and variance 1, independent also of the Brownian
motion in equation (1). The independence requirements can be greatly relaxed
but will be observed in the present paper. The task of a filter is to assimilate
the data, i.e., estimate x on the basis of both equation (1) and the observations
(2).

If the system (1) and the function h in (2) are linear and the data are
Gaussian, the solution can be found in principle via the Kalman-Bucy filter
(see e.g. [19]). In the general case, one often estimates x as a statistic (often
the mean) of a probability density function (pdf) evolving under the combined
effect of equations (1) and (2). The initial state x0 being known, all one has
to do is evaluate sequentially the pdfs Pn+1 of the variables xn+1 given the
equations and the data. In a “particle” filter this is done by following “particles”
(replicas of the system) whose empirical distribution at time tn approximates
Pn. One may for example ( [1, 8, 7, 9, 19]) use the pdf Pn and equation (1) to
generate a prior density (in the sense of Bayes) , and then use the data bn+1 to
generate sampling weights which define a posterior density Pn+1. This can be
very expensive because in most weighting schemes, most of the weights tend to
zero fast and the number of particles needed can grow catastrophically (see e.g.
[21, 2]); various strategies have been proposed to ameliorate this problem.

Our remedy is implicit sampling [4, 5]. The number of particles needed
in a filter remains moderate if one can find high probability particles; to this
end, implicit sampling works by first picking probabilities and then looking
for particles that assume them, so that the particles are guided efficiently to
the high probability region one at a time, without needing a global guess of the
target density. In the present paper we provide an expository account of particle
filters, separating clearly the general principles from details of implementation;
we provide general solution algorithms for the resulting algebraic equations,
in particular for nonconvex cases which we had not considered in our previous
publications, as well as a new algorithm for parameter identification based on an
implicit filter. We also provide examples, in particular of nonconvex problems.

Implicit filters are a special case of chainless sampling methods [3]; a key
connection was made in [23, 24], where it was observed that in the sampling of
stochastic differential equations, the marginals needed in Markov field sampling
can be read off the equations and need not be estimated numerically.
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2 The mathematical framework

The first thing we do is discretize the SDE (1) by a difference scheme, so that
the equation becomes a discrete recurrence, and assume temporarily that the
time step in the dynamics equals the fixed time δ between observations. For
simplicity, in this section we assume the scheme is the Euler scheme

xn+1 = xn + δf(xn, nδ) + V, (3)

where V is a Gaussian of mean zero and variance g2(xn, nδ)δ. Higher order
schemes are discussed in section 4 below.

The conditional probability densities Pn(x) at times tn, determined by the
discretized SDE (3) given the observations (2), satisfy the recurrence relation
(see e.g. [8],p.6):

P (xn+1) = P (xn)P (xn+1|xn)P (bn+1|xn+1)/Z, (4)

where P (xn) = P (xn|b1, b2, . . . , bn) is the probability density at time nδ given
the data up to time nδ, P (xn+1|xn) is the probability density of xn+1 given xn

as it is determined by the dynamics, P (bn+1|xn+1) is the probability of the next
observation given the new position, as per the observation equation, and Z is a
normalization constant.

We estimate Pn+1 with the help of M particles, with positions Xn
i at time tn

and Xn+1

i at time tn+1 (i = 1, . . . , M), which define empirical densities P̂n, P̂n+1

that approximate Pn, Pn+1. We do this by requiring that, when a particle moves
from Xn

i to Xn+1

i , the probability of Xn+1

i given bk for k ≤ n + 1 be given by

P
(
Xn+1

i ) = P (Xn
i

)
P (Xn+1

i |Xn
i )P (bn+1|Xn+1

i )/Z0, (5)

where the hats have been omitted as they will be from now on, P (Xn
i ), the prob-

ability of Xn
i given bk for k ≤ n, is assumed given, P (Xn+1

i |Xn
i ), the probability

of Xn+1

i given Xn
i , is determined by the discretized SDE (3), P (bn+1|Xn+1

i ), the
probability of the observations bn+1 given the new positions Xn+1

i , is determined
by the observation equation (2), and Z0 is an unknown normalization constant.
We shall see below that one can set P (Xn

i ) = 1 without loss of generality.
Equation (5) defines the pdf we now need to sample for each particle. One

way to do this is to pick a position Xn+1

i according to some prior guess of
Pn+1, and then use weights to get the resulting pdf to agree with the true Pn+1

(the “posterior” density); in general many of the new positions will have low
probability and therefore small weights. The idea in implicit sampling is to
define probabilities first, and then look for particles that assume them; this
is done by choosing once and for all a fixed reference random variable, say
ξ, with a given pdf, say a Gaussian exp(−ξT ξ/2)/(2π)m/2, which one knows
how to sample, and then making Xn+1

i a function of ξ, a different function of
each particle and each step, each function designed so that the map ξ → Xn+1

i

connects highly probable values of ξ to highly probable values of Xn+1

i . To that
end, write

P (Xn+1

i |Xn
i )P (bn+1|Xn+1

i ) = exp(−Fi(X)),
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where on the right-hand side X is a shorthand for Xn+1

i and all the other
arguments are omitted. This defines a function Fi for each particle i and each
time tn. For each i and n, Fi is an explicitly known function of X = Xn+1

i .
Then solve the equation

Fi(X) − φi = ξT ξ/2, (6)

where ξ is a sample of the fixed reference variable and φi is an additive factor
needed to make the equation solvable. The need for φi becomes obvious if one
considers the case of a linear observation function h in equation (2), so that
the right side of equation (6) is quadratic but the left is a quadratic plus a
constant. It is clear that setting φi = minFi will do the job, but it is sometimes
convenient to perturb this choice by a small amount (see below). In addition,
and most important, with our choice of reference variable ξ, the most likely
choice of ξ is in the neighborhood of 0; if the mapping ξ → X satisfies equation
(6), this likely choice of ξ produces an X near the minimum of Fi, hence a high
probability position for the particle. We also require that for each particle, the
function Xn+1

i = X = X(ξ) defined by (6) be one-to-one so that the correct
pdf is sampled, in particular, it must have distinct branches for positive values
and negative values of each component of ξ. The solution of (6) is discussed in
the next section. From now on we omit the index i in both F and φ, but it
should not be forgotten that these functions vary from particle to particle and
from one time step to the next.

Once the function X = X(ξ) is determined, each value of Xn+1 = X
(the subscript i is omitted) appears with probability exp(−ξT ξ/2)J−1/(2π)m/2,
where J is the Jacobian of the map X = X(ξ), while the product P (Xn+1|Xn)P (bn+1|Xn+1)
evaluated at Xn+1 equals exp(−ξT ξ/2) exp(−φ). The sampling weight for the
particle is therefore exp(−φ)J(2π)m/2. If the map ξ → X is smooth near ξ = 0,
so that φ and J do not vary rapidly from particle to particle, and if there is an
easy way to compute J (see the next section), then we have an effective way
to sample Pn+1 given Pn. It is important to note that though the functions F
and φ vary from particle to particle, the probabilities of the various samples are
expressed in terms of the fixed reference pdf, so that they can be compared with
each other.

The weights can be eliminated by resampling. A standard resampling algo-
rithm goes as follows [8]: let the weight of the i-th particle be Wi, i = 1, . . . , M .
Define A =

∑
Wi; for each of M random numbers θk, k = 1, . . . , M drawn

from the uniform distribution on [0, 1], choose a new X̂n+1

k = Xn+1

i such that

A−1
∑i−1

j=1
Wj < θk ≤ A−1

∑i
j=1

Wj , and then suppress the hat. This justifies
the statement following equation (5) that one can set P (Xn) = 1.

To see what has been gained, compare our construction with the usual
“Bayesian” particle filter, where one samples P (Xn+1|Xn)P (bn+1|Xn+1) by
first finding a “prior” density Q(Xn+1) (omitting all arguments other than
Xn+1), such that the ratio W = P (Xn+1)/Q(Xn+1) is close to a constant,
and then assigning to the i-th particle the importance weight W = Wi evalu-
ated at the location of the particle. The pdf defined by the set of positions and
weights is the density Pn+1 we are looking for. An important special case is the
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choice Q(Xn+1) = P (Xn+1|Xn); the prior is then defined by the equation of
motion alone and the posterior is obtained by using the observations to weight
the particles. We shall refer to this special case as “standard importance sam-
pling” or “standard filter”. Of course, once the positions and the weights of the
particles have been determined, one should resample as above.

The catch in these earlier constructions is that the prior density Q and the
desired posterior can become nearly mutually singular, and the number of par-
ticles needed may become catastrophically large, especially when the number of
variables m is large (see e.g. [2],[21]). To avoid this catch one has to make a good
guess for the pdf Q, which may not be easy because Q should approximate the
unknown density Pn+1 one is looking for- this is the basic conundrum of Monte
Carlo methods, in which one needs a good estimate to get a good estimate. In
contrast, in implicit sampling one does a separate calculation for each sample
and there is no need for prior global information. One can of course still identify
the pdf defined by the positions of the particles at time tn+1 as a “prior” and
the pdf defined by both the positions and the weights as a “posterior” density.

Note that one can recover standard importance sampling within our frame-
work by setting φ = − logP (bn+1|Xn+1), but this choice of course violates our
rule for choosing φ.

Finally, implicit sampling can be viewed as an implicit Monte Carlo scheme
for solving the Zakai equation [25], which describes the evolution of the unnor-
malized conditional distribution for a SDE conditioned by observations. This
should be contrasted with the procedure in the popular ensemble Kalman filter
(see e.g. [11]), where a Gaussian approximation of the pdf defined by the SDE
is extracted from a Monte Carlo solution of the corresponding Fokker-Planck
equation, a Gaussian approximation is made for the pdf P (bn+1|xn+1) (see [15]),
and new particle positions are obtained by a Kalman step. Our replacement
of the Fokker-Planck equation that corresponds to the SDE alone by a Zakai
equation that describes the evolution of the unnormalized conditional distribu-
tion does away with the need for the approximate and expensive extraction of
Gaussians and consequent Kalman step.

3 Solution of the algebraic equation that defines

a new sample

We now explain how to solve equation (6), F (X)−φ = ξT ξ/2, under several sets
of assumptions which are met in practice. This is a well-defined, deterministic,
algebraic equation for each particle. Note the great latitude that it provides in
linking the ξ variables to the X variables: it is a single equation that connects
2m variables (the m components of ξ and the m components of X) and can
be satisfied by many maps ξ → X as long as (i) they are one-to-one, (ii) they
map the neighborhood of 0 into a set that contains the minimum of F , (iii)
they are smooth near ξ = 0 so that the weights exp(−φ)J not vary unduly from
particle to particle in the target area, and (iv) they allow the Jacobian J to be
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calculated easily. The solution methods presented here are far from exhaustive;
further examples will be presented in the context of specific applications.

Algorithm (A) (presented in [4, 5]) : Assume the function F is convex
upwards and h is not too different from a linear function. For each particle, we
set up an iteration, with iterates Xn+1,j, j = 0, 1, . . . , (Xj for brevity), with
X0 = 0, that converge to the next position Xn+1 of that particle. The index
i that identifies the particle is omitted again. We write the equations as if the
system were one-dimensional; the multidimensional case was presented in detail
in [5]. First we sample the reference variable ξ. The iteration is defined when
one knows how to find Xj+1 given Xj.

Expand the observation function h in equation (2) around Xj:

h(Xj+1) = h(Xj) + (Dh)j(Xj+1 − Xj), (7)

where (Dh)j is the derivative of h evaluated at Xj. The observation equation (2)
is now approximated as a linear function of Xj+1, and the function F is the sum
of two Gaussians in Xj+1. Completing a square yields a single Gaussian with a
remainder φ, i.e., F (X) = (x − ā)2/(2v̄) + φ(Xj), where the parameters φ, ā, v̄
are functions of Xj (this is what we called in [4] a “pseudo-Gaussian”). The
next iterate is now Xj+1 = ā +

√
v̄ξ. In the multidimensional case, when each

component of the function h in equation (2) depends on more than one variable,
finding Xj+1 as a function of ξ may require the solution of an equation of the
form (Xj+1)T AXj+1 = ξT ξ/2, where A is positive definite and symmetric. This
is, as expected, a single equation for several variables, so that the solution is
not unique. We may choose, as in [5], to connect ξ to Xj+1 by performing a
Choleski decomposition, A = LLT , where L is lower triangular, and then solving√

2LT Xj+1 = ξ. A different connection was presented in [4]. If the iteration
converges, it converges to the exact solution of equation (6), with φ the limit
of the φ(Xj). Its convergence can be accelerated by Aitken’s extrapolation
[13]. The Jacobian J can be evaluated either by an implicit differentiation of
equation (6) or numerically, by perturbing ξ in equation (6) and solving the
perturbed equation (which should not require more than a single additional
iteration step). It is easy to see that this iteration, when it converges, produces
a mapping ξ → X that is one to one and onto.

An important special case occurs when the observation function h is linear
in X and there are observations at every step (see section 5 for the case of
sparse observations). It is immaterial then whether the SDE (1) is linear. In
this case the iteration converges in one step; the Jacobian J is easy to find; if
in addition the function g(x, t) in equation (1) is independent of x, then J is
independent of the particle and need not be evaluated; the additive term φ can
be written explicitly as a function of the previous position Xn of the particle
and of the observation bn+1. We recover an easy implementation of optimal
sequential importance sampling (see e.g. [1, 8, 9]).

This iteration has been used in [5]. It may fail to converge if the function F
is not convex, as happens in particular when the observation function h is highly
nonlinear. In the latter case the value of φ it produces may also be far from the
minimum of F . If h is strongly nonlinear, the next iteration is preferable.
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Algorithm (B). Assume the function F is U -shaped, i.e., in the scalar
case, it is at least piecewise differentiable, F ′ vanishes at a single point which
is a minimum, F is strictly decreasing on one side of the minimum and strictly
increasing on the other, with F (X) = ∞ when X = ±∞. In the m-dimensional
case, assume that F has a single minimum and that each intersection of the
graph of the function y = F (X) with a vertical plane through the minimum
is U -shaped in the scalar sense (a function may be U -shaped without being
convex).

Find z, the minimum of F (this is the minimum of a given real valued
function, not a minimum of a possibly multimodal pdf generated by the SDE;
finding this minimum is not equivalent to the difficult problem of finding a
maximum likelihood estimate of the state of the system). The minimum z can
be found by standard minimization algorithms.

Again we are solving the equations by finding iterates Xj that converge to
Xn+1. In the scalar case, given a sample of the reference variable ξ, find first
X0 such that X0 − z has the sign of ξ, and then find the next iterates Xj by
standard tools (e.g. by Newton iteration), modified so that the Xj are prevented
from leaping over z.

In the vector case, if the observation function is diagonal, i.e. each com-
ponent of the observation is a function of a single component of the solution
X , then the scalar algorithm can be used component by component. In more
complicated situations one can take advantage of the freedom in connecting ξ
to X .

Here is an interesting example of the use of this freedom, which we present
in the case of a multidimensional problem where the observation function is
linear but need not be diagonal. Set φ = minF . The function F (X) − φ can
now be written as (X − a)T A(X − a)/2, where a is a known vector, T denotes
a transpose as before, and A is a positive definite symmetric matrix. Write
further y = X − a. Equation (6) becomes

yT Ay = |ξ|2, (8)

where |ξ| is the length of the vector ξ. Make the ansatz:

y = λη,

where λ is a scalar, η = ξ/|ξ| is a random unit vector and ξ is a sample of of
the reference density. Substitution into (8) yields

λ2(ηT Aη) = |ξ|2. (9)

It is easy to see that E[ηiηj ] = δij/m, where E[·] denotes an expected value,
the ηi are the components of η, m is the number of variables, and δij is the
Kronecker delta, and hence

E[ηT Aη] = trace(A)/m.

Replace equation (9) by
λ2Λ = |ξ|2. (10)
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where Λ = trace(A)/m. This equation has the solution λ = |ξ|/
√

Λ, and sub-
stitution into the ansatz leads to yi = ξi/

√
Λ, an easily implementable trans-

formation with Jacobian J = Λ−m/2. The difference between equations (9) and
(10) can be compensated for by adding to φ the term λ2[(ηT Aη) − Λ]. Note
that as m → ∞, (ηT Aη) → Λ provided A satisfies some minor requirements,
so that when the number of variables is sufficiently large, the perturbation one
has to compensate for becomes negligible. Detailed implementations and gener-
alizations of this construction will be given elsewhere in the context of specific
applications.

One can readily devise algorithms also for cases where F is not U -shaped,
for example, by dividing F into monotonic pieces and sampling each of these
pieces with its predetermined probability. An alternative that is usually easier
is to replace the non-U -shaped function F by a suitable U -shaped function F0

and make up for the bias by adding F (X) − F0(X) to the φ in the weights
exp(−φ)J so that equation (6) is still satisfied. One also has to make sure that
the small ξ region is still mapped on the high probability region for X ; see the
examples below.

More generally, even in convex cases, one can often change F in equation (6)
to make the algebraic problem easy without reducing the quality of the samples;
examples will be given in the next two sections.

4 Examples

We now present examples that illustrate the algorithms we have just described.
For more examples, see [4, 5]. For the sake of clarity, in this section we continue
to rely on an Euler discretization of the SDE, as in equation (3).

We begin with a response to a comment we have often heard: ”this is nice,
but the construction will fail the moment you are faced with potentials with
multiple wells”. This is not so- the function F depends on the nature of the
noise in the SDE and on the function h = h(x) in the observation equation
(2), but not on the potential. Consider for example a one dimensional particle
moving in the potential V (x) = 2.5(x2 − 0.5)2, (see Figure 1), with the force
f(x) = −∇V = −10x(x2 − 1) and the resulting SDE dx = f(x)dt + σdw,
where σ = .1 and w is Brownian motion with unit variance; with this choice of
parameters the SDE has an invariant density concentrated in the neighborhoods
of x = ±

√
1/2. We consider linear observations bn = x(tn) + W , where W is a

Gaussian variable with mean zero and variance s = .025. We approximate the
SDE by an Euler scheme [17] with time step δ = 0.01, and assume observations
are available at all the points nδ. The particles all start at x = 0. We produce
data bn by running a single particle and adding to its positions errors drawn
from the assumed error density in equation (2), and then attempt to reconstruct
this path with our filter. For the i-the particle located at time nδ at Xn

i the
function F (X) is

F (X) = (X − Xn
i )2/(2σδ) + (X − bn+1)2/(2s),
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Figure 1: The potential in the first example.

which is always convex. A completion of a square yields

min F = φ = (1/2)(Xn
i − bn+1)2/(σδ + s);

the Jacobian J is independent of the particle and need not be evaluated. In
Figure 2 we display a particle run used to generate data and its reconstruction
by our filter with 50 particles. This figure is included for completeness but both
of these paths are random, their difference varies from realization to realization,
and may be large or small by accident. To get a quantitative estimate of the
performance of the filter, we repeated this calculation 104 times and computed
the mean and the variance of the difference ∆ between the run that generated
the data and its reconstruction at time t = 1, see Table I. This Table shows that
the filter is unbiased and that the variance of ∆ is comparable to the variance
of the error in the observations s = 0.025. Even with one single particle (and
therefore no resampling) the results are still acceptable.

We now discuss the relation between the posterior we wish to sample and
the prior in several special cases, including non-convex situations. We want to
produce samples of the pdf P (x) = exp(−F (x))/Z, where Z is a normalization
constant and

F (x) = x2/(2σ) + (h(x) − b)2/(2s) (11)

and h(x) is a given function of x (as in equation (2)) and σ, s, b are given
parameters. This can be viewed as a first step in time for a filtering problem
where all the particles start from the same point so that exp(−F (x))/Z = P1,
or as an analysis of the sampling for one particular particle in a general filtering

9



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.5

0

0.5

1

1.5

2

Time

x
(t

)

 

 

Reconstruction

Random path

Figure 2: A random path (broken line) and its reconstruction by our filter (solid
line).

Table I

Mean and variance of the discrepancy between the observed path and the re-
constructed path in example 1 as a function of the number of particles M, with
s = 0.025.

M mean variance
100 -.0001 .021
50 -.0001 .022
20 -.0001 .023
10 .0001 .024
5 -.0001 .027
1 -.0001 .038
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problem, or as an instance of the more general problem of sampling a given pdf
when the important events may be rare. In standard Bayesian sampling one
samples the variable with pdf exp(−x2/(2σ))/

√
2πσ and then one attaches to

the sample at x the weight exp(−(h(x) − b)2/(2s)); in an implicit sampler one
finds a sample x by solving F (x)−φ = ξ2/2 for a suitable φ and ξ and attaching
to the sample the weight exp(−φ)J . For given σ, s, the problem becomes more
challenging as |b| increases.

In both the standard and the implicit filters one can view the empirical pdf
generated by the unweighted samples as a “prior” and the one generated by
the weighted samples as the “posterior”. The difficulty with standard filters is
that the prior and posterior densities may approach being mutually singular,
so it is of interest to estimate the Radon-Nikodym derivative of one of these
with respect to the other. If that derivative is a constant, we have achieved
perfect importance sampling, as every neighborhood in the sample space is
visited with a frequency proportional to its density. We estimate the Radon-
Nikodym derivative of the prior with respect to the posterior as follows. In this
simple problem one can evaluate the probability of any interval with respect to
the posterior we wish to sample by quadratures. We divide the interval [0, 1] into
K pieces of equal lengths 1/K, then find numerically points Y1, Y2, . . . , YK−1,
with YK = +∞, such that the posterior probability of the interval [−∞, Yk] is
k/K for k = 1, 2, . . . , K. We then find L = 105 samples of the prior and plot of
a histogram of the frequencies with which these samples fall into the posterior
equal probability intervals (Yk−1, Yk). The more this histogram departs from
being a constant independent of k, the more samples are needed to calculate
the statistics of the posterior.

If h(x) is linear, the weights in the implicit filter are all equal and the his-
togram is constant for all values of b. This remains true for all values of b, i.e.,
however far the observation b is from what one may expect from the SDE alone.
This is not the case with a standard Bayesian filter, where some parts of the
sample space that have non-zero probability are visited very rarely. In Table II
we list the histogram of frequencies for a linear observation function h(x) = x
and b = 2 in a standard Bayesian filter, with K=10. We used 104 samples; the
fluctuations in the implicit case measure only the accuracy with which the his-
togram is computed with this number of samples. As a consequence, estimates
obtained with the implicit filter are much more reliable than the ones obtained
with the standard Bayesian filter. In Table III we list the estimates of the mean
position of the linear problem as a function of b, with 30 particles, σ = s = 0.1,
for the standard Bayesian and the implicit filters, compared with the exact re-
sult. The standard deviations are not displayed, they are all near 0.01. The
results in this one-dimensional problem mirror the situation with the example of
Bickel et al. [2, 21], designed to display the breakdown of the standard Bayesian
filter when the number of dimension is large; what happens there is that one
particle hogs almost the whole weight, so that the number of particles needed
grows catastrophically; in contrast, the implicit filter assigns equal weights to
all the particles in any number of dimensions, so that the number of particles
needed is independent of dimension, see also [5].
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Table II

Histogram of the Radon-Nikodym derivative of the prior with respect to the
posterior, standard Bayesian filter vs. the implicit filter, 10000 particles, b = 2,
σ = s = 0.1, h(x) = x.

k standard implicit
1 .987 .099
2 .006 .108
3 .002 .097
4 .001 .099
5 .004 .101
6 .003 .099
7 .001 .101
8 .001 .101
9 .000 .102
10 .000 .093

Table III

Comparison of the estimates of the means, implicit vs. standard filter, 30 par-
ticles, together with the exact results, linear case, as explained in the text.

b exact standard implicit
0 0 -.05 .02

0.5 .25 .10 .27
1. .5 .18 .51
1.5 .75 .23 .76
2. 1. .26 1.01
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Figure 3: A non-convex function F (solid line) and a U -shaped substitute (bro-
ken line).

We now turn to nonlinear and nonconvex examples. Let the observation
function h be strongly nonlinear: h(x) = x3. With σ = s = 0.1; the pdf (11)
becomes non-U -shaped for |b| ≥ .77. In Figure 3 we display the function F
for b = 1 (the solid curve). To use the algorithms above we need a substitute
function F0 that is U -shaped; we also display in Figure 3 (the broken line) the
function F0 we used; the recipe here is to link a point above the local minimum
on the left to the absolute minimum on the right by a straight line. It is
important to make F0 and F have the same minimum. Many other constructions
are possible (see in particular the next section). As described above, we solve
F0(x) − φ = ξT ξ/2 with φ = minF0, and once x has been determined, add the
difference F (x) − F0(x) to φ in the weight exp(−φ)J . This construction does
not introduce any bias. The function F0 constructed in this way is U -shaped
but need not be convex, so that one needs algorithm (B) described above. In
Table IV we compare the Radon-Nikodym derivatives of the prior with respect
to the posterior for the resulting implicit sampling and for standard Bayesian
sampling with σ = s = 0.1, b = 1.5.

The histogram for the implicit filter is no longer perfectly balanced. The
asymmetry in the histogram reflects the asymmetry of F0 and can be eliminated
by biasing ξ, but there is no reason to do so; there is enough importance sampling
without this extra step.

In Table V we display the estimates of the means of the density for the
two filters with 1000 particles for various values of b, compared with the exact
results (the number of particles is relatively large because with h(x) = x3 and
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Table IV

Radon-Nikodym derivatives of the prior with respect to the posterior, h(x) =
x3, σ = s = 0.1, b = 1.5, 10000 samples, F0 as in the text.

k standard explicit
1 .9948 .0899
2 .0028 .0537
3 .0011 .0502
4 .0004 .0563
5 .0003 .0696
6 .0002 .1860
7 .0001 .1107
8 .0001 .1194
9 .0001 .1196
10 0. .1446

our parameter choices the variance of the conditional density is significant, and
this number of particles is needed for meaningful comparisons of either algo-
rithm with the exact result). As mentioned in the previous section, there are

Table V

Comparison of the estimates of the means, implicit vs. standard filter, 1000
particles, together with the exact result, when h(x) = x3, as explained in the
text.

b exact standard implicit
0. 0. -0.00 ±.01 -.00 ±.01
.5 .109 .109 ±.01 .109±.01
1.0 .442 .394 ± .04 .451±.02
1.5 .995 .775±.09 .995±.01
2.0 1.18 .875±.05 1.18±.01
2.5 1.30 .895 ±.02 1.29±.02

alternatives to the replacement of F by F0; the point is that for each particle
the function F is an explicitly known non-random function, and this fact can
be used in multiple ways.

5 Sparse observations and higher-order differ-

ence approximations

We now discuss what happens when the observations are sparse, so that there
are data only every r > 1 time steps, and how to sample when the difference
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approximation is more elaborate than the Euler scheme used so far. Along the
way, we suggest additional ways to solve the algebraic equations.

Consider again the discrete SDE (3), with observations available only at
times rδ, r > 1. To simplify the presentation, let g(x, t) = 1 and assume the
equation is scalar. Write the scheme in the form xn+1 = q(xn) + δV , where V
is a Gaussian with mean zero and variance one. We have data at the points
rδ, r > 1, where bn+r = h(xn+r) +

√
sW and W is a Gaussian of mean zero

and variance one and s is a constant. The probability of the particle path
(Xn+1

i , Xn+1

i , . . . , Xn+r
i ) (from now on we will suppress the index i) is

P (Xn+1, . . . , Xn+r) = exp(−F (Xn+1, . . . , Xn+r))/Z, (12)

where Z is a normalization constant and

F (Xn+1, . . . , Xn+r) = (h(Xn+r)−bn+r)2/(2s)+

r∑

i=1

(Xn+i−q(Xn+i−1))2/(2δ).

The task at hand is to solve

F
(
Xn+1, . . . , Xn+r

)
− min F

(
Xn+1, . . . , Xn+r

)
= ξT ξ/2, (13)

where ξ is a sample of a r-dimensional Gaussian reference variable. This can be
done by the methods presented above, but we use this opportunity to present
some variants.

First, we find the minimum of F . If F is convex, this can be easily done
by Newton’s method (note that the matrices one gets are sparse). If F is not
convex, one can try the following device: add to F the quantity αG, where
α > 0 is a parameter and G is the convex function

G = (Xn+r − bn+r)2 +

j=i+r∑

j=i+1

(Xj − Xj−1)2.

Then minimize F + αG for a suitable sequence αn → 0. (This device was
inspired by the rubber band construction of computational chemistry [12]. More
generally, it is useful to note the resemblance of the problem to the study of
rare transitions in computational chemistry, see e.g. [18, 10]). A minimization
by a Newton’s method also yields the Hessian H of F at the minimizer z of F .

Define F0 = φ + (1/2)(X − z)T H(X − z), where φ = minF = F (z) and
X is the vector (Xn+1, . . . , Xn+r). Solve the equation F0(X) − φ = ξT ξ/2
and obtain X . This is a linear problem and Choleski construction works fine
and also yields the Jacobian J . Use as weight for the resulting sample X the
quantity exp(−φ0)J , with φ0 = φ + F (X) − F0(x) so that equation (13) is still
satisfied and there is no bias. This is still a high-probability sample, because
the neighborhood of ξ = 0 is still mapped on the neighborhood of the minimum
of F .

As an example, consider the SDE dx = cos(5x)dt + σdW , with σ = 0.1,
discretized by Euler’s method with time step .01; the observations bn = xn + η
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Figure 4: Reconstruction with sparse data.

are available every 20 steps ( a time interval of .2) and η is a Gaussian variable of
mean zero and variance 10−3. The data are generated by running the equation
once and observing its path. We used 4 particles. In Figure 4 we display the
run that generated the data path and the reconstruction; the data are used in
the reconstruction only when t = 0.2 and t = .4. Observe that between data
the discrepancy can be quite significant, as is indeed unavoidable.

This last example should make it plain what one should do when one uses a
higher-order discretization of the SDE. For example, suppose one is integrating
the SDE dx = f(x)dt + dW using the second-order Klauder-Petersen scheme
[14]:

xn+1,∗ = xn + δf(xn) + η1, (14)

xn+1 = xn + (δ/2)
(
f(xn) + f(xn+1,∗)

)
+ η2, (15)

where η1, η2 are Gaussians with mean zero and variance δ. Observations bn =
h(xn) + η3, where η3 has mean zero and variance s, are assumed available at
every step. The probability of the pair (xn+1,∗, xn+1) is exp(−F ), with

F =
(
xn+1,∗ − xn − δf(xn)

)2
/(2δ)+

(
xn+1 − xn − (δ/2)(f(xn) + f(xn+1,∗)

)2
/(2δ) +

(
h(xn+1) − b)

)2
/(2s).

All one has to do then is solve F − min F = ξT ξ/2 for a sample ξ of a two-
dimensional Gaussian reference variable, along the lines suggested above.
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6 Parameter identification

One important application of particle filters is to parameter identification, where
the SDE contains an unknown parameter and the data are used to find this
parameter’s value. One of the standard ways of doing this (see e.g [8],[16])
is system augmentation: one adds to the SDE the equation dσ = 0 for the
unknown parameter σ, one offers σ a gamut of possible values, and one relies on
the resampling process that eliminates the values that do not fit the data. With
the implicit filter this procedure fails, because the particles are not eliminated
fast enough. One alternative is finding the unknown parameter σ by stochastic
approximation. Specifically, find a statistic T of the output of the filter which
is a function of σ, such that the expected value E[T ] vanishes when σ has
the right value σ∗, and then solve the equation E[T ] = E[T (σ)] = 0 by the
Robbins-Monro iteration [20]:

σn+1 = σn − αnT (σn), (16)

which converges when the coefficients αn are such that
∑

αn → ∞ while
∑

α2
n

remains bounded (for example, αn = 1/nq with 0.5 < q ≤ 1). Related ideas can
be found e.g. in [6].

As a concrete example, consider the SDE dx = dW , where W is Brownian
motion with variance σ, discretized with time steps δ, with observations bn =
xn+η, where η is a Gaussian with mean zero and variance s. Data are generated
by running the SDE once with the true value σ∗ of σ, adding the appropriate
noise, and registering the result at time nδ as bn for n = 1, 2, . . . , N . For the
functional T we chose

T (σ) = C
∑

(∆i∆i−1)/
((∑

∆2
i

)(∑
∆2

i−1

))1/2

, (17)

where the summations are over i between 2 and N , ∆i is the estimate of the
increment of x in the i-the step and C is a scaling constant. Clearly if the σ used
in the filtering equals σ∗ then by construction the successive values of ∆i are
independent and E[T ] = 0. We picked the parameters N = 100, σ = 10−2, s =
10−4, δ = 0.01 (so that that the increment of W in one step has variance 10−4).

Our algorithm is as follows: We make a guess σ1, run the filter for N steps,
evaluate T , and make a new guess for σ using equation (16) and α1 = 1, rerun
the filter, etc., with the αn, the coefficient in equation (16) at the n-th step,
equal to 1/n. The scaling factor in (17) was found by trial and error: if it is too
large the iteration becomes unstable, if it is too small the convergence is slow;
we settled on C = 4.

This algorithm requires that the filter be run without resampling, because
resampling introduces correlations between successive values of the ∆i and bias
the values of T . In a long run, in particular in a strongly nonlinear setting, one
may need resampling for the filter to stay on track, and this can be done by
segmentation: divide the run of the filter into segments of some moderate length
L, perform the summations in the definition of T over that segment, then go
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Table VI

Convergence of the parameter identification algorithm.

Iteration new estimate σ/σ∗

0 10.
1 .819
2 .943
3 1.02
4 1.05
5 1.08
6 1.10
7 1.13
8 1.15
9 1.16
10 1.17
11 1.18
12 1.18
13 1.18

back and run that segment with resampling, then proceed to the next segment,
etc.

The first question is, how well is it possible in principle to reconstruct an
unknown value of σ from N observations; this issue was already discussed in
[4]. Given 100 samples of a Gaussian variable of mean 0 and variance σ, the
variance reconstructed from the observations is a random variable of mean σ
and variance .16 · σ; 100 observations do not contain enough information to
reconstruct σ perfectly. A good way to estimate the best result that can be
achieved is to run the algorithm with the guess σ1 equal to the exact value σ∗

with which the data were generated. When this was done, the estimate of σ
was 1.27σ∗. This result indicates the order of magnitude of the accuracy that
can be achieved.

In Table VI we display the result of our algorithm when we start with the
starting value σ1 = 10σ∗ and with 50 particles. Each iteration requires that one
run the filter once.

7 Conclusions

We have presented the implicit filter for data assimilation, together with several
algorithms for the solution of its algebraic equations, including cases with non-
convex functions F , as well as an algorithm for parameter identification. The
key idea in implicit sampling is to solve an algebraic equation of the form

F (X) − φ = ξT ξ/2
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for every particle, where the function F is explicitly known, X is the new position
of the particle, φ is an additive factor, and ξ is a sample of a fixed reference
pdf; F varies from particle to particle and step to step. This construction
makes it possible to guide the particles to the high-probability area one by
one under a wide variety of circumstances. It is important to note that the
equation that links ξ to X is underdetermined and its solution can be adapted
for each particular problem. The effectiveness of implicit sampling depends on
one’s ability to design maps ξ → X that satisfy the criteria above and are
computationally efficient. The design of such maps is problem dependent and
we will present examples in the context of specific applications.
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