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Abstract: With rapid urbanization, highly accurate and semantically rich virtualization of building

assets in 3D become more critical for supporting various applications, including urban planning,

emergency response and location-based services. Many research efforts have been conducted

to automatically reconstruct building models at city-scale from remotely sensed data. However,

developing a fully-automated photogrammetric computer vision system enabling the massive

generation of highly accurate building models still remains a challenging task. One the most

challenging task for 3D building model reconstruction is to regularize the noises introduced in

the boundary of building object retrieved from a raw data with lack of knowledge on its true shape.

This paper proposes a data-driven modeling approach to reconstruct 3D rooftop models at city-scale

from airborne laser scanning (ALS) data. The focus of the proposed method is to implicitly derive the

shape regularity of 3D building rooftops from given noisy information of building boundary in a

progressive manner. This study covers a full chain of 3D building modeling from low level processing

to realistic 3D building rooftop modeling. In the element clustering step, building-labeled point

clouds are clustered into homogeneous groups by applying height similarity and plane similarity.

Based on segmented clusters, linear modeling cues including outer boundaries, intersection lines,

and step lines are extracted. Topology elements among the modeling cues are recovered by the

Binary Space Partitioning (BSP) technique. The regularity of the building rooftop model is achieved

by an implicit regularization process in the framework of Minimum Description Length (MDL)

combined with Hypothesize and Test (HAT). The parameters governing the MDL optimization are

automatically estimated based on Min-Max optimization and Entropy-based weighting method. The

performance of the proposed method is tested over the International Society for Photogrammetry

and Remote Sensing (ISPRS) benchmark datasets. The results show that the proposed method can

robustly produce accurate regularized 3D building rooftop models.

Keywords: 3D building rooftop modeling; building reconstruction; regularization; airborne laser

scanning data; minimum description length

1. Introduction

A key problem domain that we address in this paper is to reconstruct a 3D geometric model of

building rooftop from remotely sensed data such as airborne laser point clouds. The representation that

we follow for 3D rooftop models draws on ideas from geometric modeling used in Photogrammetry

and Geographical Information Science (GIS). In the representation scheme, a 3D rooftop is modeled

with either primitive geometric elements (i.e., points, lines, planes and objects), or primitive topological
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elements (i.e., vertices, edges, faces, and edge-groups (rings of edges on faces)). Typically, both

primitive geometric and topological elements are used together for representing 3D rooftop models

(e.g., CityGML and Esri ArcGIS’s shapefile). CityGML is an open data model and XML-based format

for the storage and exchange of virtual 3D city models [1].

In CityGML, 3D rooftop models can be differently represented according to the level-of-detail

(LoD). A prismatic model of rooftop that is a height extrusion of a building footprint is defined as LoD1

in CityGML, while LoD2 requires a detailed representation of the primitive geometric and topological

elements in a 3D rooftop model. An important aspect in GIS-driven 3D model representation is

that the reconstructed model elements should correspond to semantically meaningful spatial entities

used in architecture, civil and urban planning: for instance, the reconstructed geometric elements

represent roof lines (ridges and eaves), roof planes (gables and hips), vents, windows, doors, wall

columns, chimneys, etc. Thus, a photo-realistic reconstructed rooftop model can be used for assisting

human decisions on but not limited to asset management, renovating planning, energy consumption,

evacuation planning, etc. As discussed in Rottensteiner et al. [2], a city-scale building model will

provide an important mean to manage urban infrastructure more effectively and safely for addressing

critical issues related to rapid urbanization. In this study, we aim to reconstruct LoD2 models of the

rooftops from remote sensed data.

Traditionally, 3D rooftop models are derived through interaction with a user using photogrammetric

workstations (e.g., multiple-view plotting or mono-plotting technology). This labor-intensive model

generation process is tedious and time-consuming, which is not suitable for reconstructing rooftop

models at city-scale. As an alternative method, great research efforts have been made for developing a

machine-intelligent algorithm to reconstruct photo-realistic rooftop models in a fully-automated

manner for the last two decades [3]. Recently, airborne light detection and ranging (LiDAR)

scanners became one of the primary data acquisition tools, which enable rapid capturing of targeted

environments in 3D with high density and accuracy. Due to these advantages, state-of-the-art

technologies for automatically reconstructing 3D rooftop models using airborne LiDAR data have been

proposed by many researchers [2–6]. However, only limited success in a controlled environment has

been reported, and the success of developing an error-free rooftop modeling algorithm is not achieved

yet [2].

In general, 3D rooftop models are derived automatically from 3D LiDAR point clouds by:

(1) extracting the primitive geometric elements, namely “modeling cues”; and (2) recovering the

primitive topological elements among the modeling cues. A critical problem to hinder the automation

of 3D rooftop model generation is that many portions of the object (rooftop) are unknown, and

recovered with errors caused by the following reasons:

• Irregular point distribution: Despite the advantages of acquiring highly accurate and dense 3D

point clouds over rooftops by airborne LiDAR, the sensor also has its limitations. Airborne LiDAR

transmits a packet of collimated laser beams through an electro-optical scanner, and computes

a location of scatter, which surface is reflected from the transmitted laser energy, by measuring

a range between the transmitter and scatter with known position and orientation of the laser

scanner. The size of the beam footprint and space between adjacent laser points on the ground are

determined by the flying height of the airborne platform and scanning frequency. In addition,

the weak energy reflectance due to absorption and ill-posed surface angle against scanning

pose, where the peak is below a pre-defined threshold, are discarded. Thus, all these system

variables produce an irregular distribution of laser point clouds over the targeted object surface.

Consequently, the modeling cues are often generated with errors, or are fragmented, or completely

missing. These errors have a negative impact on the derivation of the topological elements, and

thus the accuracy of rooftop model generation.

• Occlusion: Similar to other sensors, airborne LiDAR also suffers from difficulties in capturing

a complete view of objects due to occlusions. A disadvantageous viewing angle between the

laser beam direction and object pose may hinder the illumination of laser beams on certain object
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surfaces, where no laser points are generated. In theory, airborne LiDAR has an ability to penetrate

foliage; however, the amount of returned laser energy varies depending on tree species, their

maturity, seasonal effect and relative viewing angle between the laser beam and the leaf surface

angle. A weak reflected energy will be neglected and not be able to produce any laser points

over certain areas of roofs where tree grows nearby. In addition, in urban area, buildings are

occluded by adjacent buildings which are found in the path between the sensor and the surface to

survey. These negative effects cause errors in recovering the primitive topological elements for

reconstructing the rooftop model.

• Unreliable data analysis: A few of the laser point cloud analytics are applied to detecting building

objects, classifying non-roof-related objects (e.g., trees, roof superstructures, etc.), segmenting roof

planar patches, extracting corners and line primitives, and other algorithms related to recovering

the primitive topological elements (e.g., boundary tracing, edge-linking, etc.). The performance

of these algorithms varies depending on data resolution, scene complexity and noise; they

may produce some errors, which has a negative effect on recovering both modeling cues and

topological elements.

As discussed previously, the aforementioned factors lead to errors in recovering the modeling cues

sufficiently well for generating an error-free rooftop model. Typically, knowledge of a rooftop object of

interest (e.g., roof type, structure, number of roof planes, etc.) is unknown. Thus, recovering all the

primitive topological elements accurately with an error-free geometric model is a very challenging

vision task. To address this issue, many researchers have introduced some modeling constraints to

compensate the limitations of erroneous modeling cues [7–10]. These constraints are used as prior

knowledge on targeted rooftop structures: (1) for constructing the modeling cues to conform to Gestalt

law (i.e., parallelism, symmetry, and orthogonality), and linking fragmented modeling cues in the

frame of perceptual grouping; and (2) by determining optimal parametric rooftop model fit into part

of rooftop objects through a trial-and-error of model section from a given primitive model database.

We refer these modeling constraints as an “explicit regularity” imposed on rooftop shape as the

definition of regularity is fully and clearly described. However, only a few of the explicit regularity

terms can be applicable, and the shapes of rooftops in reality appear too complex to be reconstructed

with those limited constraints.

In this paper, we focus on the data-driven modeling approach to reconstruct 3D rooftop models

from airborne LiDAR data by introducing flexible regularity constraints that can be adjusted to given

objects in the recovery of modeling cues and topological elements. The regularity terms that are used

in this study represent a regular pattern of the line orientations, and the linkage between adjacent

lines. In contrast to the term of “explicit regularity”, we refer to it as an “implicit regularity” because

its pattern is not directly expressed, but found with given data and object (rooftop). This implicit

regularity is used as a constraint for changing the geometric properties of the modeling cues and

topological relations among adjacent modeling cues to conform to a regular pattern found in the given

data. This data-adaptive regularity (or regularization process) allows us to reconstruct more complex

rooftop models.

In this paper, we describe a pipeline of 3D rooftop model reconstruction from airborne LiDAR data.

First, to gain some computational efficiency, we decompose a rooftop object into a set of homogeneous

point clouds based on height similarity and plane similarity, from which the modeling cues of line

and plane primitives are extracted. Secondly, the topological elements among the modeling cues are

recovered by iteratively partitioning and merging over a given point space with line primitives

extracted at a global scale using the Binary Space Partitioning (BSP) technique. Thirdly, errors

in the modeling cues and topological elements are implicitly regularized by removing erroneous

vertices or rectifying the geometric properties to conform to globally derived regularity. This implicit

regularization process is implemented in the framework of Minimum Description Length (MDL)

combined with Hypothesize and Test (HAT). The parameters governing the MDL optimization are

automatically estimated based on Min-Max optimization and Entropy-based weighting method. The
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proposed parameter estimators provide optimal weight values that adapt according to building

properties such as; size, shape, and the number of boundary points. The proposed pipeline of rooftop

model generation was developed based on previous works reported in [11]. We extended the work by

proposing data-adaptive parameter estimation, conducting an extensive performance evaluation and

engineering works to implement a computationally efficient modeling pipeline.

Related Works

Numerous building reconstruction algorithms have been published for the past two decades.

Although it is difficult to clearly classify these various methods into specific categories, there are

several ways to categorize the methods: the used data source (single vs. multi-sources), the data

processing strategy (data-driven (or generic), model-driven (or parametric)), and the amount of

human interaction (manual, semi-automatic, or fully automated) [12]. Of those, classifying existing

methods into data-driven or model-driven approaches provides a good insight for understanding and

developing 3D building model reconstruction algorithms.

In the model-driven approaches, 3D building models are reconstructed by fitting parameterized

primitives to data. This is possible because many buildings in rural and suburban area have common

shapes in whole building or building roof parts. These common roof shapes such as flat, gable, and

hip roof are considered as standard primitives for representing building rooftop structures. Simple

buildings can be well represented as regularized building models using pre-defined parameterized

primitives even with low density data and presence of missing data. However, complex buildings

and arbitrarily shaped buildings are difficult to model using a basic set of primitives. In addition,

the selection of the proper primitives among a set of primitives is not an easy task. To address the

limitations, Verma et al. [8] presented a parametric modeling method to reconstruct relatively complex

buildings by combining simple parametric roof shapes that are categorized into four types of simple

primitives. In this study, the roof-topology graph is constructed to represent the relationships among

the various planar patches of approximate roof geometry. The constructed roof-topology graph is

decomposed into sub-graphs, which represents simple parametric roof shapes, and then parameters of

the primitives are determined by fitting LiDAR data. Although they decomposed complex buildings

into simple building parts, many building parts cannot be still explained by their four simple shape

primitives. Similarly, Milde et al. [13] reconstructed 3D building models by matching sub-graphs of

the region adjacency graph (RAG) with five basic roof shapes and then by combining them using three

connectors. Kada and McKinley [14] decomposed the building’s footprint into cells, which provided

the basic building blocks. Three types of roof shapes including basic, connecting, and manual shapes

are defined. Basic shapes consist of flat, shed, gabled, hipped, and Berliner roofs while connecting

shapes are used to connect the roofs of the sections with specific junction shapes. The parameterized

roof shapes of all cells are determined from the normal direction of LiDAR points. The entire 3D

building model is represented by integrating the parameterized roof elements with the neighboring

pieces. Although a high level of automation is achieved, the method still requires manual works to

adjust cell parameters and to model more complex roof shapes like mansard, cupola, barrel, and even

some detail elements. Lafarge et al. [15] reconstructed building models from a digital surface model

(DSM) by combining generic and parametric methods. Buildings are considered as assemblages of

3D parametric blocks from a library. After extracting 2D building supports, 3D parametric blocks

are placed on the 2D supports using Gibbs model, which controls both the block assemblage and the

fitting to data. The optimal configuration of 3D blocks is determined using the Bayesian framework.

They mentioned that the optimization step needs to be improved to achieve both higher precision

and shorter computing time as future work. Based on a predefined primitive library, Huang et al. [10]

conducted a generative modeling to reconstruct roof models that fit the data. The library provides three

groups including 11 types of roof primitives whose parameters consist of position parameters, contour

parameters, and shape parameters. Building roofs are represented as one primitive or an assemblage

of primitives allowing primitives overlaps. For combining primitives, they derived combination and
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merging rules which consider both vertical and horizontal intersections. Reversible Jump Markov

Chain Monte Carlo (RJMCMC) with a specified jump mechanism is conducted for the selection of roof

primitives, and the sampling of their parameters. Although they have shown potential and flexibility of

their method, there are issues to be solved: (1) uncertainty and instability of the reconstructed building

model; (2) influence of prior knowledge and scene complexity on completeness of the reconstruction;

and (3) heavy computation time.

In contrast with model-driven approaches, data-driven approaches do not make any assumptions

regarding to the building shapes, thus they can theoretically handle all kinds of buildings. However,

the approach may cause considerable deformations due to the sensitivity to surface fluctuations

and outliers in the data. In addition, it requires a regularization step during the reconstruction

process. In general, the generic approach starts by extracting building modeling cues such as surface

primitives, step lines, intersection lines, and outer boundary lines followed by reconstructing the

3D building model. The segmentation procedure for extracting surface primitives divides a given

data set into homogeneous regions. Classical segmentation algorithms such as region growing [16,17]

and RANSAC [18] can be used for segmenting building roof planes. In addition, Sampath and

Shan [19] conducted eigenanalysis for each roof point within its Voronoi neighborhood, and then

adopted the fuzzy k-means approach to cluster the planar points into roof segments based on their

surface normal. Then, they separated the clusters into parallel and coplanar segments based on

their distance and connectivity. Lafarge and Mallet [20] extracted geometric shapes such as planes,

cylinders, spheres, or cones for identifying the roof sections by fitting points into various geometric

shapes, and then proposed a method for arranging both the geometric shapes and the other urban

components by propagating point labels based on MRF. Yan et al. [21] proposed a global solution

for roof segmentation. Initial segmentation is optimized by minimizing a global energy function

consisting of the distances of LiDAR points to initial planes, spatial smoothness between data points,

and the number of planes. After segmenting points or extracting homogeneous surface primitives,

modeling cues such as intersection lines and step lines can be extracted based on geometrical and

topological relationships of the segmented roof planes. Intersection lines are easily obtained by

intersecting two adjacent planes or segmented points while step lines are extracted at roof plane

boundary with abrupt height discontinuity. To extract step lines, Rottensteiner et al. [16] detected edge

candidate points and then extracted step lines from an adjustment considering edge points within

user-specified threshold. In addition, Sohn et al. [22] proposed a step line extractor, called Compass

Line filter (CLF), for extracting straight lines from irregularly distributed LiDAR points. Although

outer boundary is one type of step line, it is recognized as a separate process in many data-driven

approaches. Some researchers delineated initial boundary lines from building boundary points using

alpha shape [23], ball-pivoting [8], and contouring algorithm [24]. Then, the initial boundary was

simplified or regularized. The detail reviews for simplification or regularization of boundary will be

given in following paragraphs. Once all building modeling cues are collected, 3D building models are

reconstructed by aggregating the modeling cues. To reconstruct topologically and geometrically correct

3D building models, Sohn et al. [22] proposed the BSP technique, which progressively partitions a

building region into homogeneous binary convex polygons. Rau and Lin [25] proposed a line-based

roof model reconstruction algorithm, namely TIN-Merging and Reshaping (TMR), to reconstruct

topology with geometric modeling. Oude Elberink and Vosselman [26], and Perera and Maas [27] used

a roof topology graph to preserve roof topology. In the latter, roof corners are geometrically modeled

using the shortest closed cycles and the outermost cycle derived from the roof topology graph.

Detection of building boundary is an intermediate step for 3D building reconstruction although it

is not required in all building reconstruction algorithms. Generally, the initial boundaries extracted

from irregular LiDAR points have jagged shape with large numbers of vertices. Thus, a simplification

or regularization process is required to delineate plausible building boundaries with certain regularities

such as orthogonality, parallelism, and symmetry. Various techniques related to the regularization

of building boundary have been proposed in the literature [28]. In most methods, the boundary
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detection process starts by extracting boundary points from segmented points. From extracted

boundary points, initial building boundaries are generated by tracing boundary points followed

by a simplification or regularization process, which improves the initial boundary. The easiest method

to improve initial boundary is to simplify the initial boundary by removing vertices but preserving

relevant points. The well-known Douglas–Peucker (DP) algorithm [29] is widely recognized as the

most visually effective line simplification algorithm. The algorithm starts by selecting two points

which have the longest distance and recursively adding vertices whose distance from the line is

less than a given threshold. However, the performance of the algorithm fully depends on the used

threshold and is substantially affected by outliers. Another approach extracts straight lines from

boundary points using the Hough Transform [30] or using RANSAC [31]. The extracted lines are

then connected by intersections of the extracted straight lines to generate closed outer boundary lines.

However, Brenner [28] pointed out that the methods require some additional steps due to missing

small building edges.

On the other hand, the regularization process imposes certain regularities when the initial

boundary is simplified. Vosselman [7] assumed that building outlines are along or perpendicular to the

main direction of a building. After defining the position of a line by the first two boundary points, the

line is updated using the succeeding boundary points until the distance of a point to the line exceeds

some bound. The next line starts from this point in a direction perpendicular to the previous line.

A similar approach was proposed by Sampath and Shan [9]. They grouped points on consecutive

edges with similar slopes and then applied a hierarchical least squares solution to fit parametric lines

representing the building boundary.

Some methods are based on the model hypothesis and verification approach. Ameri [32]

introduced the Feature Based Model Verification (FBMV) for modification and refinement of

polyhedral-like building objects. In their approach, they imposed the geometrical and topological

model information to the FBMV process as external and internal constraints which consider linearity

for straightening consecutive lines, connectivity for establishing topology between adjacent lines,

orthogonality, and co-planarity. Then, the weighted least squares minimization was adopted to

produce a good regularized description of a building model. Weidner and Förstner [33] adopted the

MDL concept to regularize noisy building boundaries. For four local consecutive points, ten different

hypothetical models are generated with respect to regularization criteria. Then, MDL, which depends

on the mutual fit of the data and model and on the complexity of the model, is used to find the

optimal regularity of the local configuration. Jwa et al. [34] extended the MDL-based regularization

method by proposing new implicit hypothesis generation rules and by re-designing model complexity

terms where line directionality, inner angle and number of vertices are considered as geometric

parameters. Furthermore, Sohn et al. [11] used the MDL-based concept to regularize topologies

within rooftop model. Zhou and Neumann [35] introduced global regularities in building modeling

to reflect the orientation and placement similarities among 2.5D elements, which consist of planar

roof patches and roof boundary segments. In their method, roof-roof regularities, roof-boundary

regularities, and boundary-boundary regularities are defined and then the regularities are integrated

into a unified framework.

2. 3D Building Rooftop Reconstruction

Figure 1 shows the overall workflow implemented for generating 3D building rooftop models from

airborne LiDAR point clouds, where individual buildings are detected. The method consists of three

main parts: (1) modeling cue extraction; (2) topology element reconstruction; and (3) regularization.

In the modeling cue extraction, roof element clusters, lines (intersection and step lines), and

outer-boundaries are extracted from a set of laser point clouds labeled as single building objects

(i.e., building labeled points) (Section 2.1). Then, the topology relations among the modeling cues are

established by BSP (Section 2.2). Finally, an implicit regularization process is applied to outer-building

boundaries and rooftop polygons (Section 3). The regularization process is based on the framework of
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MDL in combination with HAT optimization. Note that the regularization process is conducted twice;

once for regularizing building outer-boundaries which represent LoD1 models, and then for rooftop

models which represent LoD2 models. Two types of weight parameters in the MDL-based objective

function are automatically determined by Min-Max optimization and Entropy-based parameter

estimation method, respectively (Section 4).
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Step line extraction
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Figure 1. The overall workflow developed for reconstructing 3D rooftop models.

2.1. Modeling Cue Extraction

The first step towards generating 3D building models using LiDAR data is to gather the evidence

of building structures (i.e., primitive geometric elements). Planes and lines are recognized as the most

important evidence to interpret building structures due to the fact that 3D building rooftop models can

be mainly represented by planar roof faces and edges. The two different modeling cues (planar and

linear modeling cues) have different properties and can be separately extracted from LiDAR points.

In Section 2.1.1, building points are sequentially segmented into homogeneous clusters, first based

on height similarity and then based on plane similarity. In Section 2.1.2, linear modeling cues are

extracted using boundary points of the homogeneous clusters.

2.1.1. Roof Element Clustering

Roof element clustering segments building-labeled points into homogeneous rooftop regions

with a hierarchical structure. A building rooftop in an urban area is a combination of multiple stories,

each of which consists of various shapes of flat and sloped planes. Directly extracting homogeneous

regions from entire building points may result in difficulties due to a high degree of shape complexity.

To reduce the complexity, the building-labeled points are decomposed into homogeneous clusters by

sequentially applying height similarity and plane similarity in order.

In the height clustering step, the rooftop region R = {pi|i = 1, 2, . . . , n} with n numbers of

building-labeled points is divided into m height clusters R = {S1, S2, . . . , Sm}. Height similarity at

each point is measured over its adjacent neighboring points in Triangulated Irregular Network (TIN).

A point with the maximum height is first selected as a seed point, and then a conventional region

growing algorithm is applied to add neighbor points to a corresponding height cluster with a certain

threshold (δh = 1 m). This process is repeated until all building rooftop points are assigned to one of

the height clusters. As a result, the height clusters satisfy the property R = ∪M
i=1Si, Si ∩ Sj = {}, ∀i 6= j.

Note that each height cluster consists of one or more different roof planes.

In the plane clustering step, each height cluster is decomposed into k plane clusters

Π = {π1, π2, . . . , πk} based on a plane similarity criterion. The well-known random sample

consensus (RANSAC) algorithm is adopted to obtain reliable plane clusters as suggested in previous

studies [18,36]. The process starts by randomly selecting three points as seed points to generate an



Sensors 2017, 17, 621 8 of 27

initial plane. After a certain period of random sampling, a plane, which has the maximum number

of inliers with a user defined tolerance distance ζ (ζ = 0.1 m) from the estimated plane, is selected

as a best plane. Points, which are assigned in the previous iteration, are excluded in the next step.

The process continues until all points of the height cluster are assigned into certain plane clusters.

Figure 2b,c shows examples of height clusters and plane clusters, respectively, where different colors

represent different clusters.

   
(a) (b) (c) 

𝐷 ={𝑐1, 𝑐2, … , 𝑐𝑙} –𝑐1𝑐𝑙

Figure 2. Roof element clustering: (a) building-labeled points (purple); (b) height clustering (pink and

green); and (c) plane clustering (black, pink, blue and purple).

2.1.2. Linear Modeling Cue Extraction

Once building-labeled points are segmented into homogeneous clusters with a hierarchical

structure, linear modeling cues are extracted from the homogeneous clusters. We divide linear

modeling cues into three different types in order to reduce the complexity in the modeling cue

extraction process as follows: (1) outer boundaries of height clusters; (2) intersection lines; and (3) step

lines within each height cluster.

In boundaries of height clusters, two adjacent planes have a large height discontinuity. Thus,

outer boundaries of height clusters can be recognized as step lines. However, distinguishing between

outer boundaries of height clusters and step lines within each height cluster can reduce ambiguity

in the topology recovering process (Section 2.2). In addition, outer boundaries of height clusters

can serve to generate the LoD1 model. For these reasons, in this study, we separately extract outer

boundaries of height clusters. The process starts by detecting boundary points of height clusters which

share neighbor height clusters in a TIN structure. After selecting a starting boundary point, a next

boundary point is determined by surveying neighbor boundary points, which are connected with

the previous boundary point in TIN structure, and by selecting a boundary point which appears first

in an anti-clockwise direction. The process continues until the boundary is closed. Then, the closed

boundary is regularized by the MDL-based regularization method which will be described in Section 3.

An intersection line candidate is extracted by two adjacent roof planes. Candidates are accepted

as valid intersection line if they separate the point sets of the planes and if a sufficient number of points

is close to the generated lines.

For step lines, boundary points of plane clusters, which do not belong to outer boundaries

or intersection lines, are considered as candidate points for step lines. Given a sequence

D = {c1, c2, . . . , cl} of l candidate points, step lines are extracted in a similar way to the

Douglas–Peucker (DP) algorithm. The process starts with a straight line (c1cl) connecting the first point

and last point of the sequence and then recursively adding candidate points which have a distance

larger than a user-defined tolerance (0.5 m). Each segment of the line segments is considered a step

line. Figure 3 gives examples of each type of linear modeling cues.
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𝐷 ={𝑐1, 𝑐2, … , 𝑐𝑙} –𝑐1𝑐𝑙

    
(a) (b) (c) (d) 

Figure 3. Modeling cues extraction: (a) outer boundaries (black); (b) intersection lines (red); (c) step

lines (blue); and (d) combined modeling cues.

2.2. BSP-Based Topology Construction

Once all modeling cues are collected, topological relations among the modeling cues are

constructed by the BSP technique. In computer science, the BSP is a hierarchical partitioning method

for recursively subdividing a space into convex sets with hyperlines. Sohn et al. [22] used the BSP to

recover topological relations of 3D building rooftop planes. We adopt the method to reconstruct a

topologically and geometrically correct 3D building rooftop model from incomplete modeling cues.

The topology recovery process consists of a partitioning step and plane merging step. In the partitioning

step, a hierarchical binary tree is generated by dividing a parent region into two child regions with

hyperlines (linear modeling cue). The partitioning optimum is achieved by maximizing partitioning

score which consists of planar homogeneity, geometric regularity and edge correspondence [22].

In plane merging step, the adjacent roof planes having similar normal vector angles are merged by

applying a user-defined threshold. The merging process continues until no plane can be accepted by

the co-planar similarity test. Once all polygons are merged together, 3D building rooftop model can be

reconstructed by collecting final leave nodes in the BSP tree. Figure 4 shows results of partitioning

step, merging step and corresponding 3D rooftop model.

  

(a) (b) (c) 

𝐷𝐿 = 𝜆ℒ(𝐷|𝐻) + (1 − 𝜆)ℒ(𝐻)ℒ(𝐷|𝐻) ℒ(𝐻)𝜆

Figure 4. Binary Space Partitioning: (a) partitioning step; (b) merging step; and (c) reconstructed model.

3. Implicit Regularization of Building Rooftop Models

As mentioned before, recovering error-free 3D rooftop models from erroneous modeling cues is

a challenging task. Geometric constraints such as parallelism, symmetry, and orthogonality can be

explicitly used as a prior knowledge on rooftop structures to compensate the limitations of erroneous

modeling cues. However, explicitly imposing the constraints has limitations on describing complex

buildings that appear in reality. In this study, we propose an implicit regularization where regular

patterns of building structures are not directly expressed, but implicitly imposed on reconstructed

building models providing flexibility for describing more complex rooftop models. The proposed

regularization process is conducted based on HAT optimization in MDL framework. Possible

hypotheses are generated by incorporating regular patterns that are present in the given data. MDL

is used as a criterion for selecting an optimal model out of the possible hypotheses. The MDL

concept for model selection is introduced in Section 3.1 while Section 3.2 introduces a method for

hypothesis generation.
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3.1. MDL Principle and Rooftop Modeling

The MDL proposed by Rissanen [37] is a method for inductive inference that provides a generic

solution to the model selection problem [38]. The MDL is based on the idea of transmitting data as a

coded message, where the coding is based on some prearranged set of parametric statistical model.

The full transmission has to include not only the encoded data values, but also the coded model

parameter values [39]. Thus, the MDL consists of model complexity and model closeness as follows:

DL = λL(D|H) + (1 − λ)L(H) (1)

where L(D|H) indicates a goodness-of-fit of observations D given a model H while L(H) represents

how complex the model H is. λ is a weight parameter for balancing the model closeness and the model

complexity. Assuming that an optimal model representing the data has the minimal description length,

the model selection process allows a model H to be converged to the optimal model H* as follows:

H∗ = arg minH∈Φ{λL(D|H) + (1 − λ)L(H)} (2)

The first term in Equation (1) is optimized for good data attachment to the corresponding model.

With an assumption that an irregular distribution of data D = {x1, . . . , xn} with n measurements

caused by random errors follows a Gaussian distribution x ∼ N
(

µ, σ2
)

with expectation µ and

variance σ2, its density function can be represented as P(x) = 1
σ
√

2π
e
− (x−µ)2

2σ2 . By using a statistical

model of the data, the degree of fit between a model and data can be measured by L(D|µ, σ2), and

then the term of model closeness can be rewritten in a logarithmic form as follows:

L(D|µ, σ2) = −log2P(D) = −
(

log2e
− ∑ (x−µ)2

2σ2 + nlog2
1

σ
√

2π

)

= 1
2ln2 ∑

(

x−µ
σ

)2
+ nlog2σ + n

2 log22π (3)

In Equation (3), the last two terms can be ignored with an assumption that all the hypotheses

have the same σ. Thus, the equation is simplified as follows:

L(D|H) =
Ω

2ln2
(4)

where Ω is the weighted sum of the squared residuals between a model H and a set of observations D,

that is [D − H]T [D − H] in matrix form.

The second term in Equation (1) is designed to encode the model complexity. In this study, the

model complexity is explained by three geometric factors: (1) the number of vertices Nv; (2) the number

of identical line directions Nd; and (3) the inner angle transition N∠θ . By using the three geometric

factors, an optimal model is chosen if its polygon has a small number of vertices and a small number

of the identical line directions, and if the inner angle transition is smoother or more orthogonal.

Suppose that Nv, Nd, and N∠θ are used for an initial model, while N′
v, N′

d, and N′
∠θ are used for

a hypothetical model generated from the initial model. To measure the description length for the

number of vertices, we start by deriving the probability that a vertex is randomly selected from a given

model, P(v) = 1
Nv

. Then, it can be expressed in bits as log2(Nv). Since a hypothetic model generated

by hypothesis generation process has N′
v vertices, its description length is N′

vlog2(Nv). Similarly, the

probability for the number of identical line directions Nd is P(d) = 1
Nd

and can be expressed in bits as

log2(Nd). By considering the required number of line directions N′
d, the description length for identical

line direction is measured by N′
dlog2(Nd). To define line directions, we adopt compass line filter (CLF)

suggested by Sohn et al. [22], as shown in Figure 5. The CLF is determined by the whole set of eight

filtering lines with different slopes {θi : i = 1, . . . , 8} that is equally separated in steps of 22.5◦. The

representative angle for each slope, θREP
i , is calculated by a weighted averaging of angles that takes

the summed line length of each CLF slope into account.
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𝐻∗ = 𝑎𝑟𝑔 𝑚𝑖𝑛𝐻∈𝛷 {𝜆ℒ(𝐷|𝐻) + (1 − 𝜆)ℒ(𝐻)}
𝐷 = {𝑥1, … , 𝑥𝑛}𝑥~𝑁(𝜇, 𝜎2) 𝜇𝜎2 𝑃(𝑥) = 1𝜎√2𝜋 𝑒−(𝑥−𝜇)22𝜎2  ℒ(𝐷|𝜇, 𝜎2)

𝐿(𝐷|𝜇, 𝜎2) = −𝑙𝑜𝑔2𝑃(𝐷) = − (𝑙𝑜𝑔2𝑒−∑(𝑥−𝜇)22𝜎2 + 𝑛𝑙𝑜𝑔2 1𝜎√2𝜋)= 12𝑙𝑛2 ∑ (𝑥 − 𝜇𝜎 )2 + 𝑛𝑙𝑜𝑔2𝜎 + 𝑛2 𝑙𝑜𝑔22𝜋
𝜎 ℒ(𝐷|𝐻) =  𝛺2𝑙𝑛2𝛺 [𝐷 − 𝐻]𝑇[𝐷 − 𝐻] 𝑁𝑣𝑁𝑑  𝑁∠𝜃

𝑁𝑣 𝑁𝑑 𝑁∠𝜃 𝑁𝑣′ 𝑁𝑑′ 𝑁∠𝜃′
𝑃(𝑣) = 1𝑁𝑣 𝑙𝑜𝑔2(𝑁𝑣)𝑁𝑣′ 𝑁𝑣′𝑙𝑜𝑔2(𝑁𝑣)𝑁𝑑 𝑃(𝑑) = 1𝑁𝑑𝑙𝑜𝑔2(𝑁𝑑) 𝑁𝑑′𝑁𝑑′ 𝑙𝑜𝑔2(𝑁𝑑) {𝜃𝑖: 𝑖 = 1, … ,8}𝜃𝑖𝑅𝐸𝑃

 

𝛾𝑖=0,1,2
Figure 5. Compass line filter.

Lastly, the description length for inner angle transition is measured by assigning a certain penalty

value to quantized inner angles. As depicted in Equation (5), the penalty values γi=0,1,2 are heuristically

determined to have the minimum value of 0 (i.e., favour inner angle) if inner angle ∠θ is close to 90◦

or 180◦, while the maximum value of 2 (i.e., unfavorable inner angle) is assigned to very acute inner

angles. This is because acute inner angle at two consecutive building vectors rarely appears in reality.

Thus, the probability for N∠θ can be derived from an inner angle that is located in one of the quantized

angles, P(∠θ) = 1
N∠θ

, and expressed in bits as log2(N∠θ). In the optimal model, the cost imposed by

penalty values is ∑
N′

v
k=1 γi=0,1,2, and its description length is calculated by N′

∠θ log2(N∠θ).

γi=0,1,2 =











0 if 78.75◦ ≤ ∠θ ≤ 101.25◦ or 168.75◦ ≤ ∠θ ≤ 180◦

1 if 11.25◦ < ∠θ < 78.75◦ or 101.25◦ < ∠θ < 168.75◦

2 if 0◦ < ∠θ ≤ 11.25◦
(5)

As a result, the description length for sub-terms of model complexity L(H) is obtained by the

summation of three geometric factors as follows:

L(H) = WvN′
vlog2Nv + WdN′

dlog2Nd + W∠θ N′
∠θ log2N∠θ (6)

where Wv, Wd, and W∠θ are weight values for each sub-factor in the model complexity.

3.2. Hypothesis Generation

The hypothesis generation process proposes a set of possible hypotheses under certain

configurations of a rooftop model (or building boundary). Suppose a rooftop model consists of

a polygon ΠA = {v1, v2, v3, v4, v5, v6, v7} and a polygon ΠB = {v3, v4, v5, v8, v9, v10}, where v3, v4

and v5 are common vertices in both polygons (Figure 6a). A task is to generate possible hypotheses

at a certain vertex considering a given configuration of rooftop model. The hypothesis generation

process starts by defining an Anchor Point (AP), Floating Point (FP), and Guide Point (GP) and then by

deriving a Floating Line (FL = [AP, FP]) and Guiding Line (GL = [GP, FP]). The role of AP is to define

the origin of a line to be changed (FL). FP is a point to be moved while GP is used to generate GL which

guides the movement of FP. Hypotheses are generated by moving FP along the GL with AP as an origin

of FL. The orientation of FL is determined by representative angles of CLF which consists of eight

directions as shown in Figure 5. There are different cases for hypothesis generation: (1) depending on

a relative direction of AP and FP (forward (clockwise) and backward (anti-clockwise)); (2) depending

on whether a vertex is removed (removal or non-removal); and (3) depending on whether FP is a

common vertex in more than two adjacent polygons (common vertex or non-common vertex). For the

reader's understanding, some cases are explained as follows:

• Case 1 (forward, non-removal, and non-common vertex): As shown in Figure 6b, v1 and v2 are

assigned as AP (blue circle) and FP (red point), respectively. Hypotheses are generated by moving

FP along to the GL where red circles represent new possible positions of v2.
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• Case 2 (backward, non-removal, and non-common vertex): As shown in Figure 6c, v3 and v2 are

assigned as AP and FP, respectively. In contrast to case 1, FP is located in backward direction

of AP.

• Case 3 (backward, removal, and non-common vertex): As shown in Figure 6d, after removing v2

(green point), v3 and v1 are assigned as AP and FP, respectively. New hypotheses are generated

by moving v1.

• Case 4 (forward, non-removal, common vertex): As shown in Figure 6e, v2 and v3 are assigned as

AP and FP, respectively. v3 is a common vertex in ΠA and ΠB. Because the position of v3 changes,

shapes of both polygons are changed.

• Case 5 (forward, removal, common vertex): As shown in Figure 6f, v2 and v4 are assigned as AP

and FP, respectively. After v3 is removed, v4 is assigned as FP so that the position of v4 is changed.

v1

v2
v3

v4

v5

v6

v10

v8

v9

A


B


v7

 

GL

(AP)

(FP)

(GP)

 

(a) (b) 
GL

(AP)

(FP)

(GP)

 

GL

(AP)(FP)

(GP)

 

(c) (d) 
GL

(AP) (FP)

(GP)

 

GL

(AP)

(FP)

(GP)

 

(e) (f) 

𝜆 𝑊𝑣, 𝑊𝑑, 𝑊∠𝜃) 𝜆 𝑊𝑣 = 𝑊𝑑 = 𝑊∠𝜃 = 1

Figure 6. Examples of hypothesis generation (blue point: anchor point (AP), green point: removed

point, purple point: guide point (GP), red point: floating point (FP), red circle: new possible positions

of FP, red line: floating line (FL) and purple line: guide line (GL)): (a) initial configuration; (b) case 1;

(c) case 2; (d) case 3; (e) case 4; and (f) case 5.
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4. Parameter Optimization

In the MDL-based objective function, two types of weight parameters are used to evaluate the

relative importance of sub-terms. One is a weight parameter (λ) for balancing the model closeness

and the model complexity in Equation (1). The other is weight parameters (Wv, Wd, W∠θ) for the three

sub-terms in the complexity term in Equation (6). In previous research [11], these weight parameters

were set as constant values, which were empirically determined, for all building models (λ = 0.5 and

Wv = Wd = W∠θ = 1). However, buildings have different shapes and sizes in reality. In addition,

the density of LiDAR points varies on data acquisition settings and flight height. These properties,

which vary on individual buildings, may cause unbalanced values in model closeness and model

complexity. For instance, when building shape is very simple and the number of observations is

significantly large, the closeness value is relatively larger than the complexity value. As a result,

optimization process may be dominant to the variation of the model closeness. Thus, the weight

parameters have to be appropriately tuned in an automated manner by individually considering

the properties of each building. To automatically determine proper weight values, we propose two

different weighting methods: (1) Min-Max weighting method (Section 4.1); and (2) Entropy-based

weighting method (Section 4.2). The Min-Max weighting method is used to balance the model closeness

and the model complexity while the Entropy-based weighting method is employed to determine the

weight values for the three sub-terms in the complexity term.

4.1. Min-Max Weighting Method

The proposed MDL-based objective function consists of two conflicting terms: the model closeness

term L(D|H) and the model complexity term L(H) as shown in Equation (1). λ is a weight parameter

which affects modeling result. The smaller the value of λ, the simpler the optimal model is. In contrast,

a larger value of λ emphasizes goodness-of-fit to data, causing under-simplified model (or over-fitting

problem) (see Figure 7). To automatically estimate an appropriate weight value, we adopt Min-Max

criterion [40], which minimizes possible loss while maximizing the gain. In this study, the Min-Max

principle is closely related to minimizing the cost value DL for each λ and maximizing contributions

from both of two terms, thereby finding the optimal λ∗ ∈ [0, 1]. For each term, this leads to avoid

the best scenario where one of two terms dominates by having an excessively low or high value of λ.

To achieve this goal, the “Min” operator first finds the optimal model for each λ using Equation (2).

Considering the boundary conditions, L(H) at λ = 0 and L(D|H) at λ = 1 corresponds to zero. Then,

L(D|H) and L(H) are normalized using min-max normalization method, respectively, as follows:

zi =
xi − min(x)

max(x)− min(x)
(7)

where zi is a normalized value for the ith variable xi; min(x) and max(x) are the minimum value

and maximum value for variable x. After the total DL value is computed from normalized L(D|H)

and L(H) for each λ, the “Max” operator derives an optimal weight value λ∗ by selecting the worst

scenario showing the maximum DL. Figure 7 shows an example of the Min-Max weighting method.

As shown in Figure 7a, as λ is close to 0, a simple model is selected as the optimal model. As λ. gets

larger, the optimal model is more complex because the DL value is more affected by the closeness term.

In this example, 0.4 is selected as the best λ because it produces the maximum DL value.
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ℒ(𝐷|𝐻) ℒ(𝐻) 𝜆𝜆𝜆
𝜆 𝜆∗ ∈ [0,1]𝜆 “ ”𝜆 ℒ(𝐻) 𝜆 = 0ℒ(𝐷|𝐻) 𝜆 = 1 ℒ(𝐷|𝐻) ℒ(𝐻)

𝑧𝑖 = 𝑥𝑖 − 𝑚𝑖𝑛 (𝑥)𝑚𝑎𝑥 (𝑥) − 𝑚𝑖𝑛 (𝑥)𝑧𝑖 𝑥𝑖 𝑚𝑖𝑛(𝑥) 𝑚𝑎𝑥 (𝑥) ℒ(𝐷|𝐻)ℒ(𝐻) 𝜆 “ ” 𝜆∗
𝜆 𝜆𝜆

 
(a) 

 
(b) 𝜆𝜆Figure 7. Min-Max based parameter determination: (a) optimal rooftop model for each λ value; and

(b) corresponding normalized DL values where 0.4 is selected as the best λ value.

4.2. Entropy-Based Weighting Method

Prior to determining the weight parameter λ, we estimate the weight values of geometric

parameters forming the complexity term L(H) in Equation (6). The L(H) consists of three geometric

terms including the number of vertices, the number of identical line directions and the inner

angle transition.

In multi-attribute decision making, an entropy weighting method, which is one of the objective

methods, is used to determine appropriate weights for attributes [41]: the greater the value of the

entropy corresponding to a special attribute, the smaller attribute’s weight. We adopt the entropy

weighting method to determine the relative importance of three geometric terms in Equation (6).

In information theory, entropy is understood as a measure of uncertainty about attributes drawn from

data and can be normally characterized as follows:

E(X) = −
n

∑
i=1

p(xi) log2 p(xi) (8)

The basic formulation can be rewritten to calculate entropy in the existence of two possibilities p

and q = 1 − p as follows:

E = −(p log2 p + q log2 q) (9)

where p represents the event that a current hypothesized parameter set belongs to a class of optimal

model parameters and q indicates the reverse situation of p. In this study, a probability for each term

in Equation (6) is derived by calculating a probability that each geometric factor in a given model

can converge to the optimal model. The optimal model in terms of model complexity, according to

the definition of model complexity discussed in Section 3.1, is represented by a rectangle where the

number of vertices is four, the number of identical line directions is two, and all inner angles have no

penalty. Thus, the probability that four vertices are randomly selected from Nv vertices is one over

four combinations of Nv, p(v) = 1/CNv
4 . Similarly, the probability that two identical line directions
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are selected from Nd identical line directions is one over two combinations of Nd, p(d) = 1/C
Nd
2 . The

probability of inner angle with no penalty in Equation (5) is 3/16. Because all inner angles have no

penalty to be optimal model, the probability for N∠θ is p(∠θ) = Nv × 3/16. The estimated probabilities

are converted into entropy using Equation (9). Weight parameters for three sub-terms are determined

as suggested in previous studies [41,42]:

Wv = 1−E(v)
3−(E(v)+E(d)+E(∠θ))

, Wd = 1−E(d)
3−(E(v)+E(d)+E(∠θ))

, W∠θ = 1−E(∠θ)
3−(E(v)+E(d)+E(∠θ))

(10)

5. Results and Discussion

5.1. Data

The performance of the proposed method was evaluated over the ISPRS benchmark datasets

provided by the ISPRS WGIII/4 [43]. The ISPRS benchmark datasets consist of three sub-regions

(Area 1, Area 2, and Area 3) of the Vaihingen dataset, and two sub-regions (Area 4 and Area 5) of the

Toronto dataset (Figure 8). The Vaihingen dataset was acquired by Leica ALS50 system at an altitude

of 500 m above ground level in August 2008. Ten strips are overlapped with 30% rate and an average

point density is approximately 6.7/m2 (~0.39 m point spacing). The 3D positional accuracy shows

approximately ±10 cm. The Vaihingen dataset contains typical European building types showing

various shapes including gable, hip roof, and their mixed structures. The Toronto dataset was taken by

Optech’s ALTM-ORION M system at an altitude of 650 m in 2009. The test area includes six strips with

about 6/m2 average point density (~0.41 m point spacing). The dataset contains representative scene

characteristics of a modern mega city in North America including a mixture of low- and high-story

building and a complex cluster of high-rise buildings. For both datasets, reference building models

were generated by manual stereo plotting method. More detailed explanation on the data can be found

in [43]. To extract the building points, we applied the classification method described in [44].

(a) (b) 

Area 1

Area 2

Area 3

Roads

Figure 8. Test datasets: (a) Vaihingen (Area 1, Area 2, and Area 3); and (b) downtown Toronto (Area 4

and Area 5).

5.2. Evaluation Metric

The ISPRS benchmark project on urban classification and 3D building modeling led by ISPRS

WGIII/4 provides evaluation metrics to estimate the results obtained from the latest state-of-the-art
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algorithms for building detection and 3D building reconstruction [2]. The ISPRS evaluation metrics

were designed for measuring the performance characteristics of individual algorithms by comparing

multiple evaluation indices including confusion matrix (area-based and object-based), topological

analysis among roof planes, and geometric accuracy (RMSE). Thus, the ISPRS metrics are used to

evaluate our proposed method. In addition, we added two shape similarity measures (Hausdorff

distance and turning function distance) and an angle-based evaluation index to evaluate different

aspects of reconstructed building models. Hausdorff measures shape similarity between reference

models and algorithmic models by taking the maximum distance among the minimum distances

measured between each vertex for two model datasets [45]. In contrast to RMSE, which assesses the

average difference between two models, the Hausdorff distance can measure the maximum shape

difference caused by over-simplification and under-simplification without any pre-defined value

for the proximity criterion. The turning function distance represents a cumulative measure of the

angles through which a polygonal curve turns [46]. A turning function distance enables the direct

measuring of turning pattern similarity between reference and algorithmic models. Thus, the turn

function distance can measure a resemblance between two models at global scale. Additionally,

an angle-based evaluation index measures the difference between main orientation of a building

modeled in a reference dataset and the results produced by an algorithm. The main orientation of a

building model is determined by analyzing the frequency of building lines for eight direction zones

generated by the CLF. Table 1 summarizes an evaluation indices used in this paper.

Table 1. Performance evaluation metric.

Evaluation Index Description Object to Be Evaluated

Completeness,
Correctness, Quality

Area-based
Completeness, correctness, and quality

determined on a per-area level
Building outer-boundary

Object-based
Completeness, correctness, and quality
determined on a per-roof-plane level

Roof planes

N1:1, N1:M, NN:1, NN:M
Difference in the topologies of the extracted

roof planes and the reference
Roof planes

RMSE x, y, z
Geometrical errors in planimetry and in
height; only distance shorter than 3 m

are considered
vertices

Hausdorff distance Evaluation for partly deformed shape
Building outer-boundary;

Plane with 1:1 correspondence

Turning function distance Evaluation for entire shape similarity
Building outer-boundary;

Plane with 1:1 correspondence

Angle-based index
Difference in main angle of building model

between reference and resulting
rooftop models

Building outer-boundary;
Plane with 1:1 correspondence

5.3. Confusion Matrix-Based Evaluation

Evaluations using confusion matrix were applied under three different conditions: (a) by applying

area-based method for outer building boundary; and by applying object-based method (b) for all roof

planes; and (c) for roof planes with more than 10 m2, respectively (Table 2).

In the area-based evaluation (Table 2a), our proposed rooftop reconstruction algorithm showed

that the completeness, correctness, and quality of the reconstructed building models are 91.5%, 97.4%,

and 89.2%, respectively. The results indicate that most of resulting building models were properly

overlapped to the corresponding reference building models. The error rate for the completeness is

larger than the error rate for the correctness. This is due to the fact that most of the boundary points

from irregularly distributed points are not exactly located on the real building outline but they often

feature a small offset to it. The inexact observations cause boundary displacement which is generally

positioned toward the inside of the building. As a result, a building model tends to be shrunken
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compared to the reference building model. This leads to the increase of FNs and the decrease of TPs,

degenerating the completeness.

Table 2. Confusion matrix-based evaluations.

Dataset Sub-Set
# of

Building
# of

Plane

(a) Area-Based Evaluation

Object-Based Evaluation

(b) All Roof Planes
(c) Roof Planes

(10 m2 Area)

Comp.
(%)

Corr.
(%)

Quality
(%)

Comp.
(%)

Corr.
(%)

Quality
(%)

Comp.
(%)

Corr.
(%)

Quality
(%)

Vaihingen

Area 1 38 288 90.6 98.8 89.6 88.9 98.2 87.5 93.9 98.5 92.6
Area 2 15 69 91.3 99.7 91.0 73.9 100 73.9 95.8 100 95.8
Area 3 57 235 88.6 99.7 88.4 86.4 100 86.4 97.6 100 97.6
Sub-total 110 592 90.2 99.4 89.7 83.1 99.4 82.6 95.8 99.5 95.3

Toronto

Area 4 58 967 93.7 96.9 90.9 82.1 94.8 78.6 92.4 96.2 89.2
Area 5 38 640 93.1 92.0 86.1 66.1 87.1 60.2 89.5 89.6 81.1
Sub-total 96 1607 93.4 94.5 88.5 74.1 91.0 69.4 91.0 92.9 85.2

Total 206 2199 91.5 97.4 89.2 79.5 96.0 77.3 93.8 96.9 91.3

In the object-based evaluation methods, a roof plane in one dataset was considered to be a true

positive if a certain minimum percentage of its area (50% overlap) is covered by a roof plane in the

other dataset. While the completeness, correctness, and quality for all roof planes are 79.5%, 96.0%,

and 77.3%, respectively (Table 2b), the values are increased to 93.8%, 96.9%, and 91.3% if only large

roof planes (>10 m2) are considered (Table 2c). The results indicate that small roof planes were not

detected as well by our proposed method. This is mainly caused by the small number of points on

small building roof planes which made it difficult to extract sufficient modeling cues for reconstructing

rooftop models. Figure 9 clearly shows the effect of the size of roof plane. When only roof planes with

an area smaller than 5 m2, are considered, the completeness is considerably low for all five datasets.

In particular, the completeness for Area 2 (Figure 9b) and Area 5 (Figure 9e) were 26.3% and 37.4%,

respectively. We observed that buildings in the two regions have many small objects on their roofs

which were represented in reference building rooftop models.

As shown in Table 2, the area-based evaluations show that similar levels of model quality were

achieved for both the Vaihigen dataset and the Toronto dataset. However, the object-based evaluations

indicate that the model quality for the Vaihingen dataset is better than one for the Toronto dataset.

This is mainly related to segmentation errors which occur more in complex scenes. We observed that

many roof planes in the Toronto dataset were under-segmented by merging adjacent clusters. As a

result, building rooftop models generated from under-segmented clusters caused a low success rate of

the completeness.

In addition, we compared the evaluation results with those assessed for other algorithms

that were reported in [2] where area-based evaluation results were not reported (Table 3).

The object-based evaluation results (Table 3a) demonstrate that our method can outperform other

building reconstruction algorithms except for the BNU in terms of the completeness and quality.

In particular, when roof planes, whose area is larger than 10 m2, were considered, our proposed

method showed more accurate results. The BNU, which outperform our method, was assessed only

for Area 3. With regard to robustness, our proposed method outperforms the BNU. The correctness of

our method is better than the average of all other evaluated methods. Considering that the correctness

is above 90% for all compared methods except MON and FIE, the correctness of our method is large

enough. In addition, the superiority of our method can be proven by Toronto dataset which consists

of complex buildings. Only three participants submitted their results for Toronto dataset, and our

method achieved the best results for all indices.
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Figure 9. Object-based evaluation as a function of the roof plane area: (a) Area 1; (b) Area 2; (c) Area 3;

(d) Area 4; and (e) Area 5.

Table 3. Evaluation results of algorithms reported in Rottensteiner et al. (2014).

Dataset Algorithm

(a) Object-based evaluation using confusion matrix

(b)
RMSE_XY

(m)

For All Roof Planes For roof Planes (10 m2 Area)

Comp.
(%)

Corr.
(%)

Quality
(%)

Comp.
(%)

Corr.
(%)

Quality
(%)

Vaihingen

MON [47] 77.5 89.7 71.2 90.3 91.4 83.5 0.90
VSK [23] 74.2 98.6 73.5 86.1 98.6 85.2 0.83

ITCE1 [26,48] 69.4 90.1 63.1 78.4 90.3 69.5 1.00
ITCE2 [26,48] 69.8 98.3 68.7 76.8 100.0 76.8 1.03

ITCX1 [49] 69.5 98.1 68.7 74.4 98.0 73.2 0.70
ITCX2 [49] 82.0 92.9 76.8 91.0 98.1 89.3 0.70
ITCX3 [49] 82.8 94.9 78.7 93.2 97.8 91.2 0.70
CAS [43] 68.5 100.0 68.5 81.2 100.0 81.2 0.75
TUD [50] 70.0 95.8 67.8 78.8 98.6 78.0 0.70
YOR [11] 79.9 99.5 79.5 91.8 99.7 91.6 0.63

KNTU [43] 80.4 96.7 78.3 91.9 97.7 90.0 0.90
FIE [51] 82.6 83.1 70.7 88.7 93.4 83.5 1.10

CKU [25] 82.1 96.8 80.1 91.4 99.4 90.9 0.73
BNU [52] 87.2 100.0 87.2 96.0 100.0 97.1 0.60

Proposed method 83.1 99.4 82.6 95.8 99.5 95.3 0.76

Toronto

YOR [11] 70.0 91.7 66.2 86.4 92.1 80.4 0.90
CKU [25] 69.5 81.8 60.1 79.1 81.4 67.1 1.75
FIE [51] 82.3 91.5 49.9 60.4 91.9 57.3 1.40

Proposed method 74.1 91.0 69.4 91.0 92.9 85.2 0.96

5.4. Shape-Based and Angle-Based Evaluations

Geometrical errors in planimetry, and in height were assessed using RMSE. The RMSE measures

Euclidean distance in two different ways: (1) from a vertex in the reconstructed rooftop model to its

closest vertex in reference model; and (2) from a vertex in the reference model to its closest vertex in
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the reconstructed rooftop model. Note that only distances shorter than a certain tolerance distance

(<3 m) were considered as introduced by [2].

The average RMSE of distances in planimetry for the Vaihigen dataset and the Toronto dataset

are 0.76 m and 0.96 m, respectively. As shown in Table 3b, the geometric accuracy is better than the

average geometric accuracy of building models reconstructed by other algorithms. Figure 10 shows

the cumulative histogram of geometric accuracy in RMSE over the five sub-regions. Overall, more than

70% of evaluated vertices are located with less than 1.25 m RMSE. In most test regions, the results of

RMSE of reference vertices (Figure 10b) are better than those of RMSE of extracted vertices (Figure 10a).

The reason is that the proposed method provides under-simplified models with redundant vertices

(i.e., having more numbers of vertices compared to the reference model). Note that the closest vertex

within a certain tolerance distance (>3 m) was used to calculated RMSE. Thus, RMSE of extracted

vertices, which have redundant vertices, tends to be worse than one of reference vertices.

(a) (b) 

Figure 10. The cumulative histogram of geometrical errors: (a) RMSE of extracted vertices with respect

to reference vertices; and (b) RMSE of reference vertices with respect to extracted vertices.

Hausdorff distance was applied to 2D outer boundaries and to 3D roof planes with 1:1

correspondence, respectively (Table 4b). The averages of Hausdorff distance for 2D outer boundaries

and for 3D roof planes are 1.81 m and 1.17 m, respectively. The results show that the maximum distance

between the vertices of reference rooftop models and extracted rooftop models is expected to be less

than roughly twice the RMSE by our proposed method. In addition, the average of the Hausdorff

distance for 2D outer boundaries is larger than the value for 3D roof planes. This is mainly caused

by topology relations between roof planes. As shown in Figure 11, two roof planes, which share a

common edge in reference models (or in extracted models), were represented by separated roof planes

in extracted models (or reference models). The different topology relations caused a large amount of

shape differences in outer boundary representation.

 

Figure 11. Examples of a large amount of Hausdorff distance for 2D outer boundary (Red: Reference,

Green: extracted rooftop model).
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Table 4. Angle-based and shape-based evaluations.

Dataset Sub-Set

For 2D Outer Boundary
For 3D Roof Planes with 1:1 Correspondence

(90% Overlap)

(a) Angle
Difference

(deg)

(b) Hausdorff
Distance (m)

(c) Turning
Function
Distance

(a) Angle
Difference

(deg)

(b) Hausdorff
Distance (m)

(c) Turning
Function
Distance

Vaihingen

Area 1 1.32 1.33 0.049 0.78 0.46 0.020
Area 2 1.62 1.26 0.040 1.11 1.77 0.041
Area 3 0.59 0.93 0.031 0.44 0.48 0.016

Sub-total 1.18 1.17 0.040 0.78 0.90 0.026

Toronto

Area 4 1.30 2.44 0.046 1.30 1.38 0.040
Area 5 1.04 3.10 0.046 0.91 1.75 0.047

Sub-total 1.17 2.77 0.046 1.11 1.57 0.044

Total 1.17 1.81 0.042 0.91 1.17 0.033

Turning function distance, which measures how similar two shapes are, was applied to outer

building boundaries and to roof planes with 90% overlap, respectively. Roughly, when the value

is smaller than approximately 0.03, two corresponding shapes are very similar in terms of visual

inspection. However, when the value is larger than approximately 0.05, the shapes are considerably

dissimilar (Figure 12). For five sub-regions, the average turning function distances are 0.042 for 2D

outer boundaries and 0.033 for 3D roof planes, respectively (Table 4c). Although turning function

distances do not provide a specific range for which value is acceptable for building rooftop models, our

results can be compared with examples given in Figure 12. The comparison indicates that the building

rooftop models reconstructed by the proposed method can achieve acceptable shape similarities

compared with reference building rooftop models in terms of visual inspection. Similarly to the results

of Hausdorff distance, the turning function distance for 2D outer boundaries is larger than one for 3D

roof planes due to different topologies and representations of rooftop models.

   
(a) (b) (c) 

Figure 12. Approximate ranges of turning function distance (blue: reference, red: extracted model):

(a) 0.016; (b) 0.055; and (c) 0.105.

To evaluate the quality of model orientation, the angle difference was measured by calculating the

difference of dominant orientations between reconstructed rooftop models and reference rooftop

models. Table 4a shows the angle differences for five sub-regions where the averages of angle

differences are 1.17◦ for 2D outer boundaries and 0.91◦ for 3D roof planes, respectively. Note that main

angles for outer boundary and for 3D roof planes can be different because the main angle is separately

determined for outer boundary and 3D roof planes. The orientation error was entirely caused by

representative angles of CLF which were used to represent a regular pattern of the line orientation.

The representative angles of CLF were calculated from all initial boundary lines connecting boundary

points of individual building models without any prior knowledge of building orientations. Thus,
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a large amount of orientation error in small building models can be accidently caused if angles of the

boundary lines were distorted by local distributions of boundary points.

Additionally, topology relations were assessed by comparing overlap area between reference

rooftop planes and extracted rooftop planes. Table 5 represents the number of instances of 1:1, 1:M, N:1,

and N:M relations. More than 63% of roof planes are matched with 1:1 relations; 22% of roof planes

have N:1 relations; 7% of roof planes have 1:M relations; and 8% of roof planes have N:M relations.

The topology errors are mainly caused by incorrect segmentation and incomplete modeling cues. In

particular, relatively higher N:1 relations are caused by under-segmentations and superstructures

on roofs which often occur in complex scene. Thus, the N:1 relations were observed more in the

Toronto dataset.

Table 5. Topology evaluation.

Dataset Sub-Set
Topology (Reference Rooftop Planes: Extracted Rooftop Planes)

N1:1 NN:1 N1:M NN:M

Vaihingen

Area 1 125 36 17 8
Area 2 29 5 9 1
Area 3 72 49 6 2

Sub-total 226 90 32 11

Toronto

Area 4 300 89 32 47
Area 5 147 52 6 33

Sub-total 447 141 38 80

Total 673 231 70 91

5.5. Effect on Weight Parameters

To evaluate an effect of weight parameters in MDL-based objective function, we compared

building models generated using fixed weight parameters with building models generated using

the proposed weighting methods. Area-based evaluations using confusion matrix and shape-based

indices were applied. The area-based evaluations using confusion matrix show an increase of 1.3%

for the completeness, a decrease of 0.7% for the correctness, and an increase of 0.6% for the quality

when the proposed weighting methods were used (Table 6). For Hausdorff distance and turning

function distance, the improvements of 0.44 m and 0.003 were achieved, respectively (Table 7). While

evaluation results using confusion matrix and evaluation results for turning function distance show

slight improvements, the results for Hausdorff distance show relatively large improvements for all

sub-regions except for Area 3. In addition, the most improvements for all evaluation methods were

achieved by Area 4 where a relatively large number of shape differences at local scale between extracted

models and reference models were observed. Figure 13 shows an example where shape difference at

local scale is reduced by the proposed weighting methods. When fixed weight parameters were used,

a lower part of the building model (red circle) was under-simplified (Figure 13c). This is related to

the number of boundary points and a degree of model complexity. A large number of observations

produced relatively high closeness value compared with complexity value. This caused imbalance

between two values because fixed weight parameters do not consider the property of an individual

building model. In contrast, the closeness term and the complexity term were balanced by using

flexible weight parameters (Figure 13d). As shown in Tables 6 and 7 and Figure 13, applying flexible

weight values makes positive effects in preserving shapes similar to reference rooftop models.
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Figure 13. Effect on flexible weight parameters: (a) boundary points; (b) reference building model;

(c) building model generated with fixed weight parameters; and (d) building model generated with

flexible weight parameters.

Table 6. Effect on weight parameters in confusion matrix-based evaluation.

Dataset Sub-Set

(a) Fixed Weight
Parameters

(b) Weight Parameters
Determined by the
Proposed Method

(b)–(a)

Comp. Corr. Quality Comp. Corr. Quality Comp. Corr. Quality

Vaihingen

Area 1 88.8 99.5 88.4 90.6 98.8 89.6 +1.8 −0.7 +1.2
Area 2 90.2 99.8 90.0 91.3 99.7 91.0 +1.1 −0.1 +1.0
Area 3 88.8 99.7 88.5 88.6 99.7 88.4 −0.2 0.0 -0.1

Sub-total 89.3 99.7 89.0 90.2 99.4 89.7 +0.9 −0.3 +0.7

Toronto

Area 4 89.5 98.2 88.1 93.7 96.9 90.9 +4.2 −1.3 +2.8
Area 5 93.8 93.5 88.1 93.1 92.0 86.1 −0.7 −1.5 -2.0

Sub-total 91.7 95.9 88.1 93.4 94.5 88.5 +1.8 −1.4 +0.4

Total 90.2 98.1 88.6 91.5 97.4 89.2 +1.3 −0.7 +0.6

Table 7. Effect on weight parameters in shape-based evaluation.

Dataset Sub-Set

(a) Fixed Weight
Parameters

(b) Weight Parameters
Determined by the
Proposed Method

(a)–(b)

Hausdorff
Distance

(m)

Turning
Function
Distance

Hausdorff
Distance

(m)

Turning
Function
Distance

Hausdorff
Distance

(m)

Turning
Function
Distance

Vaihingen

Area 1 1.44 0.047 1.33 0.049 0.11 −0.002
Area 2 1.58 0.041 1.26 0.040 0.32 0.001
Area 3 0.91 0.036 0.93 0.031 −0.02 0.005

Sub-total 1.31 0.041 1.17 0.040 0.14 0.001

Toronto

Area 4 3.76 0.058 2.44 0.046 1.32 0.012
Area 5 3.58 0.045 3.10 0.046 0.48 −0.001

Sub-total 3.67 0.052 2.77 0.046 0.90 0.006

Total 2.25 0.045 1.81 0.042 0.44 0.003

5.6. Visual Inspection

Figure 14 visualizes reconstructed building rooftop models which are representative buildings of

five sub-regions. Visual inspection indicates that the proposed building reconstruction method can

robustly provide accurate regularized 3D building rooftop models in both simple scenes and complex

scenes. Figure 15 shows all reconstruction building rooftop models over our test datasets.
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Figure 14. Reconstructed building models with complex roof structure: (a) image; (b) LiDAR point

clouds; and (c) perspective view of the reconstructed 3D building model.

   
(a) (b) (c) 

  
(d) (e) 





Figure 15. Reconstructed building models: (a) Area 1; (b) Area 2; (c) Area 3; (d) Area 4; and (e) Area 5.
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6. Conclusions

In this study, we proposed an automatic 3D building reconstruction method which covers a

full chain of rooftop modeling. Building-labeled points were segmented into homogeneous clusters

with a hierarchical structure, which enables explicit interpretation of building rooftop configuration.

To effectively gather evidence of a rooftop structure, three linear modeling cues including intersection

line, step lines, and boundaries were separately extracted by considering their characteristics. In the

proposed method, regularization is the most important process, which implicitly imposes geometric

regularities on reconstructed rooftop models based on MDL principle. In the MDL framework, finding

a regularized rooftop model was recognized as a model selection problem. The best model was selected

by minimizing DL values among competing hypotheses generated by a newly designed hypothesis

generation process. To automatically control weight parameters, a Min-Max based weighting method

and Entropy-based weighting method were proposed. The experimental results showed that the

proposed method can provide qualitatively and quantitatively well-regularized 3D building rooftop

models. More specifically, the results are summarized as follows:

• The proposed method provided a robust solution for 3D rooftop modeling regardless of scene

complexity, e.g., typical European style structure with relatively simple building shapes as well

as complex clusters of high-rise buildings. This is achieved by the hierarchical clustering of

building rooftop points. Even though modeling cues were incompletely extracted, the BSP

method produced geometrically and topologically correct rooftop models.

• Evaluation results using confusion matrix showed that the proposed method outperforms other

building reconstruction algorithms. However, object-based evaluation results indicated that our

method has a limitation on extracting small size rooftops. It is a common problem in data-driven

approaches due to the fact it is difficult to extract modeling cues from the small number of

roof points. One possible solution for this problem is to combine the data-driven method and

model-driven method by taking their complementary properties.

• The proposed weighting methods have a positive effect on the building regularization process.

Results for Hausdorff distance showed that the values are considerably improved when flexible

weight parameters in MDL objective function were applied. In particular, shape deformation

(under-simplified or over-simplified model) at a local scale was reduced by the proposed method.

• Angle based evaluation shows that the method has 1.17◦ difference compared to the reference.

However, the main orientations of building models in this study were determined without any

prior knowledge. Thus, the accidently large amount of orientation error can occur in small size

buildings. One possible solution for the problem is to use image data, which can explicitly provide

the orientation of building model.

In current study, 3D point clouds obtained by airborne LiDAR was used as a primary information

source for the automation of reconstructing rooftop models. However, the proposed method can be also

applicable to photogrammetric point clouds generated by various dense matching technologies [53].

As future work, we will investigate the impact of photogrammetric point clouds the quality of 3D

rooftop models reconstructed, and thus seek for an optimal solution to make the proposed method

be robust to various quality of point clouds. In addition, it will be required to examine the impact of

the accuracy of building detection, especially in relation to the occlusion caused by the presence of

vegetation and adjacent buildings.

Supplementary Materials: The following are available online at www.mdpi.com/1424-8220/17/3/621/s1,
Video S1: Sequential results of implicit regularization for 3D rooftop reconstruction.
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