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Abstract

We extend Goldie’s (1991) implicit renewal theorem to enable the analysis of recursions

on weighted branching trees. We illustrate the developed method by deriving the power-

tail asymptotics of the distributions of the solutions R to R
d
=

∑N
i=1 CiRi + Q, R

d
=

(
∨N

i=1 CiRi) ∨ Q, and similar recursions, where (Q, N, C1, C2, . . .) is a nonnegative

random vector with N ∈ {0, 1, 2, 3, . . .} ∪ {∞}, and {Ri}i∈N are independent and

identically distributed copies of R, independent of (Q, N, C1, C2, . . .); here ‘∨’ denotes

the maximum operator.
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1. Introduction

This paper is motivated by the study of the nonhomogeneous linear recursion

R
d
=

N
∑

i=1

CiRi + Q, (1.1)

where (Q, N, C1, C2, . . .) is a nonnegative random vector with N ∈ N ∪ {∞}, N = {0, 1, 2,

3, . . .}, P(Q > 0) > 0, and {Ri}i∈N is a sequence of independent and identically distributed

(i.i.d.) random variables, independent of (Q, N, C1, C2, . . .), with the same distribution as R.

This recursion appeared recently in the stochastic analysis of Google’s PageRank algorithm;

see [19], [27], and the references therein for the latest work in this area. These types of weighted

recursions, also studied in the literature on weighted branching processes [25] and branching

random walks [8], are found in the probabilistic analysis of other algorithms as well [24], [26],

e.g. the Quicksort algorithm [13].

In order to study the preceding recursion in its full generality, we extend the implicit renewal

theory of Goldie [14] to cover recursions on trees. The extension of Goldie’s theorem is

presented in Theorem 3.1. One of the observations that allows this extension is that an

appropriately constructed measure on a weighted branching tree is a renewal measure; see

Lemma 3.1 and (3.4). In the remainder of the paper we apply the newly developed framework
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to analyze a number of linear and nonlinear stochastic recursions on trees, starting with (1.1).

Note that the majority of the work in the rest of the paper addresses the application of the main

theorem to specific problems.

In this regard, in Section 4, we first construct an explicit solution (4.6) to (1.1) on a weighted

branching tree, and then provide sufficient conditions for the finiteness of moments and the

uniqueness of this solution in Lemmas 4.4 and 4.5, respectively. Furthermore, it is worth

noting that our moment estimates are explicit (see Lemma 4.3), which may be of independent

interest. Then, the main result, which characterizes the power-tail behavior of R is presented in

Theorem 4.1. In addition, for an integer power exponent (α ∈ {1, 2, 3, . . .}), the asymptotic tail

behavior can be explicitly computed as stated in Corollary 4.1. Furthermore, for a noninteger α,

Lemma 4.1 yields an explicit bound on the tail behavior of R. Related work in the literature of

weighted branching processes (WBPs) for the case when N = ∞ and Q, {Ci} are nonnegative

deterministic constants can be found in [25] (see Theorem 5), and, more recently, for real-valued

constants, in [4]. However, these deterministic assumptions fall outside the scope of this paper;

for more details, see the remarks after Theorem 4.1 in Section 4.2.

Next, we show how our technique can be applied to study the tail asymptotics of the solution

to the critical, E[
∑N

i=1 Ci] = 1, homogeneous linear equation

R
d
=

N
∑

i=1

CiRi, (1.2)

where (N, C1, C2, . . .) is a nonnegative random vector with N ∈ N ∪ {∞} and {Ri}i∈N is a

sequence of i.i.d. random variables independent of (N, C1, C2, . . .) with the same distribution

as R. This type of recursion has been studied to a great extent under a variety of names, including

branching random walks and multiplicative cascades. Our work is more closely related to the

results of [17] and [23], where the conditions for power-tail asymptotics of the distribution of

R with power exponent α > 1 were derived. In Theorem 4.2 we provide alternative derivations

of Theorem 2.2 of [23] and Proposition 7 of [17]. Furthermore, we note that our method yields

a more explicit characterization of the power-tail proportionality constant; see Corollary 4.2.

For a full description of the set of solutions to (1.2), see the recent work in [6]. For additional

references on weighted branching processes and multiplicative cascades, see [2], [22]–[24],

[28], and the references therein. For earlier historical references, see [12], [16], and [20].

As an additional illustration of the newly developed framework, in Section 5 we study the

recursion

R
d
=

( N
∨

i=1

CiRi

)

∨ Q,

where (Q, N, C1, C2, . . .) is a nonnegative random vector with N ∈ N ∪ {∞}, P(Q > 0) > 0,

and {Ri}i∈N is a sequence of i.i.d. random variables independent of (Q, N, C1, C2, . . .) with

the same distribution as R. We characterize the tail behavior of P(R > x) in Theorem 5.1.

Similarly to the homogeneous linear case, this recursion was previously studied in [5] under

the assumptions that Q ≡ 0, N = ∞, and the {Ci} are real-valued deterministic constants. The

more closely related case of Q ≡ 0 and {Ci} ≥ 0 being random was studied earlier in [18].

Furthermore, these max-type stochastic recursions appear in a wide variety of applications,

ranging from the average case analysis of algorithms to statistical physics; see [1] for a recent

survey.
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530 P. R. JELENKOVIĆ AND M. OLVERA-CRAVIOTO

We conclude the paper with a brief discussion of other nonlinear recursions that could be

studied using the developed techniques, including the solution to

R
d
=

( N
∨

i=1

CiRi

)

+ Q.

The majority of the proofs are postponed to Section 7.

2. Model description

First we construct a random tree T . We use the notation ∅ to denote the root node of T and

An, n ≥ 0, to denote the set of all individuals in the nth generation of T , A0 = {∅}. Let Zn

be the number of individuals in the nth generation, that is, Zn = |An|, where | · | denotes the

cardinality of a set; in particular, Z0 = 1.

Next, let N+ = {1, 2, 3, . . .} be the set of positive integers and let U =
⋃∞

k=0(N+)k be

the set of all finite sequences i = (i1, i2, . . . , in), where, by convention, N
0
+ = {∅} contains

the null sequence ∅. To ease the exposition, for a sequence i = (i1, i2, . . . , ik) ∈ U , we

write i|n = (i1, i2, . . . , in), provided k ≥ n, and i|0 = ∅ to denote the index truncation at

level n, n ≥ 0. Also, for i ∈ A1, we simply use the notation i = i1, that is, without the

parentheses. Similarly, for i = (i1, . . . , in), we will use (i, j) = (i1, . . . , in, j) to denote the

index concatenation operation; if i = ∅ then (i, j) = j .

We iteratively construct the tree as follows. Let N be the number of individuals born to the

root node ∅, N∅ = N , and let {Ni}i∈U be i.i.d. copies of N . Now define

A1 = {i ∈ N+ : 1 ≤ i ≤ N},

An = {(i1, i2, . . . , in) ∈ U : (i1, . . . , in−1) ∈ An−1, 1 ≤ in ≤ N(i1,...,in−1)}.
(2.1)

It follows that the number of individuals Zn = |An| in the nth generation, n ≥ 1, satisfies the

branching recursion

Zn =
∑

i∈An−1

Ni .

Now, we construct the weighted branching tree TQ,C as follows. The root node ∅ is assigned

a vector (Q∅, N∅, C(∅,1), C(∅,2), . . .) = (Q, N, C1, C2, . . .) with N ∈ N ∪ {∞} and P(Q >

0) > 0; N determines the number of nodes in the first generation of T according to (2.1).

Each node in the first generation is then assigned an i.i.d. copy (Qi, Ni, C(i,1), C(i,2), . . .) of

the root vector and the {Ni} are used to define the second generation in T according to (2.1). In

general, for n ≥ 2, to each node i ∈ An−1, we assign an i.i.d. copy (Qi, Ni, C(i,1), C(i,2), . . .)

of the root vector and construct An = {(i, in) ∈ U : i ∈ An−1, 1 ≤ in ≤ Ni}; the vectors

(Qi, Ni, C(i,1), C(i,2), . . .), i ∈ An−1, are chosen independently of all the previously assigned

vectors (Qj , Nj , C(j ,1), C(j ,2), . . .), j ∈ Ak, 0 ≤ k ≤ n − 2. For each node in TQ,C , we also

define the weight �(i1,...,in) via the recursion

�i1 = Ci1 , �(i1,...,in) = C(i1,...,in)�(i1,...,in−1), n ≥ 2,

where � = 1 is the weight of the root node. Note that the weight �(i1,...,in) is equal to the product

of all the weights C(·) along the branch leading to node (i1, . . . , in), as depicted in Figure 1.

In some places, e.g. in the following section, the value of Q may be of no importance, and,

thus, we will consider a weighted branching tree defined by the smaller vector (N, C1, C2, . . .).
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� 1=

Figure 1: Weighted branching tree.

This tree can be obtained from TQ,C by simply disregarding the values for Q(·) and is denoted

by TC .

Studying the tail behavior of the solutions to recursions and fixed-point equations embedded

in this weighted branching tree is the objective of this paper.

3. Implicit renewal theorem on trees

In this section we present an extension of Goldie’s implicit renewal theorem [14] to weighted

branching trees. The observation that facilitates this generalization is the following lemma,

which shows that a certain measure on a tree is actually a product measure; a similar measure

was used in a different context in [9]. Its proof is given in Section 7.1 for completeness.

Throughout the paper, we use the standard convention that 0α log 0 = 0 for all α > 0.

Lemma 3.1. Let TC be the weighted branching tree defined by the nonnegative vector (N, C1,

C2, . . .), where N ∈ N ∪ {∞}. For any n ∈ N and i ∈ An, let Vi = log �i . For α > 0, define

the measure

µn(dt) = eαt E

[

∑

i∈An

1(Vi ∈ dt)

]

, n = 1, 2, . . . ,

and let η(dt) = µ1(dt). Suppose that there exists j ≥ 1 with P(N ≥ j, Cj > 0) > 0 such that

the measure P(log Cj ∈ du, Cj > 0, N ≥ j) is nonarithmetic, 0 < E[
∑N

i=1 Cα
i log Ci] < ∞,

and E[
∑N

i=1 Cα
i ] = 1. Then η(·) is a nonarithmetic probability measure on R that places no

mass at −∞ and has mean

∫ ∞

−∞

uη(du) = E

[ N
∑

j=1

Cα
j log Cj

]

.

Furthermore, µn(dt) = η∗n(dt), where η∗n denotes the nth convolution of η with itself.

We now present a generalization of Goldie’s implicit renewal theorem [14] that will enable

the analysis of recursions on weighted branching trees. Note that, except for the independence

assumption, the random variable R and the vector (N, C1, C2, . . .) are arbitrary, and, therefore,

the applicability of this theorem goes beyond the recursions that we study here. Throughout

the paper, we use g(x) ∼ f (x) as x → ∞ to denote limx→∞ g(x)/f (x) = 1.
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Theorem 3.1. Let (N, C1, C2, . . .) be a nonnegative random vector, where N ∈ N ∪ {∞}.

Suppose that there exists j ≥ 1 with P(N ≥ j, Cj > 0) > 0 such that the measure P(log Cj ∈

du, Cj > 0, N ≥ j) is nonarithmetic. Assume further that 0 < E[
∑N

j=1 Cα
j log Cj ] < ∞,

E[
∑N

j=1 Cα
j ] = 1, E[

∑N
j=1 C

γ

j ] < ∞ for some 0 ≤ γ < α, and that R is independent of

(N, C1, C2, . . .) with E[Rβ ] < ∞ for any 0 < β < α. If

∫ ∞

0

∣

∣

∣

∣

P(R > t) − E

[ N
∑

j=1

1(CjR > t)

]∣

∣

∣

∣

tα−1 dt < ∞ (3.1)

then

P(R > t) ∼ Ht−α as t → ∞,

where 0 ≤ H < ∞ is given by

H =
1

E[
∑N

j=1 Cα
j log Cj ]

∫ ∞

0

vα−1

(

P(R > v) − E

[ N
∑

j=1

1(CjR > v)

])

dv.

Remarks. (i) As pointed out in [14], the statement of Theorem 3.1 only has content when R

has infinite moment of order α, since otherwise the constant H is zero.

(ii) Similarly as in [14], Theorem 3.1 can be generalized to incorporate negative weights {Ci}

at the expense of additional technical complications. However, when the {Ci} ≥ 0 and R is

real valued, we can use exactly the same proof to derive the asymptotics of P(−R > t); we

omit the statement here since our applications do not require it.

(iii) When the {log Ci} are lattice valued, a similar version of Theorem 3.1 can be derived by

using the corresponding renewal theorem for lattice random walks.

(iv) It appears, as noted in [14], that some of the early ideas of applying renewal theory to study

the power-tail asymptotics of autoregressive processes (perpetuities) is due to Kesten [21] and

Grincevičius [15]. The proof given below follows the corresponding proof in [14].

Proof of Theorem 3.1. Let TC be the weighted branching tree defined by the nonnegative

vector (N, C1, C2, . . .). For each i ∈ An and all k ≤ n, define Vi|k = log �i|k; note that

�i|k is independent of Ni|k but not of Ni|s for any 0 ≤ s ≤ k − 1. Also, note that i|n = i

since i ∈ An. Let Fk, k ≥ 1, denote the σ -algebra generated by {(Ni, C(i,1), C(i,2), . . .) : i ∈

Aj , 0 ≤ j ≤ k − 1}, and let F0 = σ(∅, �), �i|0 ≡ 1. Assume also that R is independent of

the entire weighted tree, TC . Then, for any t ∈ R, we can write P(R > et ) via a telescoping

sum as follows (note that all the expectations in (3.2) are finite by Markov’s inequality and (3.6)

below):

P(R > et ) =

n−1
∑

k=0

(

E

[

∑

(i|k)∈Ak

1(�i|kR > et )

]

− E

[

∑

(i|k+1)∈Ak+1

1(�i|k+1R > et )

])

(3.2)

+ E

[

∑

(i|n)∈An

1(�i|nR > et )

]

=

n−1
∑

k=0

E

[

∑

(i|k)∈Ak

(

1(�i|kR > et ) −

Ni|k
∑

j=1

1(�i|kC(i|k,j)R > et )

)]

+ E

[

∑

(i|n)∈An

1(�i|nR > et )

]
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=

n−1
∑

k=0

E

[

∑

(i|k)∈Ak

E

[

1(R > et−Vi|k ) −

Ni|k
∑

j=1

1(C(i|k,j)R > et−Vi|k )

∣

∣

∣

∣

Fk

]]

+ E

[

∑

(i|n)∈An

1(�i|nR > et )

]

.

Now, define the measures µn according to Lemma 3.1, and let

νn(dt) =

n
∑

k=0

µk(dt), g(t) = eαt

(

P(R > et ) − E

[ N
∑

j=1

1(CjR > et )

])

,

r(t) = eαt P(R > et ), and δn(t) = eαt E

[

∑

(i|n)∈An

1(�i|nR > et )

]

.

Recall that R and (Ni|k, C(i|k,1), C(i|k,2), . . .) are independent of Fk , from where it follows

that

E

[

1(R > et−Vi|k ) −

Ni|k
∑

j=1

1(C(i|k,j)R > et−Vi|k )

∣

∣

∣

∣

Fk

]

= eα(Vi|k−t)g(t − Vi|k).

Then, for any t ∈ R and n ∈ N,

r(t) =

n−1
∑

k=0

E

[

∑

(i|k)∈Ak

eαVi|kg(t − Vi|k)

]

+ δn(t) = (g ∗ νn−1)(t) + δn(t).

Next, define the operator f̆ (t) =
∫ t

−∞ e−(t−u)f (u) du and note that

r̆(t) = (ğ ∗ νn−1)(t) + δ̆n(t). (3.3)

Now, we will show that one can let n → ∞ in the preceding identity. To this end, let

η(du) = µ1(du), and note that, by Lemma 3.1, η(·) is a nonarithmetic probability measure on

R that places no mass at −∞ and has mean

µ :=

∫ ∞

−∞

uη(du) = E

[ N
∑

j=1

Cα
j log Cj

]

> 0.

Moreover, by Lemma 3.1,

ν(dt) :=

∞
∑

k=0

eαt E

[

∑

(i|k)∈Ak

1(Vi|k ∈ dt)

]

=

∞
∑

k=0

η∗k(dt) (3.4)

is its renewal measure. Since µ �= 0, then (|f | ∗ ν)(t) < ∞ for all t whenever f is directly

Riemann integrable. By (3.1) we know that g ∈ L1, so, by Lemma 9.1 of [14], ğ is directly

Riemann integrable, resulting in (|ğ| ∗ ν)(t) < ∞ for all t . Thus,

(|ğ| ∗ ν)(t) = E

[ ∞
∑

k=0

∑

(i|k)∈Ak

eαVi|k |ğ(t − Vi|k)|

]

< ∞,
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which implies that E[
∑∞

k=0

∑

(i|k)∈Ak
eαVi|k ğ(t − Vi|k)] exists and, by Fubini’s theorem,

(ğ ∗ ν)(t) = E

[ ∞
∑

k=0

∑

(i|k)∈Ak

eαVi|k ğ(t − Vi|k)

]

=

∞
∑

k=0

E

[

∑

(i|k)∈Ak

eαVi|k ğ(t − Vi|k)

]

= lim
n→∞

(ğ ∗ νn)(t).

To see that δ̆n(t) → 0 as n → ∞ for all fixed t , note that, from the assumptions that

0 < E[
∑N

j=1 Cα
j log Cj ] < ∞, E[

∑N
j=1 Cα

j ] = 1, and E[
∑N

j=1 C
γ

j ] < ∞ for some 0 ≤

γ < α, there exists 0 < β < α such that E[
∑N

j=1 C
β
j ] < 1 (by convexity). Then, for such β,

δ̆n(t) =

∫ t

−∞

e−(t−u)eαu E

[

∑

(i|n)∈An

1(�i|nR > eu)

]

du

≤ e(α−β)t E

[

∑

(i|n)∈An

∫ t

−∞

eβu 1(�i|nR > eu) du

]

= e(α−β)t E

[

∑

(i|n)∈An

∫ min{t,log(�i|nR)}

−∞

eβu du

]

≤
e(α−β)t

β
E

[

∑

(i|n)∈An

(�i|nR)β
]

. (3.5)

It remains to show that the expectation in (3.5) converges to 0 as n → ∞. First note that, from

the independence of R and TC ,

E

[

∑

(i|n)∈An

(�i|nR)β
]

= E[Rβ ] E

[

∑

(i|n)∈An

(�i|n)
β

]

,

where E[Rβ ] < ∞ for 0 < β < α. For the expectation involving �i|n, condition on Fn−1 and

use the independence of (Ni|n−1, C(i|n−1,1), C(i|n−1,2), . . .) from Fn−1 as follows:

E

[

∑

(i|n)∈An

(�i|n)
β

]

= E

[

∑

(i|n−1)∈An−1

E

[Ni|n−1
∑

j=1

(�i|n−1)
βC

β

(i|n−1,j)

∣

∣

∣

∣

Fn−1

]]

= E

[

∑

(i|n−1)∈An−1

(�i|n−1)
β E

[Ni|n−1
∑

j=1

C
β

(i|n−1,j)

∣

∣

∣

∣

Fn−1

]]

= E

[ N
∑

j=1

C
β
j

]

E

[

∑

(i|n−1)∈An−1

(�i|n−1)
β

]

=

(

E

[ N
∑

j=1

C
β
j

])n

(iterating n − 1 times). (3.6)
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Since E[
∑N

j=1 C
β
j ] < 1, then the above converges to 0 as n → ∞. Hence, the preceding

arguments allow us to pass n → ∞ in (3.3), and obtain

r̆(t) = (ğ ∗ ν)(t).

Now, by the key renewal theorem for two-sided random walks (see Theorem 4.2 of [7]),

e−t

∫ et

0

vα P(R > v) dv = r̆(t) →
1

µ

∫ ∞

−∞

ğ(u) du =: H as t → ∞.

Clearly, H ≥ 0 since the left-hand side of the preceding equation is positive, and, thus, by

Lemma 9.3 of [14],

P(R > t) ∼ Ht−α as t → ∞.

Finally,

H =
1

µ

∫ ∞

−∞

∫ u

−∞

e−(u−t)g(t) dt du

=
1

µ

∫ ∞

−∞

etg(t)

∫ ∞

t

e−u du dt

=
1

µ

∫ ∞

−∞

g(t) dt

=
1

µ

∫ ∞

−∞

eαt

(

P(R > et ) − E

[ N
∑

j=1

1(CjR > et )

])

dt

=
1

µ

∫ ∞

0

vα−1

(

P(R > v) − E

[ N
∑

j=1

1(CjR > v)

])

dv.

4. The linear recursion: R =
∑N

i=1 CiRi + Q

Motivated by the information ranking problem on the Internet, e.g. Google’s PageRank

algorithm [19], [27], in this section we apply the implicit renewal theory for trees developed in

the previous section to the linear recursion

R
d
=

N
∑

i=1

CiRi + Q, (4.1)

where (Q, N, C1, C2, . . .) is a nonnegative random vector with N ∈ N ∪ {∞}, P(Q > 0) > 0,

and {Ri}i∈N is a sequence of i.i.d. random variables independent of (Q, N, C1, C2, . . .) with

the same distribution as R. Note that the power tail of R in the critical homogeneous case

(Q ≡ 0) was previously studied in [17] and [23]. In Section 4.3 we will give an alternative

derivation of those results using our method and we will provide pointers to the appropriate

literature.

As for the nonhomogeneous case, the first result we need to establish is the existence and

finiteness of a solution to (4.1). For the purpose of existence, we will provide an explicit

construction of the solution R to (4.1) on a tree. Note that such constructed R will be the main

object of study in this section.

Recall that throughout the paper the convention is to denote the random vector associated

to the root node ∅ by (Q, N, C1, C2, . . .) ≡ (Q∅, N∅, C(∅,1), C(∅,2), . . .).
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We now define the process

W0 = Q, Wn =
∑

i∈An

Qi�i, n ≥ 1, (4.2)

on the weighted branching tree TQ,C , as constructed in Section 2. Define the process {R(n)}n≥0

according to

R(n) =

n
∑

k=0

Wk, n ≥ 0, (4.3)

that is, R(n) is the sum of the weights of all the nodes on the tree up to the nth generation. It is

not hard to see that R(n) satisfies the recursion

R(n) =

N∅
∑

j=1

C(∅,j)R
(n−1)
j + Q∅ =

N
∑

j=1

CjR
(n−1)
j + Q, n ≥ 1, (4.4)

where {R
(n−1)
j } are independent copies of R(n−1) corresponding to the tree starting with

individual j in the first generation and ending on the nth generation; note that R
(0)
j = Qj .

Similarly, since the tree structure repeats itself after the first generation, Wn satisfies

Wn =
∑

i∈An

Qi�i

=

N∅
∑

k=1

C(∅,k)

∑

(k,...,in)∈An

Q(k,...,in)

n
∏

j=2

C(k,...,ij )

d
=

N
∑

k=1

CkW(n−1),k, (4.5)

where {W(n−1),k} is a sequence of i.i.d. random variables independent of (N, C1, C2, . . .) and

having the same distribution as Wn−1.

Next, define the random variable R according to

R := lim
n→∞

R(n) =

∞
∑

k=0

Wk, (4.6)

where the limit is properly defined by (4.3) and monotonicity. Hence, it is easy to verify, by

applying monotone convergence in (4.4), that R must solve

R =

N∅
∑

j=1

C(∅,j)R
(∞)
j + Q∅ =

N
∑

j=1

CjR
(∞)
j + Q,

where {R
(∞)
j }j∈N are i.i.d., have the same distribution as R, and are independent of (Q, N, C1,

C2, . . .).

The derivation provided above implies in particular the existence of a solution in distribution

to (4.1). Moreover, under additional technical conditions, R is the unique solution under

iterations, as we will define and show in the following section. The constructed R, as defined

in (4.6), is the main object of study in the remainder of this section.
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4.1. Moments of Wn and R

In this section we derive estimates for the moments of Wn and R. We start by stating a lemma

about the moments of a sum of random variables. The proofs of Lemmas 4.1, 4.2, and 4.3 are

given in Section 7.2.

Lemma 4.1. For any k ∈ N∪{∞}, let {Ci}
k
i=1 be a sequence of nonnegative random variables

and let {Yi}
k
i=1 be a sequence of nonnegative i.i.d. random variables, independent of the {Ci},

with the same distribution as Y . For β > 1, set p = ⌈β⌉ ∈ {2, 3, 4, . . .}, and if k = ∞, assume

that
∑∞

i=1 CiYi < ∞ almost surely (a.s.). Then,

E

[( k
∑

i=1

CiYi

)β

−

k
∑

i=1

(CiYi)
β

]

≤ (E[Yp−1])β/(p−1) E

[( k
∑

i=1

Ci

)β]

.

Remark. Note that Lemma 4.1 does not exclude the case when E[(
∑k

i=1 CiYi)
β ] = ∞ but

E[(
∑k

i=1 CiYi)
β −

∑k
i=1(CiYi)

β ] < ∞.

We now give estimates for the β-moments of Wn for β ∈ (0, 1] and β > 1 in Lemmas 4.2

and 4.3, respectively. Throughout the rest of the paper, we define ρβ = E[
∑N

i=1 C
β
i ] for any

β > 0, and ρ ≡ ρ1.

Lemma 4.2. For 0 < β ≤ 1 and all n ≥ 0,

E[Wβ
n ] ≤ E[Qβ ]ρn

β .

Lemma 4.3. For β > 1, suppose that E[Qβ ] < ∞, E[(
∑N

i=1 Ci)
β ] < ∞, and ρ ∨ ρβ < 1.

Then, there exists a constant Kβ > 0 such that, for all n ≥ 0,

E[Wβ
n ] ≤ Kβ(ρ ∨ ρβ)n.

Now we are ready to establish the finiteness of moments of the solution R given by (4.6). The

proof of this lemma uses well-known contraction arguments, but for completeness we provide

the details below.

Lemma 4.4. Assume that E[Qβ ] < ∞ for some β > 0. In addition, suppose that either

(i) ρβ < 1 if 0 < β < 1, or

(ii) (ρ ∨ ρβ) < 1 and E[(
∑N

i=1 Ci)
β ] < ∞ if β ≥ 1.

Then, E[Rγ ] < ∞ for all 0 < γ ≤ β, and, in particular, R < ∞ a.s. Moreover, if β ≥ 1,

R(n)
Lβ
−→ R, where Lβ stands for convergence in the (E | · |β)1/β norm.

Remark. It is interesting to observe that, for β > 1, the conditions E[(
∑N

i=1 Ci)
β ] < ∞

and ρβ < 1 are consistent with Theorem 3.1 of [2], Proposition 4 of [17], and Theorem 2.1

of [23], which give the conditions for the finiteness of the β-moment of the solution to the

related critical (ρ1 = 1) homogeneous (Q ≡ 0) equation.

Proof of Lemma 4.4. Let

η =

{

ρβ if β < 1,

ρ ∨ ρβ if β ≥ 1.

Then, by Lemmas 4.2 and 4.3,

E[Wβ
n ] ≤ Kηn for some K > 0.
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538 P. R. JELENKOVIĆ AND M. OLVERA-CRAVIOTO

Suppose that β ≥ 1. Then, by monotone convergence and Minkowski’s inequality,

E[Rβ ] = E

[

lim
n→∞

( n
∑

k=0

Wk

)β]

= lim
n→∞

E

[( n
∑

k=0

Wk

)β]

≤ lim
n→∞

( n
∑

k=0

(E[W
β
k ])1/β

)β

≤ K

( ∞
∑

k=0

ηk/β

)β

< ∞.

This implies that R < ∞ a.s. When 0 < β ≤ 1, use the inequality (
∑n

k=0 yk)
β ≤

∑n
k=0 y

β
k

for any yi ≥ 0 instead of Minkowski’s inequality. Furthermore, for any 0 < γ ≤ β,

E[Rγ ] = E[(Rβ)γ /β ] ≤ (E[Rβ ])γ /β < ∞.

That R(n)
Lβ
−→ R whenever β ≥ 1 follows from noting that

E[|R(n) − R|β ] = E

[( ∞
∑

k=n+1

Wk

)β]

and applying the same arguments used above to obtain the bound

E[|R(n) − R|β ] ≤
Kηn+1

(1 − η1/β)β
.

This completes the proof.

Next, we show that, under some technical conditions, the iteration of recursion (4.1) results

in a process that converges in distribution to R for any initial condition R∗
0 . To this end, consider

a weighted branching tree TQ,C , as defined in Section 2. Now, define

R∗
n := R(n−1) + Wn(R

∗
0), n ≥ 1,

where R(n−1) is given by (4.3),

Wn(R
∗
0) =

∑

i∈An

R∗
0,i�i, (4.7)

and {R∗
0,i}i∈U are i.i.d. copies of an initial value R∗

0 , independent of the entire weighted tree

TQ,C . It follows from (4.4) and (4.7) that, for n ≥ 0,

R∗
n+1 =

N
∑

j=1

CjR
(n−1)
j + Q + Wn+1(R

∗
0) =

N
∑

j=1

Cj

(

R
(n−1)
j +

∑

i∈An,j

R∗
0,i

n
∏

k=2

C(j,...,ik)

)

+ Q,

(4.8)

where {R
(n−1)
j } are independent copies of R(n−1) corresponding to the tree starting with

individual j in the first generation and ending on the nth generation, and An,j is the set of

all nodes in the (n+ 1)th generation that are descendants of individual j in the first generation.
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It follows that

R∗
n+1 =

N
∑

j=1

CjR
∗
n,j + Q,

where {R∗
n,j } are the expressions inside the parenthesis in (4.8). Clearly, {R∗

n,j } are i.i.d. copies

of R∗
n; thus, we show that R∗

n is equal in distribution to the process derived by iterating (4.1)

with an initial condition R∗
0 . The following lemma shows that R∗

n ⇒ R for any initial condition

R∗
0 satisfying a moment assumption, where ‘⇒’ denotes convergence in distribution.

Lemma 4.5. For any initial condition R∗
0 ≥ 0, if E[Qβ ], E[(R∗

0)β ] < ∞, and ρβ =

E[
∑N

i=1 C
β
i ] < 1 for some 0 < β ≤ 1, then

R∗
n ⇒ R,

with E[Rβ ] < ∞. Furthermore, under these assumptions, the distribution of R is the unique

solution with finite β-moment to recursion (4.1).

Proof. Since R(n) → R a.s., the result will follow from Slutsky’s theorem (see Theorem 25.4

of [10, p. 332]) once we show that Wn(R
∗
0) ⇒ 0. To this end, note that Wn(R

∗
0), as defined

by (4.7), is the same as Wn if we substitute the Qi by the R∗
0,i . Then, for every ε > 0, we have

P(Wn(R
∗
0) > ε) ≤ ε−β E[Wn(R

∗
0)β ] ≤ ε−βρn

β E[(R∗
0)β ] (by Lemma 4.2).

Since, by assumption, the right-hand side converges to 0 as n → ∞, then R∗
n ⇒ R. Fur-

thermore, E[Rβ ] < ∞ by Lemma 4.4. Clearly, under the assumptions, the distribution of R

represents the unique solution to (4.1), since any other possible solution with finite β-moment

would have to converge to the same limit.

Remarks. (i) Note that, when E[N ] < 1, the branching tree is a.s. finite and no conditions on

the {Ci} are necessary for R < ∞ a.s. This corresponds to the second condition in Theorem 1

of [11].

(ii) In view of the same theorem from [11], one could possibly establish the convergence of

R∗
n ⇒ R < ∞ under milder conditions. However, since in this paper we only study the power

tails of R, the assumptions of Lemma 4.5 are not restrictive.

(iii) Note that if E[
∑N

i=1 Cα
i ] = 1 with α ∈ (0, 1] then there might not be a 0 < β < α for

which E[
∑N

i=1 C
β
i ] < 1, e.g. the case of deterministic Cis that was studied in [25].

4.2. Main result

We now characterize the tail behavior of the distribution of the solution R to the nonhomo-

geneous equation (4.1), as defined by (4.6).

Theorem 4.1. Let (Q, N, C1, C2, . . .) be a nonnegative random vector, with N ∈ N ∪ {∞}

and P(Q > 0) > 0, and let R be the solution to (4.1) given by (4.6). Suppose that there exists

j ≥ 1 with P(N ≥ j, Cj > 0) > 0 such that the measure P(log Cj ∈ du, Cj > 0, N ≥ j)

is nonarithmetic, and that, for some α > 0, E[Qα] < ∞, 0 < E[
∑N

i=1 Cα
i log Ci] < ∞, and

E[
∑N

i=1 Cα
i ] = 1. In addition, assume that

(a) E[
∑N

i=1 Ci] < 1 and E[(
∑N

i=1 Ci)
α] < ∞ if α > 1, or

(b) E[(
∑N

i=1 C
α/(1+ε)
i )1+ε] < ∞ for some 0 < ε < 1 if 0 < α ≤ 1.
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Then,

P(R > t) ∼ Ht−α as t → ∞,

where 0 ≤ H < ∞ is given by

H =
1

E[
∑N

i=1 Cα
i log Ci]

∫ ∞

0

vα−1

(

P(R > v) − E

[ N
∑

i=1

1(CiR > v)

])

dv

=
E[(

∑N
i=1 CiRi + Q)α −

∑N
i=1(CiRi)

α]

α E[
∑N

i=1 Cα
i log Ci]

.

Remarks. (i) The nonhomogeneous equation has been previously studied for the special case

when Q and the {Ci} are deterministic constants. In particular, Theorem 5 of [25] analyzes the

solutions to (4.1) when Q and the {Ci} are nonnegative deterministic constants, which, when
∑N

i=1 Cα
i = 1, α > 0, implies that Ci ≤ 1 for all i and

∑

i Cα
i log Ci ≤ 0, falling outside the

scope of this paper. The solutions to (4.1) for the case when Q and the Cis are real-valued

deterministic constants were analyzed in [4]. For the recent work (published on arXiv after

the first draft of this paper) that characterizes all the solutions to (4.1) for Q and {Ci} random,

see [3].

(ii) When α > 1, the condition E[(
∑N

i=1 Ci)
α] < ∞ is needed to ensure that the tail of R is not

dominated by N . In particular, if the {Ci} are i.i.d. and independent of N , the condition reduces

to E[Nα] < ∞ since E[Cα] < ∞ is implied by the other conditions; see Theorems 4.2 and 5.4

of [19]. Furthermore, when 0 < α ≤ 1, the condition E[(
∑N

i=1 Ci)
α] < ∞ is redundant since

E[(
∑N

i=1 Ci)
α] ≤ E[

∑N
i=1 Cα

i ] = 1, and the additional condition E[(
∑N

i=1 C
α/(1+ε)
i )1+ε] <

∞ is needed. When the {Ci} are i.i.d. and independent of N , the latter condition reduces to

E[N1+ε] < ∞ (given the other assumptions), which is consistent with Theorem 4.2 of [19].

(iii) Note that the second expression for H is more suitable for actually computing it, especially

in the case of α being an integer, as will be stated in the forthcoming Corollary 4.1. When

α > 1 is not an integer, we can derive an explicit upper bound on H by using Lemma 4.6 below.

Regarding the lower bound, the elementary inequality (
∑k

i=1 xi)
α ≥

∑k
i=1 xα

i for α ≥ 1 and

xi ≥ 0 yields

H ≥
E[Qα]

α E[
∑N

i=1 Cα
i log Ci]

> 0.

Similarly, for 0 < α < 1, using the corresponding inequality (
∑k

i=1 xi)
α ≤

∑k
i=1 xα

i for

0 < α ≤ 1 and xi ≥ 0, we obtain H ≤ E[Qα]/(α E[
∑N

i=1 Cα
i log Ci]).

(iv) Let us also observe that the solution R, given by (4.6), to (4.1) may be a constant

(nonpower law) R = r > 0 when P(r = Q + r
∑N

i=1 Ci) = 1. However, similarly as in (i),

such a solution is excluded from the theorem since P(r = Q + r
∑N

i=1 Ci) = 1 implies that

E[
∑

i Cα
i log Ci] ≤ 0, α > 0.

Before proceeding with the proof of Theorem 4.1, we need the following two technical

results; their proofs are given in Section 7.3. Lemma 4.6 below will also be used in subsequent

sections for other recursions. With some abuse of notation, throughout the paper, we will use

max1≤i≤N xi to denote sup1≤i<N+1 xi in the case N = ∞.
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Lemma 4.6. Suppose that (N, C1, C2, . . .) is a nonnegative random vector with N ∈ N∪{∞},

and let {Ri}i∈N be a sequence of i.i.d. nonnegative random variables independent of (N, C1,

C2, . . .) with the same distribution as R. For α > 0, suppose that
∑N

i=1(CiRi)
α < ∞ a.s. and

E[Rβ ] < ∞ for any 0 < β < α. Furthermore, assume that E[(
∑N

i=1 C
α/(1+ε)
i )1+ε] < ∞ for

some 0 < ε < 1. Then

0 ≤

∫ ∞

0

(

E

[ N
∑

i=1

1(CiRi > t)

]

− P
(

max
1≤i≤N

CiRi > t
)

)

tα−1 dt

=
1

α
E

[ N
∑

i=1

(CiRi)
α −

(

max
1≤i≤N

CiRi

)α
]

< ∞.

Lemma 4.7. Let (Q, N, C1, C2, . . .) be a nonnegative vector with N ∈ N ∪ {∞}, and let {Ri}

be a sequence of i.i.d. random variables, independent of (Q, N, C1, C2, . . .). Suppose that, for

some α > 1, we have E[Qα] < ∞, E[(
∑N

i=1 Ci)
α] < ∞, E[Rβ ] < ∞ for any 0 < β < α,

and
∑N

i=1 CiRi < ∞ a.s. Then

E

[( N
∑

i=1

CiRi + Q

)α

−

N
∑

i=1

(CiRi)
α

]

< ∞.

Proof of Theorem 4.1. By Lemma 4.4, we know that E[Rβ ] < ∞ for any 0 < β < α.

To verify that E[
∑N

i=1 C
γ

i ] < ∞ for some 0 ≤ γ < α, note that if α > 1, we have, by the

assumptions of the theorem and Jensen’s inequality,

E

[ N
∑

i=1

C
γ

i

]

≤ E

[( N
∑

i=1

Ci

)γ ]

≤

(

E

[( N
∑

i=1

Ci

)α])γ /α

< ∞

for any 1 ≤ γ < α. If 0 < α ≤ 1 then, for γ = α(1 + ε/2)/(1 + ε) < α, we have

E

[ N
∑

i=1

C
γ

i

]

≤ E

[( N
∑

i=1

C
α/(1+ε)
i

)1+ε/2]

≤

(

E

[( N
∑

i=1

C
α/(1+ε)
i

)1+ε])(1+ε/2)/(1+ε)

< ∞.

The statement of the theorem with the first expression for H will follow from Theorem 3.1

once we prove that condition (3.1) holds. To this end, define

R∗ =

N
∑

i=1

CiRi + Q.

Then

∣

∣

∣

∣

P(R > t) − E

[ N
∑

i=1

1(CiRi > t)

]∣

∣

∣

∣

≤
∣

∣

∣
P(R > t) − P

(

max
1≤i≤N

CiRi > t
)
∣

∣

∣

+

∣

∣

∣

∣

P
(

max
1≤i≤N

CiRi > t
)

− E

[ N
∑

i=1

1(CiRi > t)

]∣

∣

∣

∣

.
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Since R
d
= R∗ ≥ max1≤i≤N CiRi , the first absolute value disappears. For the second one, note

that

E

[ N
∑

i=1

1(CiRi > t)

]

− P
(

max
1≤i≤N

CiRi > t
)

= E

[ N
∑

i=1

1(CiRi > t)

]

− E
[

1
(

max
1≤i≤N

CiRi > t
)]

≥ 0.

Now it follows that

∣

∣

∣

∣

P(R > t) − E

[ N
∑

i=1

1(CiRi > t)

]∣

∣

∣

∣

≤ P(R > t) − P
(

max
1≤i≤N

CiRi > t
)

+ E

[ N
∑

i=1

1(CiRi > t)

]

− P
(

max
1≤i≤N

CiRi > t
)

. (4.9)

Note that the integral corresponding to (4.9) is finite by Lemma 4.6 if we show that the

assumptions of Lemma 4.6 are satisfied when α > 1. Note that in this case we can choose

ε > 0 such that α/(1 + ε) ≥ 1 and use the inequality

k
∑

i=1

x
β
i ≤

( k
∑

i=1

xi

)β

(4.10)

for β ≥ 1, xi ≥ 0, and k ≤ ∞ to obtain

E

[( N
∑

i=1

C
α/(1+ε)
i

)1+ε]

≤ E

[( N
∑

i=1

Ci

)α]

< ∞.

Therefore, it only remains to show that

∫ ∞

0

(

P(R > t) − P
(

max
1≤i≤N

CiRi > t
))

tα−1 dt < ∞. (4.11)

To see this, note that R
d
= R∗ and 1(R∗ > t) − 1(max1≤i≤N CiRi > t) ≥ 0, and, thus, by

Fubini’s theorem we have

∫ ∞

0

(

P(R > t) − P
(

max
1≤i≤N

CiRi > t
))

tα−1 dt =
1

α
E
[

(R∗)α −
(

max
1≤i≤N

CiRi

)α]

.

If 0 < α ≤ 1, we apply (4.10) to obtain

E
[

(R∗)α −
(

max
1≤i≤N

CiRi

)α]

≤ E

[

Qα +

N
∑

i=1

(CiRi)
α −

(

max
1≤i≤N

CiRi

)α
]

,

which is finite by Lemma 4.6 and the assumption that E[Qα] < ∞.
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If α > 1, we have (
∑k

i=1 xi)
α ≥

∑k
i=1 xα

i , xi ≥ 0, k ≤ ∞, implying that we can split the

expectation as

E
[

(R∗)α −
(

max
1≤i≤N

CiRi

)α]

= E

[

(R∗)α −

N
∑

i=1

(CiRi)
α

]

+ E

[ N
∑

i=1

(CiRi)
α −

(

max
1≤i≤N

CiRi

)α
]

,

which can be done since both expressions inside the expectations on the right-hand side are

nonnegative. The first expectation is finite by Lemma 4.7 and the second expectation is again

finite by Lemma 4.6.

Finally, applying Theorem 3.1 gives

P(R > t) ∼ Ht−α,

where H = (E[
∑N

j=1 Cα
j log Cj ])

−1
∫ ∞

0 vα−1(P(R > v) − E[
∑N

j=1 1(CjR > v)]) dv.

To obtain the second expression for H , note that

∫ ∞

0

vα−1

(

P(R > v) − E

[ N
∑

j=1

1(CjR > v)

])

dv

=

∫ ∞

0

vα−1 E

[

1

( N
∑

i=1

CiRi + Q > v

)

−

N
∑

i=1

1(CiRi > v)

]

dv

= E

[∫ ∞

0

vα−1

(

1

( N
∑

i=1

CiRi + Q > v

)

−

N
∑

i=1

1(CiRi > v)

)

dv

]

(4.12)

= E

[∫

∑N
i=1 CiRi+Q

0

vα−1 dv −

N
∑

i=1

∫ CiRi

0

vα−1 dv

]

(4.13)

=
1

α
E

[( N
∑

i=1

CiRi + Q

)α

−

N
∑

i=1

(CiRi)
α

]

,

where (4.12) is justified by Fubini’s theorem and the integrability of

vα−1

∣

∣

∣

∣

1

( N
∑

i=1

CiRi + Q > v

)

−

N
∑

i=1

1(CiRi > v)

∣

∣

∣

∣

≤ vα−1

(

1

( N
∑

i=1

CiRi + Q > v

)

− 1
(

max
1≤i≤N

CiRi > v
)

)

+ vα−1

( N
∑

i=1

1(CiRi > v) − 1
(

max
1≤i≤N

CiRi > v
)

)

,

which is a consequence of (4.11) and Lemma 4.6; (4.13) follows from the observation that

vα−1 1

( N
∑

i=1

CiRi + Q > v

)

and vα−1
N

∑

i=1

1(CiRi > v)

are each a.s. absolutely integrable with respect to v as well.

This completes the proof.
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As indicated earlier, when α ≥ 1 is an integer, we can obtain the following explicit expression

for H .

Corollary 4.1. For integer α ≥ 1, and under the same assumptions of Theorem 4.1, the constant

H can be explicitly computed as a function of E[Rk], E[Ck], and E[Qk], 0 ≤ k ≤ α − 1. In

particular, for α = 1,

H =
E[Q]

E[
∑N

i=1 Ci log Ci]

and, for α = 2,

H =
E[Q2] + 2 E[R] E[Q

∑N
i=1 Ci] + 2(E[R])2 E[

∑N
i=1

∑N
j=i+1 CiCj ]

2 E[
∑N

i=1 C2
i log Ci]

,

E[R] =
E[Q]

1 − E[
∑N

i=1 Ci]
.

Proof. The proof follows directly from multinomial expansions of the second expression

for H in Theorem 4.1.

4.3. The homogeneous recursion

In this subsection we briefly describe how the methodology developed in the previous

sections can be applied to study the critical, E[
∑N

i=1 Ci] = 1, homogeneous linear recursion

R
d
=

N
∑

i=1

CiRi, (4.14)

where (N, C1, C2, . . .) is a nonnegative random vector with N ∈ N ∪ {∞} and {Ri}i∈N is a

sequence of i.i.d. random variables independent of (N, C1, C2, . . .) with the same distribution

as R. This equation has been studied extensively in the literature under various different

assumptions; for recent results, see [2], [17], [23], and the references therein.

Based on the model from Section 4 we can construct a solution to (4.14) as follows. Consider

the process {Wn}n≥0 defined by (4.2) with Qi ≡ 1. Then, the {Wn} satisfy in distribution the

homogeneous recursion in (4.5) and, given that E[
∑N

i=1 Ci] = 1, we have E[Wn] = 1. Hence,

{Wn}n≥0 is a nonnegative martingale and, by the martingale convergence theorem, Wn → R

a.s. with E[R] ≤ 1. Next, provided that

E

[ N
∑

i=1

Ci log Ci

]

< 0 and E

[( N
∑

i=1

Ci

)

log+

( N
∑

i=1

Ci

)]

< ∞,

it can be shown that E[R] = 1; see Theorem 1.1(d) of [2] (see also Theorem 2 of [23]). Here

log+ x = max(log x, 0). Furthermore, as argued in Equation (1.9) of [2], it can easily be

shown that this R is a solution to (4.14). Note that the same construction of the solution R on a

branching tree was given in [2] and [23]. Since the solutions to (4.14) are scale invariant, this

construction also shows that, for any m > 0, there is a solution R with mean m; or, equivalently,

it is enough to study the solutions with mean 1. Moreover, under additional assumptions, it can

be shown that this constructed R is the only solution with mean 1, see, e.g. [17], [22], and [23].

However, it is not the objective of this section to study the uniqueness of this solution, rather we

focus on studying the tail behavior of any such possible solution (since our Theorem 3.1 does
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not require the uniqueness of R). As a side note, we point out that (4.14) can have solutions if

E[
∑N

i=1 C
β
i ] = 1 for some 0 < β < 1, as studied in [17] and [22].

A version of the following theorem, with a possibly less explicit constant, was previously

proved in Theorem 2.2 of [23] and Proposition 7 of [17]; they also studied the lattice case.

Regarding the lattice case, as pointed out earlier in the remark after Theorem 3.1, all the results

in this paper can be developed for this case as well by using the corresponding renewal theorem.

Theorem 4.2. Suppose that there exists j ≥ 1 with P(N ≥ j, Cj > 0) > 0 such that the mea-

sure P(log Cj ∈ du, Cj > 0, N ≥ j) is nonarithmetic. Suppose further that, for some α > 1,

E[(
∑N

i=1 Ci)
α] < ∞, E[

∑N
i=1 Cα

i log+ Ci] < ∞, and E[
∑N

i=1 Ci] = E[
∑N

i=1 Cα
i ] = 1.

Then, (4.14) has a solution R with 0 < E[R] < ∞ such that

P(R > t) ∼ Ht−α as t → ∞,

where 0 ≤ H < ∞ is given by

H =
1

E[
∑N

i=1 Cα
i log Ci]

∫ ∞

0

vα−1

(

P(R > v) − E

[ N
∑

i=1

1(CiR > v)

])

dv

=
E[(

∑N
i=1 CiRi)

α −
∑N

i=1(CiRi)
α]

α E[
∑N

i=1 Cα
i log Ci]

.

Furthermore, if P(Ñ ≥ 2) > 0, Ñ =
∑N

i=1 1(Ci > 0), then H > 0.

Proof. By the assumptions, the function ϕ(θ) := E[
∑N

i=1 Cθ
j ] is convex, finite, and contin-

uous on [1, α], since ϕ(1) = ϕ(α) = 1. Furthermore, by standard arguments, it can be shown

that both ϕ′(θ) and ϕ′′(θ) exist on the open interval (1, α) and, in particular,

ϕ′′(θ) = E

[ N
∑

i=1

Cθ
i (log Ci)

2

]

.

Clearly, ϕ′′(θ) > 0 provided that P(Ci ∈ {0, 1}, 1 ≤ i ≤ N) < 1. To see that this is indeed

the case, note that E[
∑N

i=1 Ci] = 1 implies that P(Ci ≡ 0, 1 ≤ i ≤ N) < 1, which, combined

with the nonarithmetic assumption, yields P(Ci ∈ {0, 1}, 1 ≤ i ≤ N) < 1. Hence, there exist

1 < θ1 < θ2 < α such that ϕ′(θ1) < 0 and ϕ′(θ2) > 0, implying by the monotonicity of ϕ′(·)

and monotone convergence that

0 < ϕ′(α−) = E

[ N
∑

i=1

Cα
i log Ci

]

≤ E

[ N
∑

i=1

Cα
i log+ Ci

]

< ∞ (4.15)

and ϕ′(1+) = E

[ N
∑

i=1

Ci log Ci

]

< 0.

From the last expression and the observation E[(
∑N

i=1 Ci) log+(
∑N

i=1 Ci)] < ∞ (implied by

E[(
∑N

i=1 Ci)
α] < ∞) it follows, as argued at the beginning of this section, that recursion (4.14)

has a solution with finite positive mean; see Theorem 1.1(d) and Equation (1.9) of [2] (see also

Theorem 2 of [23]).

Next, in order to apply Theorem 3.1, we use (4.15) and E[Rβ ] < ∞ for any 0 < β < α; the

latter follows from Theorem 3.1 of [2] and the strict convexity of ϕ(·) argued above (see also
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Proposition 4 of [17] and Theorem 2.1 of [23]). The rest of the proof, except for the H > 0

part, proceeds exactly as that of Theorem 4.1 by setting Q ≡ 0.

Regarding the H > 0 statement, the assumption that P(Ñ ≥ 2) > 0 implies that there exist

1 ≤ n ≤ ∞ and 1 ≤ i1 < i2 < n + 1 such that P(N = n, Ci1 > 0, Ci2 > 0) > 0, which

further yields, for some δ > 0,

P(N ≥ i2, Ci1 > δ, Ci2 > δ) > 0. (4.16)

Next, by using the inequality (x1 + x2)
α ≥ xα

1 + xα
2 for x1, x2 ≥ 0 and α > 1, the second

expressions for H in the theorem can be bounded from below by

H ≥
E[1(N ≥ i2)((Ci1Ri1 + Ci2Ri2)

α − (Ci1Ri1)
α − (Ci2Ri2)

α)]

α E[
∑N

i=1 Cα
i log Ci]

. (4.17)

To further bound the numerator in (4.17), we define the function

f (x) = (1 + x)α − 1 − xα − cxα−ε,

where 0 < ε < α − 1, 0 < c < 2γ − 1, and γ = α − 1 − ε. It can be shown that f (x) ≥ 0

for x ∈ [0, 1], since f (0) = 0 and f ′(x) ≥ αxγ ((1 + 1/x)γ − 1 − c) ≥ 0 on [0, 1]. Hence,

by using the inequality f (x) ≥ 0, we derive, for x1 ≥ 0, x2 ≥ 0, max{x1, x2} > 0, and

x = min{x1, x2}/max{x1, x2},

(x1 + x2)
α − xα

1 − xα
2 = (max{x1, x2})

α((1 + x)α − 1 − xα)

≥ c(max{x1, x2})
αxα−ε

≥ c(min{x1, x2})
α;

the inequality clearly holds even if max{x1, x2} = 0 since both of its sides are zero. Thus, by

applying this last inequality to (4.17) and using (4.16), we obtain

H ≥
c E[1(N ≥ i2)(min{Ci1Ri1 , Ci2Ri2})

α]

α E[
∑N

i=1 Cα
i log Ci]

≥
cδα P(N ≥ i2, Ci1 > δ, Ci2 > δ) E[(min{Ri1 , Ri2})

α]

α E[
∑N

i=1 Cα
i log Ci]

> 0.

This completes the proof.

Remarks. (i) Note that the assumptions of Theorem 4.2 differ slightly from those of Theo-

rem 4.1 in the condition

0 < E

[ N
∑

i=1

Cα
i log Ci

]

< ∞,

which is implied by E[
∑N

i=1 Cα
i log+ Ci] < ∞, the strict convexity of ϕ(θ) = E[

∑N
i=1 Cθ

i ]

and the hypothesis that ϕ(1) = ϕ(α) = 1, as argued in the preceding proof.

(ii) The assumption that P(Ñ ≥ 2) > 0 is the minimal one to ensure the existence of a nontrivial

solution; see conditions (H0) of [22] and (C4) of [2]. Otherwise, when P(Ñ ≤ 1) = 1, Wn is a

simple multiplicative random walk with no branching; clearly, in this case our expression for
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H reduces to 0. Also, if P(
∑N

i=1 Ci = 1) = 1, R can only be a constant; see the remark

above Theorem 2.1 of [23]. However, this last case is excluded from the theorem since

P(
∑N

i=1 Ci = 1) = 1 implies that Ci ≤ 1 a.s., which, in conjunction with ϕ(α) = 1, α > 1,

yields P(Ci ∈ {0, 1}, 1 ≤ i ≤ N) = 1, but this cannot happen due to the nonarithmetic

assumption.

(iii) Note also that condition (C3) of [2] (equivalent to P(Ci ∈ {0, 1}, 1 ≤ i ≤ N) < 1 in our

notation) is implied by the nonarithmetic assumption of our theorem. Interestingly enough, if

this last condition fails, Lemma 1.1 of [22] shows that (4.14) has no nontrivial solutions.

(iv) As stated earlier, a version of Theorem 4.2 was proved in Theorem 2.2 of [23] by trans-

forming recursion (4.14) into a first-order difference (autoregressive/perpetuity) equation on

a different probability space; see Lemma 4.1 of [23]. However, it appears that the method

from [23] does not extend to the nonhomogeneous and nonlinear problems that we cover

here, since the proof of Lemma 4.1 of [23] critically depends on having both E[R] = 1 and

E[
∑N

i=1 Ci] = 1.

Similarly as in Corollary 4.1, the constant H can be computed explicitly for an integer α ≥ 2.

Corollary 4.2. For an integer α ≥ 2, and under the same assumptions of Theorem 4.2, the

constant H can be explicitly computed as a function of E[Rk] and E[Ck], 1 ≤ k ≤ α − 1. In

particular, for α = 2,

H =
E[

∑N
i=1

∑N
j=i+1 CiCj ]

E[
∑N

i=1 C2
i log Ci]

.

Proof. The proof follows directly from multinomial expansions of the second expression

for H in Theorem 4.2.

We also want to point out that, for a general noninteger α > 1, we can use Lemma 4.1 to

obtain the following bound for H :

H ≤
(E[Rp−1])α/(p−1) E[(

∑N
i=1 Ci)

α]

α E[
∑N

i=1 Cα
i log Ci]

.

Here p = ⌈α⌉.

5. The maximum recursion: R = (
∨N

i=1 CiRi) ∨ Q

In order to show the general applicability of the implicit renewal theorem, we study in this

section the nonlinear recursion

R
d
=

( N
∨

i=1

CiRi

)

∨ Q, (5.1)

where (Q, N, C1, C2, . . .) is a nonnegative random vector with N ∈ N ∪ {∞}, P(Q > 0) > 0,

and {Ri}i∈N is a sequence of i.i.d. random variables independent of (Q, N, C1, C2, . . .) with

the same distribution as R. Note that in the case of page-ranking applications, where the {Ri}

represent the ranks of the neighboring pages, the potential ranking algorithm defined by the

preceding recursion determines the rank of a page as a weighted version of the most highly

ranked neighboring page. In other words, the highest ranked reference has the dominant impact.

Similarly to the homogeneous linear case, this recursion was previously studied in [5] under
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the assumptions that Q ≡ 0, N = ∞, and the {Ci} are real-valued deterministic constants. The

more closely related case of Q ≡ 0 and {Ci} ≥ 0 being random was studied earlier in [18].

Furthermore, these max-type stochastic recursions appear in a wide variety of applications,

ranging from the average case analysis of algorithms to statistical physics; see [1] for a recent

survey.

Using standard arguments, we start by constructing a solution to (5.1) on a tree and then we

show that this solution is finite a.s. and unique under iterations and some moment conditions,

similarly to what was done for the nonhomogeneous linear recursion in Section 4. Our main

result of this section is stated in Theorem 5.1.

Using the same notation as in Section 4, define the process

Vn =
∨

i∈An

Qi�i, n ≥ 0, (5.2)

on the weighted branching tree TQ,C , as constructed in Section 2. Recall that the conven-

tion is that (Q, N, C1, C2, . . .) = (Q∅, N∅, C(∅,1), C(∅,2), . . .) denotes the random vector

corresponding to the root node.

With a possible abuse of notation relative to Section 4, define the process {R(n)}n≥0 accord-

ing to

R(n) =

n
∨

k=0

Vk, n ≥ 0.

Just as with the linear recursion from Section 4, it is not hard to see that R(n) satisfies the

recursion

R(n) =

(N∅
∨

j=1

C(∅,j)R
(n−1)
j

)

∨ Q∅ =

( N
∨

j=1

CjR
(n−1)
j

)

∨ Q, (5.3)

where {R
(n−1)
j } are independent copies of R(n−1) corresponding to the tree starting with

individual j in the first generation and ending on the nth generation. We can also verify

that

Vn =

N∅
∨

k=1

C(∅,k)

∨

(k,...,in)∈An

Q(k,...,in)

n
∏

j=2

C(k,...,ij )
d
=

N
∨

k=1

CkV(n−1),k,

where {V(n−1),k} is a sequence of i.i.d. random variables independent of (N, C1, C2, . . .) and

having the same distribution as Vn−1.

We now define the random variable R according to

R := lim
n→∞

R(n) =

∞
∨

k=0

Vk. (5.4)

Note that R(n) is monotone increasing sample pathwise, so R is well defined. Also, by the

monotonicity of R(n), (5.3), and monotone convergence, we find that R solves

R =

(N∅
∨

j=1

C(∅,j)R
(∞)
j

)

∨ Q∅ =

( N
∨

j=1

CjR
(∞)
j

)

∨ Q,

where {R
(∞)
j }j∈N are i.i.d. copies of R, independent of (Q, N, C1, C2, . . .). Clearly, this

implies that R, as defined by (5.4), is a solution in distribution to (5.1). However, this solution
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might be ∞. Now, we establish the finiteness of the moments of R and, in particular, the fact

that R < ∞ a.s. in the following lemma; its proof uses standard contraction arguments, but is

included for completeness.

Lemma 5.1. Assume that ρβ = E[
∑N

i=1 C
β
i ] < 1 and E[Qβ ] < ∞ for some β > 0. Then,

E[Rγ ] < ∞ for all 0 < γ ≤ β, and, in particular, R < ∞ a.s. Moreover, if β ≥ 1, R(n)
Lβ
→ R,

where Lβ stands for convergence in the (E | · |β)1/β norm.

Proof. By following the same steps leading to (3.6), we obtain, for any k ≥ 0,

E[V
β
k ] = E

[

∨

i∈Ak

Q
β

i �
β

i

]

≤ E

[

∑

i∈Ak

Q
β

i �
β

i

]

= E[Qβ ]ρk
β . (5.5)

Hence,

E[Rβ ] = E

[ ∞
∨

k=0

V
β
k

]

≤ E

[ ∞
∑

k=0

V
β
k

]

≤
E[Qβ ]

1 − ρβ

< ∞,

implying that E[Rγ ] < ∞ for all 0 < γ ≤ β.

That R(n)
Lβ
−→ R whenever β ≥ 1 follows from noting that

E[|R(n) − R|β ] ≤ E

[( ∞
∨

k=n+1

Vk

)β]

≤ E

[ ∞
∑

k=n+1

V
β
k

]

and applying the preceding geometric bound for E[V
β
k ].

Just as with the linear recursion from Section 4, we can define the process {R∗
n} as

R∗
n := R(n−1) ∨ Vn(R

∗
0), n ≥ 1,

where

Vn(R
∗
0) =

∨

i∈An

R∗
0,i�i (5.6)

and {R∗
0,i}i∈U are i.i.d. copies of an initial value R∗

0 , independent of the entire weighted tree

TQ,C . It follows from (5.3) and (5.6) that

R∗
n+1 =

N
∨

j=1

Cj

(

R
(n−1)
j ∨

∑

i∈An,j

R∗
0,i

n
∏

k=2

C(j,...,ik)

)

+ Q =

N
∨

j=1

CjR
∗
n,j ∨ Q,

where {R
(n−1)
j } are independent copies of R(n−1) corresponding to the tree starting with

individual j in the first generation and ending on the nth generation, and An,j is the set of

all nodes in the (n+ 1)th generation that are descendants of individual j in the first generation.

Moreover, {R∗
n,j } are i.i.d. copies of R∗

n, and, thus, R∗
n is equal in distribution to the process

obtained by iterating (5.1) with an initial condition R∗
0 . This process can be shown to converge

in distribution to R for any initial condition R∗
0 satisfying the following moment condition.

Lemma 5.2. For any R∗
0 ≥ 0, if E[Qβ ], E[(R∗

0)β ] < ∞, and ρβ < 1 for some β > 0, then

R∗
n ⇒ R,

with E[Rβ ] < ∞. Furthermore, under these assumptions, the distribution of R is the unique

solution with finite β-moment to recursion (5.1).
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550 P. R. JELENKOVIĆ AND M. OLVERA-CRAVIOTO

Proof. The result will follow from Slutsky’s theorem (see Theorem 25.4 of [10, p. 332])

once we show that Vn(R
∗
0) ⇒ 0. To this end, recall that Vn(R

∗
0) is the same as Vn if we

substitute the Qi by the R∗
0,i . Then, for every ε > 0, we have

P(Vn(R
∗
0) > ε) ≤ ε−β E[Vn(R

∗
0)β ] ≤ ε−βρn

β E[(R∗
0)β ] (by (5.5)).

Since, by assumption, the right-hand side converges to 0 as n → ∞, then R∗
n ⇒ R. Fur-

thermore, E[Rβ ] < ∞ by Lemma 5.1. Clearly, under the assumptions, the distribution of R

represents the unique solution to (5.1), since any other possible solution with finite β-moment

would have to converge to the same limit.

Now we are ready to state the main result of this section.

Theorem 5.1. Let (Q, N, C1, C2, . . .) be a nonnegative random vector, with N ∈ N ∪ {∞}

and P(Q > 0) > 0, and let R be the solution to (5.1) given by (5.4). Suppose that there exists

j ≥ 1 with P(N ≥ j, Cj > 0) > 0 such that the measure P(log Cj ∈ du, Cj > 0, N ≥ j)

is nonarithmetic, and that, for some α > 0, E[Qα] < ∞, 0 < E[
∑N

i=1 Cα
i log Ci] < ∞, and

E[
∑N

i=1 Cα
i ] = 1. In addition, assume that

(a) E[(
∑N

i=1 Ci)
α] < ∞ if α > 1, or

(b) E[(
∑N

i=1 C
α/(1+ε)
i )1+ε] < ∞ for some 0 < ε < 1 if 0 < α ≤ 1.

Then

P(R > t) ∼ Ht−α as t → ∞,

where 0 ≤ H < ∞ is given by

H =
1

E[
∑N

i=1 Cα
i log Ci]

∫ ∞

0

vα−1

(

P(R > v) − E

[ N
∑

i=1

1(CiR > v)

])

dv

=
E[(

∨N
i=1 CiRi)

α ∨ Qα −
∑N

i=1(CiRi)
α]

α E[
∑N

i=1 Cα
i log Ci]

.

Proof. By Lemma 5.1 we know that E[Rβ ] < ∞ for any 0 < β < α. By the same

arguments used in the proof of Theorem 4.1 we obtain E[
∑N

i=1 C
γ

i ] < ∞ for some 0 ≤ γ < α.

The statement of the theorem with the first expression for H will follow from Theorem 3.1

once we prove that condition (3.1) holds. Define

R∗ =

( N
∨

i=1

CiRi

)

∨ Q.

Then,

∣

∣

∣

∣

P(R > t) − E

[ N
∑

i=1

1(CiRi > t)

]∣

∣

∣

∣

≤
∣

∣

∣
P(R > t) − P

(

max
1≤i≤N

CiRi > t
)
∣

∣

∣

+

∣

∣

∣

∣

P
(

max
1≤i≤N

CiRi > t
)

− E

[ N
∑

i=1

1(CiRi > t)

]∣

∣

∣

∣

.

Since R
d
= R∗ ≥ max1≤i≤N CiRi , the first absolute value disappears. The integral correspond-

ing to the second term is finite by Lemma 4.6, just as in the proof of Theorem 4.1. To see that
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the integral corresponding to the first term,

∫ ∞

0

(

P(R > t) − P
(

max
1≤i≤N

CiRi > t
))

tα−1 dt,

is finite, we proceed as in the proof of Theorem 4.1. First we use Fubini’s theorem to obtain

∫ ∞

0

(

P(R > t) − P
(

max
1≤i≤N

CiRi > t
))

tα−1 dt =
1

α
E
[

(R∗)α −
(

max
1≤i≤N

CiRi

)α]

=
1

α
E

[( N
∨

i=1

CiRi

)α

∨ Qα −

( N
∨

i=1

CiRi

)α]

≤
E[Qα]

α
.

Now, applying Theorem 3.1 gives P(R > t) ∼ Ht−α, where H = (E[
∑N

j=1C
α
j log Cj ])

−1×
∫ ∞

0 vα−1(P(R > v) − E[
∑N

j=1 1(CjR > v)]) dv.

The same steps used in the proof of Theorem 4.1 give the second expression for H .

6. Other recursions and concluding remarks

As an illustration of the generality of the methodology presented in this paper, we mention

in this section other recursions that fall within its scope. One example that is closely related to

the recursions from Sections 4 and 5 is

R
d
=

( N
∨

i=1

CiRi

)

+ Q, (6.1)

where (Q, N, C1, C2, . . .) is a nonnegative vector with N ∈ N ∪ {∞}, P(Q > 0) > 0, and

{Ri}i∈N is a sequence of i.i.d. random variables independent of (Q, N, C1, C2, . . .) with the

same distribution as R. Recursion (6.1) was termed ‘discounted tree sums’ in [1]; for additional

details on the existence and uniqueness of its solution, see Section 4.4 of [1].

Similarly as in [14], it appears that one could study other nonlinear recursions on trees using

implicit renewal theory. For example, one could analyze the solution to the equation

R
d
=

N
∑

i=1

(CiRi + Bi

√

Ri) + Q,

where (Q, N, C1, C2, . . .) is a nonnegative vector with N ∈ N ∪ {∞}, P(Q > 0) > 0, and

{R, Ri}i≥1 is a sequence of i.i.d. random variables independent of (Q, N, C1, C2, . . .). Here, the

primary difficulty would be in establishing the existence and uniqueness of the solution as well

as the finiteness of the moments.

7. Proofs

7.1. Implicit renewal theorem on trees

We give in this section the proof of Lemma 3.1.

https://doi.org/10.1239/aap/1339878723 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1339878723
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Proof of Lemma 3.1. Observe that the measure E[
∑N

i=1 1(log Ci ∈ du, Ci > 0)] is non-

arithmetic (nonlattice) by our assumption since if we assume to the contrary that it is lattice on

a lattice set L then on the complement Lc of this set we have

0 = E

[ N
∑

i=1

1(log Ci ∈ Lc, Ci > 0)

]

≥ P(log Cj ∈ Lc, Cj > 0, N ≥ j) > 0,

which is a contradiction. Hence, η is nonarithmetic as well, and it places no mass at −∞ due

to the exponential term eαu. To see that it is a probability measure, note that

∫ ∞

−∞

η(du) =

∫ ∞

−∞

eαu E

[ N
∑

j=1

1(log Cj ∈ du)

]

= E

[ N
∑

j=1

∫ ∞

−∞

eαu 1(log Cj ∈ du)

]

(by Fubini’s theorem)

= E

[ N
∑

j=1

Cα
j

]

= 1.

Similarly, its mean is given by

∫ ∞

−∞

uη(du) = E

[ N
∑

j=1

Cα
j log Cj

]

.

To show that µn = η∗n, we proceed by induction. Let Fn denote the σ -algebra generated

by {(Ni, C(i,1), C(i,2), . . .) : i ∈ Aj , 0 ≤ j ≤ n − 1}, F0 = σ(∅, �), and, for each i ∈ An,

set Vi = log �i . Hence, using this notation, we derive

µn+1((−∞, t]) =

∫ t

−∞

eαu E

[

∑

i∈An

Ni
∑

j=1

1(Vi + log C(i,j) ∈ du)

]

=

∫ t

−∞

eαu E

[

∑

i∈An

E

[ Ni
∑

j=1

1(Vi + log C(i,j) ∈ du)

∣

∣

∣

∣

Fn

]]

= E

[

∑

i∈An

eαVi

∫ t

−∞

eα(u−Vi ) E

[ Ni
∑

j=1

1(log C(i,j) ∈ du − Vi)

∣

∣

∣

∣

Fn

]]

= E

[

∑

i∈An

eαVi η((−∞, t − Vi])

]

=

∫ ∞

−∞

η((−∞, t − v])µn(dv),

where in the fourth equality we used the independence of (Ni, C(i,1), C(i,2), . . .) from Fn.

Therefore, µn+1(dt) = (η ∗ µn)(dt) and the induction hypothesis gives the result.
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7.2. Moments of Wn

In this section we prove Lemmas 4.1, 4.2, and 4.3. We also include a result that provides

bounds for E[W
p
n ] for integer p, which will be used in the proof of Lemma 4.3.

Proof of Lemma 4.1. Let p = ⌈β⌉ ∈ {2, 3, . . .} and γ = β/p ∈ (β/(β + 1), 1]. Suppose

first that k ∈ N, and define Ap(k) = {(j1, . . . , jk) ∈ N
k : j1 + · · · + jk = p, 0 ≤ ji < p}.

Then, for any sequence of nonnegative numbers {yi}i≥1, we have

( k
∑

i=1

yi

)β

=

( k
∑

i=1

yi

)pγ

=

( k
∑

i=1

y
p
i +

∑

(j1,...,jk)∈Ap(k)

(

p

j1, . . . , jk

)

y
j1

1 · · · y
jk

k

)γ

≤

k
∑

i=1

y
pγ

i +

(

∑

(j1,...,jk)∈Ap(k)

(

p

j1, . . . , jk

)

y
j1

1 · · · y
jk

k

)γ

, (7.1)

where for the last step we used the well-known inequality (
∑k

i=1 xi)
γ ≤

∑k
i=1 x

γ

i for 0 < γ ≤ 1

and xi ≥ 0. We now use the conditional Jensen inequality to obtain

E

[( k
∑

i=1

CiYi

)β

−

k
∑

i=1

(CiYi)
β

]

≤ E

[(

∑

(j1,...,jk)∈Ap(k)

(

p

j1, . . . , jk

)

(C1Y1)
j1 · · · (CkYk)

jk

)γ ]

(by (7.1))

≤ E

[(

E

[

∑

(j1,...,jk)∈Ap(k)

(

p

j1, . . . , jk

)

(C1Y1)
j1 · · · (CkYk)

jk

∣

∣

∣

∣

C1, . . . , Ck

])γ ]

= E

[(

∑

(j1,...,jk)∈Ap(k)

(

p

j1, . . . , jk

)

C
j1

1 · · · C
jk

k E[Y
j1

1 · · · Y
jk

k | C1, . . . , Ck]

)γ ]

.

Since {Yi} is a sequence of i.i.d. random variables having the same distribution as Y , independent

of the Cis, we have

E[Y
j1

1 · · · Y
jk

k | C1, . . . , Ck] = E[Y
j1

1 · · · Y
jk

k ] = ‖Y‖
j1

j1
· · · ‖Y‖

jk

jk
,

where ‖Y‖κ = (E[|Y |κ ])1/κ for κ ≥ 1 and ‖Y‖0 := 1. Since ‖Y‖κ is increasing for κ ≥ 1,

it follows that ‖Y‖
ji

ji
≤ ‖Y‖

ji

p−1. Hence, ‖Y‖
j1

j1
· · · ‖Y‖

jk

jk
≤ ‖Y‖

p
p−1, which in turn implies that

E

[( k
∑

i=1

CiYi

)β

−

k
∑

i=1

(CiYi)
β

]

≤ E

[(

∑

(j1,...,jk)∈Ap(k)

(

p

j1, . . . , jk

)

C
j1

1 · · · C
jk

k ‖Y‖
p
p−1

)γ ]

= ‖Y‖
β
p−1 E

[(( k
∑

i=1

Ci

)p

−

k
∑

i=1

C
p
i

)γ ]

≤ ‖Y‖
β
p−1 E

[( k
∑

i=1

Ci

)β]

.

This completes the proof for finite k.
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When k = ∞, first note that, from the well-known inequality (x1 + x2)
β ≥ x

β
1 + x

β
2 for

x1, x2 ≥ 0 and β > 1, we obtain the monotonicity in k of the following difference:

(k+1
∑

i=1

CiYi

)β

−

k+1
∑

i=1

(CiYi)
β ≥

( k
∑

i=1

CiYi

)β

−

k
∑

i=1

(CiYi)
β ≥ 0.

Hence,

E

[( ∞
∑

i=1

CiYi

)β

−

∞
∑

i=1

(CiYi)
β

]

= lim
k→∞

E

[(( k
∑

i=1

CiYi

)β

−

k
∑

i=1

(CiYi)
β

)]

(7.2)

≤ lim
k→∞

E

[(

∑

(j1,...,jk)∈Ap(k)

(

p

j1, . . . , jk

)

(C1Y1)
j1 · · · (CkYk)

jk

)γ ]

≤ lim
k→∞

‖Y‖
β
p−1 E

[( k
∑

i=1

Ci

)β]

= ‖Y‖
β
p−1 E

[( ∞
∑

i=1

Ci

)β]

, (7.3)

where (7.2) and (7.3) are justified by monotone convergence.

Proof of Lemma 4.2. We use the well-known inequality (
∑k

i=1 yi)
β ≤

∑k
i=1 y

β
i for 0 <

β ≤ 1, yi ≥ 0, and k ≤ ∞, to obtain

E[Wβ
n ] = E

[( N
∑

i=1

CiW(n−1),i

)β]

≤ E

[ N
∑

i=1

C
β
i W

β

(n−1),i

]

= E[W
β
n−1]ρβ (by conditioning on N, Ci and Fubini’s theorem)

≤ ρn
β E[W

β
0 ] (iterating n times)

= ρn
β E[Qβ ].

Before proving the moment inequality for generalβ > 1, we will show first the corresponding

result for integer moments.

Lemma 7.1. Let p ∈ {2, 3, . . .}, and recall that ρp = E[
∑N

i=1 C
p
i ], ρ ≡ ρ1. Suppose that

E[Qp] < ∞, E[(
∑N

i=1 Ci)
p] < ∞, and ρ ∨ ρp < 1. Then, there exists a constant Kp > 0

such that

E[W
p
n ] ≤ Kp(ρ ∨ ρp)n for all n ≥ 0.
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Proof. We will give an induction proof in p. For p = 2, we have

E[W 2
n ] = E

[( N
∑

i=1

CiW(n−1),i

)2]

= E

[ N
∑

i=1

C2
i W 2

(n−1),i +
∑

i �=j

CiW(n−1),iCjW(n−1),j

]

= E[W 2
n−1] E

[ N
∑

i=1

C2
i

]

+ (E[Wn−1])
2 E

[

∑

i �=j

CiCj

]

(by conditioning on N, Ci and Fubini’s theorem)

≤ ρ2 E[W 2
n−1] + E

[( N
∑

i=1

Ci

)2]

(E[Wn−1])
2.

Using the preceding recursion and noting that

E[Wn−1] = ρn−1 E[Q],

we obtain

E[W 2
n ] ≤ ρ2 E[W 2

n−1] + Kρ2(n−1), (7.4)

where K = E[(
∑N

i=1 Ci)
2](E[Q])2. Now, iterating (7.4) gives

E[W 2
n ] ≤ ρ2(ρ2 E[W 2

n−2] + Kρ2(n−2)) + Kρ2(n−1)

≤ ρn−1
2 (ρ2 E[W 2

0 ] + K) + K

n−2
∑

i=0

ρi
2 ρ2(n−1−i)

= ρn
2 E[Q2] + K

n−1
∑

i=0

ρi
2ρ

2(n−1−i)

≤ (ρ2 ∨ ρ)n E[Q2] + K(ρ2 ∨ ρ)n
n−1
∑

i=0

(ρ2 ∨ ρ)n−i−2

≤

(

E[Q2] +
K

ρ2 ∨ ρ

∞
∑

j=0

(ρ2 ∨ ρ)j
)

(ρ2 ∨ ρ)n

= K2(ρ2 ∨ ρ)n,

which completes the p = 2 case.

Suppose now that there exists a constant Kp−1 > 0 such that E[W
p−1
n ] ≤ Kp−1(ρp−1 ∨ρ)n

for all n ≥ 0. Then, by Lemmas 4.1 and 4.2, we have

E[W
p
n ] = E

[( N
∑

i=1

CiW(n−1),i

)p

−

N
∑

i=1

C
p
i W

p

(n−1),i

]

+ E

[ N
∑

i=1

C
p
i W

p

(n−1),i

]

≤ (E[W
p−1
n−1 ])p/(p−1) E

[( N
∑

i=1

Ci

)p]

+ E

[ N
∑

i=1

C
p
i W

p

(n−1),i

]
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= (E[W
p−1
n−1 ])p/(p−1) E

[( N
∑

i=1

Ci

)p]

+ ρp E[W
p
n−1]

≤ E

[( N
∑

i=1

Ci

)p]

(Kp−1)
p/(p−1)(ρp−1 ∨ ρ)(n−1)p/(p−1) + ρp E[W

p
n−1],

where in the second equality we conditioned on N, Ci and used Fubini’s theorem, and the last

inequality corresponds to the induction hypothesis. We then obtain the recursion

E[W
p
n ] ≤ ρp E[W

p
n−1] + K(ρp−1 ∨ ρ)(n−1)p/(p−1), (7.5)

where K = E[(
∑N

i=1 Ci)
p](Kp−1)

p/(p−1). Iterating (7.5) as for the p = 2 case gives

E[W
p
n ] ≤ ρn

p E[Qp] + K

n−1
∑

i=0

ρi
p(ρp−1 ∨ ρ)(n−1−i)p/(p−1)

≤ (ρp ∨ ρ)n E[Qp] + K

n−1
∑

i=0

(ρp ∨ ρ)((n−1)p−i)/(p−1) (7.6)

= (ρp ∨ ρ)n E[Qp] + K(ρp ∨ ρ)n−1
n−1
∑

i=0

(ρp ∨ ρ)(n−i−1)/(p−1)

≤

(

E[Qp] + K(ρp ∨ ρ)−1
∞
∑

j=0

(ρp ∨ ρ)j/(p−1)

)

(ρp ∨ ρ)n

= Kp(ρp ∨ ρ)n,

where in (7.6) we used the convexity of ϕ(β) = ρβ , i.e. ρp−1 = ϕ(p − 1) ≤ ϕ(1) ∨ ϕ(p) =

ρ ∨ ρp.

The proof for the general β-moment, β > 1, is given below.

Proof of Lemma 4.3. Set p = ⌈β⌉ ≥ β > 1. Then, by Lemmas 4.1 and 4.2,

E[Wβ
n ] = E

[( N
∑

i=1

CiW(n−1),i

)β

−

N
∑

i=1

C
β
i W

β

(n−1),i

]

+ E

[ N
∑

i=1

C
β
i W

β

(n−1),i

]

≤ (E[W
p−1
n−1 ])β/(p−1) E

[( N
∑

i=1

Ci

)β]

+ E

[ N
∑

i=1

C
β
i W

β

(n−1),i

]

= (E[W
p−1
n−1 ])β/(p−1) E

[( N
∑

i=1

Ci

)β]

+ ρβ E[W
β
n−1].

By Lemma 7.1,

E[Wβ
n ] ≤ ρβ E[W

β
n−1] + E

[( N
∑

i=1

Ci

)β]

(Kp−1)
β/(p−1)(ρp−1 ∨ ρ)(n−1)β/(p−1)

= ρβ E[W
β
n−1] + K(ρp−1 ∨ ρ)(n−1)γ ,
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where γ = β/(p − 1) > 1. Finally, iterating the preceding bound n − 1 times gives

E[Wβ
n ] ≤ ρn

β E[W
β
0 ] + K

n−1
∑

i=0

ρi
β(ρ ∨ ρp−1)

γ (n−1−i)

≤ E[W
β
0 ](ρ ∨ ρβ)n + K

n−1
∑

i=0

(ρ ∨ ρβ)γ (n−1−i)+i (by the convexity of ϕ(β) = ρβ )

= E[Qβ ](ρ ∨ ρβ)n + K(ρ ∨ ρβ)n−1
n−1
∑

i=0

(ρ ∨ ρβ)(γ−1)i

≤ Kβ(ρ ∨ ρβ)n.

This completes the proof.

7.3. Linear nonhomogeneous recursion

In this section we give the proofs of the technical Lemmas 4.6 and 4.7 for the linear recursion.

Proof of Lemma 4.6. Note that the integral is positive since

P
(

max
1≤i≤N

CiRi > t
)

= E
[

1
(

max
1≤i≤N

CiRi > t
)]

≤ E

[ N
∑

i=1

1(CiRi > t)

]

.

To see that the integral is equal to the expectation involving the α-moments, note that

∫ ∞

0

(

E

[ N
∑

i=1

1(CiRi > t)

]

− P
(

max
1≤i≤N

CiRi > t
)

)

tα−1 dt

=

∫ ∞

0

E

[ N
∑

i=1

1(CiRi > t) − 1
(

max
1≤i≤N

CiRi > t
)

]

tα−1 dt

= E

[∫ ∞

0

( N
∑

i=1

1(CiRi > t) − 1
(

max
1≤i≤N

CiRi > t
)

)

tα−1 dt

]

(by Fubini’s theorem)

= E

[ N
∑

i=1

1

α
(CiRi)

α −
1

α

(

max
1≤i≤N

CiRi

)α
]

,

where the last equality is justified by the assumption that
∑N

i=1(CiRi)
α < ∞ a.s.

It now remains to show that the integral (expectation) is finite. To do this, let X =

(N, C1, C2, . . .). Similar arguments to those used above give

∫ ∞

0

(

E

[ N
∑

i=1

1(CiRi > t)

]

− P
(

max
1≤i≤N

CiRi > t
)

)

tα−1 dt

=

∫ ∞

0

E

[

E

[ N
∑

i=1

1(CiRi > t) − 1
(

max
1≤i≤N

CiRi > t
)

∣

∣

∣

∣

X

]]

tα−1 dt

= E

[∫ ∞

0

E

[ N
∑

i=1

1(CiRi > t) − 1
(

max
1≤i≤N

CiRi > t
)

∣

∣

∣

∣

X

]

tα−1 dt

]

,
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where in the last step we used Fubini’s theorem. Furthermore,

E

[ N
∑

i=1

1(CiRi > t) − 1
(

max
1≤i≤N

CiRi > t
)

∣

∣

∣

∣

X

]

= E
[

1
(

max
1≤i≤N

CiRi ≤ t
) ∣

∣

∣
X

]

− 1 +

N
∑

i=1

E[1(CiRi > t) | X].

Note that, given X, the random variables CiRi are independent (since the Rs are), so if we

let F̄ (t) = P(R > t) then

E
[

1
(

max
1≤i≤N

CiRi ≤ t
) ∣

∣

∣
X

]

=

N
∏

i=1

E[1(CiRi ≤ t) | X] =

N
∏

i=1

(

1 − F̄

(

t

Ci

))

.

We now use the inequality 1 − x ≤ e−x for x ≥ 0 to obtain

N
∏

i=1

(

1 − F̄

(

t

Ci

))

≤ exp

(

−

N
∑

i=1

F̄

(

t

Ci

))

.

Next, let δ = αε/(1 + ε) and set β = α − δ. By Markov’s inequality,

N
∑

i=1

F̄

(

t

Ci

)

≤

N
∑

i=1

E[(CiR)β | Ci]t
−β = t−β E[Rβ ]

N
∑

i=1

C
β
i .

Now, define the function g(x) = e−x − 1 + x and note that g(x) is increasing for x ≥ 0.

Therefore,

g

( N
∑

i=1

F̄

(

t

Ci

))

≤ g

(

t−β E[Rβ ]

N
∑

i=1

C
β
i

)

.

This observation combined with the previous derivations gives

∫ ∞

0

E

[ N
∑

i=1

1(CiRi > t) − 1
(

max
1≤i≤N

CiRi > t
)

∣

∣

∣

∣

X

]

tα−1 dt

≤

∫ ∞

0

(e−rSβ t−β

− 1 + rSβ t−β)tα−1 dt,

where Sβ =
∑N

i=1 C
β
i and r = E[Rβ ] < ∞. Hence, using the change of variable u = rSβ t−β

gives

∫ ∞

0

(e−rSβ t−β

− 1 + rSβ t−β)tα−1 dt = β−1(rSβ)α/β

∫ ∞

0

(e−u − 1 + u)u−α/β−1 du.

Our choice of β = α − δ guarantees that 1 < α/β = 1 + ε < 2. To see that the (nonrandom)
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integral is finite, note that e−x − 1 + x ≤ x2/2 and e−x − 1 ≤ 0 for any x ≥ 0, implying that

∫ ∞

0

(e−u − 1 + u)u−α/β−1 du ≤
1

2

∫ 1

0

u1−α/β du +

∫ ∞

1

u−α/β du

=
1

2(2 − α/β)
+

1

α/β − 1

=: Kβ

< ∞.

Now, it follows that

∫ ∞

0

(

E

[ N
∑

i=1

1(CiRi > t)

]

− P
(

max
1≤i≤N

CiRi > t
)

)

tα−1 dt ≤ E[K(rSβ)α/β ]

= Krα/β E

[( N
∑

i=1

C
β
i

)α/β]

.

The last expectation is finite by assumption (α/β = 1 + ε), which completes the proof.

Proof of Lemma 4.7. Let S =
∑N

i=1 CiRi < ∞ a.s., p = ⌈α⌉, and note that 1 ≤ p−1 < α.

Then, since (S + Q)α − Sα ≥ 0 and Sα −
∑N

i=1(CiRi)
α ≥ 0, we can break the expectation as

E

[

(S + Q)α −

N
∑

i=1

(CiRi)
α

]

= E[(S + Q)α − Sα] + E

[( N
∑

i=1

CiRi

)α

−

N
∑

i=1

(CiRi)
α

]

≤ E[(S + Q)α − Sα] + (E[Rp−1])α/(p−1) E

[( N
∑

i=1

Ci

)α]

,

where the inequality is justified by Lemma 4.1. The second expectation is finite since, by

assumption, E[Rβ ] < ∞ for any 0 < β < α. For the first expectation, we use the inequality

(x + t)κ ≤

{

xκ + tκ , 0 < κ ≤ 1,

xκ + κ(x + t)κ−1t, κ > 1,

for any x, t ≥ 0. We apply the second inequality p − 1 times and then the first one to obtain

(x + t)α ≤ xα + α(x + t)α−1t

≤ · · ·

≤ xα +

p−2
∑

i=1

αixα−i t i + αp−1(x + t)α−p+1tp−1

≤ xα + αptα + αp

p−1
∑

i=1

xα−i t i .

Hence, it follows that

E[(S + Q)α − Sα] ≤ αp E[Qα] + αp

p−1
∑

i=1

E[Sα−iQi].
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To see that each of the expectations involving a product of S and Q is finite, let X =

(Q, N, C1, C2, . . .) and note that, for i = p − 1,

E[Sα−p+1Qp−1]

= E

[

E

[(

Q(p−1)/(α−p+1)

N
∑

j=1

CjRj

)α−p+1 ∣

∣

∣

∣

X

]]

≤ E

[(

E

[

Q(p−1)/(α−p+1)

N
∑

j=1

CjRj

∣

∣

∣

∣

X

])α−p+1]

(by Jensen’s inequality)

= (E[R])α−p+1 E

[

Qp−1

( N
∑

j=1

Cj

)α−p+1]

, (7.7)

where the last equality was obtained by using the independence of {Rj } and X.

For 1 ≤ i ≤ p − 2, let qi = ⌈α − i⌉ and condition on Q and X, respectively, to obtain

E[Sα−iQi] = E

[(

Sα−i −

N
∑

j=1

(CjRj )
α−i

)

Qi

]

+ E

[

Qi

N
∑

j=1

(CjRj )
α−i

]

= E

[

Qi E

[

Sα−i −

N
∑

j=1

(CjRj )
α−i

∣

∣

∣

∣

Q

]]

+ E[Rα−i] E

[

Qi

N
∑

j=1

Cα−i
j

]

≤ E

[

Qi(E[Rqi−1 | Q])(α−i)/(qi−1) E

[( N
∑

j=1

Cj

)α−i ∣

∣

∣

∣

Q

]]

+ E[Rα−i] E

[

Qi

( N
∑

j=1

Cj

)α−i]

= ((E[Rqi−1])(α−i)/(qi−1) + E[Rα−i]) E

[

Qi

( N
∑

j=1

Cj

)α−i]

, (7.8)

where for the inequality we used Lemma 4.1 (α − i > 1) and the inequality
∑k

i=1 y
β
i ≤

(
∑k

i=1 yi)
β for any β ≥ 1 and yi ≥ 0. Note that all the expectations involving R in (7.7)

and (7.8) are finite since E[Rβ ] < ∞ for all 0 < β < α by assumption. Next, observe that all

the other expectations are of the form E[Qi(
∑N

j=1 Cj )
α−i] for 1 ≤ i ≤ p − 1. To see that

these are finite, use Hölder’s inequality with q = α/(α − i) and r = α/i to obtain

E

[

Qi

( N
∑

j=1

Cj

)α−i]

≤

∥

∥

∥

∥

( N
∑

j=1

Cj

)α−i∥
∥

∥

∥

q

‖Qi‖r

=

(

E

[( N
∑

j=1

Cj

)α])1/q

(E[Qα])1/r

< ∞.
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