
IMPLICIT SHAPE MODELS FOR OBJECT DETECTION IN 3D POINT CLOUDS

Alexander Velizhev1,2, Roman Shapovalov1, Konrad Schindler3

1 Graphics & Media Lab, Lomonosov Moscow State University, Russia
2 Photogrammetry Lab, Moscow State University of Geodesy and Cartography, Russia

{avelizhev,shapovalov}@graphics.cs.msu.ru
3 Photogrammetry and Remote Sensing Group, ETH Zürich, Switzerland

schindler@geod.baug.ethz.ch

Commission III/3

KEY WORDS: Recognition, LiDAR, Laser Scanning, Point Cloud

ABSTRACT:

We present a method for automatic object localization and recognition in 3D point clouds representing outdoor urban scenes. The

method is based on the implicit shape models (ISM) framework, which recognizes objects by voting for their center locations. It

requires only few training examples per class, which is an important property for practical use. We also introduce and evaluate an

improved version of the spin image descriptor, more robust to point density variation and uncertainty in normal direction estimation.

Our experiments reveal a significant impact of these modifications on the recognition performance. We compare our results against the

state-of-the-art method and get significant improvement in both precision and recall on the Ohio dataset, consisting of combined aerial

and terrestrial LiDAR scans of 150,000 m2 of urban area in total.

1 INTRODUCTION

Mobile mapping systems have become a popular means of rapidly

acquiring large-scale 3D point clouds. These systems typically

consist of scanning LiDAR and/or multiple video cameras, in

combination with high-accuracy GPS/IMU sensors for naviga-

tion, mounted on a moving vehicle such as a van, train or heli-

copter. Applications include highway and railroad mapping and

monitoring, cultural heritage documentation, 3D urban modeling,

and many others. The primary output of a mobile mapping sys-

tem consists of a huge unstructured cloud of 3D points, which

then needs to be analyzed further to extract the desired task-

specific information. The main step in most applications is local

semantic analysis to detect semantically meaningful objects.

Object detection is difficult to perform automatically because of

the large variability of real-world objects. Manual detection is

time-consuming due to the huge amounts of data, and also error-

prone because human visual system is not accustomed to inter-

preting unorganized point sets. Thus, automatic object extraction

is both practically useful and technically challenging.

Detected objects might be either objects of interest for the task at

hand, or unwanted objects to be masked out, such as cars in an

urban mapping project. In the present work we develop a general

framework for detecting objects of different classes based on a

few given training examples. We concentrate on objects which

are “small” and relatively compact, such as cars, traffic signs and

lamp posts, as opposed to large structures, such as buildings and

bridges.

The problem of semantic object detection in mobile mapping data

is an active research topic. One of the most successful ways to

approach it is the following pipeline (Golovinskiy et al., 2009):

(i) filter out points of the ground; (ii) extract connected clusters

of points (connected components), which are considered object

hypotheses; (iii) compute a set of features for each connected

component (e.g. height, volume, spin image etc.); (iv) apply a

supervised classification algorithm to the feature vector to deter-

mine the object class. The main weakness of this pipeline is that

Figure 1: Example of a car within a complex urban scene, cor-

rectly detected by our method (colored red)

each connected component is described by a simple feature vec-

tor, which encodes only global properties. Such features are not

discriminative enough for real-world object classes, which ex-

hibit considerable intra-class variability. Moreover, occlusions

and noise may cause significant problems. In particular, if a con-

nected component contains more than just a single object, the

spurious points are treated as noise or outliers. They corrupt

global features unless they are correctly detected and removed,

either explicitly or implicitly.

A group of part-based methods widely used in computer vision

have also been adapted to recognizing 3D meshes (Toldo et al.,

2009; Knopp et al., 2010). These methods are typically tested on

scans of individual objects obtained under laboratory conditions.

Extraction of meshes is possible when the point cloud is dense

and clean enough, but cannot be accomplished reliably for mobile

mapping data, hence those methods are not directly applicable to

our problem. Nevertheless, their key idea is very powerful: they

represent the surface with a part-based model, i.e. a set of local



interest point descriptors together with their spatial configuration.

The part-based representation is robust against partial occlusions

and can handle moderate deformations of object geometry.

We make use of a part-based model for recognizing 3D objects

in mobile mapping LiDAR data obtained in urban environments.

Our approach can be described as an extension of the method

of Golovinskiy et al. (2009): we replace supervised classifica-

tion (via SVM) with a 3D implicit shape model (ISM) (Knopp

et al., 2010), i.e. a part-based representation based on robust vot-

ing for the object center. In this paper we describe the adap-

tations which allow us to apply ISM to mobile mapping data.

Our method shows significantly improved object detection per-

formance in comparison to the state-of-the-art (Golovinskiy et

al., 2009). Part-based models can better cope with inaccurate ex-

traction of connected components. The method requires only few

training examples per class, which is an important property for

practical use. A typical detection result is shown in Figure 1.

2 RELEVANT WORK

This section is organized as follows: first we review methods for

object detection in 3D point clouds, then we focus on 3D keypoint

detectors and shape descriptors, since they are important in con-

text of our work. We do not consider here semantic point labeling

methods because of the following reasons: (i) these methods are

usually limited to a small number of classes (ii) in the case of

mobile mapping systems we have very dense and detailed data,

so even discounting the effects of noise and occlusions it is usu-

ally not possible to assign every single point to one out of a small

number of classes. We thus consider object detection, rather than

point-wise labeling, to be more suitable for urban mapping tasks.

2.1 Object Detection

Driven by the development of LiDAR hardware, early papers

were devoted to the analysis of point clouds from airborne sen-

sors. In that case the point density on the mapped objects is low,

and only a few categories of objects can be reliably detected (such

as trees, buildings). Thus, one of the most popular applications is

detection and modeling of urban buildings. These methods (Oude

Elberink and Vosselman, 2009; Kluckner and Bischof, 2010; La-

farge et al., 2010) aim to detect individual roofs and model them

by fitting polyhedral models satisfying natural geometric con-

strains such as edge parallelism.

The analysis of point clouds obtained with terrestrial mapping

systems is a relatively new research topic. Rutzinger et al. (2009)

have applied region growing to automatically extract vertical walls

from terrestrial and airborne laser scanning data. It has then been

extended to individual tree detection (Rutzinger et al., 2010) by

first detecting planes and then selecting non-planar connected

components with high roughness and low point density ratio. An-

other technique has been developed for the detection of poles

(Brenner, 2009). Poles are defined as upright structures of a cer-

tain maximum diameter, surrounded by empty space. An alter-

native procedure for pole detection has been introduced by Lam

et al. (2010). It is based on robust vertical line fitting. Patter-

son et al. (2008) introduced an object detection technique that

combines bottom-up and top-down descriptors. In a first stage

object hypotheses are proposed by searching for similar local de-

scriptors in a pre-computed dictionary of descriptors, for which

the correct labels are known. Then each hypothesis is verified

by matching with extended Gaussian images of objects from the

training dataset. The common weakness of all those methods is

that they are tailored to specific classes with favorable geomet-

ric properties, and therefore cannot easily be extended to other

classes and to the multiclass case.

A framework for multiclass object detection has been introduced

by Golovinskiy et al. (2009). This algorithm consists of the four

steps: background subtraction, generation of object hypotheses,

feature computation, and classification. Each step reveals higher-

level information about the objects for the cost of losing some of

them. The authors report that 92% of the ground truth objects

are retained after the first step, and almost all of them (90%) are

located correctly on the second step. Still, on the final step only

60% of the objects are located and classified correctly, thus the

weakness of the method is in the two last steps.

The problem of detection and recognition of free-form objects in

3D point clouds has received attention in computer vision (John-

son and Hebert, 1999; Mian et al., 2005). In contrast to category-

level recognition described above, the focus is on detecting spe-

cific objects from a set of models with little noise. Slightly trans-

formed CAD models are typically used for testing. The main

challenge addressed by those methods is partial occlusion. Typi-

cal solutions are variants of keypoint matching, followed by geo-

metric verification of the object shape via robust fitting.

Recently, the bag-of-features (BoF) method has been adapted to

also recognize 3D shapes (Toldo et al., 2009). The cloud is rep-

resented as unordered set of its local descriptors. Its advantage

is the ability to match articulated objects. Knopp et al. (2010)

in the implicit shape models (ISM) enforce spatial consistency

as well, which gives the model more discriminative power while

keeps its robustness against articulation and noise. To the best

of our knowledge, such methods have not yet been applied to

complex real-world point clouds such as scanned urban environ-

ments, which exhibit high intra-class variability as well as signif-

icant amount of measurement noise. We describe how to apply

them in practice in Section 3.2.

2.2 3D Keypoint detectors and Shape Descriptors

Part-based methods use keypoint detection and description at their

cores. Keypoint detectors aim to detect those local regions in 3D

point clouds which could be used for informative description of

objects by 3D shape descriptors robust to certain kinds of trans-

formations. In this subsection we briefly review such techniques.

Various keypoint detection techniques for 3D point clouds have

been introduced recently (Fadaifard and Wolberg, 2011; Steder

et al., 2010). We also refer to evaluations of keypoint detectors

(Mian et al., 2010; Salti et al., 2011; Yu et al., 2011). The majority

of 3D detectors and descriptors are designed either for triangle

meshes or for range images, so it is not clear how to adapt them to

raw point clouds, unless they could be triangulated easily, which

is rarely the case for urban scans that typically contain scattered

points and small objects. Many different local and global shape

descriptors have been developed. The most popular ones are spin

images (SI) (Johnson and Hebert, 1999) and extended Gaussian

images (Horn, 1984); new descriptors have also been introduced

recently: angular spin images (Endres et al., 2009), FPFH (Rusu

et al., 2009), and 3D SURF (Knopp et al., 2010).

3D point clouds obtained by mobile mapping systems are scaled

in world coordinate units. This fact is used to compute metric

properties, such as estimated volume or average height above the

ground (Golovinskiy et al., 2009; Shapovalov et al., 2010). Fur-

ther useful features include spectral features that measure whether

the neighborhood of a point is locally planar, linear, or scatter

(Medioni et al., 2000), as well as the direction of the normal vec-

tor relative to the horizontal plane (Triebel et al., 2006).



3 VOTING-BASED DETECTION FRAMEWORK

In this section we describe the details of our processing pipeline.

We point out that the system is fully automatic. A user only needs

to set some parameter values for detection. To train the detec-

tor only few training examples of the desired object classes are

needed. The detector aims to localize the centroids of all the ob-

jects of the target classes present in the test point cloud, and to

determine their class labels. The task is split into two consecu-

tive steps, namely object hypotheses generation and recognition.

While the former is domain-specific (in this paper, urban scenes),

the later is largely agnostic w.r.t. the domain.

3.1 Hypotheses generation

The goal of this step is to get a list of putative objects, represented

by their associated set of 3D points. Since these hypotheses form

the input for the subsequent recognition, the list of hypotheses

should be complete, i.e. the emphasis is on high recall. Note that

a hypothesis can contain more than one object.

Similar to Golovinskiy et al. (2009), we use domain knowledge to

filter out parts of the point cloud which do not contain any of our

objects. First, large horizontal planes are deleted from the scene,

since they are likely to represent roofs or ground. The scene is

split into a regular grid of small cells, and robust plane fitting is

carried out independently for each cell with RANSAC. Neigh-

boring cells overlap to avoid discretization artifacts. If RANSAC

finds a near-horizontal plane, which fits a sufficiently large frac-

tion of points (in our implementation >30%), then those points

are assumed to be either part of the ground or part of a flat roof,

and are excluded from further consideration.

Next, connected components are extracted such that every point

in a component has at least one neighbor within a given radius

(set to 0.25 m in our implementation). The components are then

filtered with three conditions: (i) components with too few points

are discarded, since small segments tend to be noise; (ii) com-

ponents with too large extent are discarded, which gets rid of

most building walls; (iii) components located too high above the

ground are discarded to weed out structures on roofs, in which

we are not interested. To reliably define the ground level we use

street axes from OpenStreetMap.1 We point out that the filtering

steps are tailored to urban areas and may have to be adapted to

other domains. An example is shown in Figure 2. The remain-

ing components after filtering are considered hypotheses which

might contain one or more objects of interest. In practice most

components contain a single object or a small number of objects.

In contrast to previous work we do not attempt to split each com-

ponent into single objects, but defer the decision to a later stage,

where more information is available.

3.2 Recognition

This stage uses object hypotheses as input and aims to recognize

and localize objects within each component. To this end we adopt

the implicit shape model (ISM) framework. This method, which

can be seen as a combination of visual dictionaries (Sivic and

Zisserman, 2003) and the generalized Hough transform, was first

introduced by Leibe and Schiele (2003), and later extended to

3D mesh models by Knopp et al. (2010), who used voxel-based

local descriptors. To the best of our knowledge it has not yet been

applied to real-world 3D outdoor data. ISM first has to be trained

in an offline learning stage, to be later applied for classification.

The training stage requires a number of training examples for

each class, in our case 3D point clouds of class exemplars, which

1http://www.openstreetmap.org

Figure 2: 3D point cloud before filtering (a) and after filtering (b).

Different colors correspond to different connected components

do not need to be perfectly segmented. First, keypoints are ex-

tracted, and their neighborhoods are represented by local descrip-

tors. Then the descriptors are clustered to obtain a dictionary

of geometric words stored together with their possible displace-

ments from the object center.

3.2.1 Local description We found that extraction of few well-

defined keypoints using only local geometric properties of the

point cloud is quite unstable due to noise and occlusions. We

thus prefer to sample relatively large number of keypoints at ran-

dom locations. As descriptor we employ a variant of the popular

spin image (SI) descriptor (Johnson and Hebert, 1999), which is

known to be rather robust to noise and can be computed from

raw 3D points. Intuitively, spin image encodes the distribution of

surface normals in a local neighborhood. We refer to the original

publication for details. The normals are estimated from the points

by moving least squares (McLain, 1976). As reference direction

we choose the vertical of the world coordinate system, which is

always known in surveying applications.

An issue with the conventional SI descriptor is that it does not

take into account variations in point density, hence density differ-

ences will reduce the similarity between descriptors. In mobile

mapping data the density can vary enormously depending on the

distance from the sensor, the surface orientation, and the material

properties. We therefore propose to normalize the descriptor to

a fixed density, by dividing through the number of points in the

local neighborhood. Furthermore, the SI descriptor suffers from

the 180◦ ambiguity of the normal vectors. This is usually solved

by flipping the normals accordingly (assuming that the angle be-

tween the normals of nearby points should be < 90◦). However

that approach has a disadvantage: one can invert all normal direc-

tions and the solution also will be correct (but produce different

SI descriptors). Another approach is to direct all normals out-

wards form (or inwards to) the object center, but that does not

work in case of components with multiple objects (since the cen-



Figure 3: Illustration of keypoint representation. Point K is a

keypoint, C the object center, M is the 3D point with minimal z

coordinate. For each keypoint we store the descriptor matrix, the

orientation vector, the keypoint’s displacement from the object

center ~KC, and a relative height of the keypoint dz = (Cz−Mz)

ter of mass is shifted). We also could not use the sensor path

because the point cloud often (and also in our data) consists of

multiple co-registered scans. We thus mirror the normal vectors

during descriptor computation and include both versions in the

descriptor to achieve invariance against flipping.

In addition to the SI, we enrich the keypoint representation with

further information, namely (i) the principal direction of the points

in a local neighborhood, projected into the ground (xy−) plane,

(ii) the relative height of the keypoint (measured w.r.t. the low-

est z-coordinate in the connected component), and (iii) the key-

point’s offset from the object center. Please see Figure 3 for de-

tails. Clustering of the SI descriptors with k-means (Steinhaus,

1956) yields a dictionary of geometric words, i.e. clusters of mu-

tually dissimilar local point configurations.

3.2.2 Voting-based localization In the detection stage, key-

points are extracted at random locations in a given connected

component, and their descriptors are computed as described above.

Each descriptor is matched to a geometric word in the dictionary

and casts votes for the location of the object center. Rather than

let all keypoints vote equally, it has proven beneficial to weight

the votes according to both the distribution of frequencies of the

classes and the relative keypoint height. In details,

W (wj , ki, cl) = Wst(wj , cl) ·Wheight(wj , ki) , (1)

where cl is the class label, Wst(wj , cl) is the statistical weight

and Wheight(wj , ki) is the height weight. In turn, the statistical

weight is

Wst(wj , cl) =
1

Nw(cl)
·

1

N(wj)
·

N(wj ,cl)

N(cl)
∑

cn∈C

N(wj ,cn)

N(cn)

, (2)

where Nw(cl) is the number of clusters that contain votes for

the class cl, N(wj) is the number of elements in the cluster wj ,

N(wj , cl) the number of elements in the cluster wj which vote

for the class cl, and finally N(cl) is the total number of votes for

the class cl in the whole vocabulary. The first term makes the

weight value insensitive to the number of words (clusters) sup-

porting a class in the training set, so helps to avoid bias towards

classes with many different words, as in (Knopp et al., 2010). The

second term normalizes the number of votes from each word. The

last term estimates the probability that the word wj votes for the

class cl. The height weight is defined as

Wheight(wj , ki) = exp

(

(h(ki)− h(wj))
2

σ2
height

)

. (3)

Here h(ki) is the relative height of the keypoint ki from the low-

est point of the whole connected component, h(wj) is the height

of the cluster element wj , σheight is a smoothing parameter. This

weight reflects the probability to encounter a specific geometric

word at height h. Voting proceeds independently in a separate

voting space for each class. After voting, local maxima are de-

tected by mode search using mean-shift (Comaniciu and Meer,

2002) to obtain a list of potential object centers with their associ-

ated (pseudo-)probabilities for each class. Finally, we run inter-

class non-maxima suppression in 3D space and discard modes

with too low densities, to obtain a list of object center locations.

Note that the procedure can extract in one connected component

multiple objects belonging to either the same or different classes.

It is also possible that no object center at all is found within a

hypothesis, indicating that the connected component originates

from an object of an unspecified class or from noise (e.g. pedes-

trians captured by the mapping system).

4 EXPERIMENTS

This section is organized as follows: first we describe the data,

then we present our results separately for the hypotheses genera-

tion step and for the subsequent recognition step, and finally we

discuss implementation details.

The experimental evaluation concentrates on the Ohio dataset,

which has also been used by Golovinskiy et al. (2009) and is the

most relevant public benchmark for the problem we tackle. The

dataset includes 15 tiles, 100×100 meters each, scanned in Ot-

tawa city. It has been obtained by stitching terrestrial and airborne

laser scanning data (see Figure 4). A typical scene contains urban

objects like buildings, trees, cars, poles etc. The authors kindly

provided us with the ground truth annotation, so that we could

compare directly against their method. The annotation includes a

centroid for each object, its radius and its class label.

So far we have focused on cars and light poles. The car class

is challenging because of high intraclass variation (we do not im-

pose any limitations on the car type). Still, the centroid position is

usually stable for cars, which is a prerequisite for ISM-type algo-

rithms. Instances of the light pole class are quite similar to each

other, however there are other “cylindrical” classes in the dataset

(lamp post, traffic light, traffic sign), which make light pole de-

tection non-trivial. In total the annotated portion of the dataset

includes 235 cars and 73 light poles.

An important requirement for the hypotheses generation stage is

not to miss any relevant objects, because at the next stage those

Figure 4: Typical example of an urban scene



Figure 5: Typical result of the hypotheses generation stage. Dif-

ferent colors denote different connected components. The red

hypothesis in the image center is caused by three different cars

mistakes could not be fixed. The rejected points (i.e. those which

did not fall into any connected component) would not participate

in the voting for the centroid. As a measure of how complete the

hypotheses are, we compute the fraction of correct objects, which

fall into at least one connected component. For each ground truth

object we define a circular region by the given object center and

radius. We consider detection correct if at least 50 of its points

fall within the class-specific radius around the ground truth ob-

ject center. In contrast to Golovinskiy et al. (2009), our hypothe-

ses do not necessarily correspond to only one object. During the

voting step we localize objects’ centroids within the connected

components. The experiment shows that the hypotheses gener-

ation stage retains 96% of the cars and 93% of the light poles.

We conclude that this stage is not a bottleneck of the processing

pipeline, which is in line with conclusions of Golovinskiy et al.

(2009). Example connected components are shown in Figure 5.

To evaluate design choices for the voting stage we first test our

spin image modification, then we investigate the influence of the

vocabulary size and the effect of the new height weight. Finally

we provide an end-to-end comparison of our approach against the

state of the art for the dataset.

First one has to construct a dictionary of geometric words by clus-

tering keypoint descriptors. The quality of detection depends on

the type of descriptors. Our experiments show significant im-

provement when using the modified spin images (Section 3.2.1),

see Figure 6(a).

We manually extract exemplars of the two object classes to con-

struct the dictionary. Note we use only a few exemplars for each

class (1–5), which significantly reduces the annotation effort for

training. During voting, every keypoint must be associated with

a geometric word. Therefore we have also added the background

classes which had previously produced most false detections (wall

and tree).

The size of the dictionary is an important parameter. Given 8000

keypoints extracted from the training objects, we conduct a series

of experiments with different number of clusters (from 100 to

1000), see Figure 6(b). We conclude the a dictionary size of 100-

300 (1-3% of the total number of keypoints) is the best choice.

Method Dataset
Cars Light poles

P R P R

Golovinskiy TEST 0.50 0.62 0.45 0.62

ISM TEST 0.66 0.70 0.69 0.80

ISM FULL 0.68 0.71 0.72 0.82

Table 1: Comparison between (Golovinskiy et al., 2009) and the

proposed method (denoted as ISM, including both modified SIs

and the height weight) in terms of [P]recision and [R]ecall. TEST

denotes results for only the original test set, FULL for the com-

bined training and test sets

An evaluation of the proposed height weight is presented in Fig-

ure 6(c). This weight helps to detect cars better due to their small

range of height above the ground. However, the weight decreases

the performance for light poles in the high-precision regime. We

explain this by the presence of similar object parts at different

heights.

We compare the end-to-end results of our approach with those of

Golovinskiy et al. (2009), on the same dataset, see Table 1. Over-

all, the dataset contains 235 cars and 73 light poles. It is split into

a training set for learning classifiers (125 cars, 39 light poles) and

a test set for evaluation (110 cars, 34 light poles). However, as

mentioned before, our method does not require a large training

set. A few exemplars are enough, so we also could test our ap-

proach on the full dataset (previous “training” and “test” parts

combined). All our training instances have been extracted com-

pletely randomly from external data outside the annotated por-

tion. They are present neither in the “test” nor in the “training”

part.

The described approach for object detection in 3D point clouds

has been implemented as a fully automatic processing pipeline.

The system is completely written in C++, building on efficient

libraries, most notably the Point Cloud Library2, and can han-

dle millions of 3D points. The total processing time for a tile

(100×100 m2, ≈ 4M points) is between 5 and 10 minutes on

an Intel QuadCore 2.4 GHz machine with 4 GB of RAM. Em-

pirically, the method is quite stable to parameters variation, so it

does not require careful tuning. However, we point out the depen-

dency between the number of training exemplars and the number

of clusters in the dictionary. As more training objects are added,

the number of geometric words should grow to accommodate the

increased shape variability.

5 SUMMARY

We have presented a method for object detection and recognition

in 3D point clouds. The method is based on implicit shape mod-

els, which recognize objects by voting for their centroid locations.

We have introduced and evaluated extensions to the spin image

descriptor as well as the weighting scheme for the voting stage.

Experimental evaluation shows that these extensions significantly

boost recognition performance. We compare our results with the

state of the art on the Ohio dataset and get improvements of 8–

24% in both precision and recall. Since the algorithm is based

on a voting procedure for location of the object center, it is well-

suited for exemplar-based detection. Small number of required

training examples makes the approach useful for practical appli-

cations. On the downside, its main limitation are objects classes

with strongly varying center and/or badly defined shape.

2http://pointclouds.org



(a) (b) (c)

Figure 6: Comparison of detection results for different system settings. (a) Classic vs. modified spin images. (b) Different numbers of

geometric words (class cars). (c) Height weight vs. no height weight

References

Brenner, C., 2009. Extraction of features from mobile laser scan-
ning data for future driver assistance systems. In: AGILE’09.
2

Comaniciu, D. and Meer, P., 2002. Mean Shift: A robust ap-
proach toward feature space analysis. IEEE T Pattern Anal
24(5), pp. 603–619. 4

Endres, F., Plagemann, C., Stachniss, C. and Burgard, W., 2009.
Unsupervised discovery of object classes from range data us-
ing latent Dirichlet allocation. In: RSS’09. 2

Fadaifard, H. and Wolberg, G., 2011. Multiscale 3d feature ex-
traction and matching. In: 3DimPVT’11. 2

Golovinskiy, A., Kim, V. G. and Funkhouser, T. A., 2009. Shape-
based recognition of 3d point clouds in urban environments.
In: ICCV’09. 1, 2, 3, 4, 5

Horn, B. K. P., 1984. Extended Gaussian images. Proc IEEE
72(2), pp. 1671–1686. 2

Johnson, A. E. and Hebert, M., 1999. Using spin images for effi-
cient object recognition in cluttered 3d scenes. IEEE T Pattern
Anal 21(5), pp. 433–449. 2, 3

Kluckner, S. and Bischof, H., 2010. Image-based building clas-
sification and 3d modeling with super-pixels. In: PCV’10. 2

Knopp, J., Prasad, M., Willems, G., Timofte, R. and Van Gool,
L., 2010. Hough transform and 3d SURF for robust three di-
mensional classification. In: ECCV’10. 1, 2, 3, 4

Lafarge, F., Descombes, X., Zerubia, J. and Deseilligny, M. P.,
2010. Structural approach for building reconstruction from a
single DSM. IEEE T Pattern Anal 32(1), pp. 135–147. 2

Lam, J., Greenspan, M., Harrap, R., Kusevic, K. and Mrstik, P.,
2010. Urban scene extraction from mobile ground based Li-
DAR data. In: 3DPVT’10. 2

Leibe, B. and Schiele, B., 2003. Interleaved object categorization
and segmentation. In: BMVC’03. 3

McLain, D. H., 1976. Two dimensional interpolation from ran-
dom data. Comput J 19(2), pp. 178–181. 3

Medioni, G., Lee, M.-S. and Tang, C.-K., 2000. Computational
Framework for Segmentation and Grouping. Elsevier Science.
2

Mian, A., Bennamoun, M. and Owens, R., 2010. On the repeata-
bility and quality of keypoints for local feature-based 3d object
retrieval from cluttered scenes. Int J Comput Vision 89(2-3),
pp. 348–361. 2

Mian, A. S., Bennamoun, M. and Owens, R. A., 2005. Automatic
correspondence for 3d modeling: an extensive review. Int J
Shape Modeling 11(2), pp. 253–291. 2

Oude Elberink, S. and Vosselman, G., 2009. Building reconstruc-
tion by target based graph matching on incomplete laser data:
Analysis and limitations. Sensors 9(8), pp. 6101–6118. 2

Patterson, A., Mordohai, P. and Daniilidis, K., 2008. Object de-
tection from large-scale 3d datasets using bottom-up and top-
down descriptors. In: ECCV’08. 2

Rusu, R. B., Blodow, N. and Beetz, M., 2009. Fast point feature
histograms (FPFH) for 3d registration. In: ICRA’09. 2

Rutzinger, M., Oude Elberink, S., Pu, S. and Vosselman, G.,
2009. Automatic extraction of vertical walls from mobile and
airborne laser scanning data. In: ISPRS Laser scanning work-
shop ’09. 2

Rutzinger, M., Pratihast, A., Oude Elberink, S. and Vosselman,
G., 2010. Detection and modelling of 3d trees from mobile
laser scanning data. In: Close Range Image Measurement
Techniques, pp. 520–525. 2

Salti, S., Tombari, F. and Stefano, L. D., 2011. A performance
evaluation of 3d keypoint detectors. In: 3DimPVT’11. 2

Shapovalov, R., Velizhev, A. and Barinova, O., 2010. Non-
associative markov networks for 3d point cloud classification.
In: PCV’10. 2

Sivic, J. and Zisserman, A., 2003. Video Google: A text retrieval
approach to object matching in videos. In: ICCV’10. 3

Steder, B., Grisetti, G. and Burgard, W., 2010. Robust place
recognition for 3d range data based on point features. In:
ICRA’10. 2

Steinhaus, H., 1956. Sur la division des corps matériels en parties.
Bull Acad Polon Sci, Cl III/4 pp. 801–804. 4

Toldo, R., Castellani, U. and Fusiello, A., 2009. A bag of words
approach for 3d object categorization. In: MIRAGE’09. 1, 2

Triebel, R., Kersting, K. and Burgard, W., 2006. Robust 3d scan
point classification using associative markov networks. In:
ICRA’06. 2

Yu, T.-H., Woodford, O. J. and Cipolla, R., 2011. An evaluation
of volumetric interest points. In: 3DIMPVT’11. 2


