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Abstract

Implicit methods for hyperbolic equations are analyzed using LU de-
compositions. It is shown that the inversion of the resulting tridiagonal ma-
trices is usually stable even when diagonal dominance is lost. Furthermore,
these decompositions can be used to construct stable algorithms in multi-
dimensions. When marching to a steady state, the solution is independent of
the time. Alternating direction methods which solve #drt! — u™ are un-
conditionally unstable in three-space dimensions and so the hew method is
more appropriate. Furthermore, only two factors are required evenda-thr
space dimensions and the operation count per time step is low. Acceleration
to a steady state is analyzed, and it is shown that the fully implicit method
with large time steps approximates a Newton-Raphson iteration procedure.
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1 Introduction

The use of implicit methods to solve hyperbolic equations baen increasing
in recent years (e.qg, [1], [2], [7]). Although implicit meitis are frequently un-
conditionally stable, the permissible time step may segllrbstricted by the need
to maintain a desired level of accuracy. Two classes of prablmay be distin-
guished for which implicit methods are likely to be advamtags. First, there are
stiff problems which contain several time scales in whichstraf the energy is
contained in the slow modes. Nevertheless, the time step ekplicit method
would be limited by a stability criterion set by the speedhd# fast mode. Sec-
ondly, there are problems in which only a steady-state wolu$ desired and the
time-dependent equations are used merely as a device fietagve solution of
the steady-state equations.

Implicit methods have the disadvantage that they requasadtution of a large
number of coupled equations at each time step. Hence, thetred in the num-
ber of time steps compared with an explicit method may be eigffned by the
increase in the number of arithmetic operations require@&ch time step. With
a typical alternating direction method one needs to invextlbtridiagonal matri-
ces. If these matrices can be inverted by Gaussian elimmgtvithout pivoting,
the inversion can be accomplished by the Thomas algorith®(inN') opera-
tions where m is the block size and is the number of unknowns (see [6]). For
many standard algorithms, diagonal dominance is lost winehirne step becomes
large. It is then no longer clear that the Thomas algorithnuimerically stable.

Another difficulty with alternating direction methods iscemintered in the
three dimensional case. When marching to a steady state lasgegtime steps,
one wants to ensure that the numerical solution is indeperafehe size of the
time steps. A simple way to do this is to solve fan” = v"*! — y" at each time
step. The equations then have the form

Q"Au" = AtLu"

(see for example [2]). In this case it is evident that in theady state we have
Lu = 0 independent ofA¢. In the two-dimensional case alternating direction
methods which solve for either*™! or Au" are equivalent. However, in the
three-dimensional case the two approaches yield diffesein¢mes. The three-
dimensional alternating direction algorithm is uncorafiilly stable in the linear
case if one solves far"*!, but the steady state solution depends’an On the
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other hand if one solves faku" to produce a steady solution independeni\of
then the algorithm is unconditionally unstable for scalattems. For the Euler
equations the equation for the entropy is essentially aasegjuation. Hence, this
method is not stable for inviscid fluid dynamics.

In this study we discuss a class of implicit methods in whick@alculated
LU decompositions are used to approximate the equatiorssnaat by linearizing
a Crank-Nicolson or fully implicit scheme. It is shown thaistpproach can be
used to derive schemes which are unconditionally stableymamber of space
dimensions and also yield a steady state solution whicldespgandent ofA¢. The
operation count at each time step is also quite moderateubet¢he LU decom-
position produces equations which only require the ineersif m x m diagonal
blocks for each factor. In three dimensions there are ontyfaetors instead of
the three factors of an alternating direction algorithm.

The matrices of an unfactored implicit algorithm are notgdiaally domi-
nant for large time steps. Thus, the usual sufficient comktior using Gaussian
elimination without pivoting are no longer satisfied. Wewttbat the LU decom-
position can often still be constructed in such a way thahdactor is diagonally
dominant. This ensures the numerical stability of the isi@Ts required at each
time step.

2 One-Dimensional Problems
Consider the one dimensional system
wy + Aw, =0 (2.1)
with A a constant matrix.
Then the Crank-Nicolson scheme is given by

AtA AtA
(1 n %5) Wt = (1 - %5) w" (2.2)

or
(I + %5) (w”Jrl — w") = —AtAsW"



where/ is a central difference operator defined by

n Wi — Wi

We also define forward and backward difference operators

Wit — Wj w; — Wj—1
ot A | D—w, =237 2.4
Az i Az (2.4)

The solution of (2.2) requires the inversion of a block &gibnal matrix. Instead,
we can approximately factor (2.2) by

(130 (180 Yoo

D—I—’LUJ‘:

4 4

Sincew™™! — w™ is of orderAt the difference between the schemes (2.2) and
(2.4) are terms of orddrAt)? and so the additional errors are of the order of the
truncation error. For a bounded domain the operaterst4 D, and/ + 24 D_
can be inverted directed by beginning at the left and rightnoaries, respec-
tively. Computational experience indicated that this mdtFails for large At.
This is true even though (2.4) is unconditionally stableeimts of the usual ini-
tial value stability analysis. The reason for this is thak ihas both positive and
negative eigenvalues, the factors lose diagonal domindreeinversion process
then becomes numerically unstable.

To analyze this further we consider the general three-@pptroximation to
(2.1) which is second order accurate in space. Let

Aw” = w" — " (2.6)

J J J

Then, we have

Awf + o (Aw}, | — 28w} + Awf ) =

NA
ALt -a) ¢ (1) (w0 2)] @

Here,\ = % and¢ denotes the weighting of the space differences at the new and
old time levels.£ = % yields the Crank-Nicolson scheme whie= 1 yield the
fully implicit method. o is a free parameter; it is convenient to allow it to have the
general form

0 = 01 + 0 A2 A%E? (2.8)
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(2.6) can be rewritten as

Aw}‘—l—Tg (Aw?Jrl—Aw?l) +o (Aw?Jrl—QAw?"‘Aw?l) -5 W Wy
(2.9)

or
Q(uﬂ+1_uﬂ)::—AA6w (2.10)

@ is a block traditional matrix. Omitting the effect of boumds, () can be re-
placed by LU where L and U have the form

- €2 . . .
0 ly 1t
U Uo .o 0
v=| * - (2.11)
0 0 U1
where
gl = o1 + /61)\14 62 =7 — /61>\A (212)
Uy = Qg — ﬁg)\A U2 = Y2 + ﬁg)\A (213)

anda;, 3; may be matrix functions ofl.

Given the matrix) the LU decomposition is unique except for a diagonal ma-
trix, i.e., givenL, U the most general decomposition@fis given by@Q = L'U’
with L' = LD andU’ = D~'U for some nonsingular diagonal matrix. The
matrix D does not enter in any essential manner, and it will be chazecohve-
nience. In particular, we consider a scaling so that v; = 1.

For second order accuracy in space, one requires that

a1 = Q9
bi=pr="
Y1 =2
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Hence, we have if2.7)

AA AA
€1:Oé+§7 62:’7—%
AA AA
ulza—% uQ:7+§T (2.14)

with o+~ = 1. Thus, we have one free parameterat our disposal. Multiplying
L andU as given by (2.8) and comparing with (2.6) we find that

62 )\2A2

L o= + o2 A% (2.15)

a(l —a) +

and so

NG

1 + 1-— (40’2 — 1) 52/\2142 — 4:0'1

o . (2.16)

We stress that the inversion procedure is well conditioieshd only if the
matricesl andU are diagonally dominant. The diagonal dominanc&a$ only
sufficient but not necessary. Hence, for these inversiohs teell conditioned we
require

At e

<1

Iy - 22—+ 225 <
AT A

o= 22—+ 225 <1

To demonstrate the importance of diagonal dominance fak ered U factors
we consider the system

Lz =f
with
1 0 0 e
0
L b 1 Fo
_—
0 b 1 0



The solution is

ry = £
v = (=b)e

If b ¢ 1, the inversion process is not well posed even thougmitrix is already
in lower triangular form. The inverse @&f is given by

—b 1 0 0

L' = b —b
: 0
(_b)nfl (_b)nf2 1

Hence, for|b| > 1 the condition number increase exponentially as n increases
Conversely, IfLL andU are diagonally dominant, then it is easy to show that the
pivots in Gaussian elimination without pivoting cannotwwith increasingx.

Hence we require that

and ) )
ENA ENA
X > >
(a 5 v+ 5
Sincea + v = 1, the inversion algorithm is well conditioned if and only if
(EAA)” < (a—7)* = (2a — 1)’ (2.17)

We want the method to be unconditionally stable and so, j2rflies thato and
~ must be functions ofl or at least functions of the spectral radiusfbof

For a well conditioned problem, (2.11) together with (2.6€Quires that
ENA% < (20— 1)* =1 — (doy — 1)EIN2A? — 4oy

or equivalently
402§2>\2A2 S 1-— 40'1 (218)
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3 Analysisof Some Standard Schemes

We now consider some of the methods which can be derived fhengéneral
three-point scheme (2.6) and show that many of them leacgtgpdally dominant
L andU factors which yield a stable inversion process.

1. Standard second-order methods
o1 = o9 = 0; s0(3.3) is always satisfied. Hence, these methods are well
conditioned for al and all times steps.

2. 2 -4 methods

o1 =3 03 =0;(3.3) is always satisfied.

3. 4 - 4 methods
¢ = 1,01 = ;,02 = 5. In this case (3.3) implies that the inversion is well
conditioned only ifAA < 1. This is confirmed by the numerical results of

[5].

4. Scheme (2.4)
o1 = 0,09 = i and so (3.3) implies that the method is well conditioned
only if £2\2A4% < 1. This was conformed by computer runs.

5. Diagonally dominant schemes
If we want schemes that are diagonally dominant, this cancheeed by
choosingoy < 0,05 < 0 andoyoy > . If 07 < 0,05 < 0then(3.3) is
trivially satisfied. Hence, if the basic scheme is diaggndfiminant, then
theL andU factors are also diagonally dominant.

4 A Practical LU Decomposition

In section 2 we showed that an LU decomposition of form (Z8Jell conditioned
if and only if
ENA? = (2a — 1)? (4.2)

In section 3 we demonstrated that (4.1) is automaticaligféed for several well
known schemes. In this case the LU decomposition is usefirlynfor the pur-
pose of analyzing the scheme because the resulting is a icateol matrix func-
tion of A. Furthermore, the introduction of boundaries complicatedLU fac-
torization.



In order to generate new schemes which can be readily gerestab the
multi-dimensional situation, we can reverse the approgathbosing the L and U
factors as determining the scheme. We can then insure thattldecomposition
is quite simple and at the same time we can select the freenpéeay so that(4.1)
is always satisfied. Letting| denote the absolute value of a matrix as determined
by function theory, one choice faris

o= %(1 VT (4.23)

For two-dimensional problem§,= % this can be generalized by

1(1 |, At
S T el
“ 2(2+‘ Az

At
B— 4.2b
" ' Ay ) (4.20)
The absolute value of these matrices can be calculated bpmidizing A and B
independently. Although this approach is valid from a tletioal viewpoint, it is
not computationally efficient. Instead, we can replaceg®

1 1
a=5(1+pEA) 7= 51— ped) (4.3)
This choice ofa satisfies (4.1) ifp is equal to or greater than the spectral radius
of A. This choice yields a scalarwhich is computationally efficient. The exten-

sions to several dimensions are discussed in section 6.

5 Boundary Treatment

There are two different approaches towards constructingd@ry equations for
those data that are not specified analytically, one apprisdotput reasonable fac-
tors into the upper part of L and the lower corner of U. Havimgsome other pro-
cedure, decided what equations one wants, one then uselkeh@&h-Morrison
formulas to correct the inverse for the given boundary tnegit. This procedure
can be expensive as another inverse is needed for each menkadification.

Instead, we shall include the boundary treatment withinLtledecomposi-
tion. We shall concentrate on the left boundary= 0, which requires modi-
fication of the L matrix. Similar modifications affect the U ta for the right
boundary.



Assuming that the boundary treatment is of first order aay@ne finds that
L should be modified to have the form

o= et S
L=|1-% a+5" 0 (5.1)
. o

With a+c¢ = 1. We use linear extrapolation outside the domain for thosabkes
not given analytically. This is equivalent to (5.1) with

a=aoa+2y (5.2)
c=—

Using the theory of Gustafsson, Kreiss, and Sundstrom [d]aam show that the
initial boundary value scheme is unconditionally stablesfo> % (5.1) requires

the inversion of a 2 x 2 block matrix for the boundary value$ie Rlgorithmic

aspects of the scheme are described in greater detail iors&ct

6 Multidimensional LU Implicit Algorithms

In one dimension we constructed an approximate factoomaatihich had the in-
terpretation that both L and U were approximations to onedsidifferences. In
two dimensions we can extend this technique.

Consider the equation

wy + Aw, + Bw, =0 (6.1)
Let
b
ly .
L= 0 0 )\Zﬁzﬁ
(s Azr Ay
O 63 62 gl
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Uy U2 0 us 0

us

0 U9
Uy

where

It will be assumed that any shock waves contained in the flokg tcomputed
are weak enough that the entropy and vorticity generatetidoghock waves can
be ignored without introducing serious errors. Consisteith ¥his approxima-
tion we shall treat the exact potential flow equation in covestion form. Using
Cartesian coordinates y, = we shall write this equation as

0 0 0
%(PU) + a—y(PU) + &(Pw) =0 (6.2)

wherep is the density and, v, w are the velocity components. These are calcu-
lated as the gradient of the potential

u=2o,, v=9, w=0,. (6.3)

The flow is assumed to be uniform in the far field with a Mach nemld,. At
the body, the boundary condition is

whereu,, is the normal velocity component. The density is computedfthe
isentropic formula.

—1 1
p={l+ =M (1 - )} (6.5)

wherep is the ratio of specific heats, agds the speed,
¢ =1’ +0v* +u? (6.6)

With the normalization thag = 1 andp = 1 at infinity, the corresponding formu-
las for the pressure p and the local speed of

o , Pt
prMQ, @ =75

The shock jump conditions are

(6.7)
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(a) continuity of®, implying a continuity of the tangential velocity com-
ponent;

(b) continuity ofpu,,, whereu,, is the normal velocity component.

Under the isentropic assumption the normal component of embem is not con-
served through the shock wave, leading to a body force whiah approximation

to the wave drag. In any finite domain equatighs— (5) together with the shock
jump relationga) and(b) are equivalent to the Bateman variational principle that
the integral

[= /Q »dO 6.8)

is stationary.

A difficulty with the formulation assuming potential flow isdt corresponding
to any solution of equatiofil) there is a reverse flow solution, in which compres-
sion shock waves become expansion shock waves. In fact ifatefifference
formulas are used throughout the domain, symmetric saisticontaining an ex-
pansion shock at the front and a compression shock at thecesabe computed
for a body with fore and aft symmetry such as an ellipse. Th&s consequence
of the absence of entropy from the formulation. In order ttaoba unique and
physically relevant solution the shock jump relatigng and (b) must be supple-
mented by the additional “entropy condition” that discantius expansions are
to be excluded from the solution, corresponding to the faat entropy cannot
decrease in a real flow.

For this purpose the discrete approximation will be desyirizesl by the ad-
dition of artificial viscosity to produce an upwind bias iretBupersonic zone.
The added terms will be introduced in a manner such that theeswation form
of equation(1) is preserved. Provided that the solution of the discretaojs
converges in the limit as the cell width is reduced to zere,dbrrect shock jump
relations consistent with the isentropic assumption vadirt be a natural conse-
quence of the scheni@.

7 The Staggered Box Scheme

The basic idea of the numerical scheme is that cubes in the@uational do-
main will be separately mapped to distorted cubes in theipalydomain by inde-
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pendent transformations from local coordinatesy’, Z to Cartesian coordinates
x,y, z as illustrated in Figure 1.

The mesh points are the vertices of the mapped cubes, andrigibs j, &
will be used to denote the value of a quantity at

a mesh point. Subscripts+ 3,j + £,k + 3 will be used to denote points
mapped from the centers of the cubes in the computationahotorin developing
the difference formulas it will be convenient to introduseiaging the difference
operators through the notation

1
pxf= E(fi+%’j’k + fi_%,j,k;)

with similar formulas for,, 1., d,, 6.. 1t will also be convenient to use notations
such as

pxxf = px(pxf)
1 1 1
= 1fi+1,j,k + éfi,j,k + Zfi—l,j,k
pxyf = px(uyf)
dxxf = 6x(0xf)
= fir1jk +2fii6 + ficijk
dxyf = dx(bvf)

Numbering the vertices of a particular cube from 1 to 8 as gufé 1, the local
mapping is constructed by a trilinear form in which the locabrdinates lie in
therange-1 < X < 1 -1 <Y < 1 -1 < Z < 3, so the vertices are at
X; =+1Y, = +1 7, = +1. Thus if the Cartesian coordinates of tffevertex

of the mapped cube arg, y;, z;, the local mapping is defined by

8
1 1 1
=38 (= + X X)) (=+ YY) (-+ 2,7 7.1
v ;x(4+ ) (+YY) (5 +2i2) (7.1)
with similar formulas fory, z. The potentialb is assumed to have a similar form
inside the cell:

8
1 1 1
o =238 Z P, <Z+XZX) (E—FY;Y) (Z+ZZZ) (7.2)
i—1
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These formulas preserve the continuityrof/, z and at the boundary between any
pair of cells, because the mappings in each cell reduce tsaime bilinear form
at the common face. At the center of a computational cell grevatives of the
transformation can be evaluated from equati®nby formulas such as

rx = Z(1’2—$1+l‘4—$3+l’6—1’5+$8—l‘7)

= UyzO0x T

Similarly it follows from equation(9) that

Ox = pyz ox P, bxy = pz oxy P, Oxyz =0xyz ®

These formulas are simply an application of the box diffeeescheme.

Equation(1) will now be represented as a flux balance. For this purpose we
introduce a secondary set of cells interlocking with thenany cells as illustrated
in Figure 2.

In the computational domain the faces of the secondary spls the mid-
points of the primary cells. Since one secondary cell opsright primary cells,
in each of which there is a separate transformation, thenskcy cells do not
necessarily have smooth faces when they are mapped to tseEghgomain, but
this is not important since their purpose is simply to sesveantrol volumes for
the flux balance.

In order to derive the formula for the flux balance it is coneamnto resort to
tensor notation. Let the Cartesian and local coordinates be

=z, 2*=y, 2=z

XlzX’ XQIY’ XSIZ

The appearance of a repeated index in any formula will be ngtated to imply
a summation over that index. Léf be the transformation matrix with elements

63;2 and leth be the determinant dff. Let G be the matrixd” H with elements

L oxk Oxk
Y5 = HXi 59X

(7.3)
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Thend is the metric tensor. Also let’ be the elements af~!. Then the con-
travariant velocity components are

U=U', Vv=U> W=U

where 90
P= gl o 7.4
U'=9"25%; (7.4)

It may be verified by applying the chain rule for partial datives that equation
(1) can be written in the local coordinate system as

0 .

-(phU") = 7.5
5x (phU*) =0 (7.5)
This corresponds to a well known formula for the divergenta oontravariant
vector. In the computation of the density from equati@hwe now use the for-

mula
, 0P

0X?
Also at a boundany(z,y, z) = constant, the condition that the normal velocity
component is zero becomes

P =U (7.6)

; 08
Voxi =

The mesh will be generated so that the boundary will coineille faces of cells
adjacent to the boundary. Thus the boundary condition wdluce to a simple
form such ad” = 0 on a cell face.

The formula for the local flux balance can now be written downabsec-
ond application of the box scheme on the secondary cellss €quation12) is
approximated by

pryz 6x (phU) + pzx oy (phV') + pxy dz (phW) = 0. (7.7)

The physical interpretation of the quantitiesU, phV, phW is that they are the
fluxes across the faces of the secondary cell. Consequeigtliptmula is equiv-
alent to calculating the flux across the part of a face of arsgay cell lying in a
particular primary cell by using values fprh, U, V, W calculated at the center of
that primary cell.

Adjacent to the body the flux balance is established on sexgrells bounded
on one or more faces by the body surface as illustrated in .Fig 3
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There is no flux across these faces and equatidhis correspondingly mod-
ified.

Observe that equatigri4) could also be derived from the Bateman variational
principle. Suppose that the integratiefined by equatiof7) is approximated by
summing the volume of each primary cell multiplied by thegsige at its mid-
point. Then on setting the derivative diwith respect to each nodal valde ;
equal to zero to represent the fact that | is stationary, enevers equatiofi4).

In a finite element method using isoparametric trilineamaats the contribution
of each cell would be calculated by an internal integratieerahe cell, allowing
for the fact that according to the trilinear formujas not constant inside the cell.

The use of values of, h, U, V, W calculated at the centers of the primary cells
in equation(14), instead of values averaged over the relevant faces, $iegihe
formulas at the expense of a "lumping error”. Fortunately¢bntributions to the
lumping error from adjacent primary cells offset each athefact, if we suppose
the vertices of the cells to be generated by a global mappimgpth enough to
allow Taylor series expansions ofy, z as functions ofX, Y, Z, then it can be
seen from the interpretation of equatipint) as a box scheme that the local dis-
cretization error is of second order.

The introduction of lumped quantities in equatidn) is the source, however,
of another difficulty. this is most easily seen by considgtine case of incom-
pressible flow in Cartesian coordinates. Setting= 1,p = 1, equation(14)
reduces in the two dimensional case to

Uyydxx® + puxxdyy® =0

This is simply the rotated Laplacian as illustrated in Fegdr The odd and even
points are decoupled, leading to two independent solutsnsketched. In fact
wyydxx® andux xdyy ® are separately zero fdr = 1 at odd points—1 at even
points.
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To overcome this difficulty, observe that it is due to the ea#ibn of the flux
across the face labeled AB in Figure 5 using a value of caiedlat the point A.

If we add a compensation fluxAY @ xy across AB, the point at whichy is
effectively evaluated is shifted from A to B as is increasexhf O to 1/2. Taking
the cell heightAY as unity, consistent with the trilinear formuld), the addition
of similar compensation terms on all faces produces thensehe

fyyoxx ® + pxxdyy ® —edxxyy =0

Notice that setting = % yields the standard five point scheme for Laplace’s equa-
tion, while setting: = 5 yields the nine point fourth order accurate scheme.

In order to compensate for the lumping error in equatiod) in a similar
manner, we first calculate influence coefficients giving tfiecive weight of
Ixx®P, oyy®P, 4729 in equation(14) when the dependence pfon ¢y, ¢y, o,
is accounted for. These are

U2
Ax = ph <911 - §>

V2
Ay = ph (922 - ¥>

W2
Az = ph (933 - ?) (7.8)

Now define
QXY = (AX + Ay) wz 5XY (I) (79)
with similar formulas forQy ~, Qzx, and

Qxyz = (Ax + Ay + Az) 6xyz @ (7.10)
Then the final compensated equation is

Hy z (SX (phU) -+ Hzx (Sy (phV) + UXY 52 (phW)

1
—& {MZ dxy Qxy + pix Oyz Qvz + by 0zx Qzx — §5XYZ QXYZ} =0

(7.11)
where0 < ¢ < 1. This procedure has proved effective in suppressing high
frequency oscillations in the solution.
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This completes the definition of the discretization scheona@ibsonic flow. It
remains to add an artificial viscosity to desymmetrize tteeste in the supersonic
zone. Instead of equatidn2) we shall satisfy the modified flux balance equation

0 0 0
a5 (DU +P) + = (phV + Q) + = (phW + R) =0

where the added fluxe’ () and R are proportional to the cell width in the physi-
cal domain.Thus the correct conservation law will be recedén the limit as the
cell width decreases to zero. The added terms are desigmeddace an upwind
bias in the supersonic zone. As in the case of previous schémesolving the
potential flow equation in conservation fotf they are modeled on the artificial
viscosity of the nonconservative rotated difference savewhich has proved re-
liable in numerous calculations.

First we introduce the switching function

)

ThenP, ), R are constructed to that

P approximates — p|U|dx p
Q approximates — |V |dy p
R approximates — pu|W|édz p

with an upwind shift in each case. Sinpe= 0 wheng < a, the added terms
vanish in the subsonic zone. In the numerical scheme equitd) is actually
modified by the addition of the terms

oxP + 6yQ + 0zR

In order to formP, Q, R we first construct

P= th (U 6xx + UV pxy dxy + WU pzx 6zx) @

Q= Mh% (UV pxy 6xy + V2 yy + VW pyz dyz) @
é = ,uh% (WU Hzx (SZX + VW Ky z 5YZ + W2 (Szz) d
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Then

P Px fU>0
.1 . —= A~ .
i3k PiJrl’j’k if U <0

with similar shifts for Q, R.

The motivation for these formulas is provided by the follogranalysis. When
equation(12) is represented explicitly in quasilinear form, its leadiagns are
ph
= (a* — ¢*)Pss + a*(AD — @SS)} =0
wheres is the local flow direction, and\ is the Laplacian. In the transformed
coordinate system '
0% _U o2
ds ¢ 0Xi
so the leading terms @b, are U;gf’ <22 . According to the rotated difference
scheme one should use upwind difference formulas to evadiatat supersonic
points, as illustrated in Figure 6.
Now the upwind formula fordx x can be regarded as an approximation to
Oy xy — AXDxxx. Similarly the upwind formula fo® xy yields an added term
: AX ®yxy + 3 AY ®yyy and so on. The use of these formulas in the

evaluation on—Z(a2 — ¢*)®,, thus produces an effective artificial viscosity

— Z—}; (1 — Z—z) {AX UU®xxx+V Pyxx+W Pyxx)
+AY V(U @xyy +V Pyyy + W Ozyy)
+AZW (U Oxzz+V Oyzz + W q)ZZZ)}
assuming that/, vV, W are positive. Sinc%% = —32 it follows from equation
(13) that
px = —Z—}; (UPxx +VPxy + Wdxyz)

Thus on settind\ X = 1, consistent with equatiof®), leading terms of- (%) (nUdx p)
are
ph a?
——|1- ? AX(USxxx +VPyxx + Whzxx

a?
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which can be seen to be the desired quantity. Note that th&rcation of the ar-
tificial viscosity is based on the presumption of a smoothhmeghe supersonic
zone.

Finally it remains to devise an iterative procedure for s@vthe nonlinear
algebraic equations which result from the discretizatleoilowing the same rea-
soning as was used for the iterative solution of the rotaiterdnce scheme and
earlier schemes in conservation fofnt, this is accomplished by embedding the
steady state equation in an artificial time dependent eguaffhus we solve a
discrete approximation to

0 P 0 0
= OC(I)XT + ﬂ(IDYT + ’YCI)ZT + 5(I)T
where the coefficients, 3,y are chosen to make the flow direction timelike, as in
the steady state, and controls the damping.

The complete numerical scheme thus calls for the followiegs

1. Calculate the contravariant velocity components andénsitly in each pri-
mary cell using the box scheme.

2. Calculate the flux balance on each secondary cell by a seaqupittation
of the box scheme.

3. Add compensation terms to offset the effect of lumpingrsr

4. Add artificial viscosity at points where the flow is localypersonic to
desymmetrize the scheme and enforce the entropy condition.

5. Add time dependent terms to embed the steady state equtzoconver-
gent time dependent process which evolves to the solution.

8 Results

The finite volume scheme has been used in a number of catmsator swept
wings and wing-cylinder combinations, and some resultb@$é¢ calculations are
included in this sectioh.The scheme must be provided with the Cartesian coor-

IWe would like to thank Frances Bauer for her valuable helperfggming many of the nu-
merical computations and obtaining the graphical output.

20



dinates of each mesh point. The meshes for our calculatiawe leen generated
by sequences of global mappings. This has the advantageddiging a smooth

distribution of mesh points. In contrast with earlier mathan which the equation

of motion was explicitly transformed, 4-6 these mappingsrasw used only to

calculate the coordinates of the mesh points.

The following procedure has been used to generate the mealsfeept wing.
First we introduce parabolic coordinates in planes comtgithe wing section by
the transformation

X4V = {{fﬂ — 70(2) :(;y - yo<z>>}}%

7=z

wherez is the spanwise coordinate;(z) andy(z) define a singular line located

just inside the leading edge, and) is a scaling factor which can be adjusted so

that the wing chord is covered by the same number of cellsaayepan station.
The effect of this transformation is to unwrap the wing tarica shallow bump

Y =S(X,2)
as illustrated in Figure 7. Then we use a shearing transtowma
X=X, Y=Y-S8X.,2), Z=2

to map the wing surface to the plafe = 0. We now lay down a rectangular
coordinate system in th& Y, Z space, and finally generate the volume elements
by the reverse sequence of transformations ftdnY, Z to x,y, z. The vortex
sheet trailing behind the wing is assumed to coincide withdut generated by
the sheared parabolic coordinate system.

The mesh for the wing-cylinder calculations has been géeeiay a simple
extension of this procedure, in which the cylinder is mapjoea vertical slit by a
preliminary Joukowsky transformation, as sketched in Fad With the fuselage

thus compressed into the symmetry plane, we then use the seauence
of mappings as for a swept wing on a wall. The use of a vertitalather
than a horizontal slit, as was used by Newman and Klunkemfalldisturbance
calculations;? allows the wing to be shifted vertically so that both low arghh
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wing configurations can be treated.

Figure 9 shows the result of a calculation for the ONERA M6 wiiog which
experimental data is availablé The calculation was performed on a sequence of
meshes. After the calculation on each of the first two meghespumber of in-
tervals was doubled in each coordinate direction, and tteepolated result was
used as the starting point for the calculation on the nexthmé&se fine mesh
contained 160 intervals in the chordwise x direction, 1&nvdls in the normal y
direction, and 32 intervals in the spanwise z direction aftwtally of 81920 cells.
100 relaxation cycles were used on each mesh. Such a caoulaguires about
90 minutes on a CDC 6600 or 20 minutes on a CDC 7600. Separateupzes
distributions are shown for stations at 20, 45, 65 and 95gue@f the semi-span.
The pressure coefficient at which the speed is locally s@marked by a hori-
zontal line on the pressure axis, and the experimental dataarplotted on the
numerical result, using circles for the upper surface andsgs for the lower
surface. The calculation did not include a boundary layeremion. It can be
seen, however, that the triangular shock pattern is quitecaptured, and that
the calculated pressure distribution is a fair simulatibthe experimental result.
The result of this calculation is also in quite good agreetmeth the result of a
previous calculation using the nonconservative rotatéfdréince schemé.

Figure 10 shows the result for the same wing mounted on a lalzpasition
on a cylinder. The configuration is scaled so that the radittssocylinder is 0.25,
while the wing tip station is 1.25. No experimental data iaikable in this case.
The calculation shows an increase of lift, particularly méee wing root. This
is to be expected, because the cylinder is set at the same ahgttack as the
wing and will generate an upwash. The problem of computirgfibw past a
wing-fuselage combination is discussed at greater lemgghcompanion papét,
in which an alternative mesh generating scheme is proposed.

9 Conclusion

The results displayed in Figures 9 and 10 serve to indicat@tbmise of the fi-
nite volume scheme. Its main advantage is the relative eabemhich it can be
adapted to treat a variety of complex configurations. Sihedreatment of inte-
rior points is independent of the particular mappings usegeinerate the mesh,
topologically similar configurations can be treated by thme flow computation

22



routine, provided that suitable mappings can be found to theam to the same
computational domain.

This flexibility is achieved at the expense of an increasééamount of time
required for the computations, unless a very large memaqpgaty is available,
because of the need to perform a numerical inversion o theftyvemation matrix
defining the local mapping in each cell. If the inverse transfation coefficients
are not saved they must be recalculated at every cycle. $rfdhin the scheme
requires about 50 percent more time than the rotated diterecheme to treat a
swept wing on an equal number of mesh points. It is worth igativat the com-
puting time could be substantially reduced by restrictimguse of distorted cells
to an inner region surrounding the body, with a transitioG#stesian coordinates
in the outer region.
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