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In this event-related fMRI study we investigated the effect of 5 days of implicit acquisition

on preference classification by means of an artificial grammar learning (AGL) paradigm

based on the structural mere-exposure effect and preference classification using a simple

right-linear unification grammar. This allowed us to investigate implicit AGL in a proper

learning design by including baseline measurements prior to grammar exposure. After 5

days of implicit acquisition, the fMRI results showed activations in a network of brain

regions including the inferior frontal (centered on BA 44/45) and the medial prefrontal

regions (centered on BA 8/32). Importantly, and central to this study, the inclusion

of a naive preference fMRI baseline measurement allowed us to conclude that these

fMRI findings were the intrinsic outcomes of the learning process itself and not a

reflection of a preexisting functionality recruited during classification, independent of

acquisition. Support for the implicit nature of the knowledge utilized during preference

classification on day 5 come from the fact that the basal ganglia, associated with implicit

procedural learning, were activated during classification, while the medial temporal lobe

system, associated with explicit declarative memory, was consistently deactivated. Thus,

preference classification in combination with structural mere-exposure can be used to

investigate structural sequence processing (syntax) in unsupervised AGL paradigms with

proper learning designs.

Keywords: fMRI, artificial syntax, implicit learning, artificial grammar learning, inferior frontal gyrus, structural

mere-exposure, preference classification

INTRODUCTION

Artificial grammar learning (AGL) is commonly used to probe
implicit sequence learning (Reber, 1967; Seger, 1994; Stadler and
Frensch, 1998). In the standard AGL paradigm, participants are
exposed to example sequences that are generated from a finite
set of rules, a grammar, which specify non-overt (non-marked)
sequence regularities. After exposure, participants classify new
sequences as grammatical or not (grammaticality instruction).
Participants that perform robustly above chance are said to have
acquired relevant knowledge related to the grammar and their
classification performance shows that they are able to general-
ize and use the acquired knowledge effectively in a new situation.
Although AGL is often used to probe incidental implicit learn-
ing, most functional neuroimaging (and some recent behavioral)
research has used explicit instructions in combination with the
grammaticality classification task. In these experiments, the par-
ticipants are informed about the existence of a grammar before
acquisition (i.e., before exposure to grammatical items) and are
explicitly instructed to identify the underlying rules by, for exam-
ple, trial-and-error or other explicit problem solving strategies, in
combination with performance feedback during acquisition and
sometimes during classification. Participants in these studies are
therefore explicitly guided in their learning toward what is rele-
vant to learn and what is not (e.g., Fletcher et al., 1999; Strange

et al., 2001; Opitz and Friederici, 2003; reviewed in Petersson
et al., 2004; and more recently, Bahlmann et al., 2008, 2009;
reviewed in Petersson et al., 2010). For example, in the studies by
Opitz and Friederici (2003, 2007); Opitz and Kotz (2012), the par-
ticipants were instructed to extract the underlying rules during
training, while feedback was provided on each trial during testing.
In contrast, implicit AGL studies avoid using explicit instructions
for the acquisition session(s) and do not providing any sort of
performance feedback, although the grammaticality instruction
presupposes (at the time of classification) that the participants are
informed about the existence of an underlying grammar.

A central aspect of implicit learning, the mere-exposure effect
(Zajonc, 1968; see also Reber, 1967), is the observation that par-
ticipants that have been exposed to stimuli show an enhanced
preference for these compared to novel stimuli. The mere-
exposure effect has been investigated with positron emission
tomography and abstract visual stimuli (Japanese ideograms)
and resulted in a right inferior frontal activation including
Brodmann’s area (BA) 44 (Elliott and Dolan, 1998). In contrast
to this surface-based mere-exposure effect, the structural mere-
exposure effect is based on an underlying rule-system for stimulus
generation and is characterized by the tendency to prefer new
stimuli that conform to the rule-system, independent of surface
structure (Gordon and Holyoak, 1983; Zizak and Reber, 2004).
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In implicit AGL paradigms, the structural mere-exposure effect
provides a sensitive indirect measure of grammatical knowledge
(Zizak and Reber, 2004). Preference classification, in combination
with a structural mere-exposure design, can therefore be used to
investigate syntactic (structural) processing in unsupervised AGL
paradigms. One difference between this type of paradigm and
explicit AGL paradigms is that in the former, both the acquisi-
tion and classification phases are implicit and there is no reference
to any previous acquisition episode made (Shanks and St. John,
1994). Because of this, it is never necessary to inform the partic-
ipants about the existence of a generative grammar or any other
aspect of the paradigm and the preference classification instruc-
tion minimizes the potential that participants develop and/or use
deliberate explicit strategies (e.g., problem solving). In addition,
from the subject’s point of view there is no correct or incorrect
response and the motivation to use explicit strategies is there-
fore further minimized during the experiment. More importantly
from the point of view of functional neuroimaging is the fact
that this paradigm allows us to acquire a naive classification base-
line, both in terms of a proper behavioral preference classification
baseline and a corresponding fMRI baseline in within-subject
designs. This paradigm has been investigated behaviorally and
we have shown in several experiments that participants classify
robustly well-above chance on regular as well as non-regular
grammars (Folia et al., 2008; Forkstam et al., 2008; Uddén et al.,
2012). However, the learning paradigm has not been investigated
with functional neuroimaging methods. Previous fMRI studies
of implicit AGL (structural mere-exposure and grammaticality
instruction) have shown that the grammaticality effect engages
inferior frontal regions, centered on BA 44 and 45, and medial
prefrontal region, centered on BA 8 and 32, as well as the basal
ganglia (Petersson et al., 2004, 2010; Forkstam et al., 2006),
while the medial temporal lobe memory system is deactivated
(Petersson et al., 2010). This raises the question whether these
findings reflect intrinsic outcomes of the learning process itself or
whether they reflect a preexisting functionality that is recruited
during classification. In this study, we address this issue by inves-
tigating the neural correlates of incidental structured sequence
learning by means of a multi-day implicit AGL paradigm based
on preference classification in a structural mere-exposure design.
On the first day, before the first acquisition session, we acquired
event-related fMRI data in order to establish a naive preference
baseline by asking the participants to indicate whether they liked
or disliked sequences based to their immediate intuitive impres-
sion (i.e., guessing based on “gut-feeling”). Participants were then
exposed to grammatical sequences once a day, for 5 days, during a
short-term memory cover task in which the participants were pre-
sented with (grammatical) sequences on a computer screen and
immediately retyped the sequences on a keyboard without per-
formance feedback. On the last day, participants were again asked
to indicate whether they liked or disliked new sequences based
to their immediate intuitive impression while event-related fMRI
data was acquired.

MATERIALS AND METHODS

Here, we briefly outline the stimulus material and the experimen-
tal procedures used in the current study since these are closely
related to those described in Forkstam et al. (2006).

PARTICIPANTS

Thirty-two healthy right-handed Dutch university students were
recruited for the study (50% females, age range: 19–27 years).
None of the subjects used any medication, had a history of
drug abuse, head trauma, neurological or psychiatric illness, or
a family history of neurological or psychiatric illness. All sub-
jects had normal or corrected-to-normal vision. Approval from
the local medical ethics committee was obtained and written
informed consent was obtained from all participants according
to the Declaration of Helsinki.

STIMULUS MATERIAL

We used a simple right-linear unification grammar (Figure 1)
to generate 569 grammatical (G) sequences, with a sequence
length ranging from 5 to 12. For each item we calculated the fre-
quency distribution of 2 and 3 letter chunks for both terminal and
complete sequence positions. In this way, we derived a local sub-
sequence familiarity measure termed associative chunk strength
(ACS) for each item (Knowlton and Squire, 1996; Meulemans
and Van der Linden, 1997; Forkstam et al., 2006, 2008). Local
subsequence familiarity, or ACS, is an associative measure that
quantifies the superficial resemblance between classification and
acquisition sequences. To generate the acquisition set, we ran-
domly selected (in an iterative way) 100 sequences that were
representative of the full sequence set in terms of ACS. In the next
step, we derived the non-grammatical (NG) sequences from the
pool of non-selected G sequences by switching letters in two non-
terminal positions. The NG sequences matched the G sequences
in terms of terminal and complete sequence ACS. Finally, we ran-
domly selected two sets of 60 sequences each from the remaining
G sequences to serve as classification sets. Thus, each classifi-
cation set consisted of 30 strings of each string type, in other
words: 25% high ACS grammatical (HG), 25% low ACS gram-
matical (LG), 25% high ACS non-grammatical (HNG), and 25%
low ACS non-grammatical (LNG). The sequences of high ACS
contained subsequences that appeared frequently in the acqui-
sition set, while sequences of low ACS contained subsequences
with a low frequency in the acquisition set. See Appendix for
a specification and example of the construction of the stimulus
material.

EXPERIMENTAL PROCEDURES

The experiment extended over 5 days, including 2 fMRI sessions.
On the first day participants had to undergo a preference clas-
sification task in the scanner (baseline classification) before any
exposure to grammatical sequences during the first acquisition
session. On day 2–4, the subjects participated in one behavioral
implicit acquisition session each day. On the last (5th) day of the
experiment, the subjects underwent a last acquisition session and
were then engaged in preference classification during fMRI data
acquisition.

ACQUISITION

During acquisition, subjects were presented with the 100 acqui-
sition sequences (new randomized order for each acquisition
session). Each sequence was centrally presented letter-by-letter on
a computer screen (3–7 s corresponding to 5–12 terminal sym-
bols; 300 ms presentation, 300 ms inter-symbol-interval) using
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FIGURE 1 | The transition graph representation of the grammar used

in the experiment (cf., Reber, 1967).

Presentation (nbs.neuro-bs.com). The subjects were instructed to
retype the sequence on a keyboard. No performance feedback was
provided and only grammatical sequences were presented. The
acquisition session lasted approximately 20–40 min each day for 5
consecutive days.

CLASSIFICATION

The classification sequences were organized in a 2 × 2 factorial
design with the factors grammaticality status (grammatical/non-
grammatical) and local subsequence familiarity (high/low ACS).
During the fMRI naive baseline classification on the first day, the
participants were presented with letter sequences which they had
never seen before (letter-by-letter; 300 ms presentation, 300 ms
inter-symbol-interval) and which would not be used during
acquisition. They were instructed to indicate, based on their
immediate intuitive impression whether they liked or disliked
the sequences presented. On the last day of the experiment, sub-
jects underwent an identical preference classification session with
novel sequences. The classification sequences were presented via
an LCD-projector on semi-transparent screen that the subject
comfortably viewed through a mirror mounted on the head-coil.
The classification sessions were split in two parts in order to
balance response finger within subjects (subjects indicated their
classification decision by pushing the corresponding response
key with their left/right index finger). After a 1 s pre-stimulus
period, the sequences were presented sequentially, letter-by-letter
(300 ms presentation, 300 ms inter-symbol-interval), followed by
a 3 s response window. A sensorimotor decision baseline task was
also included in the fMRI experiment. All conditions, including
the sensorimotor decision baseline, were presented in a ran-
domized order during the acquisition of fMRI data both on
day 1 and 5. This sensorimotor baseline included sequences of
either P or L (e.g., PPPPP or LLLLLLLL), matched to the clas-
sification set for sequence length, and presented in the same
fashion as the classification sequences. The participants were
instructed to respond by pressing the right or left index finger,
respectively.

DATA ACQUISITION AND ANALYSIS

MR DATA ACQUISITION

Whole head T2∗-weighted functional echo planar, blood oxy-
genation level dependent (EPI-BOLD) fMRI data were acquired
with a SIEMENS Avanto 1.5T scanner using an ascending slice
acquisition sequence (volume TR = 2.6 s, TE = 40 ms, 90◦ flip-
angle, 33 axial slices, slice-matrix size = 64 × 64, slice thickness =

3 mm, slice gap = 0.5 mm, FOV = 224 mm, isotropic voxel size =

3.5 × 3.5 × 3.5 mm3) in a randomized event related fashion. For
the structural MR image volume, a high-resolution T1-weighted
magnetization-prepared rapid gradient-echo pulse sequence was
used (MP-RAGE; volume TR = 2250 ms, TE = 3.93 ms, 15◦ flip-
angle, 176 axial slices, slice-matrix size = 256 × 256, slice thick-
ness = 1 mm, field of view = 256 mm, isotropic voxel-size =

1.0 × 1.0 × 1.0 mm3).

fMRI DATA PREPROCESSING AND STATISTICAL ANALYSIS

We used the SPM software for image preprocessing and statisti-
cal analysis (Friston et al., 2007). The EPI-BOLD volumes were
realigned to correct for subject movement and corrected for dif-
ferences in slice acquisition time. The subject-mean EPI-BOLD
images were subsequently spatially normalized to the functional
EPI template provided by SPM. The normalization transforma-
tions were generated from the subject-mean EPI-BOLD volumes
and applied to the corresponding functional volumes. The func-
tional EPI-BOLD volumes were transformed into the MNI space,
an approximate Talairach space (Talairach and Tournoux, 1988),
defined by the SPM template, and spatially filtered with an
isotropic 3D spatial Gaussian filter kernel (FWHM = 10 mm).
The fMRI data were analyzed statistically, using the general linear
model framework and statistical parametric mapping, in a two-
step mixed-effects summary-statistics procedure (Friston et al.,
2007). We included the realignment parameters for movement
artifact correction and a temporal high-pass filter (cycle cut-off
at 128 s) to account for various low-frequency effects.

At the first-level, the linear models for the single-subject anal-
yses included explanatory regressors that modeled the sequence
presentation period, starting from the violation position in the
HNG and LNG conditions and their correct counterparts in
the HG and LG conditions. This was done separately for cor-
rect and incorrect responses. The initial part of the sequences,
before the first critical violation position, was also modeled
separately, as was the baseline and the inter-sequence-interval.
The explanatory variables were temporally convolved with the
canonical hemodynamic response function provided by SPM.
At the second-level, we generated single-subject contrast images
for the correctly classified HG, LG, HNG, and LNG sequences
relative to the sensorimotor decision baseline. These were ana-
lyzed in a random-effects repeated-measures ANOVA under an
unequal between-conditions variance assumption and with non-
sphericity correction for correlated measures. Statistical inference
was based on the cluster-size test-statistic from the relevant
second-level SPM[T] maps, thresholded at P = 0.005 (uncor-
rected). Only clusters significant at P < 0.05 family-wise error
(FWE) corrected for multiple dependent comparisons, based on
smooth random field theory (Adler, 1981; Adler and Taylor, 2007)
are described. In addition, we list the coordinates of local maxima
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and their corresponding P-values corrected for the false discovery
rate (Genovese et al., 2002) for descriptive purposes.

RESULTS

CLASSIFICATION PERFORMANCE

Some of the behavioral results have been reported in Folia et al.
(2008) and are briefly summarized here for convenience. The
classification performance (hit rates) on day 1 was at chance
level [mean ± standard deviation = 50 ± 7% correct, T(31) =

0.42, P = 0.67] and increased significantly above chance after
5 days of implicit acquisition [65 ± 14% correct, T(31) = 5.7,
P < 0.001]. Standard signal detection analysis confirmed a robust
d-prime effect in discriminating between grammatical (G) and
non-grammatical (NG) sequences one day 5 (d-prime: 0.94) but
not on day 1 [d-prime: 0.006; day 5 vs. day 1: T(31) = 4.91,
P < 0.001]. No significant response bias was found (beta-value:
day 1 = 1.02; day 5 = 1.02; all P > 0.6). Moreover, participants
did not discriminate between high and low ACS sequences (d-
prime: day 1 = 0.15; day 5 = 0.22; all P > 0.66). This suggests
that there is no difference in the ability to discriminate sequences
based on local subsequence familiarity. No significant response
bias was found (beta-value: day 1 = 1.02; day 5 = 1.01; all
P > 0.6).

Concerning the endorsement rate (i.e., items preferred inde-
pendent of actual grammaticality status), a repeated-measures
ANOVA showed that both grammaticality status and ACS influ-
enced preference classification on day 5, but not on day 1
[grammaticality day 1: F(1, 31) = 0.00, P = 0.95, η

2
p = 0.00; ACS

day 1: F(1, 31) = 2.3, P = 0.14, η
2
p = 0.06; interaction gram-

maticality and ACS on day 1: F(1, 31) = 2.3, P = 0.13, η
2
p =

0.07; Table 1, Figures 2, 3]. There was no effects of grammat-
icality status for either high or low ACS sequences on day
1 [HG vs. HNG: F(1, 31) = 0.42, P = 0.52, η

2
p = 0.01; LG vs.

LNG: F(1, 31) = 0.65, P = 0.43, η
2
p = 0.02]. In contrast, on day

5, the endorsement rate was significantly affected by the gram-
maticality status [F(1, 31) = 31.7, P < 0.001, η

2
p = 0.50], local

subsequence familiarity [F(1, 31) = 15.4, P < 0.001, η
2
p = 0.33],

while the interaction between grammaticality and ACS was non-
significant [F(1, 31) = 3.8, P > 0.05, η

2
p = 0.11]; this was also the

case for sequences with high and low subsequence familiarity,
respectively, [HG vs. HNG: F(1, 31) = 34, P < 0.001, η

2
p = 0.52;

LG vs. LNG: F(1, 31) = 24, P < 0.001, η
2
p = 0.44]. During each

classification session (day 1/5) the subjects were asked to rate

Table 1 | Endorsement rates over grammaticality and local

subsequence familiarity (ACS) for day 1 and day 5.

Day 1 Day 5

High ACS (%) Low ACS (%) High ACS (%) Low ACS (%)

G 53 (15) 45 (18) 73 (16) 62 (20)

NG 51 (21) 48 (13) 41 (22) 34 (17)

Percentage of items endorsed by condition; mean performance level and stan-

dard deviation (SD). G, grammatical; NG, non-grammatical; ACS, associative

chunk strength.

FIGURE 2 | The endorsement rates as a function of grammaticality

status (G = grammatical sequences, NG = non-grammatical

sequences) and associative chunk strength (H = high ACS sequences,

L = low ACS sequences). Error bars correspond to standard error of the

mean.

their level of attention (VAS ratings, four times evenly distributed
over each session). There was no significant attention difference
between days (day 1: 7.9, SD = 1.07; day 5: 7.9, SD = 1.12).

fMRI RESULTS

Some of the fMRI results were summarily described in Folia et al.
(2011), in particular, the overlap between grammaticality- and
preference classification on day 5 was tested and reported. Here
we report the fMRI results from the complete learning design
experiment described in the current study. When compared to
the sensorimotor decision baseline, preference classification acti-
vated a set of regions (PFWE < 0.001) previously found to be
involved in grammaticality classification (Petersson et al., 2004,
2010; Forkstam et al., 2006), including the inferior and middle
frontal regions bilaterally and the anterior cingulate cortex (all
clusters PFWE < 0.001). Bilateral posterior activations included
the inferior parietal, the posterior cingulate, and the occipi-
tal cortex. Moreover, the basal ganglia (caudate/putamen/globus
pallidus) were activated during classification (relative the senso-
rimotor decision baseline; Figure 4) and this increased over the
5 days of implicit acquisition (cluster PFWE = 0.012; [x, y, z] =

[−24,−6, −4], PFDR = 0.012, small-volume correction). In con-
trast, the medial temporal lobes were deactivated (right cluster
PFWE < 0.001; [30, −24, −16], PFDR = 0.007; left cluster PFWE <

0.001; [−30, −28, −12], PFDR = 0.001; Figure 5). These effects
extended along most of the medial temporal lobe axis, bilaterally.

On day 1, as expected, we found no significant main effects
or interactions for naïve preference classification, except an initial
bias activations in the right superior-inferior parietal region (BA
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FIGURE 3 | The endorsement rates as a function of grammaticality

status and associative chunk strength (G = grammatical, NG =

non-grammatical, H = high ACS, L = low ACS sequences). Error bars

correspond to standard error of the mean.

FIGURE 4 | Basal ganglia activations. Preference classification vs.

sensorimotor decision baseline on day 5. The effect was present but

smaller on day 1 (day 5 vs. day 1; cluster PFWE = 0.012; [x, y, z] =

[−24, −6, −4], PFDR = 0.012, small-volume correction).

7/40; G > NG, PFWE = 0.002) and an interaction in the right pos-
terior cingulate cortex (BA 23/31; [HNG—HG] > [LNG—LG],
PFWE = 0.001). Importantly, these initial bias effects reversed
and disappeared with repeated implicit exposure to grammati-
cal sequences. After 5 days, preference classification resulted in
several significant brain activations (Figure 6, Table 3).

FIGURE 5 | Medial temporal lobe deactivations. Sensorimotor decision

baseline vs. preference classification on day 5 (all clusters PFWE < 0.001).

These effects were very similar on day 1.

FIGURE 6 | Grammaticality effect during preference classification. Brain

regions engaged by artificial syntactic anomalies (NG > G). Day 1: No

significant effect in the left hemisphere (PFWE > 0.50). Day 5: Significant

activation in the inferior frontal (left and right: PFWE < 0.001) and medial

prefrontal (PFWE < 0.001; not shown) regions.

In particular, artificial syntactic anomalies (grammaticality
effect, NG > G) engaged the left inferior and right inferior-
middle frontal gyri (left and right cluster PFWE < 0.001) centered
on Broca’s region (BA 44/45), extending into BA 47 and the
right middle frontal gyrus (BA 46) as well as the frontal oper-
culum/anterior insula. Additional activations were found in the
medial prefrontal regions (BA 8/32; cluster PFWE < 0.001), while
no significant activations were observed in the reverse contrast
(G > NG; cluster PFWE > 0.54). We found no significant effect
of local subsequence familiarity (all clusters PFWE > 0.98) and no
significant interactions (all clusters PFWE > 0.83), consistent with
our previous behavioral findings.

The central result of this study is that all the artificial syntax
processing effects observed on day 5 resulted from the exposure
to grammatical items generated from the underlying grammar
during the 5 days of implicit acquisition (Figure 7, Table 4).
In particular, for the day 5 vs. day 1 comparison of the NG
vs. G effect, we found the same set of brain regions that was
observed on day 5, including the inferior frontal (BA 44/45; clus-
ter PFWE < 0.001) and medial prefrontal region (BA 8/32; clus-
ter PFWE < 0.001; Figure 7, Table 4). In addition, we confirmed
that the initial bias activation observed in the right superior-
inferior parietal region on day 1 had disappeared (BA 7/40; cluster
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Table 2 | Overlap between the activated clusters in the listed studies and the clusters that we found activated in the left inferior frontal region

related to the learning effect (Figure 7).

Study [x, y, z] Function Cluster Nearest P

Friederici et al., 2006 [−36, 20, −2] nested PFWE = 0.004 [−36, 20, −2] <0.001

[−46, 16, 8] nested PFWE = 0.001 [−48, 18, 6] 0.003

Opitz and Friederici, 2007 [−47, 12, 24] non-adjacent PFWE = 0.001 [−48, 12, 24] 0.001

Bahlmann et al., 2008 [−46, 5, 16] nested PFWE = 0.016 [−50, 10, 18] 0.003

[−34, 28, 22] nested PFWE = 0.021 [−38, 24, 22] 0.004

Columns 1–3: The [x, y, z] coordinates and the function labeling are taken from the AGL studies of Friederici et al. (2006), Opitz and Friederici (2007), and Bahlmann

et al. (2008). Opitz and Friederici (2007) actually report an effect of non-adjacent dependency processing in the opercular part of the left inferior gyrus [−47, −12, 24].

However, with a y = −12, this is localized in or posterior to the central sulcus, so we interpret the y-coordinate as y = 12. Here we do a local search in a spherical

region, centered on the coordinates provided, with a radius of 13 mm. This radius correspond to the estimated spatial standard deviation (localization precision) from

the syntax related data provided by Bookheimer (2002; recently replicated by Hagoort and Indefrey, 2014) and quantified in Petersson et al. (2004). Columns 4–6:

the cluster P-values, the nearest supra-threshold voxel with corresponding P-values are from the current study (Friston, 1997; Worsley, 2003).

FIGURE 7 | Learning effect with respect to grammaticality status.

Comparing the grammaticality effect (NG > G) during preference

classification on day 5 and day 1 yielded significant effects in the inferior

frontal (left and right: PFWE < 0.001), the medial prefrontal (PFWE < 0.001;

not shown) regions.

PFWE = 0.021). No other learning effects reached significance (all
clusters PFWE > 0.90).

DISCUSSION

In the present event-related fMRI study we investigated the effect
of 5 days of implicit acquisition on preference classification
by means of an AGL paradigm based on the structural mere-
exposure effect using a simple right-linear unification grammar.
This is the first fMRI study to investigate implicit AGL with
preference classification in a proper learning design (i.e., includ-
ing baseline measurements prior to grammar exposure). The
main fMRI findings are consistent with previous grammatical-
ity classification results (Petersson et al., 2004, 2010; Forkstam
et al., 2006; Folia et al., 2011). Importantly, and central to this
study, we show that the preference classification results are the
outcome of the underlying implicit learning process. More specif-
ically, after 5 days of implicit acquisition, the fMRI results showed
activations in a network of brain regions including the inferior
frontal regions (centered on BA 44/45) and the medial prefrontal
region (centered on BA 8/32; Figure 6, Table 3). The inclusion

of a naive preference classification fMRI baseline measurement
in a learning design (Petersson et al., 1999a,b) allow us to con-
clude that the fMRI findings are the intrinsic outcomes of the
learning process itself and not a reflection of a preexisting func-
tionality that is recruited during classification, independent of
acquisition (Figure 7, Table 4). Moreover, the presence of initial
bias activations observed during the naive preference classifica-
tion (e.g., right superior inferior parietal region) emphasizes the
importance of including fMRI baseline measurements in learn-
ing designs. Similar initial bias effects are sometimes observed
in behavioral data (Forkstam et al., 2008), although not in the
present data, which can thus, be less sensitive in this respect com-
pared to fMRI. Behavioral results (Forkstam et al., 2008) suggest
that the presence of right hemisphere activation on the first day,
during naive classification, might be related to an initial attempt
by the participants to subjectively classify the sequences based on
spurious surface features attributed to a prior participant bias.
Importantly, these bias activations reversed with repeated expo-
sure to grammatical sequences and were not observed on the last
day of the experiment. Nevertheless, this emphasizes the impor-
tance of including naive fMRI baseline measurements in order to
properly characterize the learning related effects (Petersson et al.,
1999a,b).

At the behavioral level, participants incidentally learned rele-
vant aspects associated with the underlying grammar and were
able to successfully generalize to new sequences after 5 days of
implicit acquisition. In contrast, the classification performance
was at chance-level for the naive preference classification. The
learning effect with respect to superficial local subsequence famil-
iarity, although significant, was smaller (ACS: η

2
p = 0.33; com-

pared to grammaticality status: η
2
p = 0.50). This finding was

more pronounced in the fMRI results, which showed no signif-
icant learning effect of ACS. In contrast, the effect of grammat-
icality status, resulting from 5 days of implicit acquisition, was
highly significant. Additional support for the implicit nature of
the knowledge utilized during preference classification on day 5
come from the fact that the basal ganglia (Figure 4) were activated
during classification. This is perhaps not surprising, given the
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Table 3 | Preference classification Day 5.

Anatomical region Brodmann’s area [x, y, z] Z score P-value

Left inferior frontal cluster <0.001

L inferior frontal gyrus BA 44 −54, 14, 2 4.07 0.013

BA 44/45 −60, 20, 16 3.90 0.016

BA 44/45 −52, 18, 22 3.81 0.019

BA 45 −60, 22, 10 3.76 0.020

BA 45/47 −56, 18, 2 4.02 0.014

BA 47 −42, 20, −10 3.90 0.016

L mid-anterior insula BA 13/15 −38, 14, −10 4.06 0.013

L frontal operculum/anterior insula BA 49/15 −38, 22, −4 3.51 0.030

Right inferior-middle frontal cluster <0.001

R inferior frontal gyrus BA 44/45 50, 24, 18 3.65 0.023

BA 45 56, 30, 12 3.54 0.028

BA 47 46, 32, −4 5.08 0.010

R mid-anterior insula BA 13/15 40, 20, −6 4.15 0.011

R frontal operculum/anterior insula BA 49/15 36, 20, −10 3.87 0.017

R inferior-middle frontal gyrus BA 45/46 46, 34, 12 3.41 0.036

BA 46 52, 40, 18 3.27 0.044

BA 8/9 50, 20, 44 3.45 0.033

Medial prefrontal cluster <0.001

BA 8 0, 26, 52 4.41 0.010

BA 8/32 6, 30, 44 4.60 0.010

BA 32 −4, 32, 28 3.16 0.053

BA 24/32 10, 32, 24 4.27 0.010

BA 10 16, 60, 22 4.45 0.010

BA 9/10 12, 52, 24 3.52 0.029

Significant effects observed for non-grammatical vs. grammatical sequences (grammaticality effect). Cluster P-values are family-wise error corrected and P-values

of local maxima are corrected for false-discovery rate.

massive nature of the recurrent connectivity between the frontal
neocortex and the basal ganglia (i.e., fronto-striatal loops). It is
hard to imagine fully functioning prefrontal regions without nor-
mally functioning basal ganglia and there is evidence that the
basal ganglia are involved in rule-processing (e.g., Packard and
Knowlton, 2002; Ullman, 2004; Forkstam and Petersson, 2005;
Teichmann et al., 2005, 2008). In contrast, the medial temporal
lobe memory system was consistently deactivated in this study.
The medial temporal lobes are associated with explicit declarative
memory (Squire, 1992; cf., Petersson et al., 1997, 1999a), while
the basal ganglia have been related to implicit learning and the
procedural memory system (Seger, 1994; Packard and Knowlton,
2002; Ullman, 2004; Forkstam and Petersson, 2005). However, the
implicit procedural memory system (related to the basal ganglia)
and the explicit declarative memory system (related to the medial
temporal lobes) are not necessarily always engaged in opposi-
tion. The experimental evidence suggests a more complex picture
where these two memory systems can interact both in a com-
petitive and a cooperative, non-competitive manner (Devan and
White, 1999; Voermans et al., 2004; Brown et al., 2012). However,
the interpretation of this state of affairs is not well-understood,
except perhaps, to suggest that several neural learning mecha-
nisms can be recruited depending on the type of information

processing the brain engages in, in any particular context. The
results of the present study, as well as grammaticality classifica-
tion fMRI studies based on implicit AGL (Forkstam et al., 2006;
Petersson et al., 2010), show strong activation and deactivation of
the basal ganglia and the medial temporal lobes, respectively.

The sequential presentation mode used in this study entails
on-line processing memory (i.e., something roughly akin to a
“working memory”). We often use sequential instead of whole
sequence presentation in order to model the sequential nature of
language input/output. This aspect of the experimental paradigm
is very unlikely to affect the reported results or their inter-
pretation. First, the demand for on-line processing memory in
the preference classification task is the same for all sequence
types (matched for length; and grammatical/non-grammatical
sequences matched for ACS). In the case of grammaticality clas-
sification, it might be the case that there is a tendency that the
non-grammatical sequences require somewhat less processing
memory compared to grammatical sequences, since the partic-
ipants could in principle stop processing the non-grammatical
items as soon as they judge them non-grammatical. However,
this would not explain the observed frontal activation increases
observed for non-grammatical compared to grammatical items
during grammaticality classification (Petersson et al., 2004, 2010;
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Table 4 | Implicit learning effects.

Anatomical region Brodmann’s area [x, y, z] Z score P-value

Left inferior frontal cluster <0.001

L inferior frontal gyrus BA 44 −60, 18, 6 3.58 0.048

BA 44/45 −60, 22, 10 3.84 0.035

BA 45 −56, 16, 0 3.72 0.040

BA 45/47 −38, 22, 0 3.80 0.037

Right inferior-middle frontal cluster <0.001

R inferior frontal gyrus BA 44/45 58, 20, 6 4.01 0.030

BA 45 52, 28, 16 4.11 0.027

BA 45/47 38, 24, −4 3.78 0.038

R inferior-middle frontal gyrus BA 45/46 48, 32, 16 3.99 0.031

BA 46 48, 40, 18 3.68 0.042

Inferior parietal cluster 0.021

R inferior parietal cortex BA 40 44, −42, 44 3.90 0.034

BA 40 44, −46, 40 3.74 0.039

BA 7/40 44, −46, 48 3.68 0.042

Medial prefrontal cluster <0.001

BA 8/32 4, 32, 48 4.96 0.018

BA 8/32 0, 22, 52 4.47 0.020

BA 8/32 −2, 22, 48 4.46 0.020

BA 32 10, 30, 32 3.58 0.048

Significant learning effects in relation to grammaticality status (non-grammatical vs. grammatical sequences) on day 5 compared to on day 1. Cluster P-values are

family-wise error corrected and P-values of local maxima are corrected for false-discovery rate.

Forkstam et al., 2006). Second, Petersson et al. (2004) used whole
sequence presentation in a grammaticality classification task and
reported virtually identical results as found in the present study
after 5 days of implicit acquisition. Therefore, the presentation
mode of the stimulus items (whole/sequential) seems to be of
little consequence for the fMRI results.

THE INFERIOR FRONTAL REGION, AGL, AND OTHER COGNITIVE

DOMAINS

Human languages are characterized by “design features”
(Hockett, 1963, 1987; including discreteness, arbitrariness,
productivity, and the duality of patterning) and somehow these
characteristics arise from the properties of the human brain,
how it develops and learns in interaction with its environment.
One of the difficulties with acquiring a language is related to the
fact that the internal mental structures that represent linguistic
information are not expressed in the surface form of the language
(i.e., the utterance). This suggests that humans are equipped with
learning mechanisms which shape the acquired language into
a discrete and recursively organized system when the relevant
communicative context is present. With respect to syntax, these
learning mechanisms are to a large extent implicit in nature and
despite much progress it is still not well-understood how humans
acquire their native language skills (Folia et al., 2010, 2011; Reber,
2011).

AGL was originally implemented in order to investigate
implicit learning mechanisms shared with natural language
acquisition (Reber, 1967). The neurobiology of implicit sequence

learning, assessed with AGL, has been investigated by means of
functional neuroimaging (Petersson et al., 2004; Forkstam et al.,
2006), brain stimulation (Udden et al., 2008; de Vries et al.,
2010), and has consistently shown that Broca’s region (BA 44/45),
in addition to other brain regions, is involved. In addition, the
breakdown of syntax processing in agrammatic aphasia and in
patients with lesions in the inferior frontal region is associated
with impairments in AGL (Christiansen et al., 2010; Opitz and
Kotz, 2012) and individual variability in implicit sequence learn-
ing correlates with language processing (Conway and Pisoni,
2008; Misyak et al., 2010). Taken together, this supports the idea
that AGL taps into implicit learning/processes that are shared with
aspects of natural syntax acquisition and processing.

In this study we used an implicit AGL paradigm, based on
preference classification and the structural mere-exposure effect.
One difference between this type of paradigm and explicit AGL
paradigms that have been used lately is that in the former,
both the acquisition and classification phases are implicit and
no reference to any previous acquisition episode made. Because
of this, it is never necessary to inform the participants about
the existence of an underlying grammar or any other aspect
of the paradigm and from the subject’s perspective there is no
correct or incorrect response. In several functional neuroimag-
ing studies, explicit paradigms have been used (e.g., Friederici
et al., 2006; Opitz and Friederici, 2007; Bahlmann et al., 2008,
2009; reviewed in Petersson et al., 2010). For example, in the
studies by Opitz and Friederici (2003, 2007); Opitz and Kotz
(2012), the participants were instructed to extract the underlying
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rules during training, while feedback was provided on each trial
during testing. Moreover, while the artificial language used by
Opitz and Friederici (2003) is finite (Figure 1, p. 1731), in the
modified version (Opitz and Friederici, 2007; Opitz and Kotz,
2012), they introduce a “complementizer” in a way that yields
a right-branching regular language (Figure 1, p. 586, Opitz and
Friederici, 2007; note also that both conditions depicted corre-
spond to hierarchical phrase structures). It is worth noting in
this context, that regular grammars can generate non-adjacent
(long-distance) dependencies (cf., e.g., Pullum and Scholz, 2010;
see also Pullum and Scholz, 2009, and in particular the sup-
porting on-line material of Petersson and Hagoort, 2012, for
simple examples). We emphasize that the use of a particular
grammar in AGL does not ensure that the participants acquire,
or use, this during testing, instead of using, for example, a dif-
ferent and perhaps simpler way of representing the knowledge
acquired (de Vries et al., 2011, 2012). Finally, it should be noted
that the representational structures that function during explicit
decision-making are not the same as those that hold the knowl-
edge of the structure that is used to make those decisions. Here,
we have used the notions “implicit” and “implicit learning” in
their classical sense, which entails a lack of meta-cognitive knowl-
edge/judgment and in particular the absence of any stated use of
explicit “problem solving” strategies. For example, when we speak
we are clearly aware of the fact that we produce sentences, but
we have no explicit knowledge or insight into how this is actually
carried out.

It is unlikely that explicit selection or any other form of explicit
decision making can explain our findings in any relevant sense
for another reason. In the preference classification task, there is as
much “decision making” going on whether the participant likes or
dislikes an item. Moreover, the sensorimotor baseline of this study
included an explicit decision component and the fact that we find
the same inferior frontal activations centered on Broca’s region
(BA 44/45) in both preference and grammaticality classification,
suggests to us, that the observed activation reflects neural process-
ing related to implicit knowledge. We note that the unification
grammar framework offers an alternative perspective on selec-
tion and control in this context. In this picture, it is the syntactic
features of lexical items that exert control over the integration
process via a general integration mechanism, which is already
in place, for unifying structured representations (cf., Vosse and
Kempen, 2000; Jackendoff, 2002; Petersson et al., 2005). Thus,
control is implicitly distributed over a long-term memory repre-
sentation, the mental lexicon, in terms of the control features that
govern the integration process based on what is allowed (or not)
to merge.

It is uncontroversial that participants have acquired some
relevant knowledge associated with the underlying grammar,
if they, for example, discriminate new grammatical from non-
grammatical items in a reliable manner. However, this does not
necessarily imply that the participants process the sequences
according to the rules of the grammar and the empirical findings
rarely support such claims in any strong sense (cf., Petersson et al.,
2010; Petersson and Hagoort, 2012, for a discussion).

For example, sometimes it appears as if claims are made that
different subregions of Broca’s region are specifically related to

different types of grammars or the processing of, for example,
nested non-adjacent dependencies. In this study we used a sim-
ple right-linear unification grammar and in Table 2 we specify the
overlap between the learning effects observed in the left inferior
frontal region in this study (Figure 7) and the activated clusters
reported in some of the studies previously reviewed. The out-
come of this comparison suggests that the left inferior frontal
region (BA 44/45) is significantly related to implicit AGL and
artificial syntax processing, independent of the fact that the sim-
ple right-linear unification grammar we investigated does not
involve nested center-embedded non-adjacent dependencies or
dependencies introduced by syntactic displacement (i.e., syntactic
movement). These findings are similar to corresponding findings
reported in Petersson et al. (2010) for the grammaticality instruc-
tion. Thus, in the context of artificial syntax processing, and more
generally language processing, the left inferior frontal region is
unlikely to be specific to the processing of or nested center-
embedded structures or non-adjacent dependencies introduced
by syntactic movement. Instead, these results, in conjunction with
previous functional neuroimaging results, suggest that the left
inferior frontal region is a generic on-line structured sequence
processor that unifies information from various sources in an
incremental and recursive manner (for a discussion see Petersson
et al., 2010; Petersson and Hagoort, 2012).

Several previous studies have suggested that the left inferior
frontal region has a broader role in cognition than just language
processing (Marcus et al., 2003; Petersson et al., 2004; Hagoort,
2005), including action recognition and movement preparation
(e.g., Thoenissen et al., 2002; Hamzei et al., 2003), musical syn-
tax (e.g., Maess et al., 2001; Koelsch et al., 2002; for a review
see Patel, 2003), lexical and sub-lexical processing (Sahin et al.,
2009), working memory (Price, 2010), and visuo-spatial sequence
processing (Bahlmann et al., 2009). Thus, a growing body of
evidence from functional neuroimaging suggests that the process-
ing of structural sequence relations in several cognitive domains
overlap in the inferior frontal regions, including language, music
and artificial grammars/languages. This suggests a framework for
the left inferior frontal region in which incremental recursive
(i.e., state-dependent) integration of various sources of linguistic
information (e.g., phonological, syntactic, semantic/pragmatic)
operate interactively in parallel via interfaces (cf., e.g., Jackendoff,
2007). Moreover, other brain regions have been related to the
processing of natural language syntax, including the left inferior
parietal region, the left superior and middle temporal regions
as well as right hemisphere, largely homotopic, regions (e.g.,
Snijders et al., 2009, 2010; Segaert et al., 2012; for reviews see
Bookheimer, 2002; Price, 2010; Friederici, 2012; Hagoort and
Indefrey, 2014). Finally, none of these regions seem uniquely
related to syntax processing (Petersson et al., 2004; Petersson and
Hagoort, 2012). It is therefore not unreasonable to suggest that
artificial and natural syntax processing, and more generally lan-
guage processing, is dependent on a functional network of inter-
acting brain regions (Friederici, 2012; Petersson and Hagoort,
2012), none perhaps which is uniquely involved in syntax pro-
cessing only. This conclusion appears to hold for higher cognitive
functions more generally (Ingvar and Petersson, 2000; Petersson
et al., 2009).
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ACQUISITION OF STRUCTURED SEQUENCE KNOWLEDGE

The acquisition of language is a complex learning task which is
governed by constraints derived from the properties of the devel-
oping human brain. The current lack of knowledge concerning
the actual mechanisms involved during infancy makes it difficult
to determine the relative contributions of innate- and acquired
knowledge in language acquisition (Folia et al., 2010, 2011;
Petersson and Hagoort, 2012). On the traditional Chomskyan
view, disputed by many (for a recent example, see Reber, 2011; for
a discussion see Petersson and Hagoort, 2012), the input underde-
termines the linguistic knowledge of the adult language capacity.
Thus, the acquisition of a grammar is not only based on an anal-
ysis of the linguistic input, but depends on an innate structure
(i.e., the “language acquisition device”) that guides the acqui-
sition process (Jackendoff, 2002, 2007). In this context, it is of
interest to note that Folia et al. (2011) reported behavioral and
corresponding activation differences in Broca’s region (BA 44/45),
in an implicit AGL grammaticality classification paradigm, which
depended on the genotype related to the CNTNAP2 gene, a gene
controlled by the transcription factor FOXP2.

In the following, we briefly discuss work on the acquisition
of structured sequence knowledge (for reviews see Gomez and
Gerken, 2000; Folia et al., 2010), which seem relevant to the
current study. Uddén et al. (2009, 2012) investigated implicit
acquisition of nested- and crossed non-adjacent dependencies
(corresponding to context-free and context-sensitive grammars,
respectively), while controlling for local subsequence familiar-
ity, in an implicit learning paradigm based on structural mere-
exposure in a paradigm very similar to the current study. Given
the difficulty reported by some researchers in getting participants
to acquire non-adjacent dependencies, the repeated exposure
to grammatical items over 9 days used by Uddén et al. (2009,
2012) was likely important. In particular, this provides expo-
sure and presumably time for both the necessary abstraction
and knowledge consolidation processes to take place. There is
some experimental evidence suggesting that this is important
for improved performance in implicit AGL. For example, sleep
has been shown to have a significant effect on grammaticality
classification after implicit AGL (Nieuwenhuis et al., 2013), and
to promote abstraction processes after AGL in infants (Gomez
et al., 2006). Uddén et al. (2009, 2012) found that, while the
subjects implicitly acquired knowledge about the non-regular
nested structures, the acquisition of non-regular dependencies
were harder compared to regular dependencies in the underlying
grammar. Participants in these studies also acquired sensitivity
to a context-sensitive agreement structure that generated non-
adjacent crossed dependencies, but found the agreement viola-
tions harder to reject than category violations (Uddén et al., 2009,
2012). Interestingly, in an ERP study by Friederici et al. (2011),
they reported that 4-months-old infants developed sensitivity to
a simple non-adjacent AXB-dependency structure, perhaps sug-
gesting that the negative results in 12-months-old reported by
Gomez and Maye (2005) might be due to a lack of sensitivity. The
ability to develop sensitivity to both adjacent and non-adjacent
dependencies from early infancy suggests that innate implicit
learning mechanism(s) are present already in the new born.
Friederici et al. (2011) reported that the grammaticality effect

(NG vs. G) yielded a late centro-parietal positivity and in a par-
allel experiment on adults, the same paradigm yielded a P600
(Mueller et al., 2009), which often reflects processes related to
syntax (Hagoort et al., 1993).

CONCLUSION

We conclude that preference classification, in combination with a
structural mere-exposure design, can be used to investigate struc-
tural (syntax) processing in unsupervised AGL paradigms with
event-related fMRI in proper learning designs. The main find-
ings suggest that a network of brain regions, including the inferior
frontal (centered on BA 44/45) and the medial prefrontal regions
(centered on BA 8/32), are activated as the intrinsic result of an
implicit learning process. Support for the implicit nature of the
knowledge utilized during preference classification come from the
fact that the basal ganglia were activated during classification,
while the medial temporal lobe memory system was consistently
deactivated.
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APPENDIX

HG items cACS tACS HNG items cACS tACS

MSSVRXVRXVS 61.47 22.75 MXSVRXVRXSS 61.79 23.25

MSVRXVRXRRRR 53.38 23.00 MSVRXVRXSXRR 53.33 25.25

MVRXSSSVRXR 63.63 27.00 MVRXRXSVRXR 61.32 27.00

MSVRXSSSSSSV 58.52 49.75 MSVRXSSVRSSV 58.76 49.75

VXVRXSSSSSSV 55.48 51.50 VXVRXSSVRSSV 55.71 51.50

LG items cACS tACS LNG items cACS tACS

VXSVRXRRRM 46.76 22.00 VXSVRXVXRM 46.82 20.75

MSSSVRXRRRM 48.05 23.00 MSSSVRXVXRM 48.11 21.75

MSSSSSSSVS 44.76 22.75 MSSVRSSSVS 45.06 22.75

VXSSSSSSSVS 44.95 21.75 VXSSVRSSSVS 45.21 21.75

MSSSSSSSSVS 44.95 22.75 MSSVRSSSSVS 45.21 22.75

Example of the stimulus material used in the present experiment. HG, high grammatical; HNG, high non-grammatical; LG, low
grammatical; LNG, low non-grammatical; cACS, frequency distribution of 2 and 3 letter chunks for complete sequence position
(in relation to the acquisition stimuli); tACS, frequency distribution of 2 and 3 letter chunks for terminal sequence position. The
non-grammatical (NG) items were derived from the grammatical (G) sequences, by switching letters in two non-terminal positions
(in bold). The NG sequences matched the G sequences in terms of terminal and complete sequence ACS. This was accomplished by
generating all possible NG sequences for each G sequence, and selecting the NG sequence that was most equal in ACS to the G sequence.
Each letter sequence is decomposed into 2 and 3 letter chunks, their frequency for complete and terminal position in the learning
sequences are calculated. Example of the calculation of the complete sequence position (cACS): MSSVRXVRXVS is decomposed in
the bigrams MS (40), SS (59), SV (87), VR (97), RX (97), XV (50), VR (97), RX (97), XV (50), VS (16). The frequencies in the learning
sequences of these bigrams are shown in parenthesis. The sequence was also decomposed in the trigrams, MSS (27), SSV (59), SVR
(75), VRX (97), RXV (37), XVR (41), VRX (97), RXV (37), XVS (8). The cACS of this item was calculated by averaging its different
bigram and trigram frequencies. The obtained cACS is 61.47 indicates a relatively high mean high frequency of 2 and 3 letter chunks
in relation to the acquisition stimuli.

Table A1 | Characteristics of the stimulus material used in the present experiment.

n Mean ACS % of stimulus type per sequence length

5–6 7–8 9–10 11–12

ACQUISITION SET

100 59.1 (7.8) [37.6–72.6] 2 16 30 52

CLASSIFICATION SET

GH 30 60.0 (5.2) [50.1–71.3] 0 10 20 70

GL 30 40.8 (8.6) [20.5–48.8] 10 10 37 43

NGH 30 59.2 (5.4) [49.2–77.0] 0 10 20 70

NGL 30 40.9 (8.6) [20.5–49.8] 10 10 37 43

ACS, associative chunk strength; G, grammatical; NG, non-grammatical, H, high ACS; L, low ACS. Values in parenthesis are standard deviations, values in brackets

indicate ranges. Percentage of stimulus type per sequence length indicates the percentage of sequences in the acquisition and classification set ranging from 5 to

12 letters (length).
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