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Abstract

Implicit methods for hyperbolic equations are analyzed using LU de-
compositions. It is shown that the inversion of the resulting tridiagonal ma-
trices is usually stable even when diagonal dominance is lost. Furthermore,
these decompositions can be used to construct stable algorithms in multi-
dimensions. When marching to a steady state, the solution is independent of
the time. Alternating direction methods which solve foru

n+1 − u
n are un-

conditionally unstable in three-space dimensions and so the new method is
more appropriate. Furthermore, only two factors are required even in three-
space dimensions and the operation count per time step is low. Acceleration
to a steady state is analyzed, and it is shown that the fully implicit method
with large time steps approximates a Newton-Raphson iteration procedure.
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1 Introduction

The use of implicit methods to solve hyperbolic equations has been increasing
in recent years (e.g, [1], [2], [7]). Although implicit methods are frequently un-
conditionally stable, the permissible time step may still be restricted by the need
to maintain a desired level of accuracy. Two classes of problems may be distin-
guished for which implicit methods are likely to be advantageous. First, there are
stiff problems which contain several time scales in which most of the energy is
contained in the slow modes. Nevertheless, the time step of an explicit method
would be limited by a stability criterion set by the speed of the fast mode. Sec-
ondly, there are problems in which only a steady-state solution is desired and the
time-dependent equations are used merely as a device for theiterative solution of
the steady-state equations.

Implicit methods have the disadvantage that they require the solution of a large
number of coupled equations at each time step. Hence, the reduction in the num-
ber of time steps compared with an explicit method may be outweighed by the
increase in the number of arithmetic operations required for each time step. With
a typical alternating direction method one needs to invert block tridiagonal matri-
ces. If these matrices can be inverted by Gaussian eliminations without pivoting,
the inversion can be accomplished by the Thomas algorithm inO(m3N) opera-
tions where m is the block size andN is the number of unknowns (see [6]). For
many standard algorithms, diagonal dominance is lost when the time step becomes
large. It is then no longer clear that the Thomas algorithm isnumerically stable.

Another difficulty with alternating direction methods is encountered in the
three dimensional case. When marching to a steady state usinglarge time steps,
one wants to ensure that the numerical solution is independent of the size of the
time steps. A simple way to do this is to solve for∆un = un+1 − un at each time
step. The equations then have the form

Qn∆un = ∆tLun

(see for example [2]). In this case it is evident that in the steady state we have
Lu = 0 independent of∆t. In the two-dimensional case alternating direction
methods which solve for eitherun+1 or ∆un are equivalent. However, in the
three-dimensional case the two approaches yield differentschemes. The three-
dimensional alternating direction algorithm is unconditionally stable in the linear
case if one solves forun+1, but the steady state solution depends on∆t. On the
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other hand if one solves for∆un to produce a steady solution independent of∆t,
then the algorithm is unconditionally unstable for scalar problems. For the Euler
equations the equation for the entropy is essentially a scalar equation. Hence, this
method is not stable for inviscid fluid dynamics.

In this study we discuss a class of implicit methods in which pre-calculated
LU decompositions are used to approximate the equations obtained by linearizing
a Crank-Nicolson or fully implicit scheme. It is shown that this approach can be
used to derive schemes which are unconditionally stable in any number of space
dimensions and also yield a steady state solution which is independent of∆t. The
operation count at each time step is also quite moderate because the LU decom-
position produces equations which only require the inversion of m x m diagonal
blocks for each factor. In three dimensions there are only two factors instead of
the three factors of an alternating direction algorithm.

The matrices of an unfactored implicit algorithm are not diagonally domi-
nant for large time steps. Thus, the usual sufficient conditions for using Gaussian
elimination without pivoting are no longer satisfied. We show that the LU decom-
position can often still be constructed in such a way that each factor is diagonally
dominant. This ensures the numerical stability of the inversions required at each
time step.

2 One-Dimensional Problems

Consider the one dimensional system

wt + Awx = 0 (2.1)

with A a constant matrix.

Then the Crank-Nicolson scheme is given by
(

I +
∆tA

2
δ

)

wn+1 =

(

I −
∆tA

2
δ

)

wn (2.2)

or
(

I +
∆tA

2
δ

)

(

wn+1 − wn
)

= −∆tAδwn
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whereδ is a central difference operator defined by

δwn
j =

wn
j+1 − wn

j−1

2∆x
(2.3)

We also define forward and backward difference operators

D + wj =
wj+1 − wj

∆x
D − wj =

wj − wj−1

∆x
(2.4)

The solution of (2.2) requires the inversion of a block tridiagonal matrix. Instead,
we can approximately factor (2.2) by

(

I +
∆tA

4
D+

)(

I +
∆tA

4
D−

)

(wn+1 − wn) = ∆tAδwn (2.5)

Sincewn+1 − wn is of order∆t the difference between the schemes (2.2) and
(2.4) are terms of order(∆t)3 and so the additional errors are of the order of the
truncation error. For a bounded domain the operatorsI + ∆tA

4
D+ andI + ∆tA

4
D−

can be inverted directed by beginning at the left and right boundaries, respec-
tively. Computational experience indicated that this method fails for large∆t.
This is true even though (2.4) is unconditionally stable in terms of the usual ini-
tial value stability analysis. The reason for this is that ifA has both positive and
negative eigenvalues, the factors lose diagonal dominance. The inversion process
then becomes numerically unstable.

To analyze this further we consider the general three-pointapproximation to
(2.1) which is second order accurate in space. Let

∆wn
j = wn+1

j − wn
j (2.6)

Then, we have

∆wn
j + σ

(

∆wn
j+1 − 2∆wn

j + ∆wn
j−1

)

=

−
λA

2

[

ξ

(

wn+1
j+1 − wn+1

j−1

)

+

(

1 − ξ

)(

wn
j+1 − wn

j−1

)]

(2.7)

Here,λ = ∆t
∆x

andξ denotes the weighting of the space differences at the new and
old time levels.ξ = 1

2
yields the Crank-Nicolson scheme whileξ = 1 yield the

fully implicit method.σ is a free parameter; it is convenient to allow it to have the
general form

σ = σ1 + σ2λ
2A2ξ2 (2.8)
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(2.6) can be rewritten as

∆wn
j +

λAξ

2

(

∆wn
j+1−∆wn

j−1

)

+σ

(

∆wn
j+1−2∆wn

j +∆wn
j−1

)

=
λA

2

(

wn
j+1−wn

j−1

)

(2.9)
or

Q

(

wn+1 − wn

)

= −λAδw (2.10)

Q is a block traditional matrix. Omitting the effect of boundaries,Q can be re-
placed by LU where L and U have the form

L =











ℓ1 0 · · · 0

ℓ2
. .. . ..

...
...

. .. . .. 0
0 · · · ℓ2 ℓ1











U =











u1 u2 · · · 0

0
. .. . . .

...
...

. .. . . . u2

0 · · · 0 u1











(2.11)

where

ℓ1 = α1 + β1λA ℓ2 = γ1 − β1λA (2.12)

u1 = α2 − β2λA u2 = γ2 + β2λA (2.13)

andαj, βj may be matrix functions ofA.

Given the matrixQ theLU decomposition is unique except for a diagonal ma-
trix, i.e., givenL,U the most general decomposition ofQ is given byQ = L′U ′

with L′ = LD andU ′ = D−1U for some nonsingular diagonal matrixD. The
matrix D does not enter in any essential manner, and it will be chosen for conve-
nience. In particular, we consider a scaling so thatα1 + γ1 = I.

For second order accuracy in space, one requires that

α1 = α2

β1 = β2 =
ξ

2
γ1 = γ2
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Hence, we have in(2.7)

ℓ1 = α +
ξλA

2
ℓ2 = γ −

ξλA

2

u1 = α −
ξλA

2
u2 = γ +

ξλA

2
(2.14)

with α+γ = 1. Thus, we have one free parameter,α, at our disposal. Multiplying
L andU as given by (2.8) and comparing with (2.6) we find that

α(1 − α) +
ξ2λ2A2

4
= σ = σ1 + σ2λ

2A2ξ2 (2.15)

and so

α =

1 +

[

1 − (4σ2 − 1) ξ2λ2A2 − 4σ1

] 1

2

2
(2.16)

We stress that the inversion procedure is well conditioned if and only if the
matricesL andU are diagonally dominant. The diagonal dominance ofQ is only
sufficient but not necessary. Hence, for these inversions tobe well conditioned we
require

‖γ −
ξλA−1

2
α +

ξλA

2
‖ ≤ 1

‖α −
ξλA−1

2
γ +

ξλA

2
‖ ≤ 1

To demonstrate the importance of diagonal dominance for theL and U factors
we consider the system

Lx = f

with

L =











1 0 · · · 0

b 1
. ..

...
...

. .. . .. 0
0 · · · b 1











f =











ε

0
...
0










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The solution is

x1 = ε

xj = (−b)j−1ε

If b ¿ 1, the inversion process is not well posed even though the matrix is already
in lower triangular form. The inverse ofL is given by

L
−1 =















1 0 · · · · · · 0
−b 1 0 · · · 0

b2 −b
. . . . . .

...
...

...
. . . 0

(−b)n−1 (−b)n−2 1















Hence, for|b| > 1 the condition number increase exponentially as n increases.
Conversely, IfL andU are diagonally dominant, then it is easy to show that the
pivots in Gaussian elimination without pivoting cannot grow with increasingn.

Hence we require that

(

γ −
ξλA

2

)2

≥

(

α +
ξλA

2

)2

and
(

α −
ξλA

2

)2

≥

(

γ +
ξλA

2

)2

Sinceα + γ = 1, the inversion algorithm is well conditioned if and only if

(ξλA)2 ≤ (α − γ)2 = (2α − 1)2 (2.17)

We want the method to be unconditionally stable and so, (2.11) implies thatα and
γ must be functions ofA or at least functions of the spectral radius ofA.

For a well conditioned problem, (2.11) together with (2.10)requires that

ξ2λ2A2 ≤ (2α − 1)2 = 1 − (4σ2 − 1)ξ2λ2A2 − 4σ1

or equivalently
4σ2ξ

2λ2A2 ≤ 1 − 4σ1 (2.18)
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3 Analysis of Some Standard Schemes

We now consider some of the methods which can be derived from the general
three-point scheme (2.6) and show that many of them lead to diagonally dominant
L andU factors which yield a stable inversion process.

1. Standard second-order methods
σ1 = σ2 = 0; so (3.3) is always satisfied. Hence, these methods are well
conditioned for allξ and all times steps.

2. 2 - 4 methods
σ1 = 1

6
σ2 = 0; (3.3) is always satisfied.

3. 4 - 4 methods
ξ = 1

2
, σ1 = 1

6
, σ2 = 1

3
. In this case (3.3) implies that the inversion is well

conditioned only ifλA ≤ 1. This is confirmed by the numerical results of
[5].

4. Scheme (2.4)
σ1 = 0, σ2 = 1

4
and so (3.3) implies that the method is well conditioned

only if ξ2λ2A2 ≤ 1. This was conformed by computer runs.

5. Diagonally dominant schemes
If we want schemes that are diagonally dominant, this can be achieved by
choosingσ1 < 0, σ2 < 0 andσ1σ2 > 1

16
. If σ1 < 0, σ2 < 0 then(3.3) is

trivially satisfied. Hence, if the basic scheme is diagonally dominant, then
theL andU factors are also diagonally dominant.

4 A Practical LU Decomposition

In section 2 we showed that an LU decomposition of form (2.8) is well conditioned
if and only if

ξ2λ2A2 = (2α − 1)2 (4.1)

In section 3 we demonstrated that (4.1) is automatically satisfied for several well
known schemes. In this case the LU decomposition is useful mainly for the pur-
pose of analyzing the scheme because the resulting is a complicated matrix func-
tion of A. Furthermore, the introduction of boundaries complicatedthe LU fac-
torization.
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In order to generate new schemes which can be readily generalized to the
multi-dimensional situation, we can reverse the approach by choosing the L and U
factors as determining the scheme. We can then insure that the LU decomposition
is quite simple and at the same time we can select the free parameterα so that(4.1)
is always satisfied. Letting|.| denote the absolute value of a matrix as determined
by function theory, one choice forα is

α =
1

2
(I + |λAξ|) (4.2a)

For two-dimensional problems,ξ = 1
2
, this can be generalized by

α =
1

2

(

I

2
+

∣

∣

∣

∣

A
∆t

∆x

∣

∣

∣

∣

+

∣

∣

∣

∣

B
∆t

∆y

∣

∣

∣

∣

)

(4.2b)

The absolute value of these matrices can be calculated by diagonalizing A and B
independently. Although this approach is valid from a theoretical viewpoint, it is
not computationally efficient. Instead, we can replace (4.2a) by

α =
1

2
(1 + ρξλ) γ =

1

2
(1 − ρελ) (4.3)

This choice ofα satisfies (4.1) ifρ is equal to or greater than the spectral radius
of A. This choice yields a scalarα which is computationally efficient. The exten-
sions to several dimensions are discussed in section 6.

5 Boundary Treatment

There are two different approaches towards constructing boundary equations for
those data that are not specified analytically, one approachis to put reasonable fac-
tors into the upper part of L and the lower corner of U. Having,by some other pro-
cedure, decided what equations one wants, one then uses the Sherman-Morrison
formulas to correct the inverse for the given boundary treatment. This procedure
can be expensive as another inverse is needed for each rank-one modification.

Instead, we shall include the boundary treatment within theLU decomposi-
tion. We shall concentrate on the left boundary,x = 0, which requires modi-
fication of the L matrix. Similar modifications affect the U matrix for the right
boundary.
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Assuming that the boundary treatment is of first order accuracy, one finds that
L should be modified to have the form

L =







a − ξλA

2
c + ξλA

2

γ − ξλA

2
α + ξλA

2
0

0
. . . . . .






(5.1)

With a+c = 1. We use linear extrapolation outside the domain for those variables
not given analytically. This is equivalent to (5.1) with

a = α + 2γ (5.2)

c = −γ

Using the theory of Gustafsson, Kreiss, and Sundstrom [4] one can show that the
initial boundary value scheme is unconditionally stable for ξ ≥ 1

2
. (5.1) requires

the inversion of a 2 x 2 block matrix for the boundary values. The algorithmic
aspects of the scheme are described in greater detail in section 7.

6 Multidimensional LU Implicit Algorithms

In one dimension we constructed an approximate factorization which had the in-
terpretation that both L and U were approximations to one sided differences. In
two dimensions we can extend this technique.

Consider the equation

wt + Awx + Bwy = 0 (6.1)

Let

L =























ℓ1

ℓ2
. . .

0
. . . . . . 0

ℓ3
. . . . . .

. . . . . . . . .
0 ℓ3 ℓ2 ℓ1























λ =
∆t

∆x
=

∆t

∆y
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U =























u1 u2 0 u3 0
. . . . . . . . .

. . . . . . u3

. . . . . .

0
. . . u2

u1























where
It will be assumed that any shock waves contained in the flows to be computed

are weak enough that the entropy and vorticity generated by the shock waves can
be ignored without introducing serious errors. Consistent with this approxima-
tion we shall treat the exact potential flow equation in conservation form. Using
Cartesian coordinatesx, y, z we shall write this equation as

∂

∂x
(ρu) +

∂

∂y
(ρv) +

∂

∂z
(ρw) = 0 (6.2)

whereρ is the density andu, v, w are the velocity components. These are calcu-
lated as the gradient of the potentialΦ.

u = Φx, v = Φy, w = φz. (6.3)

The flow is assumed to be uniform in the far field with a Mach number M∞. At
the body, the boundary condition is

un = 0 (6.4)

whereun is the normal velocity component. The density is computed from the
isentropic formula.

ρ = {1 +
γ − 1

2
M2

∞
(1 − q2)}

1

γ−1 (6.5)

whereρ is the ratio of specific heats, andq is the speed,

q2 = u2 + v2 + w2 (6.6)

With the normalization thatq = 1 andp = 1 at infinity, the corresponding formu-
las for the pressure p and the local speed of

p =
ργ

γM2
∞

, a2 =
ργ−1

M2
∞

. (6.7)

The shock jump conditions are
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(a) continuity ofΦ, implying a continuity of the tangential velocity com-
ponent;

(b) continuity ofρun, whereun is the normal velocity component.

Under the isentropic assumption the normal component of momentum is not con-
served through the shock wave, leading to a body force which is an approximation
to the wave drag. In any finite domain equations(1)− (5) together with the shock
jump relations(a) and(b) are equivalent to the Bateman variational principle that
the integral

I =

∫

Ω

p dΩ (6.8)

is stationary.

A difficulty with the formulation assuming potential flow is that corresponding
to any solution of equation(1) there is a reverse flow solution, in which compres-
sion shock waves become expansion shock waves. In fact if central difference
formulas are used throughout the domain, symmetric solutions, containing an ex-
pansion shock at the front and a compression shock at the rear, can be computed
for a body with fore and aft symmetry such as an ellipse. This is a consequence
of the absence of entropy from the formulation. In order to obtain a unique and
physically relevant solution the shock jump relations(a) and(b) must be supple-
mented by the additional “entropy condition” that discontinuous expansions are
to be excluded from the solution, corresponding to the fact that entropy cannot
decrease in a real flow.

For this purpose the discrete approximation will be desymmetrized by the ad-
dition of artificial viscosity to produce an upwind bias in the supersonic zone.
The added terms will be introduced in a manner such that the conservation form
of equation(1) is preserved. Provided that the solution of the discrete equations
converges in the limit as the cell width is reduced to zero, the correct shock jump
relations consistent with the isentropic assumption will then be a natural conse-
quence of the scheme.10

7 The Staggered Box Scheme

The basic idea of the numerical scheme is that cubes in the computational do-
main will be separately mapped to distorted cubes in the physical domain by inde-
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pendent transformations from local coordinatesX,Y, Z to Cartesian coordinates
x, y, z as illustrated in Figure 1.

The mesh points are the vertices of the mapped cubes, and subscripts i, j, k

will be used to denote the value of a quantity at
a mesh point. Subscriptsi + 1

2
, j + 1

2
, k + 1

2
will be used to denote points

mapped from the centers of the cubes in the computational domain. In developing
the difference formulas it will be convenient to introduce averaging the difference
operators through the notation

µXf =
1

2
(fi+ 1

2
,j,k + fi− 1

2
,j,k)

δXf = fi+ 1

2
,j,k − fi− 1

2
,j,k

with similar formulas forµy, µz, δy, δz. It will also be convenient to use notations
such as

µXXf = µX(µXf)

=
1

4
fi+1,j,k +

1

2
fi,j,k +

1

4
fi−1,j,k

µXY f = µX(µY f)

δXXf = δX(δXf)

= fi+1,j,k + 2fi,j,k + fi−1,j,k

δXY f = δX(δY f)

Numbering the vertices of a particular cube from 1 to 8 as in Figure 1, the local
mapping is constructed by a trilinear form in which the localcoordinates lie in
the range−1

2
≤ X ≤ 1

2
,−1

2
≤ Y ≤ 1

2
,−1

2
≤ Z ≤ 1

2
, so the vertices are at

Xi = ±1
2
, Yi = ±1

2
, Zi = ±1

2
. Thus if the Cartesian coordinates of theith vertex

of the mapped cube arexi, yi, zi, the local mapping is defined by

x = 8
8

∑

i=1

xi (
1

4
+ XiX) (

1

4
+ YiY ) (

1

4
+ ZiZ) (7.1)

with similar formulas fory, z. The potentialΦ is assumed to have a similar form
inside the cell:

Φ = 8
8

∑

i=1

Φi (
1

4
+ XiX) (

1

4
+ YiY ) (

1

4
+ ZiZ) (7.2)
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These formulas preserve the continuity ofx, y, z and at the boundary between any
pair of cells, because the mappings in each cell reduce to thesame bilinear form
at the common face. At the center of a computational cell the derivatives of the
transformation can be evaluated from equation(8) by formulas such as

xX =
1

4
(x2 − x1 + x4 − x3 + x6 − x5 + x8 − x7)

= µY Z δX x

Similarly it follows from equation(9) that

ΦX = µY Z δX Φ, ΦXY = µZ δXY Φ, ΦXY Z = δXY Z Φ

These formulas are simply an application of the box difference scheme.

Equation(1) will now be represented as a flux balance. For this purpose we
introduce a secondary set of cells interlocking with the primary cells as illustrated
in Figure 2.

In the computational domain the faces of the secondary cellsspan the mid-
points of the primary cells. Since one secondary cell overlaps eight primary cells,
in each of which there is a separate transformation, the secondary cells do not
necessarily have smooth faces when they are mapped to the physical domain, but
this is not important since their purpose is simply to serve as control volumes for
the flux balance.

In order to derive the formula for the flux balance it is convenient to resort to
tensor notation. Let the Cartesian and local coordinates be

x1 = x, x2 = y, x3 = z

X1 = X, X2 = Y, X3 = Z

The appearance of a repeated index in any formula will be understood to imply
a summation over that index. LetH be the transformation matrix with elements
∂xi

∂Xj and leth be the determinant ofH. Let G be the matrixHT H with elements

gij =
∂xk

∂X i

∂xk

∂Xj
(7.3)
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ThenG is the metric tensor. Also letgij be the elements ofG−1. Then the con-
travariant velocity components are

U = U1, V = U2, W = U3

where

U i = gij ∂Φ

∂Xj
(7.4)

It may be verified by applying the chain rule for partial derivatives that equation
(1) can be written in the local coordinate system as

∂

∂X i
(ρhU i) = 0 (7.5)

This corresponds to a well known formula for the divergence of a contravariant
vector. In the computation of the density from equation(4) we now use the for-
mula

q2 = U i ∂Φ

∂X i
(7.6)

Also at a boundaryS(x, y, z) = constant, the condition that the normal velocity
component is zero becomes

U i ∂S

∂X i
= 0

The mesh will be generated so that the boundary will coincidewith faces of cells
adjacent to the boundary. Thus the boundary condition will reduce to a simple
form such asV = 0 on a cell face.

The formula for the local flux balance can now be written down by a sec-
ond application of the box scheme on the secondary cells. Thus equation(12) is
approximated by

µY Z δX (ρhU) + µZX δY (ρhV ) + µXY δZ (ρhW ) = 0. (7.7)

The physical interpretation of the quantitiesρhU, ρhV, ρhW is that they are the
fluxes across the faces of the secondary cell. Consequently this formula is equiv-
alent to calculating the flux across the part of a face of a secondary cell lying in a
particular primary cell by using values forρ, h, U, V,W calculated at the center of
that primary cell.

Adjacent to the body the flux balance is established on secondary cells bounded
on one or more faces by the body surface as illustrated in Fig 3.
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There is no flux across these faces and equation(14) is correspondingly mod-
ified.

Observe that equation(14) could also be derived from the Bateman variational
principle. Suppose that the integralI defined by equation(7) is approximated by
summing the volume of each primary cell multiplied by the pressure at its mid-
point. Then on setting the derivative ofI with respect to each nodal valueΦi,j,k

equal to zero to represent the fact that I is stationary, one recovers equation(14).
In a finite element method using isoparametric trilinear elements the contribution
of each cell would be calculated by an internal integration over the cell, allowing
for the fact that according to the trilinear formulasp is not constant inside the cell.

The use of values ofρ, h, U, V,W calculated at the centers of the primary cells
in equation(14), instead of values averaged over the relevant faces, simplifies the
formulas at the expense of a ”lumping error”. Fortunately the contributions to the
lumping error from adjacent primary cells offset each other. In fact, if we suppose
the vertices of the cells to be generated by a global mapping smooth enough to
allow Taylor series expansions ofx, y, z as functions ofX,Y, Z, then it can be
seen from the interpretation of equation(14) as a box scheme that the local dis-
cretization error is of second order.

The introduction of lumped quantities in equation(14) is the source, however,
of another difficulty. this is most easily seen by considering the case of incom-
pressible flow in Cartesian coordinates. Settingh = 1, ρ = 1, equation(14)
reduces in the two dimensional case to

µY Y δXXΦ + µXXδY Y Φ = 0

This is simply the rotated Laplacian as illustrated in Figure 4. The odd and even
points are decoupled, leading to two independent solutionsas sketched. In fact
µY Y δXXΦ andµXXδY Y Φ are separately zero forΦ = 1 at odd points,−1 at even
points.
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To overcome this difficulty, observe that it is due to the evaluation of the flux
across the face labeled AB in Figure 5 using a value of calculated at the point A.

If we add a compensation fluxε ∆Y ΦXY across AB, the point at whichΦX is
effectively evaluated is shifted from A to B as is increased from 0 to 1/2. Taking
the cell height∆Y as unity, consistent with the trilinear formula(8), the addition
of similar compensation terms on all faces produces the scheme

µY Y δXX Φ + µXXδY Y Φ − ε δXXY Y Φ = 0

Notice that settingε = 1
2

yields the standard five point scheme for Laplace’s equa-
tion, while settingε = 1

3
yields the nine point fourth order accurate scheme.

In order to compensate for the lumping error in equation(14) in a similar
manner, we first calculate influence coefficients giving the effective weight of
δXXΦ, δY Y Φ, δZZΦ in equation(14) when the dependence ofρ on ΦX , ΦY , ΦZ

is accounted for. These are

AX = ρh

(

g11 −
U2

a2

)

AY = ρh

(

g22 −
V 2

a2

)

AZ = ρh

(

g33 −
W 2

a2

)

(7.8)

Now define
QXY = (AX + AY ) µZ δXY Φ. (7.9)

with similar formulas forQY Z , QZX , and

QXY Z = (AX + AY + AZ) δXY Z Φ (7.10)

Then the final compensated equation is

µY Z δX (ρhU) + µZX δY (ρhV ) + µXY δZ (ρhW )

−ε

{

µZ δXY QXY + µX δY Z QY Z + µY δZX QZX −
1

2
δXY Z QXY Z

}

= 0

(7.11)
where0 ≤ ε ≤ 1

2
. This procedure has proved effective in suppressing high

frequency oscillations in the solution.
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This completes the definition of the discretization scheme for subsonic flow. It
remains to add an artificial viscosity to desymmetrize the scheme in the supersonic
zone. Instead of equation(12) we shall satisfy the modified flux balance equation

∂

∂X
(ρhU + P ) +

∂

∂Y
(ρhV + Q) +

∂

∂Z
(ρhW + R) = 0

where the added fluxesP,Q andR are proportional to the cell width in the physi-
cal domain.Thus the correct conservation law will be recovered in the limit as the
cell width decreases to zero. The added terms are designed toproduce an upwind
bias in the supersonic zone. As in the case of previous schemes for solving the
potential flow equation in conservation form5,6, they are modeled on the artificial
viscosity of the nonconservative rotated difference scheme,4 which has proved re-
liable in numerous calculations.

First we introduce the switching function

µ = max

[

0,

(

1 −
a2

q2

)]

ThenP,Q,R are constructed to that

P approximates − µ |U | δX ρ

Q approximates − µ |V | δY ρ

R approximates − µ |W | δZ ρ

with an upwind shift in each case. Sinceµ = 0 whenq < a, the added terms
vanish in the subsonic zone. In the numerical scheme equation (18) is actually
modified by the addition of the terms

δXP + δY Q + δZR

In order to formP,Q,R we first construct

P̂ = µh
ρ

a2

(

U2 δXX + UV µXY δXY + WU µZX δZX

)

Φ

Q̂ = µh
ρ

a2

(

UV µXY δXY + V 2 δY Y + V W µY Z δY Z

)

Φ

R̂ = µh
ρ

a2

(

WU µZX δZX + V W µY Z δY Z + W 2 δZZ

)

Φ
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Then

Pi+ 1

2
,j,k =

{

P̂i,j,k if U > 0

P̂i+1,j,k if U < 0

with similar shifts for Q, R.

The motivation for these formulas is provided by the following analysis. When
equation(12) is represented explicitly in quasilinear form, its leadingterms are

ρh

a2

{

(a2 − q2)Φss + a2(∆Φ − Φss)
}

= 0

wheres is the local flow direction, and∆ is the Laplacian. In the transformed
coordinate system

∂Φ

∂s
=

U i

q

∂Φ

∂X i

so the leading terms ofΦss are U iUj

q2

∂2Φ
∂Xi∂Xj . According to the rotated difference

scheme one should use upwind difference formulas to evaluate Φss at supersonic
points, as illustrated in Figure 6.

Now the upwind formula forΦXX can be regarded as an approximation to
ΦXX − ∆XΦXXX . Similarly the upwind formula forΦXY yields an added term
1
2

∆X ΦXXY + 1
2

∆Y ΦXY Y and so on. The use of these formulas in the
evaluation ofρh

a2 (a2 − q2)Φss thus produces an effective artificial viscosity

−
ρh

a2

(

1 −
a2

q2

){

∆X U (U ΦXXX + V ΦY XX + W ΦZXX)

+ ∆Y V (U ΦXY Y + V ΦY Y Y + W ΦZY Y )

+ ∆Z W (U ΦXZZ + V ΦY ZZ + W ΦZZZ)

}

assuming thatU, V,W are positive. Since∂ρ

∂(q2)
= − ρ

2a2 it follows from equation
(13) that

ρX = −
ρh

a2
(UΦXX + V ΦXY + WΦXZ)

Thus on setting∆X = 1, consistent with equation(8), leading terms of−
(

∂
∂x

)

(µ U δX ρ)
are

−
ρh

a2

(

1 −
a2

q2

)

∆X

(

UΦXXX + V ΦY XX + WΦZXX

)

19



which can be seen to be the desired quantity. Note that the construction of the ar-
tificial viscosity is based on the presumption of a smooth mesh in the supersonic
zone.

Finally it remains to devise an iterative procedure for solving the nonlinear
algebraic equations which result from the discretization.Following the same rea-
soning as was used for the iterative solution of the rotated difference scheme and
earlier schemes in conservation form,4−6 this is accomplished by embedding the
steady state equation in an artificial time dependent equation. Thus we solve a
discrete approximation to

∂

∂X
(ρhU + P ) +

∂

∂Y
(ρhV + Q) +

∂

∂Z
(ρhW + R)

= αΦXT + βΦY T + γΦZT + δΦT

where the coefficientsα, β, γ are chosen to make the flow direction timelike, as in
the steady state, and controls the damping.

The complete numerical scheme thus calls for the following steps:

1. Calculate the contravariant velocity components and the density in each pri-
mary cell using the box scheme.

2. Calculate the flux balance on each secondary cell by a secondapplication
of the box scheme.

3. Add compensation terms to offset the effect of lumping errors.

4. Add artificial viscosity at points where the flow is locallysupersonic to
desymmetrize the scheme and enforce the entropy condition.

5. Add time dependent terms to embed the steady state equation in a conver-
gent time dependent process which evolves to the solution.

8 Results

The finite volume scheme has been used in a number of calculations for swept
wings and wing-cylinder combinations, and some results of these calculations are
included in this section.1 The scheme must be provided with the Cartesian coor-

1We would like to thank Frances Bauer for her valuable help in performing many of the nu-
merical computations and obtaining the graphical output.
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dinates of each mesh point. The meshes for our calculations have been generated
by sequences of global mappings. This has the advantage of producing a smooth
distribution of mesh points. In contrast with earlier methods in which the equation
of motion was explicitly transformed, 4-6 these mappings are now used only to
calculate the coordinates of the mesh points.

The following procedure has been used to generate the mesh for a swept wing.
First we introduce parabolic coordinates in planes containing the wing section by
the transformation

X̄ + iȲ =

{

{x − x0(z) + i(y − y0(z))}

t(z)

} 1

2

Z̄ = z

wherez is the spanwise coordinate,x0(z) andy0(z) define a singular line located
just inside the leading edge, andt(z) is a scaling factor which can be adjusted so
that the wing chord is covered by the same number of cells at every span station.

The effect of this transformation is to unwrap the wing to form a shallow bump

Ȳ = S(X̄, Z̄)

as illustrated in Figure 7. Then we use a shearing transformation

X = X̄, Y = Ȳ − S(X̄, Z̄), Z = Z̄

to map the wing surface to the planeY = 0. We now lay down a rectangular
coordinate system in theX,Y, Z space, and finally generate the volume elements
by the reverse sequence of transformations fromX,Y, Z to x, y, z. The vortex
sheet trailing behind the wing is assumed to coincide with the cut generated by
the sheared parabolic coordinate system.

The mesh for the wing-cylinder calculations has been generated by a simple
extension of this procedure, in which the cylinder is mappedto a vertical slit by a
preliminary Joukowsky transformation, as sketched in Figure 8. With the fuselage

thus compressed into the symmetry plane, we then use the samesequence
of mappings as for a swept wing on a wall. The use of a vertical slit rather
than a horizontal slit, as was used by Newman and Klunker for small disturbance
calculations,12 allows the wing to be shifted vertically so that both low and high
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wing configurations can be treated.

Figure 9 shows the result of a calculation for the ONERA M6 wing, for which
experimental data is available.13 The calculation was performed on a sequence of
meshes. After the calculation on each of the first two meshes,the number of in-
tervals was doubled in each coordinate direction, and the interpolated result was
used as the starting point for the calculation on the next mesh. The fine mesh
contained 160 intervals in the chordwise x direction, 16 intervals in the normal y
direction, and 32 intervals in the spanwise z direction, fora totally of 81920 cells.
100 relaxation cycles were used on each mesh. Such a calculation requires about
90 minutes on a CDC 6600 or 20 minutes on a CDC 7600. Separate pressure
distributions are shown for stations at 20, 45, 65 and 95 percent of the semi-span.
The pressure coefficient at which the speed is locally sonic is marked by a hori-
zontal line on the pressure axis, and the experimental data is overplotted on the
numerical result, using circles for the upper surface and squares for the lower
surface. The calculation did not include a boundary layer correction. It can be
seen, however, that the triangular shock pattern is quite well captured, and that
the calculated pressure distribution is a fair simulation of the experimental result.
The result of this calculation is also in quite good agreement with the result of a
previous calculation using the nonconservative rotated difference scheme.14

Figure 10 shows the result for the same wing mounted on a low and position
on a cylinder. The configuration is scaled so that the radius of the cylinder is 0.25,
while the wing tip station is 1.25. No experimental data is available in this case.
The calculation shows an increase of lift, particularly near the wing root. This
is to be expected, because the cylinder is set at the same angle of attack as the
wing and will generate an upwash. The problem of computing the flow past a
wing-fuselage combination is discussed at greater length in a companion paper,15

in which an alternative mesh generating scheme is proposed.

9 Conclusion

The results displayed in Figures 9 and 10 serve to indicate the promise of the fi-
nite volume scheme. Its main advantage is the relative ease with which it can be
adapted to treat a variety of complex configurations. Since the treatment of inte-
rior points is independent of the particular mappings used to generate the mesh,
topologically similar configurations can be treated by the same flow computation
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routine, provided that suitable mappings can be found to mapthem to the same
computational domain.

This flexibility is achieved at the expense of an increase in the amount of time
required for the computations, unless a very large memory capacity is available,
because of the need to perform a numerical inversion o the transformation matrix
defining the local mapping in each cell. If the inverse transformation coefficients
are not saved they must be recalculated at every cycle. In this form the scheme
requires about 50 percent more time than the rotated difference scheme to treat a
swept wing on an equal number of mesh points. It is worth noting that the com-
puting time could be substantially reduced by restricting the use of distorted cells
to an inner region surrounding the body, with a transition toCartesian coordinates
in the outer region.
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