
EUROGRAPHICS 2006 / E. Gröller and L. Szirmay-Kalos
(Guest Editors)

Volume 25 (2006), Number 3

Implicit Surface Modelling with a

Globally Regularised Basis of Compact Support

C. Walder1,2, B. Schölkopf1 and O. Chapelle1

1 Max-Planck-Institut für biologische Kybernetik, Tübingen, Germany
2 The University of Queensland, Brisbane, Queensland 4072, Australia.

Abstract

We consider the problem of constructing a globally smooth analytic function that represents a surface implicitly

by way of its zero set, given sample points with surface normal vectors.

The contributions of the paper include a novel means of regularising multi-scale compactly supported basis func-

tions that leads to the desirable interpolation properties previously only associated with fully supported bases.

We also provide a regularisation framework for simpler and more direct treatment of surface normals, along with

a corresponding generalisation of the representer theorem lying at the core of kernel-based machine learning

methods.

We demonstrate the techniques on 3D problems of up to 14 million data points, as well as 4D time series data and

four-dimensional interpolation between three-dimensional shapes.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Curve, surface, solid, and
object representations

1. Introduction

The problem of reconstructing a surface from a set of points
frequently arises in computer graphics. Numerous methods
of sampling physical surfaces are now available, including
laser scanners, optical triangulation systems and mechanical
probing methods. Inferring a surface from millions of points
sampled with noise is a non-trivial task however, for which
a variety of methods have been proposed.

The class of implicit or level set surface representations is
a rather large one, however other methods have also been
suggested. These other methods include Bernstein-Bézier
representations within a Delaunay triangulated tessellation
[BBX95], as well as point based representations that analyse
the point cloud directly and locally as needed at rendering
time [ABCO∗01]. Within the realm of implicit surface meth-
ods there also exist distinct classes such as those defined on
a numerical grid [Set98, WB98], “blobby” methods which
implement a form of structural regularisation [Mur91], tan-
gent plane projection approaches [HDD∗92], as well as the
more recent partition of unity [OBA∗03] and moving least
squares [SOS04] methods.

(a) (b) (c)

Figure 1: (a) Rendered implicit surface model of “Lucy”,

constructed from 14 million points with normals. (b) A pla-

nar slice that cuts the nose – the colour represents the value

of the embedding function and the black line its zero level.

(c) A black dot at each of the 364,982 compactly supported

basis function centres which, along with the corresponding

dilations and magnitudes, define the implicit.
c© The Eurographics Association and Blackwell Publishing 2006. Published by Blackwell

Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and 350 Main Street, Malden,

MA 02148, USA.

C. Walder & B. Schölkopf & O. Chapelle / Implicit Surfaces

The implicit surface methods closest to the present work
are those that construct the implicit using regularised func-
tion approximation [Wah90], such as the “Variational Im-
plicits” of Turk and O’Brien [TO99], which produce excel-
lent results, but at a cubic computational fitting cost in the
number of points. The effectiveness of this type of approach
is undisputed however, and has led researchers to look for
ways to overcome the computational problems. Presently,
two main options exist.

The first approach uses compactly supported kernel func-
tions (we define and discuss kernel functions in Section
2), leading to fast algorithms that are easy to implement
[MYC∗01]. Unfortunately however these methods are suit-
able for benign data sets only. As noted in [CBC∗01],
compactly supported basis functions “yield surfaces with
many undesirable artifacts in addition to the lack of ex-
trapolation across holes”. A similar conclusion was reached
in [OBA∗03] which states that local processing methods
are “more sensitive to the quality of input data [than] ap-
proximation and interpolation techniques based on globally-
supported radial basis functions” – a conclusion corrob-
orated by the results within a different paper from the
same group [OBS03]. The second means of overcoming
the aforementioned computational problem does not suf-
fer from these problems however, as demonstrated by the

FastRBF
TM

algorithm [CBC∗01], which uses the the Fast
Multipole Method (FMM) [GR97] to overcome the compu-
tational problems of non-compactly supported kernels. The
resulting method is non-trivial to implement however and to

date exists only in the proprietary FastRBF
TM

package.

We believe that by applying them in a different manner
compactly supported basis functions can lead to high quality
results, and the present work is an attempt to bring the reader
to the same conclusion. In Section 3 we introduce a new
technique for regularising such basis functions which allows
high quality, highly scalable algorithms that are relatively
easy to implement. Before doing so however, we present in
Section 2 the other main contribution of the present work,
which is to show how surface normal vectors can be incorpo-
rated directly into the regularised regression framework that
is typically used for fitting implicit surfaces, thereby avoid-
ing the problematic approach of constructing “off-surface”
points for the regression problem. To demonstrate the effec-
tiveness of the method we apply it to various two to four-
dimensional problems in Section 4 before summarising in
the final Section 5.

2. Implicit Surface Fitting by Regularised Regression

Here we discuss the use of regularised regression [Wah90]
for the problem of implicit surface fitting. In Section 2.1 we
motivate and introduce a clean and direct means of making
use of normal vectors. The following Section 2.2 extends
on the ideas in Section 2.1 by formally generalising the im-
portant representer theorem. The final Section 2.3 discusses

the choice of regulariser (and associated kernel function), as
well as the associated computational problems that we over-
come in Section 3.

2.1. Regression Based Approaches and the Use of

Normal Vectors

Of the implicit methods that use regularised interpolation
[Wah90], the usual approach is to solve the following prob-
lem [CBC∗01, MYC∗01]:

argmin
f
‖ f‖2

H +C
m

∑
i=1

(f (xi)− yi)
2 . (1)

Here the yi are some estimate of the signed distance function
at the xi, and f is the embedding function which takes on the
value zero on the implicit surface. The norm ‖ f‖H is a regu-

lariser which takes on larger values for less “smooth” func-
tions. We take H to be a reproducing kernel Hilbert space
(RKHS) with representer of evaluation (kernel function)
k(·, ·), so that we have the reproducing property [Wah90]:

f (x) = 〈 f ,k(x, ·)〉H . (2)

The solution to this problem has the form

f (x) =
m

∑
i

αik (xi,x) . (3)

Note as a technical aside that the thin-plate kernel case –
which we will adopt – does not have an associated RKHS
as it is only conditionally positive definite. Here we consider
the RKHS case for clarity only, as it is simpler and yet suffi-
cient to demonstrate the ideas involved.

Choosing the (xi,yi) pairs for Equation 3 is in itself a non-
trivial problem. Given unit length surface normal vectors ni

at surface points xi, FastRBF
TM

[CBC∗01] constructs a re-
gression problem with target-value pairs:

(xi,0) ,(xi +dni,yi+) ,(xi−dni,−yi−) ,

for some heuristically chosen scalar d. The targets yi+ and
yi− are taken to be the distance to the nearest data point.
These manufactured “off-surface” points may contradict one
another however, and further heuristics are employed in

FastRBF
TM

to detect and simply discard such problematic
cases. We now propose a more direct way of using the nor-
mal vectors, novel in the context of implicit fitting with ker-
nel function interpolation, which avoids these problems. The
approach is suggested by the fact that the normal direction
of the implicit surface is given by the gradient of the embed-
ding function – thus normal vectors can be incorporated by
regression with gradient targets. The function that we seek
is the minimiser of:

‖ f‖2
H +C1

m

∑
i=1

(f (xi))
2 +C2

m

∑
i=1

‖(∇ f)(xi)−ni‖
2
Rd , (4)

c© The Eurographics Association and Blackwell Publishing 2006.

C. Walder & B. Schölkopf & O. Chapelle / Implicit Surfaces

which uses the given surface point/normal pairs (xi,ni) di-
rectly. By imposing stationarity and using the reproducing
property (Equation 2) we can solve for the optimal f . A de-
tailed derivation of this procedure is given in [WSC06]. Here
we provide only the result, which is that we have to solve for
m coefficients αi as well as a further md coefficients βl j to
obtain the optimal solution

f (x) =
m

∑
i

αik (xi,x)+
m

∑
i

d

∑
l

βlikl (xi,x) , (5)

where we have defined kl (xi,x)
.
= [(∇k)(xi,x)]l , the partial

derivative of k (in its first argument) in the l-th component.
Note that for the remainder of the paper square brackets with
subscripts indicate single elements a matrix or vector so that
[a]i is the i-th element of the vector a. The coefficients α and
βl of the solution are found by solving

0 = (K + I/C1)α +∑
l

Klβl (6)

along with, for m = 1 . . .d

Nm = Kmα +(Kmm + I/C2)βk + ∑
l 6=m

Klmβl, (7)

where we’ve defined the following matrices and vectors:

[Nl]i = [ni]l ; [α]i = αi

[βl]i = βli; [K]i, j = k(xi,x j)

[Kl]i, j = kl(xi,x j) ; [Klm]i, j = klm(xi,x j).

Note that the klm are the second derivatives of k(·, ·) (defined
similarly to the first).

In summary, minimum norm approximation in an RKHS
with gradient target values is optimally solved by a function
in the span of the kernels and derivatives thereof as per Equa-
tion 5 (cf. Equation 3), and the coefficients of the solution are
given by Equations (6) and (7). It turns out, however, that we
can make a more general statement, which we do briefly in
the next sub-Section.

2.2. The Representer Theorem with Linear Operators

The representer theorem, much celebrated in the Machine
Learning community, says that the function minimising an
RKHS norm along with some penalties associated with the
function value at various points (as in Equation 1 for exam-
ple) is a sum of kernel functions at those points (as in Equa-
tion 3). As we saw in the previous section however, if gra-
dients also appear in the risk function to be minimised, then
gradients of the kernel function appear in the optimal solu-
tion. We now make a more general statement – the case in the
previous section corresponds to the following if we choose
the linear operators Li (which we define shortly) as either
identities or partial derivatives. The theorem is a generali-
sation of [SHS01] (using the same proof idea) with equiva-
lence if we choose all Li to be identity operators. The case
of general linear operators was in fact dealt with already in
[Wah90] (which merely states the earlier result in [KW71])

– but only for the case of a specific loss function c. The fol-
lowing theorem therefore combines the two frameworks:

Theorem 1 Denote by X a non-empty set, by k a repro-
ducing kernel with reproducing kernel Hilbert space H, by
(x1,y1) . . .(xm,ym) ⊂ X ×R a training set, by Ω a strictly
monotonic increasing real-valued function on [0,∞), by
c : (X ×R

2)m→R∪{∞} an arbitrary cost function, and by
L1, . . .Lm a set of linear operators H→H. Each minimiser
f ∈H of the regularised risk functional

c((x1,y1,(L1 f)(x1), . . .(xm,ym,(Lm f)(xm))+Ω(|| f ||2H)
(8)

admits the form

f (·) =
m

∑
i=1

αi(L
∗
i k)(·,xi),

where L∗
i denotes the adjoint of Li.

Proof Decompose f (·) into

f (·) =
m

∑
i=1

αi(L
∗
i k)(xi, ·)+ f⊥(·)

with αi ∈ R and 〈 f⊥(·),(L∗
i k)(xi, ·)〉H = 0, for each i =

1 . . .m. Due to the reproducing property we can write, for
j = 1 . . .m,

(L j f)(x j) = 〈(L j f)(·),k(x j, ·)〉H

=
m

∑
i=1

αi〈(L jL
∗
i k)(xi, ·),k(x j, ·)〉H

+〈(L j f⊥)(·),k(x j, ·)〉H

=
m

∑
i=1

αi〈(L jL
∗
i k)(xi, ·),k(x j, ·)〉H.

Thus, the first term in Equation 8 is independent of f⊥.
Moreover, it is clear that due to orthogonality

Ω

∥

∥

∥

∥

∥

m

∑
i=1

αi(L
∗
i k)(xi, ·)+ f⊥

∥

∥

∥

∥

∥

2

H

≥ Ω

∥

∥

∥

∥

∥

m

∑
i=1

αi(L
∗
i k)(xi, ·)

∥

∥

∥

∥

∥

2

H

 ,

so that for any fixed αi ∈ R, Equation 8 is minimised when
f⊥ = 0.

2.3. Thin Plate Regulariser and Associated Kernel

We have not yet discussed the choice of kernel function. As
is well known (see for example [Wah90]), the kernel func-
tion is a Green’s function related to the regularisation oper-
ator that defines the function norm in the RKHS – practi-
cally speaking, the choice of regulariser (the function norm
in Equation 4) leads to a particular kernel function k(·, ·) to
be used in Equation 5. Here we mean regulariser in the usual
sense of an operator that penalises some measure of the com-
plexity of a function, leading to well behaved or smooth so-
lutions. For geometrical problems, an excellent regulariser

c© The Eurographics Association and Blackwell Publishing 2006.

C. Walder & B. Schölkopf & O. Chapelle / Implicit Surfaces

is the thin-plate energy, which for arbitrary order m and di-
mension d is given by [Wah90]:

‖ f‖2
H = 〈ψ f ,ψ f 〉L2

(9)

=
d

∑
i1=1

· · ·
d

∑
im=1

∫ ∞

x1=−∞
· · ·

∫ ∞

xd=−∞

·

(

∂
∂xi1

· · ·
∂

∂xim

f

)(

∂
∂xi1

· · ·
∂

∂xim

f

)

dx1 . . .dxd ,

(10)

where ψ is a regularisation operator that takes all partial
derivatives of order m.

Experience has shown that in two and three dimensions
order m = 2 works well, whereas in four dimensions m = 3 is
appropriate. The above regulariser corresponds to a “radial”
kernel function of the form

k(x,y) = t(||x−y||),

where [Duc77]

t(r) =

{

r2m−d ln(r) if 2m > d and d is even,

r2m−d otherwise.

There are a number of good reasons to use this regulariser
rather than those leading to compactly supported kernels, as
we touched on in the introduction. The main problem with
compactly supported kernels is that the corresponding regu-
larisers are somewhat poor for geometrical problems – they
always draw the function towards some nominal constant as
one moves away from the data, thereby implementing the
non-intuitive behaviour of regularising the constant function
and making interpolation impossible.

The problem with compactly supported bases can also
be seen from the fact that the support of the basis function
must be comparable to the size of the smallest details one
wishes to capture from the data, making interpolation im-
possible on scales larger than the finest details of the shape.
To overcome this one may try fitting the function with ba-
sis functions of large support (to interpolate unsampled re-
gions) followed by fitting to the residual errors with basis
functions of diminishing support (to capture smaller details),
leading to a final function that is the sum of the various
intermediate functions, say f = ∑n

i=1 fi. Since regularisa-
tion is done on each scale separately however, the overall
regulariser is, roughly speaking, something like the expres-
sion ∑n

i=1 || fi||
2
Hi

. Clearly this is not a sensible regulariser
– one simple example demonstrating this being the case
f1 + f2 = 0, since even this arguably simplest of functions
corresponds to a “regularisation” term || f1||

2
H1

+ || f2||
2
H2

that could be arbitrarily large.

Our experiments with such an approach led to spurious
components of zero set, as well as unconvincing and ir-
regular interpolation of unsampled regions – findings that
are corroborated by the discussions in [CBC∗01, OBA∗03,
OBS03], for example. The scheme we propose in Section 3

solves these problems, previously associated with compactly
supported basis functions.

3. A Fast Scheme using Compactly Supported Basis

Functions

Here we present a fast approximate scheme for solving the
problem developed in the previous Section, in which we re-
strict the class of functions to the span of a compactly sup-
ported, multi-scale basis, as described in Section 3.1. An al-
gorithm for choosing the basis is given in Section 3.2 and
the means of mimicking the thin-plate regulariser within this
basis is shown in Section 3.3. Finally in Section 3.4 we com-
pare the method to the FMM approach taken in [CBC∗01].

3.1. Restricting the Set of Available Functions

Computationally, using the thin-plate spline leads to the
problem that the linear system we need to solve (Equations
6 and 7), which is of size m(d + 1), is dense in the sense of
having almost all non-zero entries. Since solving such a sys-
tem naïvely has a cubic time complexity in m, we propose
forcing f (·) to take the form:

f (·) =
p

∑
k=1

πk fk(·), (11)

where the individual basis functions are

fk(·) = φ(||vk−·||/sk),

for some compactly supported function φ : R
+ → R which

takes the value zero for arguments greater than one. The vk

and sk are the basis function centres and dilations (or scales),
respectively. For φwe choose the B3-spline function:

φ(r) =
4

∑
n=0

(−1)n

d!

(

n

d +1

)

(r +(
d +1

2
−n))d

+, (12)

although this choice is rather inconsequential since, as we
shall ensure, the regulariser is unrelated to the function basis
– any smooth compactly supported basis function could be
used. In order to achieve the same interpolating properties
as the thin-plate spline, we wish to minimise our regularised
risk function given by Equation 4 within the span of Equa-
tion 11. The key to doing this is to note that as given before
in Equation 9, the regulariser (function norm) can be written
as ‖ f‖2

H = 〈ψ f ,ψ f 〉L2
. Given this fact, a straightforward

calculation leads to the following system for the optimal πk

(in the sense of minimising Equation 4):
(

Kreg +C1K
T
xvKxv +C2

d

∑
l=1

K
T

xvlKxvl

)

π= C2

d

∑
l=1

KxvlNl ,

(13)
where we have defined the following matrices:

[Kreg]k,k′ = 〈ψ fk,ψ fk′〉L2
; [Kxv]i,k = fk(xi);

[Kxvl]i,k = [(∇ fk)(xi)]l ; [π]k = πk;
[Nl]i = [ni]l .

c© The Eurographics Association and Blackwell Publishing 2006.

C. Walder & B. Schölkopf & O. Chapelle / Implicit Surfaces

Figure 2: The input data set taken from a light based depth

scanner (blue) with the basis centres produced by Algorithm

1 (red) (basis function support decreasing from top-left to

bottom-right), and a rendering of the resultant fitted sur-

face (which appears elongated due to the difference in im-

age plane projection method). The parameters of Algorithm

1 were ε = 0.02, t = 1.3, r = 1/3 and s = 0.2.

The point of the approximation is that the coefficients
that we need to determine are now given by a sparse p-
dimensional positive semi-definite linear system, which can
be constructed efficiently by simple code that takes advan-
tage of software libraries for fast nearest neighbour type
searches (see e.g. [MPL00]). Moreover, the system can be
solved efficiently using conjugate gradient type methods
[GV96]. In the following Section 3.2 we describe a way of
constructing a basis with p≪m that results in a high degree
of sparsity in the linear system, but still contains good solu-
tions. The critical question of how to compute Kreg is then
answered Section 3.3.

3.2. Construction of the Function Basis

The success of the above scheme hinges on the ability to
construct a good function basis, i.e. one that:

1. Spans a set of functions containing good solutions to the
original system given by Equation 4 (in particular having
a support which covers a given region of interest – here
assumed to be the unit hyper-box).

2. Leads to fast solution of Equation 13.
3. Can be evaluated and constructed quickly.

To these ends, we make use of some standard ideas for 3D
point cloud simplification [PGK02]. The main idea that we
use is that the closer a set of points within a given region is to
being linear, the less information is required to sufficiently
describe the shape within that region. The way in which we
apply this idea for the present task is described precisely by
the pseudo-code of Algorithm 1. The basic idea can be seen
more easily in Figure 2 however, and the remainder of this
sub Section could be safely skipped at first reading.

Note that although Algorithm 1 is only intuitively justi-
fied, we will be minimising precisely the well justified risk
of Equation 4 within the span of the resultant basis func-
tions. The results of the overall algorithm therefore do not
depend too strongly on the output of Algorithm 1, in the
sense that adding more basis functions can only make the
overall solution better. The algorithm makes use of two aux-
iliary functions, curvature and grid. The first of these func-
tions, curvature(X), used also in [PGK02], returns the ratio
of the smallest to the sum of all of the eigenvalues of the
covariance matrix of the set X = {xi ∈ R

d}1≤i≤p. If we

define the covariance matrix as C = DDT where

D =
[

x1−X ,x2−X , . . . ,xp−X
]

,

and X is the empirical mean of X , then letting the diagonal
matrix Λ = diag(λ1,λ2, . . .λd) and the ortho-normal matrix
V be the solutions to the eigen-system CV = ΛV , the func-
tion returns

curvature(X) =
mini∈1...d |λi|

∑d
j=1 |λ j|

,

which is a real number in [0,1/d] that is smaller for point
sets that lie closer to a linear manifold. The second function,
grid(S,w) returns points from a grid of spacing w immedi-
ately surrounding the set S ⊂ R

d , that is

grid(S,w) =D(S,w)
⋂{

wz : z ∈ Zd
}

,

where D(S,w) is the union of the set of hyper-spheres cen-
tered at all elements of S (in other words, a dilation of S):

D(S,w) =

{

x ∈ R
d :

(

min
x′∈S

∥

∥x−x
′
∥

∥

)

≤ w

}

.

3.3. Computing the Regularisation Matrix

We now come to the crucial point of calculating Kreg, which
can be thought of as the regulariser in Equation 11. The
present Section is highly related to [WCS05], however there
numerical methods were resorted to for the calculation of
Kreg – presently we shall derive closed form solutions. Also
worth comparing to the present Section is [FG06], where a
prior over the expansion coefficients (here the π) is used to
mimic a given regulariser within an arbitrary basis, achiev-
ing a similar although less precise result in comparison to
the present approach. As we have already noted we can write

c© The Eurographics Association and Blackwell Publishing 2006.

C. Walder & B. Schölkopf & O. Chapelle / Implicit Surfaces

Algorithm 1

Input: Data X = {xi ∈ R
d}1≤i≤m (scaled to lie within the

unit hyper-box); Curvature tolerance ε ∈ [0,1]; Initial basis
support s; support decrement ratio t > 1; “Basis grid width”
to “basis support” ratio r ∈ [0,1].
Output: Basis function centre/support pairs B = {(vk,sk) ∈
R

d×R
+}.

1: X̃ ← X
2: B ← grid

({

x : ‖x‖∞ ≤ 1
}

,rs
)

3: while X̃ 6= ∅ do

4: s← s/t

5: for all x ∈ X̃ do

6: if curvature
(

{x′ ∈ X :
∥

∥x′−x
∥

∥< s}
)

< (ε/d)
then

7: B ←B∪{(v,s) : v ∈ grid({x} ,rs)}
8: X̃ ← X̃ \x

9: end if

10: end for

11: end while

‖ f‖2
H = 〈ψ f ,ψ f 〉L2

[Wah90], so that for the function given
by Equation 11 we have:
∥

∥

∥

∥

∥

p

∑
j=1

πj f j(·)

∥

∥

∥

∥

∥

2

H

=

〈

ψ
p

∑
j=1

πj f j(·),ψ
p

∑
k=1

πk fk(·)

〉

L2

=
p

∑
j,k=1

πjπk

〈

ψ f j(·),ψ fk(·)
〉

L2

.
= πT

Kregπ.

To build the sparse matrix Kreg, a fast range search library
(e.g. [MPL00]) can be used to identify the non-zero entries
– that is, all those [Kreg]i, j for which i and j satisfy:

∥

∥vi−v j

∥

∥≤ si + s j.

In order to evaluate
〈

ψ f j(·),ψ fk(·)
〉

L2
, it is necessary to

solve the integral of Equation 10, the full derivation of which
we relegate to [WSC06] – here we just provide the main re-
sults. It turns out that since the fi are all dilations and trans-
lations of the same function φ(‖·‖), then it is sufficient solve
for the following function of si, s j and d

.
= vi−v j:

〈

ψφ((·)si−d),ψφ((·)s j)
〉

L2
,

which it turns out is given by

F−1
ωωω

[

(2πj‖ωωω‖)2m

|s1s2|d
Φ(

ωωω
s1

)Φ(
ωωω
s2

)

]

(d), (14)

where j2 =−1, Φ =Fx [φ(x)], and by F and F−1 we mean
the Fourier and inverse Fourier transform operators in the
subscripted variable.

Computing Fourier transforms in d dimensions is in gen-
eral a difficult task, but for radial functions g(x) = gr(||x||)
it can be made easier by the fact that the Fourier transform

in d dimensions (as well as its inverse) can be computed by
the single integral:

Fx [gr(‖x‖)] (‖ωωω‖) =
(2π)

d
2

||ωωω||
d−2

2

∫ ∞

0
r

d
2 gr(r)J d−2

2
(||ωωω||r)dr,

where Jν(r)is the ν-th order Bessel function of the first kind.

Unfortunately the integrals required to attain Equation 14
in closed form cannot be solved for general dimensional-
ity d, regularisation operator ψ and basis function form φ,
however we did manage to solve them for arguably the most
useful case: d = 3 with the m = 2 thin plate energy and
the B3-spline basis function of Equation 12. The resulting
expressions are rather unwieldy however, so we give only
an implementation in the C language in the Appendix of
[WSC06], where we also show that for the cases that cannot
be solved analytically the required integral can at worst al-
ways be transformed to a two dimensional integral for which
one can use numerical methods. Also note that if one would
like to include a few additional thin-plate kernel functions in
the basis (if the infinite support is useful, for example), then
computing the necessary regulariser inner products could
not be simpler – due to the reproducing property we have
〈

ψk(x, ·),ψ f j(·)
〉

L2
= f j(x).

3.4. Relationship to the Fast Multipole Method

We believe that the scheme presented here in Section 3 can
be useful for a wide range of problems, particularly in com-
puter graphics. Specifically it can be applied to any problem
involving large amounts of fairly low-dimensional data (1-4
dimensions posing no problem) in which it is necessary to
estimate a regularised function that either satisfies some set
of constraints or minimises some cost function.

A very different and important approximation scheme
based on the FMM [BG97] is taken in [CBC∗01] however,
and so we now briefly compare the two approaches. The
FMM based method proceeds as follows. In order to approx-
imately solve solve the system

y = (K + I/C1)α (15)

for the coefficients vector α of Equation 3, a conjugate gra-
dients type method [GV96] is employed. Conjugate gradient
methods only require that the right hand side of 15 be eval-
uated for a given α. This evaluation can done quickly using
the FMM, which allows one to approximately compute se-
quences of summations of the form

v(xi) =
m

∑
i

αik(xi,x); i = 1 . . .m (16)

in time O(m log(m)) – an improvement over the naïve
O(m2). Thus, an approximate solution of the system can be
attained in time O(pm log(m)), where p is the number of it-
erations required by the conjugate gradients solver.

c© The Eurographics Association and Blackwell Publishing 2006.

C. Walder & B. Schölkopf & O. Chapelle / Implicit Surfaces

The FMM is a very different tool to the sparse approxi-
mation we describe here. Compactly supported basis func-
tions cannot be used to compute general summations of the
form 16, but they do have advantages for the specific prob-
lem we consider in the present work. One important advan-
tage is that the present method is simpler to implement. A
second, and very important advantage however, is that var-
ious properties of the function (the derivatives for example,
as used heavily in the present work) can be computed with
minimal additional implementation effort – the “hard work”
is done by a range search algorithm, for which many well
developed software libraries exist. To understand this, note
that evaluating Equation 11 can be done efficiently by sim-
ply using a range search library to identify the contributing
basis functions, over which the the summation can then be
directly computed. Modifying this to give the gradient of the
function, for example, is no more difficult than implement-
ing the gradient computation for a single basis function. In
contrast, the FMM method requires a far greater additional
effort for each different function to be computed – for details
on the FMM see [BG97].

To summarise, the main obstacle to be overcome in ap-
plying compactly supported basis functions for regularised
function approximation is the computation of Kreg. However
given the analysis in Section 3.3 this is trivial.

4. Experiments

Here we demonstrate the method on various problems.
Firstly however we explain how we ray-trace the implicit
surfaces.

4.1. Ray Tracing

To render 3D implicit surfaces we use a ray tracer, the usual
choice for high quality 3D graphics. To ray trace a given
object one need only be able to find the first interesection
(or absence thereof) between the object and a light ray with
given starting point x0 and direction n. This is particularly
simple for the present case – as the embedding function is
smooth and differentiable everywhere the following iterative
second order approximation line search for the zero set con-
verges rather quickly, and in our experiments took, on aver-
age, approximately 2-3 iterations per intersection search.

Note that we found using a first order approximation to be
slower. This is probably due to the fact that a considerable
part of the time needed to compute the Hessian of the func-
tion is taken by the range search which finds the contributing
basis functions. Since these need to be found in a first order
method anyway, it is not too much more expensive to use a
more accurate second order approximation which converges
in fewer iterations.

At each iteration we make the second order approximation
f (x) = (x−x0)

TA(x−x0)+wT(x−x0)+b (here A, w and

Figure 3: An example solution in two dimensions. Data

points are depicted as dots with normals vectors as arrows,

the zero set as a black contour and the embedding function

value as the background colour. All of the basis function cen-

ters of various scales (produced by Algorithm 1 with the pa-

rameter setting ε = 0 and a lower limit on the basis support)

are plotted with various markers corresponding to the basis

function support (the stars have the largest and the red dots

the smallest support).

b are available analytically) and solve with respect to λ the
equation

f (x0 +λn) = λ2
n

T
An+λw

T
n+b = 0,

which is a quadratic function of λ with roots:

λ∗ =
2tc

−tb±
√

t2
b
−4tatc

,

where we have defined

ta = nTAn; tb = wTn; tc = b.

We take the lambda of smallest magnitude, since we seek the
first intersection. Note that if the system cannot be solved for
real λ then the real part of λ∗ minimises of (f (x0 +λn))2.
The implementation of our ray tracer is rather simple and not
at all optimised, so we do not provide timing results in the
following Section 4.

4.2. 2D Examples

In order to show how the embedding function behaves
(rather than just its zero zet) we include a two dimensional
example in Figure 3. Note that in spite of the function basis
including various scales of basis function at irregular posi-
tions, the regularisation scheme outlined in Section 3.3 leads
to a solution that is well behaved over the entire support of
the function. Further evidence of the efficacy of the regu-
lariser is given in the accompanying video which shows the
performance on a rather complex fractal-like data set.

c© The Eurographics Association and Blackwell Publishing 2006.

C. Walder & B. Schölkopf & O. Chapelle / Implicit Surfaces

Figure 4: Various values of the regularisation parameters lead to various amounts of “smoothing” – here we set C1 = C2 in

Equation 4 to an increasing value from left to right of the figure.

Figure 5: Missing data is handled by the interpolating prop-

erties of the regulariser – the ray traced model was con-

structed from the incomplete data set depicted in the middle.

Note that the model is wearing a loose t-shirt.

4.3. 3D Examples

Here we fit models to several 3D data sets of up to 14 million
data points. For each model, the timing of the various stages
of the fitting process is given in Table 1. The following gen-
eral observations can be made regarding this table:

– High compression ratios can be achieved, in the sense that
a relatively small number of basis functions can represent
the shape.

– The fitting time scales rather well, from 38 seconds for
the Stanford Bunny with 35 thousand points to 4 hours
23 minutes for the Lucy statue with 14 million points.
Moreover, after accounting for the different hardware the
times seem to be similar to those of the FMM approach
[CBC∗01].

Some example ray traced images of the resulting models are
given in Figures 1 and 6, and the well-behaved nature of the
implicit over the entire 3D volume of interest is shown for
the Lucy data-set in the accompanying video.

In practice the system is extremely robust – we achieved
excellent results without any parameter adjustment – smaller

Figure 6: Ray traced three dimensional implicits, “Happy

Buddha” (543K points with normals) and the “Thai Statue”

(5 million points with normals).

values of C1 and C2 in Equation 4 simply lead to the smooth-
ing effect shown in Figure 4. The system also handles miss-
ing and noisy data gracefully, as shown in Figures 5 and 7.

4.4. 4D Examples

It is also possible to construct higher dimensional implicit
surfaces, particularly interesting being a 4D representation
(3D + “time”) of a continuously evolving 3D shape – one
possible use for this is as means of constructing 3D anima-
tion sequences from a time series of 3D point cloud data. For
example, optical scanning devices can produce 3D scans at a
rate of the order of a hundred frames per second. In this case
both spatial and temporal information can help to resolve
noise or missing data problems within individual scans. We
demonstrate this in the accompanying video, which shows

c© The Eurographics Association and Blackwell Publishing 2006.

C. Walder & B. Schölkopf & O. Chapelle / Implicit Surfaces

Name # Points # Bases Basis Kreg Kxv & Kzv∇ Multiply Solve Total

Stanford Bunny 34834 9283 0.44 2.4 3.65 11.74 20.44 38.67
Face 75970 7593 0.73 1.93 7.04 20.29 15.97 45.96

Armadillo 172974 45704 6.62 8.52 37.04 123.36 72.34 247.88
Dragon 437645 65288 14.38 16.3 70.87 322.79 1381.38 1805.72

Happy Buddha 543197 105993 117.4 27.39 99.35 423.71 2909.33 3577.18
Asian Dragon 3609455 232197 441.61 60.86 608.29 1884.97 1009.47 4005.2
Thai Statue 4999996 530966 3741.95 197.53 1575.62 3121.15 2569.48 11205.7

Lucy 14027872 364982 1425.77 170.45 3484.08 9367.71 1340.48 15788.5

Table 1: Timing results with a 2.4GHz AMD Opteron 850 processor, for various 3D data sets. Column one is the number of

points, each of which has an associated normal vector, and column two is the number of basis vectors produced by Algorithm

1. The remaining columns are all in units of seconds: column three is the time taken by Algorithm 1, columns four and five are

the times required to construct the indicated matrices, column six is the time required to multiply the matrices as per Equation

13, column seven is the time required to solve that same equation for πand the final column is the total fitting time.

that 4D surfaces yield superior 3D animation results in com-
parison to constructing a separate 3D models for each in-
stant. It is also interesting to note that the interpolating be-
haviour that we saw in three dimensions also occurs in four
dimensions – in the accompanying video we effectively in-
terpolate between two three dimensional shapes.

5. Summary

We have presented a number of ideas that are both theoreti-
cally and practically useful for the computer graphics com-
munity, and demonstrated them within the framework of im-
plicit surface fitting. The work revolves mainly around the
effective use of compactly supported function bases for low
dimensional function approximation problems.

Many authors have discussed and demonstrated fast but
limited quality results that occur with compactly supported
function bases. The present work is unique in precisely min-
imising a well justified regulariser within the span of such a
basis, thereby achieving fast and high quality results.

We also show how normal vectors can be incorporated
directly into the common regression based implicit surface
fitting framework, giving a corresponding generalisation of
the representer theorem.

We demonstrated the efficacy of the algorithm on 3D
problems consisting of up to 14 million data points. In the
accompanying video we also showed the advantage of con-
structing a 4D surface (3D + time) for 3D animation, rather
than a sequence of 3D surfaces.

Acknowledgements

We thank Christian Wallraven for providing the face data
used in both Figure 2 and the accompanying video.

References

[ABCO∗01] ALEXA M., BEHR J., COHEN-OR D.,
FLEISHMAN S., LEVIN D., SILVA C. T.: Point set sur-

faces. In IEEE Visualization 2001 (October 2001), IEEE
Computer Society, pp. 21–28. 1

[BBX95] BAJAJ C. L., BERNARDINI F., XU G.: Auto-
matic reconstruction of surfaces and scalar fields from 3D
scans. Computer Graphics 29, Annual Conference Series
(1995), 109–118. 1

[BG97] BEATSON R., GREENGARD L.: A short course on
fast multipole methods. In Wavelets, Multilevel Methods

and Elliptic PDEs (1997), pp. 1–37. 6, 7

[CBC∗01] CARR J. C., BEATSON R. K., CHERRIE J. B.,
MITCHELL T. J., FRIGHT W. R., MCCALLUM B. C.,
EVANS T. R.: Reconstruction and representation of 3d
objects with radial basis functions. In ACM SIGGRAPH

2001 (2001), ACM Press, pp. 67–76. 2, 4, 6, 8

[Duc77] DUCHON J.: Splines minimizing rotation-
invariant semi-norms in sobolev spaces. Constructive

Theory of Functions of Several Variables (1977), 85–100.
4

[FG06] FRANZ M. O., GEHLER P. V.: How to choose
the covariance for gaussian process regression indepen-
dently of the basis. In Proc. Gaussian Processes in Prac-

tice Workshop (2006). 5

[GR97] GREENGARD L., ROKHLIN V.: A fast algorithm
for particle simulations. J. Comp. Phys. (1997), 280–292.
2

[GV96] GOLUB G. H., VAN LOAN C. F.: Matrix Com-

putations, 2nd ed. The Johns Hopkins University Press,
Baltimore MD, 1996. 5, 6

[HDD∗92] HOPPE H., DEROSE T., DUCHAMP T., MC-
DONALD J., STUETZLE W.: Surface reconstruction from
unorganized points. In SIGGRAPH ’92: Proceedings of

the 19th annual conference on Computer graphics and

interactive techniques (New York, 1992), ACM Press,
pp. 71–78. 1

[KW71] KIMELDORF G., WAHBA G.: Some results on

c© The Eurographics Association and Blackwell Publishing 2006.

C. Walder & B. Schölkopf & O. Chapelle / Implicit Surfaces

Figure 7: Reconstruction of the Stanford bunny after adding Gaussian noise with standard deviation, from left to right, 0, 0.6,

1.5 and 3.6 percent of the radius of the smallest enclosing sphere – the normal vectors were similarly corrupted assuming they

had length equal to this radius. The parameters C1 and C2 were chosen automatically using five-fold cross validation.

Tchebycheffian spline functions. Journal of Mathematical

Analysis and Applications 33 (1971), 82–95. 3

[MPL00] MERKWIRTH C., PARLITZ U., LAUTERBORN

W.: Fast nearest neighbor searching for nonlinear signal
processing. Phys. Rev. E 62, 2 (2000), 2089–2097. 5, 6

[Mur91] MURAKI S.: Volumetric shape description of
range data using “blobby model”. In SIGGRAPH ’91:

Proceedings of the 18th annual conference on Computer

graphics and interactive techniques (New York, 1991),
ACM Press, pp. 227–235. 1

[MYC∗01] MORSE B. S., YOO T. S., CHEN D. T.,
RHEINGANS P., SUBRAMANIAN K. R.: Interpolating
implicit surfaces from scattered surface data using com-
pactly supported radial basis functions. In SMI ’01: Proc.

Intl. Conf. on Shape Modeling & Applications (Washing-
ton, 2001), IEEE Computer Society. 2

[OBA∗03] OHTAKE Y., BELYAEV A., ALEXA M., TURK

G., SEIDEL H.-P.: Multi-level partition of unity implicits.
ACM Transactions on Graphics 22, 3 (July 2003), 463–
470. 1, 2, 4

[OBS03] OHTAKE Y., BELYAEV A., SEIDEL H.-P.: A
multi-scale approach to 3d scattered data interpolation
with compactly supported basis functions. In Proc. Intl.

Conf. Shape Modeling (Washington, 2003), IEEE Com-
puter Society. 2, 4

[PGK02] PAULY M., GROSS M., KOBBELT L. P.: Ef-
ficient simplification of point-sampled surfaces. In VIS

’02: Proceedings of the conference on Visualization ’02

(Washington, 2002), IEEE Computer Society, pp. 163–
170. 5

[Set98] SETHIAN J.: Level set methods and fast marching

methods: Evolving interfaces in computational geometry,
1998. 1

[SHS01] SCHÖLKOPF B., HERBRICH R., SMOLA A. J.:
A generalized representer theorem. In COLT ’01/Euro-

COLT ’01: Proceedings of the 14th Annual Conference

on Computational Learning Theory (London, UK, 2001),
Springer-Verlag, pp. 416–426. 3

[SOS04] SHEN C., O’BRIEN J. F., SHEWCHUK J. R.:
Interpolating and approximating implicit surfaces from
polygon soup. In ACM SIGGRAPH 2004 (Aug. 2004),
ACM Press. 1

[TO99] TURK G., O’BRIEN J. F.: Shape transformation
using variational implicit functions. In Proceedings of

ACM SIGGRAPH 1999 (August 1999), pp. 335–342. 2

[Wah90] WAHBA G.: Spline Models for Observational

Data. Series in Applied Mathematics, Vol. 59, SIAM,
Philadelphia, 1990. 2, 3, 4, 6

[WB98] WHITAKER R. T., BREEN D. E.: Level-set mod-
els for the deformation of solid objects. In Implicit Sur-

faces 98 Proceedings (1998), Jules Bloomenthal D. S.,
(Ed.), Eurographics/ACm Workshop, pp. 19–35. 1

[WCS05] WALDER C., CHAPELLE O., SCHÖLKOPF B.:
Implicit surface modelling as an eigenvalue problem. Pro-

ceedings of the 22nd International Conference on Ma-

chine Learning (2005). 5

[WSC06] WALDER C., SCHÖLKOPF B., CHAPELLE O.:
Implicit Surface Modelling with a Globally Regularised

Basis of Compact Support. Tech. rep., Max Planck Insti-
tute for Biological Cybernetics, Department of Empirical
Inference, Tübingen, Germany, April 2006. 3, 6

c© The Eurographics Association and Blackwell Publishing 2006.

