Implicit System Specification and the Interface Equation
M. W. SHIELDS
Electronic Engineering L

Received April 1987

1. INTRODUCTION

In this paper, we initiate a study of implicit system
The general approach is roughly as follows. One is
required to design a system which is to interact with a required to design a system which is to interact with a
given environment in such a way that the interaction gives rise to a desired form of externally visible behaviour. Such a problem may be formulated mathematically in
a suitable algebraic specification language - in this paper, we use Milner's Calculus of Communicating equation of the form
where $C[]$ is a context in CCS, representing the environment, and q is a CCS agent, representing the desired externally visible behaviour. A solution for this
equation is an agent r such that $C[r] \approx q$. Such a solution may be considered as an abstract description of a system which, by virtue of r satisfying the equation, is 'correct'.
If solutions to such equations may be derived mechanicIlly, then we have abolished the need for design and in An example of such a problem is the design of an nterface. Fig. 1 pictures a situation in which two i / o

N 2

It is required to construct an interface X (see Fig. 2) so that when linked with $p 1$ and $p 2$ and internal com-
ome hypothetical system q. 2 could be described by the CCS expression
where A is a set of communications to be internalised
We therefore need to find X such that

 q may make a $\bar{\lambda}$ communication, then the two agents
 unobservable action. \dagger If $\mu \in \Delta$, then $\overline{\bar{\mu}}=\mu$. We make the convention that
$\tau=\tau$ and that $\Lambda \cap \bar{\Lambda}=\{\tau\}$. $=\tau$ and that $\Lambda \cap \Lambda=\{\tau\}$.
We also assume a set of behaviour identifiers. Roughly
speaking, these may be used to name agents. We now give the rules for forming CCS expressions.

2.1. Definition

(a) NIL is a behaviour expression; it describes an
(b) If E is an expression and $\mu \in \Delta$, then $\mu \cdot E$ is an
 (c) If E and E^{\prime} then behans
(c) If E and E^{\prime} are expressions then $E+E^{\prime}$ is an
expression: it describes an agent that may non-deter-

 an expression: it describes an agent which may behave an action which is a member of $A \cup \bar{A}$.
(f) Behaviour identifiers are expressions. \ddagger
Finally, if b is a behaviour identifier an
Finally, if b is a behaviour identifier and E is an
expression then we write $b \Leftarrow E$ as an equation signifying that b is to have the behaviour determined by E. Behaviour expressions determine sequences of com-
munications, representing the visible agent. Formally, we may describe this behaviour by derivations of the form:

$$
{ }^{8} \mathbb{I}_{n} \leftarrow{ }^{1} B
$$

to indicate that an agent described by E_{1} has the agent behaves like E_{2}. We write $E_{1} \rightarrow^{\mu}$ to indicate that $E_{1} \rightarrow{ }^{\mu} E_{2}$ for some E_{2}. Let $E, E^{\prime} E^{\prime \prime}, E_{i}, E_{i}^{\prime}$ be expressions, $\mu \in \Delta$ and b a
behaviour identifier. (a) $N I L$ has no actions: $N I L \rightarrow \rightarrow^{\mu} E$ is false for all
$\mu \in \Delta, E$. (b) Guarding: $\mu . E$ always has a μ action: $\mu . E \rightarrow^{\mu} E$.
(c) Summation: the composite agent has the capa-

$\frac{E \rightarrow^{\mu} E^{\prime}}{E+E^{\prime} \rightarrow^{\mu} E^{\prime \prime}} \frac{E \rightarrow^{\mu} E^{\mu}}{E+E^{\prime} \rightarrow^{\mu} E^{\prime \prime}}$.

2.5. Definition

 defines two expressinguishable in terms of visible behaviour, that is ignoring τ actions. The second is stricter and takes τactions into account. Both are equivalence relations. The second is also a congruence relation, that is, for example,
Let E_{1}, E_{2} be expressions. We shall say that they are observationally equivalent (and write $E_{1} \approx E_{2}$) if $E_{1} \approx_{n} E_{2}$,
for all natural numbers n, where: for all natural numbers n, where:
(a) We always have $E_{1} \approx_{0} E_{2}$.
(b) $E_{1} \approx_{n+1} E_{2}$ iff for all $s \in(\Delta$
(b) $E_{1} \approx_{n+1} E_{2}$ iff for all $s \in(\Delta-\{\tau\})^{*}$.
Downloaded from https://academic.oup.com/comjn//article/32/5/399/401411 by guest on 16 August 2022 IMPLICIT SYSTEM SPECIFICATION AND THE INTERFACE EQUATION
3.3. Lemma
Let q be weakly determinate and suppose $p \approx q$ and
$p \rightarrow^{\mu} p^{\prime}$, some $\mu \in \Delta-\{\tau\}$, then there exists q^{\prime} such that
$q \Rightarrow^{\mu} q^{\prime}$ and $p^{\prime} \approx q^{\prime}$.
Proof
Since $p \approx q$ then by $2.5(b)$, for all n there exists q_{n} such
that $q \Rightarrow^{\mu} q_{n}$ and $p^{\prime} \approx_{n} q_{n}$. Since q is weakly determinate,
it follows from $q \Rightarrow^{\mu} q_{n}$ and $q \Rightarrow^{\mu} q_{m}$ that $q_{n} \approx_{m}$, by
3.1 (b). Thus, if we let $q^{\prime}=q_{1}$ then for all $n, q \Rightarrow^{\mu} q^{\prime}$ and
$q^{\prime} \approx_{n} q_{n}$. Thus, for all $n, p^{\prime} \approx_{n} q_{n} \approx_{n} q^{\prime}$. Thus, for all n,
$p^{\prime} \approx^{\prime} q^{\prime}$ by $6.6(1)$ Thus $p^{\prime} \approx_{q^{\prime}}$ by 25 .
3.4. Lemma
Let q be weakly determinate and suppose $p \approx q$ and
$p \rightarrow^{\mu} p^{\prime}$ and $q \rightarrow^{\mu} q^{\prime}$, some $\mu \in \Delta-\{\tau\}$, then $p^{\prime} \approx q^{\prime}$.
Proof
By 3.3 , there exists $q^{\prime \prime}$ such that $q \Rightarrow^{\mu} q^{\prime \prime}$ and $p^{\prime} \approx q^{\prime \prime}$.
Since q is weakly determinate, from $q^{\mu} q^{\prime}$ and $q \Rightarrow^{\mu} q^{\prime \prime}$
and 3.1 (b), we obtain $q^{\prime} \approx q^{\prime \prime}$. Since $p^{\prime} \approx q^{\prime \prime}$, we may use
2.6(2) to conclude that $p^{\prime} \approx q^{\prime}$ as required.
3.5. Lemma
Let q be weakly determinate and suppose $p \approx q$ and
$p \rightarrow p^{\top}$ then $p^{\prime} \approx q$.
Proof
Since $p \Rightarrow^{\Omega} p^{\prime}$ and $p \approx q$, it follows that for all n there
exists q such that $q \Rightarrow^{\Omega} q_{n}$ and $p^{\prime} \approx_{n} q_{n}$. Since $q \Rightarrow^{\Omega} q$ and q is weakly determinate, we must have $q \approx q_{n}$, each n, by
$3.1(\mathrm{~b})$. Thus $p^{\prime} \approx q$, all n, and hence $p^{\prime} \approx q$ by 2.5 . $3.1(\mathrm{~b})$. Thus $p^{\prime} \approx_{n} q$, all n, and hence $p^{\prime} \approx q$ by 2.5 . 3.6. Proposition
Let q be weakly
weakly weakly determinate.

3 0 i

We argue by induction on k that if $p \approx q$ then p is weakly
k determinate. k determinate. Suppose true for k and let $p \Rightarrow^{s} p^{\prime}$. Since $p \approx q$, by 2.5
for each n there exists q_{n} such that $q \Rightarrow^{s} q_{n}$ and $p^{\prime} \approx_{n} q_{n}$. Since q is weakly determinate, there exists $q^{\prime}\left(=q_{1}\right)$ such
that $q^{\prime} \approx{ }_{n}$ for each n. By $2.6(1)$, we have that $p \approx_{n} q^{\prime}$ or each n and that hence $p \approx q^{\prime}$. By induction p^{\prime} By $3.2, q$ is weakly determinate. By induction, p^{\prime} determinate. We have shown that if $p \approx q$ and $\Rightarrow{ }^{s} p^{\prime}$ then p^{\prime} is weakly k determinate. Thus, by $3.1, p$ is

4. THE INTERFACE EQUATION

4.1. Definition
An interface
(i) If $E_{1} \Rightarrow^{s} E_{1}^{\prime}$ then there exists E_{2}^{\prime} such that
$E_{2} \Rightarrow^{s} E_{2}^{\prime}$ and $E_{1}^{\prime} \approx_{n} E_{2}^{\prime}$.
(ii) If $E_{2} \Rightarrow^{s} E_{2}^{\prime}$ then there exists E_{1}^{\prime} such that
$E_{1} \Rightarrow^{s} E_{1}^{\prime}$ and $E_{1}^{\prime} \approx_{n} E_{2}^{\prime}$.
6. Proposition
(1) For each n, \approx_{n} is an equivalence relation.
(2) \approx is an equivalence relation.

Let E_{1}, E_{2} be expressions. We shall say that they are strongly congruent (and write $E_{1} \sim E_{2}$) if $E_{1} \sim_{n} E_{2}$, for all (a) We always have $E_{1} \sim_{0} E_{2}$.
(i) If $E_{1} \rightarrow^{\mu} E_{1}^{\prime}$ then there exists E_{2}^{\prime} such that

2.8. Proposition

(1) For each n, \sim_{n} is a congruence relation.
(2) $\tilde{\text { i a a congruence relation. }}$
(3) $E_{1} \sim E_{2}$ implies $E_{1} \approx E$.
is weakly determinate iff q is weakly- k-determinate for all k. Every q is weakly- 0 -determinate. If $k>0$, then q is
(a) For all $s \in \Delta^{*}: q \nRightarrow^{s} q^{\prime}$ implies q^{\prime} is weakly- $k-1$ -
determinate.
(b) For all $s \in \Delta^{*}: q \Rightarrow^{s} q_{1}$ and $q \Rightarrow^{s} q_{2}$ implies $q_{1} \approx q_{2}$.
 have found it a technically useful idea, however. In fact,

 weakest property that an agent q may have in order that it is observationally equivalent to a (not necessarily
The following sequence of lemmas present some useful consequences of this property.

Suppose q is weakly determinate and $q \Rightarrow^{s} q^{\prime}$, then q^{\prime} is
also weakly determinate.

3. WEAK DETERMINACY

3.1. Definition

We begin with some of the key definitions. weakly- k-determinate if
(a) For all $s \in \Delta^{*}: q$
and strongly determinate.
consequences of this property.

where (1) q is weakly determinate and
 $\Lambda(p) \cap \overline{(q)}=$ $\Lambda(p) \cap \bar{A}=\varnothing$ $\Lambda(q) \cap(A \cup A)=\varnothing$
 $\Lambda(q) \cap(A \cup A)=\varnothing$

4.2. Definition

r is a solution to the equation $(p \mid X) \backslash A \approx q$ iff r satisfies

The constraints are for technical reasons, mostly in
order to make the proofs of lemmas work. Weak

 ensure that proposition $8.2(1)(\mathrm{c})$ is true
Note that if constraint (4) does not hold

Note that if constraint (4) does not hold, then there is
an action $\mu \in \Lambda(q)$ such that $\mu \neq \tau$ (since $\mu \in A \cup \bar{A}$) but $\mu \notin \Lambda((p \mid X) \backslash A)$. Accordingly, $q \Rightarrow^{s \mu}$ for some string s, but we cannot have $(p \mid X) \backslash A \Rightarrow{ }^{s} \mu$. Thus, by 2.5(b), 4.2(1)

The aim of the rest of this section is to prove that derivations preserve interface equations, that is, if
$(p \mid r) \backslash A \approx q$ then (I) $\quad(p \mid r) \backslash A \rightarrow^{\mu}\left(p^{\prime} \mid r^{\prime}\right) \backslash A$ and $q \rightarrow^{\mu} q^{\prime}$ implies $\left(p^{\prime} \mid r^{\prime}\right) \backslash A \approx q^{\prime}$.
$b \approx V \backslash(\lambda \mid, d)$ so! dum! $V \backslash(d \mid d)_{2} \leftarrow V \backslash(d \mid d)$ (II)
This will enable us to relate the structure of r to that
 significant when we try to build solutions.
 determinate.

4.3. Lemma

Suppose r solves the interface equation $(p \mid X) \backslash A \approx q$ and suppose $(p \mid r) \backslash A \rightarrow^{\mu}\left(p^{\prime} \mid r^{\prime}\right) \backslash A$ and $q \rightarrow^{\mu} q^{\prime}$ with $\mu \in \Delta-\{\tau\}$,
then $\left(p^{\prime} \mid X\right) \backslash A \approx q^{\prime}$ is also an interface equation and has r^{\prime} as a solution.

Proof
We check the conditions of 4.1 .
(1) q^{\prime} is weakly determinate, by lemma 3.2. Since (1) q is weakly determinate, by lemma 3.2. Since
$\Lambda\left(p^{\prime}\right) \subseteq \Lambda(p)$ and $\Lambda\left(q^{\prime}\right) \subseteq \Lambda(q)($ see 2.4$)$, it follows that (2) $\Lambda\left(p^{\prime}\right) \cap \overline{\Lambda\left(q^{\prime}\right)} \subseteq \Lambda(p) \cap \overline{\Lambda(q)} \subseteq\{\tau\}$
(4) $\Lambda\left(q^{\prime}\right) \cap(A \cup \bar{A}) \subseteq \Lambda(q) \cap(A \cup \bar{A})=\varnothing$. Thus $\left(p^{\prime} \mid X\right) \backslash A \approx q^{\prime}$ is an interface equation.

Now we check the conditions of lemma 3.4 .
(2) Since $\Lambda\left(p^{\prime}\right) \subseteq \Lambda(p)$ and $\Lambda\left(r^{\prime}\right) \subseteq \Lambda(r)$ it follows
that $\Lambda\left(r^{\prime}\right) \cap \Lambda\left(p^{\prime}\right) \subseteq \Lambda(r) \cap \Lambda(p) \subseteq\{\tau\}$.

4.4. Lemma

Downloaded from https：／／academic．oup．com／comjnl／article／32／5／399／401411 by guest on 16 August 2022
NOILVのסヨ ヨOVヨyヨLNI ヨHL QNV NOILVOIHIDヨdS WヨLSAS LIOITdWI

First we consider the case in which $r^{\prime} \in \mathbf{R}_{p, q}(r)$ has a Fommunication μ ，and case in which $\mu \neq \tau$ and $\mu \in \Lambda(q)$ ．Condition（4）
comer of 4.1 entails that μ will not be restricted by $\backslash A$ and so for any $p^{\prime},\left(p^{\prime} \mid r^{\prime}\right) \backslash A$ has a μ action．Now，if $\left(p^{\prime}, q^{\prime}\right) \in \phi\left(r^{\prime}\right)$ ，
then $\left(p^{\prime} \mid r^{\prime}\right) \backslash A \approx q^{\prime}$ and hence，we must have $q^{\prime} \Rightarrow{ }^{\mu}$ ，for each $\left(p^{\prime}, q^{\prime}\right) \in \phi\left(r^{\prime}\right)$ ．q^{\prime} Thus if $r^{\prime} \rightarrow^{\mu}$ ，then $q^{\prime} \Rightarrow^{\mu}$ for each $\left(p^{\prime}, q^{\prime}\right) \in \phi\left(r^{\prime}\right)$ ．In
particular，$\mu \in \Lambda(q)$ ．Since，by $4.2(2), \Lambda(r) \cap \Lambda(p) \subseteq\{\tau\}$ ， we have that $\mu \in \Lambda(q)-\Lambda(p)$ so these are the communi－
 In now turns out that if $r^{\prime} \rightarrow^{\mu} r^{\prime \prime}$ and $q^{\prime} \Rightarrow^{\prime \prime} q^{\prime \prime}$ ，then
$\left(p^{\prime}, q^{\prime \prime}\right) \in \phi\left(r^{\prime \prime}\right)$ ．This suggests that we can define deriva－ tions between elements of (p, q)－systems in such a way that $r^{\prime} \rightarrow^{\mu} r^{\prime \prime}$ implies $\phi\left(r^{\prime}\right) \rightarrow \mu \phi\left(r^{\prime \prime}\right)$－actually，we shall
write $\phi\left(r^{\prime}\right) \rightarrow^{\mu}, o \phi\left(r^{\prime \prime}\right)$. O－derivations are introduced formally in definition
6．1．Lemma 6.2 confirms that they have the desired property．

6．1．Definition

Let $\left(p^{\prime}, q^{\prime}\right) \in \mathbf{R}(p) \times \mathbf{R}(q)$ ．We define $\left(p^{\prime}, q^{\prime}\right) \rightarrow^{\mu, o}\left(p^{\prime \prime}, q^{\prime \prime}\right)$ if $p=p^{\prime}$ and $q \Rightarrow^{\mu} q^{\prime \prime}$ and $\mu \in \Lambda(q)-\Lambda(p)$ and $\mu \neq \tau$ ．
If $K, K^{\prime} \in \Psi(p, q)$ then define $K \rightarrow{ }^{\mu, o} K^{\prime}$ iff for all $\left(p^{\prime}, q^{\prime}\right) \in K$ there exists $\left(p^{\prime \prime}, q^{\prime \prime}\right) \in K^{\prime}$ such that $\left(p^{\prime}, q^{\prime}\right) \rightarrow \rightarrow^{\mu, o}\left(p^{\prime \prime}, q^{\prime \prime}\right)$.

Suppose r is a solution and let $r^{\prime} \in \mathbf{R}_{p, q}(r)$ ．Suppose
 $\underset{\phi\left(r^{\prime}\right) \rightarrow \rightarrow^{\mu, o}}{\mu \in \Lambda\left(r^{\prime \prime}\right)}$ and $\mu \neq \tau$ ，then $r^{\prime \prime} \rightarrow r^{n} r^{\prime \prime}$ implies
 Proof
 Suppose $\left(p^{\prime}, q^{\prime}\right) \in \phi\left(r^{\prime}\right)$ ．We shall show that there exists $q^{\prime \prime}$ such that $\left(p^{\prime}, q^{\prime}\right) \rightarrow \mu^{\prime \prime} .\left(p^{\prime}, q^{\prime \prime}\right) \in \phi\left(r^{\prime \prime}\right)$ ，which，in virtue of definition 6．1，will conclude the proof． Now，$\left(p^{\prime}, q^{\prime}\right) \in \phi\left(r^{\prime}\right)$ ，so by 5.6

등
Since $\mu \in \Lambda(q)$ ，then by $4.1(4)$ we have $\mu \notin A \cup \bar{A}$ and since we also have $r \rightarrow r^{\prime}$ by hypothesis，it follows from $\left(p^{\prime} \mid r^{\prime}\right) \backslash A \rightarrow \rightarrow^{\mu}\left(p^{\prime} \mid r^{\prime \prime}\right) \backslash A \quad$（6．2．2） But，$q^{\prime}$ is weakly determinate by 5.6 and 4.1 （1）and so
 Thus，for some $n, m \geqslant 0$ and q_{1}, q_{2} ，we have

$$
\begin{aligned}
& n, m \geqslant 0 \text { and } q_{1}, q_{2}, \\
& q^{\prime} \Rightarrow^{r^{m}} q_{1} \rightarrow^{\mu} q_{2} \Rightarrow{ }^{r^{n}} q^{\prime \prime}
\end{aligned}
$$

（6．2．4） We may now apply 5.4 （1）to（6．2．3）and（6．2．4）to deduce hat $\left(p^{\prime}, q^{\prime \prime}, r^{\prime \prime}\right) \in \mathbf{R}(p, q, r)$ and hence，by 5.5 ，that
$\left.p^{\prime}, q^{\prime \prime}\right) \in \phi\left(r^{\prime \prime}\right)$ as required．
Finally，since $q^{\prime} \Rightarrow^{\mu} q^{\prime \prime}$ and $\mu \in \Lambda(q)-\Lambda(p)$ ，then
$\left.p^{\prime}, q^{\prime}\right) \rightarrow^{\mu . O}\left(p^{\prime}, q^{\prime \prime}\right)$ by 6.1 ，and we are done． $\left.p^{\prime}, q^{\prime}\right) \rightarrow^{\mu . O}\left(p^{\prime}, q^{\prime \prime}\right)$ ，by 6.1 ，and we are done．
 We construct an irredundant solution．

6.6. Lemma
ND THE INTERFACE EQUATION
with $m, n \geqslant 0$ such that $K=K_{1}, K^{\prime}$
that $K=K_{1}, K^{\prime}=K_{n}^{\prime}$ and
$K_{i} \rightarrow^{\tau} K_{i+1}, i<m$
$K_{m} \rightarrow^{\mu, X} K_{1}^{\prime}$
$K_{i}^{\prime} \rightarrow^{\top} K_{i+1}^{\prime}, i<n$.

6.10. Proposition

7.1. Definition

Let \mathbf{S} be a (p, q)-system and suppose $K \in \mathbf{S} . K$ will be said
to be I-complete iff for all $\left(p^{\prime}, q^{\prime}\right) \in K$ if $p^{\prime} \rightarrow^{\mu}$ and $\mu \neq A$,
to be I-complete iff for all $\left(p^{\prime}, q^{\prime}\right) \in K$, if $p^{\prime} \rightarrow^{\mu}$ and $\mu \notin A$,
and $\mu \neq \tau$ then $q^{\prime} \Rightarrow^{\mu}$.
Let r be a solution and suppose $K \in \phi\left(\mathbf{R}_{p, q}(r)\right)$, then K is

Proof

Since $p^{\prime} \rightarrow^{\mu}$, it follows from 4.1 (3) that $\mu \notin \bar{A}$. Since, by hypothesis $\mu \notin A$, we must have $\mu \notin A \cup A$. Since $p^{\prime} \rightarrow^{\prime}$
and $\mu \notin A \cup A$ it follows from 2.2 (d) and 2.2 (e) that

 $\left(p^{\prime}, q^{\prime}, r^{\prime}\right) \rightarrow^{\tau}\left(p^{\prime \prime}, q^{\prime}, r^{\prime \prime}\right)$.

Since $\left(p^{\prime}, q^{\prime}\right) \in \phi\left(r^{\prime}\right)$, it follows from 5.5 that $\left(p^{\prime}, q^{\prime}, r^{\prime}\right) \in \mathbf{R}(p, q, r)$.

From (6.6.1), (6.6.2) and 5.4(1), we obtain $\left(p^{\prime \prime}, q^{\prime}, r^{\prime \prime}\right) \in \mathbf{R}(p, q, r)$.

Thus, by $5.5,\left(p^{\prime \prime}, q^{\prime}\right) \in \phi\left(r^{\prime \prime}\right)$ as required.

τ-derivations

 involving τ actions. The definition and corresponding
lemma are straightforward enough to require no gloss.

6.7. Definition

If $K, K^{\prime} \in \Psi(p, q)$, then define $K \rightarrow{ }^{\tau} K^{\prime}$ if $K \subseteq K^{\prime}$.

6.8. Lemma

Suppose $\left(p^{\prime}, q^{\prime}\right) \in \phi\left(r^{\prime}\right)$. We shall show that $\left(p^{\prime}, q^{\prime}\right) \in \phi\left(r^{\prime \prime}\right)$. First note that since $r^{\prime} \rightarrow^{\top} r^{\prime \prime}$ we have, by 2.2(d) $\left(p^{\prime} \mid r^{\prime}\right) \backslash A \rightarrow^{\dagger}\left(p^{\prime} \mid r^{\prime \prime}\right) \backslash A$
and so by 5.1 (a)(i)
$\left(p^{\prime}, q^{\prime}, r^{\prime}\right) \rightarrow^{\tau}\left(p^{\prime}, q^{\prime}, r^{\prime \prime}\right)$ әлеч әм ऽऽऽ Кq ‘(, $) \phi \ni\left(b^{\prime}, d\right)$ әои! S $\left(p^{\prime}, q^{\prime}, r^{\prime}\right) \in \mathbf{R}(p, q, r)$. From this, 5.3 and (6.8.1) it follows that $\left(p^{\prime}, q^{\prime}, r^{\prime \prime}\right) \in \mathbf{R}(p, q, r)$. Thus, by $5.5\left(p^{\prime}, q^{\prime}\right) \in \phi\left(r^{\prime \prime}\right)$

6.9. Definition
 O. Then $K \Rightarrow{ }^{\mu, X} K^{\prime}$ iff there exists

$\begin{array}{ll}\text { 7.3. Definition } & \begin{array}{l}\text { follows that } \mu \in \Lambda(q) \text {. Since also } r_{n} \rightarrow^{\mu} r_{n+1} \text { it follows that } \\ \mu \in \Lambda(r) \text {. Since, by 4.2(2), } \Lambda(p) \cap \Lambda(r) \subseteq \subseteq \tau\} \text { and } \mu \neq \tau \text { by }\end{array} \\ \text { Let } \mathrm{S} \text { be a }(p, q) \text {-system and suppose } K \in \mathbf{S} \text {. } K \text { will be said } & \begin{array}{l}\text { hypothesis, it follows that } \mu \in \Lambda(q)-\Lambda(p) \text {. We may now }\end{array}\end{array}$ Let \mathbf{S} be a (p, q)-system and suppose $K \in \mathbf{S}$. K will be said \quad hypothesis, it follows that $\mu \in \Lambda(q)-\Lambda(p)$. We may now if we define $K^{\prime \prime}=K_{n+1}$ and $p^{\prime \prime}=p_{n}$, then we have $p^{\prime \prime}=p_{n}$
inper
 Thus, $p_{n}=p^{\prime \prime}$ and $K_{n} \rightarrow \mu, o K^{\prime \prime}$. Again, since $\mu \in \Lambda(q)$,
we have from 4.4(4) that $\mu \notin A \cup A$ and hence, from 2.2(d) and $2.2(\mathrm{e})$ and the fact that $r_{n} \rightarrow^{4} r_{n+1}=r^{\prime \prime}$, we
infer that $\left(p_{n} \mid r_{n}\right) \backslash A \rightarrow{ }^{\mu}\left(p_{n} \mid r^{\prime \prime}\right) \backslash A$. From (7.4.2) and (7.4.4), it follows that $\left(p^{\prime} \mid r^{\prime}\right) \backslash A \Rightarrow^{\mu}\left(p_{n} \mid r^{\prime \prime}\right) \backslash A$.
$\left(p_{n} \mid r_{n}\right) \backslash A \rightarrow^{\prime \prime}\left(p_{n} \mid r^{\prime \prime}\right) \backslash A . \quad$ (7.4.4)
Since $q^{\prime} \rightarrow{ }^{\prime \prime} q^{\prime \prime}$ by hypothesis, it follows from 5.16 that
$\left(p^{\prime \prime}, q^{\prime \prime}\right)=\left(p_{n}, r^{\prime \prime}\right) \in \phi\left(r^{\prime \prime}\right)=K^{\prime \prime}$. We have established that $p^{\prime \prime}=p_{n}, K_{n} \rightarrow^{\mu o} K^{\prime \prime}$ and
The two lemmas inspire the following definition,
which plays a crucial part in our analysis. 7.5. Definition
Let $\mathbf{S} \subseteq \Psi(p, q)$ and let $K \in \mathbf{S}$. We will say that K
compromises \mathbf{S} iff either K is not I-complete or K is not O-complete w.r.t. \mathbf{S}.

Let us give a name to the sort of systems unearthed in
7.6.
 \subsection*{7.7. Definition
$S \subset \Psi(p, q)$ is
 \subsection*{7.7. Definition
$S \subset \Psi(p, q)$ is
 $\mathbf{S} \subseteq \Psi(p, q)$ is uncompromised iff
 (1) No $K \in \mathbf{S}$ compromises \mathbf{S}.
(2) For some $K \in \mathbf{S}:(p, q) \in K$.
The following is an easy cons
 The following is an easy consequence of 7.6 .}
Let r be an irredundant solution and suppose
$K \in \phi\left(\mathbf{R}_{p, q}(r)\right)$ then K is O-complete w.r.t. $\phi\left(\mathbf{R}_{p, q}(r)\right)$.

 with q^{\prime} weakly determinate. By 3.6, $\left(p^{\prime} \mid r^{\prime}\right) \backslash A$ is weakly
determinate.
Now, suppose $q^{\prime} \rightarrow^{\mu} q^{\prime \prime}$ with $\mu \neq \tau$. Since we also have

Now $\left(p^{\prime} \mid r^{\prime}\right) \backslash A \Rightarrow^{\mu}(\hat{p} \mid \hat{r}) \backslash A$ and so by $2.2(\mathrm{~d}), 2.2(\mathrm{e})$
and 2.4 there exists $n \geqslant 0$ and $\mu_{1}, \ldots, \mu_{n-1} \in A, p_{0}, \ldots$,
$p_{n+1} \in \mathbf{R}(p)$ and $r_{0}, \ldots, r_{n+1} \in \mathbf{S}$, such that
(1) $p^{\prime}=p_{0} \Rightarrow^{\mu_{1}} p_{1} \Rightarrow^{\mu_{2}} \ldots \Rightarrow \Rightarrow^{\mu_{n-1}} p_{n-1} \Rightarrow^{\mu_{n}} p_{n}$, giving (1) of 7.3. $D_{\bar{N}_{n}} r_{n}$
-

$$
\text { Define } K^{\prime \prime}=\phi\left(r^{\prime \prime}\right) \text { and define } K_{i}=\phi\left(r_{i}\right) \text { for }
$$

By $6.10(2)$

By $6.10(2)$
$\mu_{i} \in \bar{A}$, by $4.1(2)$ and $4.1(3)$ and so by $6.10(2)$
$K=K_{0} \Rightarrow^{\bar{p}_{1}, c} K_{1} \Rightarrow^{\beta_{2}, c} \ldots \Rightarrow^{\tilde{n}_{n-1}, c} K_{n-1} \Rightarrow{ }^{\bar{a}_{n}, c} K_{n}$. (7.4.1) Furthermore, $K=\phi\left(r^{\prime}\right)=\phi\left(r_{0}\right)=K_{0}$, so we have (2) of
Let us now consider (3). Since $\mu \neq \tau$ by hypothesis, by
Case 1. $p_{n} \rightarrow^{4} p_{n+1}$ and $r_{n}=r_{n+1}$. Let $p^{\prime \prime}=p_{n+1}$ and let
$\left(p^{\prime} \mid r^{\prime}\right) \backslash A \Rightarrow^{\Omega}\left(p_{n} \mid r_{n}\right) \backslash A . \quad$ (7.4.2)
Since $q^{\prime} \rightarrow^{\mu}$, we have $\mu \in \Lambda(q)$ and hence $\mu \notin A \cup \bar{A}$, by
4.1.(4). Since $p_{n} \rightarrow \rightarrow^{\mu} p_{n+1}=p^{\prime \prime}$ and $\mu \notin A \cup \bar{A}$, then by (p_{n}
$\left(p_{n} \mid r_{n}\right) \backslash A \rightarrow{ }^{\mu}\left(p^{\prime \prime} \mid r_{n}\right) \backslash A$
From (7.4.2) and (7.4.3), it follows that
$\cdot V \backslash\left({ }^{u}{ }_{1} \mid, d\right)_{n} \leftarrow V \backslash(, 1, d)$
$\left.\left.p_{n}\right)=q_{n}\right)=K$ $\left(p^{\prime \prime}, q^{\prime \prime}\right) \in \phi\left(r_{n}\right)=K^{\prime \prime}$.
This gives (3)(a) of 7.3 .

8.3. Proposition

8.4. Proposition

 ProofSince $\mathrm{S} \subseteq \Psi(p, q)$ is uncompromised, it follows that K is
O-complete w.r.t. S, by 7.5 . Thus, by 7.3 , there exists O-complete w.r.t. S, by 7.5 . Thus, by 7.3 , there exists
$n \geqslant 0, \mu_{1}, \ldots, \mu_{n} \in A, p_{0}, \ldots, p_{n}, p^{\prime \prime} \in \mathbf{R}(p)$ and K_{0}, \ldots, K_{n},

[^0](a) $p_{n} \rightarrow^{\mu} p^{\prime \prime}$ and $K_{n}=K^{\prime \prime}$ and $\left(p^{\prime \prime}, q^{\prime \prime}\right) \in K^{\prime \prime}$ or
(b) $p_{n}=p^{\prime \prime}$ and $K_{n} \rightarrow^{\mu, o} K^{\prime \prime}$ and $\left(p^{\prime \prime}, q^{\prime \prime}\right) \in K^{\prime \prime}$ (b) $p_{n}=\rho$ and $K_{n} \rightarrow$
From (2) and 8.1 , we have.
 follows.

Let K° be the set of all pairs (μ, K^{\prime}), where $K \rightarrow^{\mu, X} K$,
$$
\text { Now define, for each } K^{\prime} \in \mathbf{S}
$$
Note that $r_{\mathrm{s}}(K)$ is rigid, that is, there are no τ
We show that uncompromised systems give rise to
solutions. The key idea is that
To prove this, we assume as an induction hypothesis that
if $\left(p^{\prime}, q^{\prime}\right) \in K \in \mathbf{S}$, then $\left(p^{\prime} \mid r_{\mathrm{S}}(K)\right) \backslash A \approx q^{\prime}$, and show that if $\left(p^{\prime}, q^{\prime}\right) \in K \in \mathrm{~S}$, then $\left(p^{\prime} \mid r_{\mathrm{S}}(K)\right) \backslash A \approx_{n} q^{\prime}$, and show that
the implication holds for $n+1$.
To do this, it suffices to show that
(I) if $\left(p^{\prime} \mid r_{\mathrm{s}}(K)\right) \backslash A \Rightarrow^{s}\left(p^{\prime \prime} \mid r_{\mathrm{s}}\left(K^{\prime}\right)\right) \backslash A$
(I) if $\left(p^{\prime} \mid r_{\mathrm{S}}(K)\right) \backslash A \Rightarrow^{s}\left(p^{\prime \prime} \mid r_{\mathrm{s}}\left(K^{\prime}\right)\right) \backslash A$ then there exists
$q^{\prime \prime}$ such that $q^{\prime} \Rightarrow^{s} q^{\prime \prime}$ and $\left(p^{\prime \prime}, q^{\prime \prime}\right) \in K^{\prime \prime}$ (for then, (II) if $q^{\prime} \Rightarrow^{5} q^{\prime \prime}$ then there exists $p^{\prime \prime}$ such that 9.8 pue $\varsigma \cdot 8$ suonisodoad u! ponoid are spef OMl əsə below. The intervening results establish similar properties in the case of a derivation involving a single action. Proposition 8.2 deals with τ actions and propositions 8.3
and 8.4 deal with non τ actions. 8.2. Proposition

8.2. Proposition

Suppose $\mathbf{S} \subseteq \Psi(p, q)$ and suppose $K \in \mathbf{S}$ and $\left(p^{\prime}, q^{\prime}\right) \in K$,
(1) If $\left(p^{\prime} \mid r_{\mathbf{s}}(K)\right) \backslash A \rightarrow^{\tau}\left(p^{\prime \prime} \mid r_{\mathbf{s}}\left(K^{\prime}\right)\right) \backslash A$ then $\left(p^{\prime \prime}, q^{\prime}\right) \in K^{\prime}$.
(2) If $q^{\prime} \rightarrow^{\tau} q^{\prime \prime}$, then $\left(p^{\prime}, q^{\prime \prime}\right) \in K$.
By $2.2(\mathrm{~d})$, we have three cases to consider.
Case (a): $p^{\prime} \rightarrow^{\tau} p^{\prime \prime}$ and $K^{\prime}=K$. By $5.7(\mathrm{~b})$,
$\left(p^{\prime}, q^{\prime}\right) \rightarrow^{\tau, P}\left(p^{\prime \prime}, q^{\prime}\right)$.
pue $\left(b^{\prime} d\right) \Phi \ni X$ əou!S $\left(b^{\prime \prime}{ }^{\prime \prime} d\right)^{1 /} \leftarrow\left(b^{\prime}, d\right)$ 'II`S кq 'snuL $\left.p^{\prime}, q^{\prime}\right) \in K$ and $\left(p^{\prime}, q^{\prime}\right) \rightarrow_{I_{t}}\left(p^{\prime \prime}, q^{\prime}\right)$ it follows by 5.11 and
Case (b): $p^{\prime}=p^{\prime \prime}$ and $r_{\mathbf{s}}(K) \rightarrow^{\tau} r_{\mathbf{s}}\left(K^{\prime}\right)$. This is impossble, since 8.1 entails that $r_{\mathrm{s}}(K)$ is rigid.
Case (c): For some $\mu \neq \tau, p^{\prime} \rightarrow^{\mu} p^{\prime \prime}$ and $r_{\mathrm{s}}(K) \rightarrow^{\bar{\mu}} r_{\mathrm{S}}\left(K^{\prime}\right)$. By 8.1, either $K \rightarrow^{\bar{\mu}, c} K^{\prime}$ or $K \rightarrow^{\bar{\mu}, o} K^{\prime}$. Since $\mu \in \Lambda(p)$, we cannot have $\bar{\mu} \in \Lambda(q)$ by 4.1 (2) and thus we cannot have
$K \rightarrow_{\bar{\mu}, o} K^{\prime}$. Thus, $K \rightarrow^{\mu, C} K^{\prime}$. In particular, $\mu \in A$, by 6.3 . From $p^{\prime} \rightarrow^{\mu} p^{\prime \prime}$ and $\mu \in A$, we get $\left(p^{\prime}, q^{\prime}\right) \rightarrow_{\bar{\mu} . C}\left(p^{\prime \prime}, q^{\prime}\right)$ by 6.3, and since we also have $\left(p^{\prime}, q^{\prime}\right) \in K$ and $K \rightarrow p^{\prime \prime}$,
ollows from 6.3 (ii) that $\left(p^{\prime \prime}, q^{\prime}\right) \in K^{\prime}$, as required.

$$
\begin{aligned}
& \text { Suppose } \mathbf{S} \subseteq \Psi(p, q) \text { is uncompromised and suppose } \\
& K \in \mathbf{S} \text { and }\left(p^{\prime}, q^{\prime}\right) \in K . \text { If } \mu \in \Delta-\{\tau\} \text { and }
\end{aligned}
$$

$$
\left(p^{\prime} \mid r_{\mathrm{s}}(K)\right) \backslash A \rightarrow^{\mu}\left(p^{\prime \prime} \mid r_{\mathrm{s}}\left(K^{\prime}\right)\right) \backslash A
$$

$$
\text { then there exists } q^{\prime \prime} \text { such that } q^{\prime} \Rightarrow^{\mu} q^{\prime \prime} \text { with }\left(p^{\prime \prime}, q^{\prime \prime}\right) \in K^{\prime}
$$

$$
\begin{aligned}
& \text { Proof }
\end{aligned}
$$

$$
\begin{aligned}
& \text { By } 2.2(\mathrm{~d}) \text {, there are two cases to consider } \\
& \text { (1) } b^{\prime} \rightarrow^{\mu} n^{\prime \prime} \text { and } K=K^{\prime} . \text { Since }\left(b^{\prime}, a^{\prime}\right) \in K \text { and } K \in \mathbf{S}
\end{aligned}
$$

$$
\begin{aligned}
& K \rightarrow^{\mu, C} K^{\prime} \text { or } K \rightarrow^{\mu, o} K^{\prime} \text {. But if } K \rightarrow^{\mu, C} K^{\prime} \text {, then by } 6.3 \text {, } \\
& \mu \in \bar{A} \text { and if this were the case, then by } 2.2(\mathrm{~d}) \text { and } 2.2(\mathrm{e}),
\end{aligned}
$$

Downloaded from https://academic.oup.com/comjnl/article/32/5/399/401411 by guest on 16 August 2022
and 2.2 (e) and the fact established above that $\mu \notin A \cup \bar{A}, \quad$ Now suppose the proposition is true when $\ln t h(s)=n$ we obtain
$\left(p_{n} \mid r_{\mathbf{s}}\left(K_{n}\right)\right) \backslash A \rightarrow^{\mu}\left(p_{n} \mid r_{\mathbf{s}}\left(K^{\prime \prime}\right)\right) \backslash A=\left(p^{\prime \prime} \mid r_{\mathbf{s}}\left(K^{\prime \prime}\right)\right) \backslash A$ (8.4.5) with $\left(p^{\prime \prime}, q^{\prime \prime}\right) \in K^{\prime \prime}$. Therefore, from (8.4.2) and (8.4.3) we obtain $\quad\left(p^{\prime} \mid r_{\mathbf{s}}(K)\right) \backslash A \Rightarrow^{\mu}\left(p^{\prime \prime} \mid r_{\mathrm{s}}\left(K^{\prime \prime}\right)\right) \backslash A$
with $\left(p^{\prime \prime}, q^{\prime \prime}\right) \in K^{\prime \prime}$.
Thus, in both cases, $\left(p^{\prime} \mid r_{\mathrm{s}}(K)\right) \backslash A \Rightarrow^{\mu}\left(p^{\prime \prime} \mid r_{\mathrm{s}}\left(K^{\prime \prime}\right)\right) \backslash A$
with $\left(p^{\prime \prime}, q^{\prime \prime}\right) \in K^{\prime \prime}$. This completes the proof.
We may now establish the two facts (I) and (II) that we
met at the beginning of this section.

8.5. Proposition

Suppose $\mathbf{S} \subseteq \Psi(p, q)$ is uncompromised and suppose
$K \in \mathbf{S}$ and $\left(p^{\prime}, q^{\prime}\right) \in K$. Suppose,
$\left(p^{\prime} \mid r_{\mathbf{s}}(K)\right) \backslash A \Rightarrow^{s}\left(p^{\prime \prime} \mid r_{\mathbf{s}}\left(K^{\prime}\right)\right) \backslash A$
then there exists $q^{\prime \prime}$ such that $q^{\prime} \Rightarrow^{s} q^{\prime \prime}$ with $\left(p^{\prime \prime}, q^{\prime \prime}\right) \in K^{\prime}$.

By 2.4 , it suffices to show that if

$\left(p^{\prime} \mid r_{\mathbf{S}}(K)\right) \backslash A \Leftrightarrow^{s}\left(p^{\prime \prime} \mid r_{\mathbf{S}}\left(K^{\prime}\right)\right) \backslash A$

 $K=K^{\prime}$. We may take $s^{\prime}=\Omega$ and $q^{\prime \prime}=q^{\prime}$. Accordingly,
Now suppose the proposition is true when $\ln t h(s)=n$
 $\cdot u=(s) y ı u!$ Snч $L \cdot s \gamma=s$
By 2.4 , there exists \hat{p}, \hat{K} such that
$\left(p^{\prime} \mid r_{\mathrm{S}}(K)\right) \backslash A \rightarrow^{i}\left(\hat{p} \mid r_{\mathrm{S}}(\hat{K})\right) \backslash A \mapsto^{\bar{s}}\left(p^{\prime \prime} \mid r_{\mathrm{S}}\left(K^{\prime}\right)\right) \backslash A$.
 and so by induction, there exists $q^{\prime \prime}$ and $s^{\prime \prime}$ such that
$s^{\prime \prime}=\left.\hat{s}\right|_{\tau}$ and $q^{\prime} \Rightarrow^{s^{\prime \prime}} q^{\prime \prime}$ and $\left(p^{\prime \prime}, q^{\prime \prime}\right) \in K^{\prime}$. Take $s^{\prime}=s^{\prime \prime}$ then
$q^{\prime} \Rightarrow s^{s^{\prime}} q^{\prime \prime}$ with $s^{\prime}=\left.s\right|_{\tau}$ and $\left(p^{\prime \prime}, q^{\prime \prime}\right) \in K^{\prime}$.

 $=s^{\prime}$ and $\left(p^{\prime \prime}, q^{\prime \prime}\right) \in K^{\prime}$

asoddns pue pasiumoiduooun s! $\left(b^{\prime} d\right)_{\hbar} \mathrm{S}$ asoddns $K \in \mathbf{S}$ and $\left(p^{\prime}, q^{\prime}\right) \in K$. If $q \Rightarrow^{s} q^{\prime \prime}$ then there exists
$p^{\prime \prime}, K^{\prime \prime}$ such that $\left(p^{\prime} \mid r_{\mathrm{s}}(K)\right) \backslash A \Rightarrow^{s}\left(p^{\prime \prime} \mid r_{\mathrm{S}}\left(K^{\prime}\right)\right) \backslash A$ and $\left(p^{\prime \prime}, q^{\prime \prime}\right) \in K^{\prime}$.
By 2.4, it suffices to show that if $q^{\prime} \mapsto^{s} q^{\prime \prime}$ then there exists s^{\prime} and $p^{\prime \prime}$ and K^{\prime} such that $\left(p^{\prime} \mid r_{\mathrm{s}}(K)\right) \backslash A \Rightarrow^{s^{\prime}}\left(p^{\prime \prime} \mid r_{\mathrm{s}}\right.$ on $\ln \ln (s)$.
In $\ln t h(s)=0$ then $s=\Omega$ and we have $q^{\prime \prime}=q^{\prime}$. We may take $s^{\prime}=\Omega, p^{\prime}=p^{\prime \prime}$ and $K=K^{\prime}$. Then,
Downloaded from https：／／academic．oup．com／comjnl／article／32／5／399／401411 by guest on 16 August 2022
like to stress two things： applied mathematics about it in the sense that it attempts to provide a mechanism by which a practical problem solved with the aid of mathematical theory． be somewhat expensive in general．Our main point is that the equations considered here are solvable in principle． This is not unusual in applied mathematics．Consider solution technique which applies to all of them．However， there are a number of subclasses which have great
practical importance and for which solution techniques do exist and which are capable of being applied by persons who are not themselves mathematicians．
This suggests a number of possible extensions，
 （1）There are almost certain
which are capable of being formulated in the fashion of

 （2）We must certainly attempt to improve the efficiency of our solution method．
（3）We must also look to practical application to
dentify practically useful classes of interface equation， identify practically useful classes of interface equation，
for which solutins may be simpler．This problem may be approached from two ends；by seeking out＇easy＇

（4）From purely theoretical considerations，we would
ike to be able to tackle a larger class of context

（5）Finally，the work must be made useful to－and
usable by－the non－theoretician．This is the case with the

 on theory of this kind．

Acknowledgements

The author would like to thank Lalith Ranatunga，Gino
Martin and Keith Lines for pointing out bugs in early drafts of this paper．
The work reported in this document is supported by
SERC under the Alvey scheme，to whom the author wishes to express his thanks．He would also like to thank British Telecom for their sponsorship and particularly
Dr Mark Norris for many stimulating discussions．

[^1]

If $\mathbf{S}=\varnothing$ ，then report failure．Otherwise select $K \in \mathbf{S}$ such
that $(p, q) \in K . r_{\mathrm{s}}(K)$ is a solution of the interface equation． either be empty or no remaining K contains (p, q) or will
be both I－and O－complete and some K contains (p, q) ．

 $\mathbf{S}=\varnothing$ and go to step 4 ．
Note that I－completeness is a local property，a property
of K which does not depend on the rest of \mathbf{S} ．It follows

Let \mathbf{S} denote the set of all $K \in \mathbf{S}_{1}$ such that $B_{I_{7}}(p, q) \subseteq K$ ．

By construction \mathbf{S} will contain all I－complete sets K
such that for some $K_{0} \in \mathbf{S},(p, q) \in K_{0}$ and for some $s \in(\Delta-\{\tau\})^{*}, e_{s}\left(K_{0}\right) \Rightarrow^{s} r_{\mathrm{s}}(K)$

∞ $\stackrel{2}{2}$ $\stackrel{y}{n}$ $\dot{0}$

 uncompromised (p, q) system．
Let $\mathbf{S}_{1}=\left\{\bigcup_{B \in X} B \mid X \subseteq \mathbf{S}\right\}$ ．
By construction，any $\mathbf{S} \subseteq \mathbf{S}_{1}$ will be I－complete．
9．2．Step 2

truction，any $S \subseteq S_{1}$ will be 1 －complete

9．SOLVING INTERFACE EQUATIONS

9．1．Step 1
Conversely，if it has a solution，then $\Psi(p, q)$ contain
an uncompromised system S ，by 8.8 ．Also by 8.8 ，
$(p, q) \in K_{0}$ for $K_{0} \in \mathbf{S}$ ，then $r_{\mathbf{S}}\left(K_{0}\right)$ is a rigid solution．
equations．
$\cdot\left(b^{`} d\right) I={ }^{0} \mathbf{S}{ }^{\text {² }}$
IMPLICIT SYSTEM SPECIFICATION AND THE INTERFACE EQUATION
Proof
Certainly if the equation has a rigid solution，then it has $\quad \begin{aligned} & \text { 10．CONCLUSIONS AND FUTURE WORK } \\ & \text { In this paper，we have presented some preliminary results }\end{aligned}$

3. R. Milner, A Calculus of Communicating Systems. Lecture	6. L. P. Ranatunga and M. W. Shields, Towards the Solution
Notes in Computer Studies, vol. 92, Springer (1980).	of General Context Equations. Technical Report SE /079/5,
4. M. W. Shields, Extending the Interface Equation. Technical	Electronic Engineering Laboratories, University of Kent at
Report SE/079/3, Electronic Engineering Laboratories,	Canterbury (April 1987).
University of Kent at Canterbury (Aug. 1986).	7. M. Norris, M. W. Shields and J. A. Ganeri, A Theory for
5. L. P. Ranatunga, and M. W. Shields, Linear Context	Building Systems. British Telecom Technology Journal
Equations. Technical Report SE/079/4, Electronic	(April 1987).
Engineering Laboratories, University of Kent at	
Canterbury (Dec. 1986).	

Announcements

Languages
English and French will be the official working
languages. Simultaneous translation will be
provided.

International Program Committee Chairman
Michel Galinier, IGL Technology, Paris
The complete list of the International
Program Committee will be published later

Information '90, Third International Confer
ence, Bournemouth International Centre Information '90, a major international con-
ference, sponsored by Aslib (the Association
for Information Management), COPOL (the
Council of Polytechnic Librarians), the Institute of Information Scientists, the Library
Association and the Society of Archivists, will Association and the Society of Archivists, will
be held at the Bournemouth International
Centre from 17 to 20 September 1990 . The conference will bring together world
experts in the library and information field to experts in the library and information field to
ensure that Information ' 90 will be the biggest
and best event of its kind ever staged.
 - a technical conference presenting the papers
selected by the International Program Committee

- a series of tutorials on software engineering
techniques
- an exhibition of commercially available
products TUTORIALS AND PANEL
SESSIONS
The technical conferences will be comple-
mented by tutorials and panel sessions. Given
by internationally renowned experts and held
on 4 and 5 December 1989, these tutorials will
provide an introduction to the different tools
and techniques used in software engineering,
in-depth coverage of specific techniques, or
the state of the art in particular fields of
application. EXHIBITION
From 6 to 8 December 1989 an exhibition
covering several thousand square metres will
be held to present commercially available
products relating to the topics covered at the
workshop. In addition to this, there will be
demonstrations of advanced prototypes. GENERAL INFORMATION
Date
Tutorials: 4 and 5 December 1989
Conference and Exhibition: 6, 7 and
8 December 1989 Location
Palais des Congrès, Parc des Expositions,
Rond-Foint Michel Bench, 31000 Toultouse -
France. Tel: (33) 61252177

$$
\begin{aligned}
& \text { Toulouse '89, Second International Workshop } \\
& \text { on Software Engineering and its Applications } \\
& \text { The success of the First Toulouse International } \\
& \text { Workshop on Software Engineering and its } \\
& \text { Applications in December } 1988 \text { was such that } \\
& \text { the workshop could not be allowed to be a } \\
& \text { one-off event. Thus, Toulouse '89 will bear } \\
& \text { witness to the emergence of software en- } \\
& \text { gineering as a major activity in the field of } \\
& \text { software development. } \\
& \text { The extent to which software engineering is } \\
& \text { being integrated into the professional world } \\
& \text { may be gauged by the increasing number of } \\
& \text { companies, from whatever domain, that make } \\
& \text { use of its techniques, together with the } \\
& \text { availability of software engineering tools in } \\
& \text { the marketplace. It was already apparent at } \\
& \text { Toulouse '88 that a new technology was taking } \\
& \text { its first steps, and it is in this perspective that } \\
& \text { Toulouse '89 should confirm the inevitable } \\
& \text { evolution of this development. } \\
& \text { The power of new generations of computers } \\
& \text { and workstations is both boosting traditional } \\
& \text { approaches and allowing the new technologies, } \\
& \text { resulting from a decade of research, to become } \\
& \text { operational. }
\end{aligned}
$$

M. W. SHIELDS

[^0]: $K^{\prime \prime} \in \mathbf{S}$, such that
 (1) $p^{\prime}=p_{0} \Rightarrow^{\mu_{1}} p_{1} \Rightarrow{ }^{\mu_{2}} \ldots \Rightarrow^{\mu_{n-1}} p_{n-1} \Rightarrow^{\mu_{n}} p_{n}$
 (2) $K=K_{0} \Rightarrow^{a_{1}, C} K_{1} \Rightarrow^{\mu_{2}, C} \ldots \Rightarrow^{\mu_{n-1}} \cdot{ }^{\mu_{n}} K_{n-1} \Rightarrow{ }^{\mu_{n}, C} K_{n}$
 (3) Either

[^1]:

