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Implicit Reconstruction of Vasculatures Using

Bivariate Piecewise Algebraic Splines
Qingqi Hong*, Qingde Li, and Jie Tian, Fellow, IEEE

Abstract—Vasculature geometry reconstruction from volu-
metric medical data is a crucial task in the development of

computer guided minimally invasive vascular surgery systems.

In this paper, a technique for reconstructing the geometry of

vasculatures using bivariate implicit splines is developed. With the

proposed technique, an implicit geometry representation of the

vascular tree can be accurately constructed based on the voxels

extracted directly from the surface of a certain vascular structure

in a given volumetric medical dataset. Experimental results show

that the geometric representation built using our method can

faithfully represent the morphology and topology of vascular

structures. In addition, both the qualitative and the quantitative

validations have been performed to show that the reconstructed

vessel geometry is of high accuracy and smoothness. An virtual

angioscopy system has been implemented to indicate one of the

strengths of our proposed method.

Index Terms—Implicit modeling, vasculature reconstruction,

virtual angioscopy.

I. INTRODUCTION

A CCURATE reconstruction of vessel geometry is an im-

portant task in the eld of medical data visualization [1].

It plays a crucial role in the area of computer-aided diagnosis

and computer guided minimally invasive vascular surgery, such

as the diagnosis of anomalous growths and stenosis [2], virtual

angioscopy [3]. Though the vessel structures contained in a

volume dataset can be visualized using certain direct volume

rendering techniques and the image generated in this way can

be quite useful and suitable for the task of computer-aided

vascular diagnosis, in developing a computer-aided vascular

surgery system, just to be able to visualize the hidden vascular

structures is far from suf cient. We are required not only to

see the objects but also to touch and feel them. Obviously,

it can be very dif cult to accurately locate and position the

vascular objects directly from the image generated from direct

volume rendering. This is because without an actual geom-

etry representation for the vascular structures, it can be an
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extremely challenging task to register such an image with the

actual vascular objects, which is a fundamental task required in

the process of computer-aided vascular surgery. In this paper,

we choose to reconstruct the vascular geometry as an implicit

surface, since the isosurfaces extracted directly from the seg-

mented vasculature using surface rendering techniques (i.e.,

Marching Cubes [4]) are usually poor, frequently exhibiting ar-

tifacts and discontinuities. In this research, we aim to construct

the vessel geometry accurately and smoothly as an implicit

function from a cloud of voxels extracted from the segmented

vessel surface. The most basic requirement of a vasculature re-

construction technique is that the reconstructed geometry must

be accurate. The requirement of accuracy for reconstructing

3-D vascular tree is obviously imperative for any computer

systems involving diagnosis and computer-aided surgery [5].

In addition, the reconstructed surfaces are expected to be of

high-level smoothness and can be expressed in an analytical

form. An explicit analytical expression of vasculature not only

allows to display the reconstructed surface with any speci ed

resolution, but can also be very useful in the stage of vessel

analysis, such as the measurement of blood ux, vascular shape

analysis, and the orientation for the speci c portions of the

vessel structure. All these tasks could be quite dif cult to be

achieved based on the segmentation result since it is a discrete

point set [6].

Due to the complex nature of vascular structures, the best

way to represent the topology of vasculature is to use skeleton

curves. The skeleton of an object, which is identi ed as the

locus of the centers of maximal spheres inside the object [7],

has the ability to naturally capture important shape characteris-

tics in three-dimensional contexts [8]. Thus, the skeleton-based

reconstruction is regarded as the most natural option to con-

struct ef ciently the complete vascular structures [9]. Various

skeleton-based methods have been proposed for reconstructing

vasculatures from segmented dataset. However, most of these

approaches are model-based, assuming that a vascular lumen is

having a certain regular shape, such as cylinders [10], truncated

cones [11]. Although these methods can achieve certain level

of smoothness in a relatively fast speed, they are far from accu-

rate as the model used in the reconstruction process is usually

too ideal to correctly represent the actual variation presented by

the cross sections of a vascular structure. As a result, the recon-

structed geometry cannot be used in a computer-aided surgery

system by surgeons for performing computer-aided minimally

invasive vascular surgery. In addition, the vascular surfaces gen-

erated from most of these methods are represented either in

parametric form or as polygonal mesh, which are prone to gen-

erate artifacts and discontinuities at branching where graphics

0278-0062/$26.00 © 2011 IEEE
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primitives are tted together [1]. Oeltze and Preim [6] have ap-

plied the convolution surfaces [12] for the reconstruction of vas-

culatures, which can achieve quite smooth vessel surfaces even

at branchings. However, this method is based on an ideal model

assumption that the cross sections of vascular structures are all

circular. Actually, the cross sections of vessels are not always

circular, especially for that of pathologic vessels.

In this paper, we present a novel approach for the accurate

reconstruction of vasculature along its skeleton without model

assumptions. This technique is based on an implicit surface

modeling method that we have developed to model generalized

cylinders [13]. In this implicit generalized cylinders modeling

method, the freeform cross sections are rst reconstructed

implicitly using the 2-D piecewise algebraic splines [14], and

then, different cross-section pro les are weighted and summed

up along the skeleton using the partial shape preserving (PSP)

spline basis functions [15], the 1-D version of 2-D piecewise

algebraic splines. In addition, we employ the smooth piecewise

polynomial blending operations [16] to blend the branches

of implicitly constructed generalized cylinders together. Our

method can construct a smooth, continuous im-

plicit surface represented explicitly in analytic form, which can

be evaluated extremely ef cient [14]. The proposed method has

been applied to actual 3-D medical data for the reconstruction

of vasculatures. The experiment results show that the recon-

structed vascular shapes are of high accuracy and smoothness.

Some qualitative and quantitative analysis has been carried

out to show the validation of proposed technique. A virtual

angioscopy system is implemented using the reconstructed

implicit vascular surface to demonstrate one of the strengths of

our method.

II. RELATED WORK

Surface reconstruction approaches for vasculatures can be

grouped into two categories: skeleton-based surface reconstruc-

tion and skeleton-free surface reconstruction. The methods in

the latter category directly reconstruct vascular surfaces from

segmented data without the usage of pre-extracted skeleton of

the vessel. Marching Cubes (MC) [4] is the most commonly

used surface construction technique of this kind. However, the

quality of the constructed images of vasculature based on MC

is relatively low due to the use of linear interpolation for lling

the gap between neighboring voxels [5]. Although simple

smoothing procedures can be employed to reduce the aliasing

artifacts of surface visualization, the appropriate smoothing of

vascular structures is a challenging task and does not lead to

the desired results in general [17]. Another issue associated

with MC is that it is error-prone and does not always guarantee

a correct reconstruction of the vasculature morphologically and

topologically. Constrained elastic surface nets (CESN) [18]

is the best general method to smooth visualizations of binary

segmentation results, but it still induces unsatisfactory result

for small vascular structures [5].

Schumann et al. [5], [19] have proposed a method based on

multi-level partition of unity (MPU) implicits [20], which pro-

vides a superior quality of visualizing results when compared

to CESN. The basic principle of this method is to convert the

segmentation result into a point cloud that is transformed into a

surface representation by means of MPU Implicits, which ts a

smooth quadratic surface locally to each local subdataset. Gen-

erally, the implicit surfaces are able to represent a given geom-

etry smoothly without explicitly constructing the geometry [1].

However, due to the complex and ne nature of most vascular

tree, the quality of the resulting surfaces is usually poor and

has to be improved using an additional remeshing step [19], ei-

ther based on parameterization, or tting of subdivision surfaces

[21], which subsequently increases the effort required from the

reconstruction process and inevitably introduces further errors.

As discussed in the rst section, it would be more intuitive

and appropriate to reconstruct the surface along its skeleton

for tubular structure. Various skeleton-based methods have

been proposed for reconstructing vasculatures from segmented

dataset. When perform skeleton-based vascular surface recon-

struction, the rst thing needed to be done is to determine the

vessel centerline and the local vessel cross sections [1]. The

generation of skeleton is usually achieved by the technique

of morphological thinning, or a step-by-step approach, which

moves a small sub-volume, such as parallelepiped or sphere, to

recursively slide along the vessel tree [22]. Once the skeleton

has been extracted out from the input segmented data, the

explicit geometry models of vasculatures can be constructed

by using the geometric information provided for the vessel

cross sections. When only diameter is available for the vessel

cross section, certain model-based approaches can be used to

construct the vascular surfaces by using certain type of geo-

metric primitives, such as cylinders [10], truncated cones [11].

However, the quality of the vascular surfaces generated using

this method depends on the number of vertices used to approx-

imate the cross-section pro le and the number of geometric

primitives associated with the skeleton [1]. Although these

methods can achieve certain level of smoothness in a relatively

fast speed, when the model is incorrect, which is often the case,

they may lead to geometric surfaces that are quite unreal. In

addition, most of the geometric surfaces reconstructed in these

ways are represented as a kind of polygonal mesh, which are

prone to producing artifacts and discontinuities at branching

when geometric primitives are blended together.

Various shape modeling techniques have been suggested to

construct geometric shapes along skeletons such that the con-

structed shape can achieve smooth transition at the points of

branching. Hohne et al. have proposed to use B-spline surfaces

to approximate small vascular structures and nerves [23]. Felkel

et al. have proposed a method based on the subdivision of an ini-

tial coarse base mesh [24]. Bornik et al. have employed simplex

meshes for the high-quality visualization of vascular structures

[25]. However, all methods above are explicit model based.

They either express the underlying geometric shape as a polyg-

onal mesh or as a parametric surface. As have been pointed out

above, they are dif cult to perform shape blending operations

in general. Recently, Wu et al. [9] have improved the Felkel et

al. meshing method to achieve relatively accurate and smooth

vascular structures. However, this approach is based on the t-

ting of explicit circles or ellipses to the cross sections of vessel,

which in general cannot provide an accurate approximation to

the actual vascular objects. In addition, the underlying shape is
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expressed as polygonal mesh, which has a dif culty of imple-

menting rami cation of branchings [26].

Another way to represent the underlying geometric shape is

to use an implicit function, such as the methods proposed in

Bloomenthal’s work [12], [27]. An implicit surface is a sur-

face that consists of those points satisfying the implicit func-

tion, [28]. One way to construct an implicit surface

along a given skeleton is to use the convolution surfaces (CS)

[12], which has been employed in [6] to visualize vasculatures.

This method, taking input of vessel skeleton and the diameter

information per voxel, produces smooth transitions at branch-

ings and closed, rounded ends. The technique of CS visualiza-

tion can usually show much better visual quality, when com-

pared with the truncated cone visualization. However, the recon-

structed vascular geometry is only a morphological approxima-

tion, which is far from accurate and does not meet the basic re-

quirements of computer-aided vascular diagnosis and computer

guided vascular surgery, due to its simplifying model assump-

tion of circular cross sections.

III. IMPLICIT GENERALIZED CYLINDERS BASED ON

2-D PIECEWISE ALGEBRAIC SPLINES

The skeleton-based reconstruction of vasculatures is to con-

struct a geometric surface by sweeping one or more cross sec-

tions along the skeleton [29]. This kind of surfaces has been fre-

quently referred to as generalized cylinders. Generally, the gen-

eralized cylinders can be either represented explicitly as para-

metric surfaces or polygonal meshes, or implicitly as implicit

functions [26]. The explicit representation usually suffers from

the problem of cross-sections intersection when the skeleton is

too curved, and has a dif culty of implementing the rami ca-

tion of one cylinder into two or more [26]. Implicit generalized

cylinders represented by distance surface [30] or convolution

surfaces [12] are limited to the assumption of circular shape

for cross sections. The implicit swept surfaces introduced in

[29], [31] using pro le curves are limited to “star shape” due

to the polar de nition [32]. Though some more exible tech-

niques were proposed to generate an implicit sweeping surface

[32]–[34] without the shape limitation of cross sections, the op-

timization for the swept shapes remains a dif cult problem due

to the respecting various constrains [35]. In this paper, we pro-

pose a technique to model implicit generalized cylinders based

on 2-D piecewise algebraic splines [14], which allows one to

reconstruct generalized cylinders with arbitrary cross sections.

Our method is based on smooth blending of a set of locally con-

structed general cylinders corresponding to different cross sec-

tions along a given skeleton. The implicit generalized cylinders

constructed using our method can achieve any required accu-

racy and continuity. Moreover, the implicit surface generated in

this way can have an explicit analytic representation. The de-

tailed descriptions of our proposed method are as follows.

A. The Calculation of the Frenet Frame for the Skeleton

Frenet frame is a locally speci ed reference frame, de ned

along a curve using the curve’s tangent , normal , and bi-

normal . Suppose is a parametric curve representing the

Fig. 1. Frenet frames of the sampling points on a parametric curve (left), and
the transformation of coordination to the local Frenet frame (right).

skeleton of a geometric shape, when is not 0, the de ni-

tions of , and are given by

(1)

For each point on the skeleton, its Frenet frame can be com-

puted conveniently. As shown in Fig. 1 (left), the black curve

represents the skeleton, and the red arrow, green arrow, as well

as blue arrow, respectively, represents the tangent vector, normal

vector, and binormal vector of the point on the skeleton. For a

curve, there might be some “bad” points at which the curvatures

of the curve are zeros. In this case, we utilize the , and

vectors of their adjacent points instead. If the curvature is al-

ways zero then the curve will be a straight line. And it is easy to

de ne the orthonormal basis of for a straight line.

B. The Transformation of Coordinates to the Frenet-Frame

Space

Suppose is a point in 3-D space , and then for a

skeletal point , the coordinates of can be transformed to

the orthonormal basis of de ned by the local Frenet frame

at . As shown in Fig. 1 (right), is transformed

to by the following equations:

(2)

where , and are unit vectors representing the

binormal, normal, and tangent of the Frenet frame at .

C. Implicit Speci cation of Freeform Cross Section Using the

2-D Piecewise Algebraic Splines

2-D piecewise algebraic spline was introduced by Li and Tian

in [14] for the purpose of freeform implicit shape modeling. It

is a generalization of the conventional parametric spline tech-

nique, whose basis functions have all the good properties of the

conventional B-spline basis functions, such as non-negativity,

partition of unity and convex-hull property [14].

For a given control polygon speci ed in the -coordinate

plane of the Frenet frame, an implicit curve can be constructed

by , where is the 2-D piecewise

algebraic spline. represents the -coordiantes of a point

in 3-D space with respect of the Frenet frame. is the control
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Fig. 2. Freeform implicit curves designed by 2-D piecewise algebraic spline:

.

Fig. 3. The construction of implicit function by weighted summing
a set of implicit cross sections along a skeleton with PSP-spline basis
function .

polygon. is the polygon smooth parameter. is the degree

of smoothness of the required bivariate function. is the height

level. Fig. 2 demonstrates the implicit curves designed in this

way.

The 2-D implicit curve that de nes the cross section of the

required shape at , can be considered as a 3-D implicit

surface by mapping 3-D Space to the local Frenet frame:

according to (2). Suppose the

cross-section pro le is de ned as an implicit function

in the -coordinate plane of the Frenet

frame, then the extruded implicit surface can be given

by

(3)

D. Construction of Freeform Implicit Surface Along Skeleton

With Variable Cross Sections

As shown in [14], freeform implicit surfaces can be designed

as a weighted sum of a set of 2-D implicit control curves along

a coordinate axis (i.e., z-axis) by PSP-spline basis functions.

With the introduction of Frenet frame, different cross-section

pro les can be weighted and summed up together along an ar-

bitrary skeleton, not limited to coordinate axis, to form an im-

plicit generalized cylinder with variable cross sections. The re-

quired generalized cylinder can be described implicitly in the

Frenet-frame space by the following form (see Fig. 3):

(4)

Fig. 4. The construction of implicit generalized cylinder (right) by weighted
summing eight cross sections (left) along a skeleton.

where , and are de ned, respectively, in the Frenet-frame

space according to (2); , in which is the amount

of cross sections. Suppose is a list of knots for the parametric

position of skeleton , then is the implicitly de-

ned cross section corresponding to the skeletal point ,

and is the spline basis function de ned at along the

tangent vector. Suppose is the distance between and

, then in (4) can be expressed in the following

form:

(5)

where the general PSP-spline basis function is de-

ned in the following way [14]:

(6)

where is an interval with ; and is the smooth

unit step function introduced in [36].

From (2), it can be seen that , and in (4) relating to the

Frenet frame at each are all functions of . That is,

, and . Therefore,

the generalized cylinder constructed according to (4) can be ex-

pressed as follows:

(7)

As presented in Fig. 4, the implicit generalized cylinder is

constructed as a weighted sum of eight adjacent cross sections

along a skeleton with PSP-spline basis functions.

E. Blending for the Branches of Implicit Shapes

The technique presented above is only appropriate when no

branches exist for the given skeleton. In the case of branching,

an implicit general cylinder is rst constructed from each

individual branch, and then all these branching implicit general

cylinders can be blended together to represent the overall

implicit surfaces corresponding to the entire structure. There

are various ways to blend a set of implicit surfaces, but most

of them are achieved with nonpiecewise-polynomial shape

operators and without the exibility in controlling the blending

range. Since the implicit surfaces from different branches of

the skeleton are piecewise polynomial, piecewise polynomial

shape blending operations are expected. In this paper, we use

the extended smooth maximum function introduced in [16]

to blend implicit shapes constructed from different skeletal
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Fig. 5. Smooth blending of two implicitly de ned shapes with .
Two individual implicit objects (left and middle) are smoothly blended as one
implicit object (right) by using the smooth maximum function .

Fig. 6. Smooth and bulge-free blending of implicit generalized cylinders using
piecewise polynomial blending operations.

branches (see Fig. 5). The extended smooth maximum function

is de ned in the following form:

(8)

where is the smooth absolute function with the smooth-

ness degree and blending range-control parameter de ned in

[16]. This kind of implicit shape blending operation is piecewise

polynomial and allows exible blending range speci cation.

Many implicit blending operations have a problem of

over-blending, which may exhibit bulges around the point of

branching [6]. Our approach inherits the weighted summation

mechanism to generate smooth surface with different cross

sections for the same skeletal element. In the case of branching,

we can easily achieve bulge-free blending by utilizing smooth

blending operation to blend the branches of implicit

surfaces for different skeletal elements. As is shown in Fig. 6,

our method can achieve smooth and bulge-free blending at

branchings.

IV. ACCURATE RECONSTRUCTION OF VASCULATURES

In this section, we apply the method proposed above for the

purpose of vascular structure reconstruction, which basically in-

volves the extraction of the contour points along each branch of

the constructed skeleton and the implicit reconstruction of vas-

cular structures using the extracted contours.

A. The Extraction of Control Points for the Speci cation of

Accurate Cross Sections

After the process of segmentation [37], the shape of vessel

can be identi ed as the voxels with intensive value . Before

constructing the implicit generalized cylinder for the vascula-

Fig. 7. The extraction of contour points with zero intensive value (left), and
the smooth implicit curve speci ed by the extracted contour points (right).

tures, we need to extract along the skeleton a set of points for

specifying the accurate cross sections of the vascular vessel to

be constructed. Suppose is a skeletal point, then the steps

for extracting the control points for specifying the cross section

corresponding to are as follows.

1) De ne a rectangle based on the local coordinate system.

2) Transform the coordinate of the rectangle to its world co-

ordinate system, and intersect with the vessel surface.

3) Map the intensive value of the segmented vessel into the

de ned rectangle.

4) Extract the contour points with zero intensive value. As

shown in Fig. 7 (left), the red points represent the extracted

contour points with zero intensive value.

Generally, the side length of the rectangle is set as three times

of the cross-section radius. If the cross section of the vessel ex-

cesses the area of the de ned rectangle, the rectangle is con-

sidered to be intersecting with more than one vessel branches.

In this case, we drop some of the target points outside the in-

scribed circle of the rectangle to insure that the target area is

closed. Most of the dropped target points are in the area of the

cross section of the unintended branch. Although the target area

may still includes a certain part of the unintended branch, this

does not affect the nal reconstruction result, since the area will

be blended with the vessel structure constructed from other sur-

rounding branch(es).

B. The Accurate Reconstruction of Vascular Structures

Once the contour points for specifying the cross sections of

vessel have been extracted, we can employ our proposed im-

plicit generalized cylinder to model the vasculatures accurately.

The modeling steps are as follows.

1) Suppose is a skeletal branch of the vessel tree. For

each skeletal point , the coordinates of the arbitrary

point in 3-D space are transformed into the space de-

ned by the local Frenet frame at (please refer to

Section III-B).

2) For each skeletal point , we employ the method pro-

posed in Section IV-A to extract the control points for spec-

ifying the cross section around .

3) Based on the extracted control points, a smooth curve cor-

responding to cross section can then be implicitly con-

structed using 2-D piecewise algebraic splines (please refer

to Section III-C) [see Fig. 7 (right)].
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Fig. 8. Some of the reconstruction results using our method: CTA carotid artery (left); MRA cerebral vasculatures (right).

4) Using the idea presented in Section III-D, different

cross-section pro les speci ed at each skeletal points are

then weighted and summed up together along the skeleton

, to form an implicit generalized cylinder repre-

senting the vessel branch. in (5), that is the distance

between the skeletal point and , is de ned

to be proportional to the radius and in inverse proportion

to the curvature of the current cross-section pro le. In the

case of much curved skeleton, should be set quite small

to guarantee the smooth blending of different cross-section

pro les. As an alternative, we can extrude a 2-D speci ed

cross-section pro le into 3-D implicit surfaces along the

implicitly tted curve to the skeleton [14].

5) Finally, the implicitly de ned vessel surfaces built

according to different skeletal branches

are blended together using the smooth max-

imum function to construct the complete

vascular tree (please refer to Section III-E).

V. RESULTS AND DISCUSSIONS

A. Reconstruction Results Based on Our Method

The medical datasets used in our rst three experiments are

provided by Intelligent Bioinformatics Systems Division, In-

stitute of Automation, the Chinese Academy of Sciences, in

the format of DICOM (Digital Imaging and Communications

in Medicine). The rst example is the reconstruction of carotid

artery (CA) for the 3-D CT angiography (CTA) images with a

resolution of 512 512 206 and spacing of 0.52 mm 0.52

mm 0.63 mm. The second example is the reconstruction of

cerebral vasculatures (CV) for the 3-D magnetic resonance an-

giography (MRA) images with a resolution of 352 448 114

and spacing of 0.49 mm 0.49 mm 0.80 mm. The third ex-

ample is the reconstruction of abdominal aorta (AA) for the 3-D

MRA images with a resolution of 512 512 300 and spacing

of 0.70 mm 0.70 mm 0.63 mm. The last example is the re-

construction of the segmented liver portal vein (LPV) using a

medical dataset obtained from the public resource which has a

resolution of and spacing of 0.78 mm 0.78

mm 1.60 mm. As can be seen from Fig. 8, a visual inspec-

tion shows that our proposed method can correctly represent

the morphology and topology of vascular structures. In addi-

tion, very thin branches and curved, complex structures can be

reconstructed faithfully using our method.

For comparisons, Fig. 9 shows a detailed look at the recon-

structed cerebral vessels. As is presented in the gure, the iso-

surface rendering of the binary data (top left) suffers from strong

aliasing artifacts like staircases, which has a strong divergence

with real vessels and might hamper the visual interpretation

of the vessel surface [19]. Although the segmentation result

based on level set method [37] (top right) can achieve certain

smooth surface when compared to the binary data, the visual-

ization result is still poor, and needs further smoothing steps.

The reconstruction method based on MPUI (bottom left) can

construct smooth surface with certain visual quality. However,

due to the complex and ne nature of most vascular tree, the

quality of the resulting surfaces is still not good enough and

has to be improved using an additional remeshing step [19],

which subsequently increases the effort required from the re-

construction process and inevitably introduces further errors. In

contrast, our approach can achieve superior visual quality and

produce smooth transitions at branchings (bottom right). In fact,

by using the proposed method, the vascular surfaces can be built

to have any required geometric continuity. Furthermore, much

more accurate vessel surfaces can be built since our method

does not involve model assumptions. Generally, our method can

achieve highly smooth and accurate vessel surfaces, which are

quite faithful to the actual vessels.

B. Validation

The validation of any reconstruction technique is very cru-

cial for its clinical applications [6]. In this section, we inves-

tigate the strengths of the proposed technique from both the

1http://www.ircad.fr/softwares/3Dircadb/3Dircadb1/index.php
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Fig. 9. A detail look at the reconstruction of the MRA cerebral vessels: the
isosurface rendering of binary data (top left), the segmentation result using level
set method (top right), the reconstruction result using MPU Implicits (bottom
left), and our method (bottom right).

qualitative and quantitative points of view using the segmented

vessel datasets. Our goal is to reconstruct the continuous vessel

surfaces from the segmented point sets. A good reconstruction

method is considered to approximate the “original” vessel as

accurately as possible. Furthermore, the smoothness of the re-

constructed surface is also a basic requirement since it is the

essential feature of the actual vessel surfaces.

1) Qualitative Validation: Generally, our proposed approach

has two key ingredients to guarantee the requirements of accu-

racy and smoothness. First and foremost, the cross sections of

the vessel are freely speci ed by 2-D implicit splines, without

any model assumption, such as circular or elliptical shapes.

The freeform speci cation of the vessel cross sections is an

essential requirement for computer-aided vessel diagnosis,

since the cross sections of vascular geometry are not always

circular, especially for those pathologic vessels. As can be seen

from Fig. 10, the technique based on our method can represent

the cross section of vessel more faithfully. In fact, the im-

plicit curve constructed using 2-D implicit splines can achieve

any preset precision, as long as the smoothing parameter is

suf ciently small. In addition, by choosing the parameter of

continuous degree , the implicit curve can achieve any re-

quired continuity . In Fig. 10 (right), the dashed

Fig. 10. The extraction of vessel cross section from realistic medical data (left);
the speci cation of cross-section contour by circular shape and our method
(right).

Fig. 11. Two different implicit curves speci ed using 2-D piecewise algebraic
spline with the same set of coutour points extracted from the vessel
cross section: (left); (right).

red circle represents the circular contour of cross section, and

the solid green curve represents the faithful and smooth contour

of cross section speci ed by our method.

However, this does not mean that the smoothing parameter

should be set as small as possible. Because for a certain resolu-

tion, if is set too small, the constructed curve as well as the

surface would not be as smooth as the realistic vessel surface

in visual inspection, especially in the case of reconstructing

from noisy dataset. Fig. 11 demonstrates the two different

implicit curves speci ed using 2-D piecewise algebraic spline

with the same set of contour points extracted from

the vessel cross section. Implicit curve presented on the left is

constructed with , which is much closer to the “original”

point sets, but with less smoothness. Although the smoothness

can be improved by increasing the spatial resolution, it would

cost much more time to display the cruve/surface. On the other

hand, the implicit curve presented on the right is constructed

with , which is not so close to the “original” point sets

as to the left curve, but it is much smoother than that of left

curve displaying on the same resolution to represent the real-

istic vessel cross section. Therefore, to some extent, a trade off

needs to be made between the faithfulness of the reconstructed

surface to the “original” point sets and the smoothness of its

appearance. In this paper, the is generally set as 0.8, which

can guarantee a reasonable trade-off between accuracy and

smoothness.

The other key ingredient is that we employ a partial shape pre-

serving (PSP) spline basis functions [14], [15] to smoothly com-

bine the collection of implicit control surfaces. As stated in [15],

the PSP-spline basis function not only has all the advantages of
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Fig. 12. The blending of a set of implicit cross sections with different
PSP-spline basis functions . From left to right, the controlling parameter
in is changed from 0.5 to 1.1 with an increasing interval 0.2.

Fig. 13. Quantitative analysis for our reconstructed surfaces. The correlation
between the measured distances and mean curvatures for: the carotid artery con-
structed from CTA dataset (top left), the cerebral vessels constructed fromMRA
dataset (top right), the abdominal aorta constructed from MRA dataset (bottom
left), the liver portal vein from binary segmentation result (bottom right).

the conventional B-spline technique, but it is also a shape-pre-

serving spline, which can preserve the original cross-section

surfaces as much as possible. In addition, it is very exible to

specify the blending range of shapes by simply adjusting the

smoothing parameter. Fig. 12 shows the blending of a set of

cross sections with different PSP-spline basis functions

.

2) Quantitative Validation: Besides the visual inspection,

the quantitative validation analysis is necessary for estimating

whether the underlying data (segmented vessel dataset) are

faithfully represented with certain smoothness [6]. For judging

the accuracy of reconstruction, we analyse the distances be-

tween segmented data and our reconstructed surface. The

comparison is realized in the following way: for each vertex

on the isosurface of the segmentation result, the Euclidean

distance to its closest point on our reconstructed surface is

calculated. For estimating the smoothness, we examined the

mean curvature of each vertex on the reconstructed surface,

since the mean curvature has the ability of getting insight to the

degree of smoothness of the surface [38].

Curve in Fig. 13 illustrates the correlation between the

measured distances and mean curvatures for our experimental

datasets. The vertical axis represents the mean distances of

each vertex on the isosurface of the segmentation result to our

reconstructed surface; and the horizontal axis represents the av-

erage of the unsigned mean curvatures (AUMC) for all voxels.

As demonstrated in the curve, the minimum deviation can be

as small as 0.12 mm with certain smoothness (the AUMC is

TABLE I
QUANTITATIVE COMPARISON BETWEEN OUR RECONSTRUCTED SURFACES AND
THAT BASED ON MPUI METHOD. DISTANCES ARE GIVEN IN MILLIMETERS.
THE ACCURACY IS MEASURED BY CALCULATING THE MEAN DISTANCES
BETWEEN THE SEGMENTATION RESULT TO THE RECONSTRUCTED SURFACE,

AND THE SMOOTHNESS IS ESTIMATED BY MEASURING THE AUMC
OF THE RECONSTRUCTED SURFACE

less than 0.4) and the maximum deviation cannot be bigger

than 0.31 mm even the level of smoothness is set quite high. As

discussed in the last section, the accuracy and the smoothness

of the reconstructed surface from the discrete point sets needs

to be balanced. Generally, our method can achieve highly

accurate reconstructed surface, of which the mean deviation

is as small as 0.20 mm, which is quite smaller than the mean

distance (0.39 mm) presented in [6] and the median of the

deviations (0.30 mm) presented in [19]. Furthermore, the mean

deviation is much less than half of the mean diagonal voxel size

(1.28 mm) of the used datasets (0.96 mm for the CTA carotid

artery dataset, 1.05 mm for the MRA cerebral vessel dataset,

1.17 mm for the MRA abdominal aorta dataset, and 1.94 mm

for the segmented liver portal vein). In addition, the surfaces

are reconstructed with quite satis ed smoothness, not only in

visual inspection but also the quantitative analysis (the AUMC

is generally as small as 0.207).

The quantitative comparison has also been conducted be-

tween the surfaces reconstructed using our method and that

based on MPUI method. As have been shown in Table I, the

mean deviations and AUMC corresponding to the surfaces built

from our method are much smaller than that for the surfaces

reconstructed based on the MPUI method for each experimental

data set. In other words, our method can achieve more accurate

and smoother vessel structures than the MPUI based method.

C. Computational Complexity

Generally, a skeletal branch is long. Thus, it is necessary

to partition the space along the skeleton for the purpose of

accelerating the computation. In other words, the long skeleton

is divided into several sub-skeletons, and for each sub-skeleton,

an axis-aligned bounding box is computed in voxel coordinates

(see Fig. 14). Then for each sub-skeleton, its local implicit

function is constructed within its corresponding axis-aligned

bounding box. Finally, all of the local implicit functions are

summarized together to form the global implicit function

representing the vessel structure reconstructed from the whole

skeletal branch. In addition, we employ the NVIDIA CUDA

(compute uni ed device architecture) [39] to evaluate each

local implicit function value in GPU, which can greatly reduce

the visualization time.

To demonstrate the complexity of our algorithm, Table II

presents the information concerning the complexity of the re-

sulting models and the reconstruction and visualization time of

our implicit surfaces based on the medical datasets used above,
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Fig. 14. Subskeleton subdivided from the whole skeleton (left), and its corre-
sponding axis-aligned bounding box (right).

TABLE II
PERFORMANCE MEASUREMENTS FOR THE IMPLICIT SURFACE RECONSTRUCTION

FROM ANATOMIC VASCULAR STRUCTURES CARRIED OUT ON AN AMD
ATHLON CPU 4600+, 2.41 GHZ SYSTEM WITH 2.00 GB RAM AND

NVIDA GEFORCE 8600 GT GRAPHICS CARD WITH 32 STREAM
PROCESSORS AND 540 MHZ FREQUENCY

which includes the time of point extraction, construction of im-

plicit functions, evaluation of scalar values, and generation of

patch faces.

D. Reconstruction for Pathological Vasculatures

Our technique has also been applied for the reconstruction

of pathological vasculatures from the patient data sets with

vessel disease. The rst example is the reconstruction of carotid

artery with stenosis for the 3-D CTA images with a resolution

of 512 512 100 and spacing of 0.48 mm 0.48 mm 0.65

mm [see Fig. 15 (left)]. As can be seen from the rectangle area,

our algorithm can faithfully represent the stenosis of carotid

artery and achieve superior visual quality.

Another example is the reconstruction of peripheral artery

with aneurysm for the 3-D CTA images with a resolution of

512 512 240 and spacing of 0.83 mm 0.83 mm 1.00

mm [see Fig. 15 (right)]. As shown in the rectangle area, our

technique can accurately reconstruct the peripheral artery with

aneurysm in the form of implicit functions, which would be

helpful to perform the quantitative analysis for the pathological

vessel.

E. Virtual Angioscopy

The accurate reconstruction of vascular tree is very crucial

for virtual angioscopy, a noninvasive medical diagnosis proce-

dure for exploring the human vascular system [40], which gen-

erates an interactive environment for the vascular examination

from a point of view inside the vessels [41]. Actually, virtual

y-through of vascular structures is a useful technique for ed-

ucational purposes and some diagnostic tasks, as well as inter-

vention planning and intraoperative navigation [1]. In general,

Fig. 15. The reconstruction of pathological vasculatures: carotid artery with
stenosis(left), and peripheral artery with aneurysm (right).

it is essential to combine detailed views of the inner structures

with an overview of the anatomic structures (see Fig. 16).

One of the main issues associated with the virtual angioscopy

is the requirement of high visual quality of perspective view in-

side the dataset. Generally, the common approach for the visu-

alization of a virtual angioscopy is surface rendering, yielding

images close to a real endoscopy. However, the direct appli-

cation of surface rendering algorithms (i.e., Marching Cubes)

to the segmented vasculatures may suffer from the typical dia-

mond shaped artifacts [see Fig. 16 (right)] caused by the trilinear

interpolation [42]. Therefore, the smooth and accurate recon-

struction of vascular tree is very crucial for virtual angioscopy.

Based on our implicit representation of vasculatures, the surface

rendering methods can achieve high quality perspective views

as well as accurate cross sections (without model assumption)

[see Fig. 16 (middle)], which is suitable for training purposes

and diagnosis tasks.

Besides rendering, the camera navigation paradigm is another

key problem required to be solved for the development of a vir-

tual angioscopy system. Various virtual angioscopy techniques

can be roughly classi ed into three classes: automatic naviga-

tion, manual or free navigation and guided navigation [43]. The

drawback of automatic navigation is the lack of interactivity,

which means that user interaction is limited and the irrelevant

regions cannot be easily skipped [42]. By manual navigation,

user can completely control over all parameters of the virtual

camera without any constraints. However, collision avoidance

is required, which is costly query operation and easily to result

in signi cant lags between interaction and rendering [42].

While based on the implicit vascular geometry, the collision

avoidance for the camera navigation of virtual angioscopy can

be easily solved, since ourmethod can guarantee to de ne an im-

plicit volume by replacing the equality in (7) with an inequality

(9)

That is, the vasculatures are represented as a global implicit

function . When , it represents the
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Fig. 16. Virtual angioscopy. The overview of the vessel structures, and the arrow indicating the current position and orientation of the camera (left); The per-
spective view inside the vessel based on our implicit modelling vasculatures (middle), and on direct application of Marching Cubes to the segmented vasculatures
(right).

vessel surfaces; when , it represents implicit

volume inside the vessel structures; and when , it

represents the implicit volume outside the vessel structures. The

implicit volume is a favourite kind of geometric object when

performing collision detection [14]. When the vasculatures are

modelled as implicit volume, one can tell directly whether a

point lies inside or outside the vasculatures and the problem of

collision detection can be easily solved [44].

VI. CONCLUSION AND FUTUREWORK

In this paper, a technique for accurately reconstructing

vascular structures has been presented, which is underpinned

by a skeleton-based implicit generalized cylinder modeling

method. With the proposed method, an implicit surface with

extraordinary smoothness and accuracy can be constructed

from a given segmented medical dataset. The experimental

results and validations have shown that our method can achieve

accurate, faithful and smooth vascular structures. In addition,

virtual angioscopy has been implemented to demonstrate one

of the strengths of our proposed method.

Our proposed method can accurately construct the contin-

uous geometry of vasculatures in the form of implicit functions,

which not only allows to achieve better visualization, but can

also be very useful for the vessel shape analysis. Generally, our

method has three main advantages over other techniques for re-

constructing vasculatures. Firstly, the reconstructed surface is

a kind of isosurface and can achieve extremely high smooth-

ness and accuracy to the segmented discrete vascular surface

points. Secondly, the modeling result of our method is an im-

plicit volume, and can be directly applied for virtual angioscopy.

Finally, the reconstructed implicit surfaces based on our method

are easy to calculate, since there is an explicit analytic represen-

tation for the resulting shape.

It should be pointed out that the reconstruction accuracy of

our method depends on the accuracy of segmentation results,

since the implicit surfaces built with our method are based on

the segmented data. So far, various segmentation methods have

been developed, but the accurate segmentation of vasculatures

still remains a challenging task, especially for noisy datasets.

The development of highly accurate vascular-speci c segmen-

tation method will be one of our main tasks in the future. An-

other task that is worth of investigation in the future would be

to apply the reconstructed vessel geometry for the simulation

of computational uid dynamics (CFD). A highly accurate and

smooth vessel geometry representation is crucial for CFD to

guarantee correct simulation results and to avoid numerical in-

stabilities [19]. Simulations of the blood ow enable the study

of hemodynamic characteristics such as intra-aneurysmal ow

patterns or the wall shear stress, which plays an important role

in the areas of predictive medicine and vascular disease study.
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