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ABSTRACT
In this paperwe consider the problemof obtaining an implicit form for the canal surfacewhose spine
is the arc and the radius changes linearly in respect to the angle. We present a number of different
solutions to the problem including exact and approximated ones and discuss the scenarios where
each of the solutions is appropriate to use in solid modeling with real functions.
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1. Introduction

Canal surfaces, which are surfaces obtained by sweeping a
sphere over a given curve, are one of the important prim-
itives in solid modeling. Being a special case of sweep
surfaces, they are generally easier to define and have
applications in different areas of computer-aided design
such as industrial design or organic modeling. Canal
surfaces represented in the parametric form (boundary
representation) were widely studied [2]. On the other
hand, when the object is treated as a solid with the sur-
face defined in the implicit form, not much research can
be found. In this paper, we consider canal surfaces from
the point of view of a solid/volumemodeling systemdeal-
ing with the objects defined in the implicit form. A solid
object in such a system is represented by a real func-
tion defined in the entire domain and whose value at the
given point specifies whether the point is located inside,
outside or on the boundary of the solid. Examples of
such systems areHyperFun [3] and BlobTree [16]. Unlike
boundary representation methods, the research on canal
surfaces in implicit modeling is very limited to the cases
with simple spines and constant shape of the moving
object.

In this paper, we are discussing an important case of
canal surfaces whose spine is an arc and the radius of the
canal surface changes linearly between the ends of the arc
in respect to the angle of the arc (see Fig. 1). For sim-
plicity, we are considering the case where the arc lies in
XY-plane with the center at the origin and the start point
lies on the x-axis. The radius of the sweeping sphere lin-
early changes from the start point of the arc to the end
point of the arc. We are not considering cases where the
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radius is constant, as the surface becomes a part of a torus,
and the case where the arc is degenerate, because the
sweeping object becomes a sphere. All the other cases of
arc canal surfaces can be obtained from this simple case
by using affine transformations.

We aim for representation of this kind of object by
using a real functionwith positive values for all the points
inside the canal surface, zero values for all the points
belonging to the surface itself and negative values for
all the points outside the canal surface. For the defining
function we are setting the following requirements:

• The function should be defined in �3and be at least
C0-continuous;

• The function cannot be equal zero at any points out-
side the boundary of the specified object;

• It should be efficient and easy to evaluate.

In this work, we show few possible ways to define such a
function with their pros and cons and discuss how these
functions can be used in the modeling system dealing
with surfaces defined in the implicit form. The contribu-
tions of this paper are:

• We present several ways to define arc canal surface in
an implicit form including exact and approximate and
with different complexity;

• Wepresent several applications in shapemodeling and
outline which representation is better to be used in
similar applications;

• We discuss possible ways to efficiently use such an
object from the user’s perspective.
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Figure 1. The form of arc canal surface with start radius r0 = 0.1,
end radius r1 = 0.2 and angle of the arc α = π

3

1.1. Relatedworks

Canal surfaces swept by a sphere moving along a curve
were studied since 19 century. A recent detailed survey
discussing sweeping methods shows a number of various
methods [2] applied for parametric representation as well
as for implicit representation, yet the main focus is done
on the surfaces rather than on the point sets bounded
by these surfaces (i.e. volumes). A numerical solution
discussing the sweeping operation is also well known in
solid modeling with real functions [4].

To define a model obtained with sweeping, two gen-
eral approaches can be used: theory of envelopes [10]
and Minkowski sums [11]. In practice, however, theory
of envelopes is applicable for the limited set of sweep-
ing primitives and Minkowski sums are computation-
ally very expensive. This results in the methods dealing
with numerical and approximationmethods to obtain the
defining function for sweeping. Thus, in [14] a numer-
ical procedure is described for a sweep by an arbitrary
solid involving global maximum search. A numerical
and broadly applicable analytic formulation based on the
Jacobian rank deficiency was proposed in [1].

2. Definition and exact implicit equation

The arc in the case we are discussing is easily defined in
the parametric form as following:⎧⎪⎨

⎪⎩
x(t) = R cos(t)
y(t) = R sin(t)
z(t) = 0

(2.1)

Here R denotes the radius of the arc, for t = 0 we have a
start point of the arc and for t = αwe have end point of
the arc defined by the angle of the arc, 0 < α < 2π . The

linearly changing radius in respect to an anglemeans that
r(t) = r0 + t

α
(r1 − r0).

2.1. Obtaining implicit equationwith elimination

The first and the common technique allowing getting an
implicit form for sweep surfaces is the standard elimi-
nation technique. Let us apply the theory of envelopes
[10] to the given problem. According to the theory of
envelopes, we have to eliminate t from the following
system:⎧⎪⎪⎪⎨
⎪⎪⎪⎩
F(x, y, z, t) = (r0 + t(r1 − r0))2 − (x − R cos(t))2

−(y − R sin(t))2 − z2 = 0
∂F(x, y, z, t)

∂t
= 0

(2.2)
It can be simplified by using the following substitutions:
d = r20 − x2 − y2 − z2 − R2, a = 2r0(r1 − r0),
b = (r1 − r0)2, u = 2Rx, v = 2Ry. The system becomes
the following:⎧⎨
⎩
F(x, y, z, t) = d + at + bt2 + u cos(t) + v sin(t) = 0
∂F(x, y, z, t)

∂t
= a + 2bt − u sin(t) + v cos(t) = 0

(2.2)
As t is present in both polynomial and trigonometric
terms, it is not possible to express t in terms of x, y and
z. However elimination of t is still possible using the
method similar to one presented in [9]. Let s = sin(t) and
c = cos(t) be two parameters we want to add to the sys-
tem in order to make it linear. From the equation 2.2 and
trigonometric identities we have the following system:⎧⎪⎨

⎪⎩
d + at + bt2 + uc + vs = 0
a + 2bt − us + vc = 0
s2 + c2 = 1

(2.3)

It can be seen that the resulting system is polynomial.
By eliminating s and c from the system we obtain the
following quartic equation for t:

b2t4 + 2abt3 + (a2 + b2 + 2bd)t2 + 2a(d + 2b)t

+ (a2 + d2 − u2 − v2) = 0 (2.4)

Also, by eliminating c and t from the same systemwehave

(u2 + v2)
2s4 − 8bv(u2 + v2)s3 − 2((a2 − 4bd)(u2 − v2)

+ (v2 − 8b2)(u2 + v2))s2 − 8bv(a2 − 4bd

− 2u2 − v2)s + (a2 − 4b(d + u) − v2)(a2

− 4b(d − u) − v2) = 0 (2.5)

The point lies on the desired arc canal surface if one of
the solutions of the equation 2.4 corresponds to the sine
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of the one of the solutions of the equation 2.3. Formally
it can be presented as follows:

F(x, y, z) = argmin
s,t

|s − sin(t)| = 0 (2.6)

Here s is a real root of the equation 2.5 and t is a real root
of the equation 2.4.

While the equation 2.6 gives us the predicate to dis-
tinguish points that lie on the arc canal surface and those
that lie outside, this result can hardly be used in the
context of solid modeling. The main reason is that the
equations 2.4 and 2.5 may result in zero real roots for
some points in space. Because of that the function is
not defined at all the points of the domain, and in areas
where it is defined, the function is not C0- continuous. It
can be seen that the elimination technique is not suitable
for practical purposes and hence some approximations
should be used in order to obtain a function with the
desired properties.

3. Approximate equations for arc canal surface

In this section, we discuss an approximate solution in the
sense that the obtained arc canal surface differs from the
exact shape by some parameters and the resulting error
or displacement can be evaluated. We can vaguely dis-
tinguish the methods of approximation of the arc canal
surface into the following categories:

• Spine approximation
• Approximation of the radius of the rolling sphere
• Approximation of the shape

In the first category, we approximate the arc by another
curve or the number of curves.

In the second category, we approximate the function
that defines the change of the radius depending on the
parameter on the arc. The third category includes the
combination of the arc and radius approximation.

3.1. Approximation of the radius of the rolling
sphere

Approximation by polynomial can be achieved through
the approximation of the radius change. We discussed
above that the elimination of the t parameter from the
system 1.1 cannot be done without expanding the sys-
tem because of the polynomial and trigonometric terms
in the equation. In case we subdivide the arc into a num-
ber of a small segments each corresponding to the angle
β or smaller, β < α, bearing in mind that sin(t) ≈ t for
t being close to zero, the following formulation can be
obtained with the approximation of the radius change:

r(t) = r0 + β
sin(t)
sin(β)

dr. The system 1.1 becomes the fol-
lowing:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
r0 + sin(t)

sin(β)
dr

)2
− x − Rcos2(t) − y − Rsin2(t)

= p0 + p1 sin(t) + p2 cos(t) + p3sin2(t) = 0
p1 cos(t) − p2 sin(t) + 2p3 sin(t) cos(t) = 0

Where p0 = r20 − x2 − y2 − z2 − R2, p2 = 2xR, p1 =
2r0dr
sin(β)

+ 2yR and p3 = d2r
sin2(t) . By substituting sin(t) = u

and cos(t) = √
1 − u2, we have the following system:{

p0 + p1u + p2
√
1 − u2 + p3u2 = 0

p1
√
1 − u2 − p2u + 2p3u

√
1 − u2 = 0

As each equation in this system can be traced to the poly-
nomial of degree 4, the parameter u can be eliminated by
common techniques. The result is the following:

P(x, y, z) = (p21 + p22)
2(−p20 + p21 + p22) + 8p0(−4p20

+ p21 + 4p22)p
3
3 + 16(−p20 + p22)p

4
3

− p3(2p0(5p41 + p21p
2
2 − 4p42 − 4p20(p1 − p2)

× (p1 + p2)) + (16p40 + p41 + 20p21p
2
2 − 8p42

− 8p20(4p
2
1 + p22))p3) (2.7)

So the resulting shape can be expressed as an analyti-
cal geometric object. We should note that the resulting
shape approximates the arc canal surface only between
t ∈ [0,β] and additional set-theoretic operations are
needed to cut the extra parts of the surface (see Fig. 2).
Therefore to get the desired arc canal surface, two half-
spheres should be added with set-theoretic union to the

Figure 2. Approximationof a radius function for the arc canal sur-
face results in a different shape that encloses the needed shape
within some epsilon.
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set-theoretic intersection of the resulting object with two
half-spaces:

F(x, y, z) = (P(x, y, z) ∧ (y ∧ (x tan(β) − y)))

∨ (r20 − (x − R)2 − y2 − z2)∨
∨ (r2β − (x−R cos(β))2

− (y−R sin(β))2 − z2)

where ∨ denotes an appropriate R-function for the set-
theoretic union and∧ denotes an appropriate R-function
for the set theoretic intersection, both allowing for Cn-
continuity [13].

The maximum approximation error in this case is
β
sin(u∗)
sin(β)

− u∗, where u∗ = arccos sin(β)
β

.
It can be noted that the resulting algebraic surface

belongs to the family of cyclides. To approximate the
desired shape with other types of cyclides, for example,
Dupin cyclides of degree 4 [6] and of degree 3 [15] is
possible. However, such as approximation involves both
spine and radius approximation and cannot be used in
the general case.

3.2. Approximation of the spine

The spine of the canal surface can be approximated by
another curve in case the quality of the approximation
can be estimated or defined. Unfortunately approxima-
tion often involves different parameterization along the
curve which is not suitable for our purposes. For exam-
ple, the arc can be parameterized with rational quadratic
functions x(t) = 1−t2

1+t2 ,y(t) = 2t
1+t2 , however in this case

no linear correspondence between the angle and the
parameter t is available, and because of that the require-
ment of the radius changing linearly cannot be sup-
ported. Similarly the arc can be approximated by the
quadratic curve such as x = t, y = 1 − t2

2 in the area of
t = 0. The system of equations 2.1 in this case becomes
polynomial where the parameter t can be relatively easily
eliminated. However this parameterization does not only
approximate the spine, but also changes the variation of
the radius from linear to the quadratic, hence doing it
approximately as well.

Still the solution with approximation of the desired
shape is possible as we can benefit from the set-theoretic
approach, i.e., the spine can be subdivided into the
number of approximating curves and the result can be
obtained by applying set-theoretic union to the resulting
models.

The easiest approximation we can apply is an approx-
imation of the arc using line segments. From [12] the
closed-form solution for the canal surface with the

linearly changing radius can be obtained as:

F(x, y, z) = (R1 + t(R2 −R1))2 − (x− x1 − t(x2 − x1))2

− (y − y1 − t(y2 − y1))2 − (z − z1

− t(z2 − z1))2

where t = l•(x−p1)+R1(R2−R1)
l•l−(R2−R1)2

, the start point of the seg-
ment p1 = (x1, y1, z1) the endpoint of the segment is
p2 = (x2, y2, z2) and l = p2 − p1 is the direction vector
of the segment.

For the line segment approximating a part of the
arc between the angle α1 and α2 the start point
is p1 = (cos(α1), sin(α1), 0), the end point is p2 =
(cos(α2), sin(α2), 0) and the radius value at the ends of
the segment can be obtained using a simple linear inter-
polation such as R1 = r0 + α1

α
(r1 − r0) and R2 = r0 +

α2
α

(r1 − r0).
The equation for the approximated arc canal sur-

face can be obtained by successive application of the R-
functions corresponding to the set-theoretic union oper-
ation to the segments. In case we approximate the arc
by n segments, n-1 set-theoretic operations are needed.
The continuity of the resulting function depends on the
choice of R-functions (see [13]).

3.3. Combination of a rolling circle and rolling
sphere

The shape of the arc canal surface created as a sweep
of the sphere over the arc is different from the shape
of the sweep by a disk (see Fig. 3). On the other hand,

Figure 3. Difference between the solid object obtained by
sweeping with a disk (green) and a sphere (red).
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the formulation for the sweep by a disk with the linearly
changing radius and the spine as a circle can be easily
obtained. The model obtained with sweeping by a disk is
also called normal ringed surface [7]. We could not find
the defining function formulation for it in the literature;
however it can be derived from [5] as follows:

t(x, y) = min(α, arctan
y
x
)

F(x, y, z) = (r0 + t(x, y)dr)2 − (x − R cos(t(x, y)))2

− (y − R sin(t(x, y)))2 − z2

As it can be seen, this formulation allows for the one-
to-one correspondence between the angle and the radius
of the sweeping disk. The dependency between the radius
and the angle can be obtained also in the case of the canal
surface created as the sweep of a sphere. In the case of a
sweeping sphere for the given point the radius becomes a
non-linear function as we discuss below.

Consider the case where we aim to calculate the radius
for the given point in the two-dimensional space (see
Fig. 4). For the parameter value t the radius of the sweep-
ing disk is r(t) = r0 + t

α
(r1 − r0). The actual value of the

radius function is represented by the segment AT because
of the influence of the rolling sphere and it might be big-
ger than the radius of a sweeping disk. The points T and
U correspond to the parameters t and u, and the point A
is the point of intersection of the sphere with the center in
U and radius r(u) = r0 + u

α
(r1 − r0) with the line pass-

ing through the points P and T. Therefore, the distance
between U and A is r(u).

Figure 4. Influence of the sweeping sphere on the radius
function for the given point.

The angle UTA depends on the coordinates of the
point for which we seek the value of the radius function,
we denote it as γ (x, y, z, u). For the given point P whose
radius function we are seeking knowing that P lies on the
line OA:

cos(γ ) = cos(γ (x, y, z, u)) = TP · UT
|TP||UT|

=
(x − tx)(tx − R cos(u))
+(y − ty)(ty − R sin(u))√
(x − tx)2 + (y − ty)2 + z2√

(tx − R cos(u))2 + (ty − R sin(u))2

Where tx = tx(x, y) = R x√
x2+y2

and tx = tx(x, y) =
R y√

x2+y2
are points on the arc corresponding to the point

P.
Given that the distance between T and U is the length

of the chord corresponding to the angle |t − u|, from the
triangle ATU we have:

AU2 = AT2 + TU2 − 2AT · TU cos(γ )

AT2 = TU cos(γ ) +
√
AU2 + TU2cos2(γ ) − TU2

= 2R sin
(
t − u
2

)
cos(γ )

+
√
r(u)2 −

(
2R sin

(
t − u
2

))2
(cos2(γ ) − 1)

The actual radius of the canal surface obtained by a
sweeping of a sphere is a maximum for all the possible
values u for the given parameter t:

rs(x, y, z) = argmax
u

(
2R sin

(
t − u
2

)
cos(γ )

+
√
r(u)2 −

(
2R sin

(
t − u
2

))2
(cos2(γ ) − 1)

⎞
⎠
(2.8)

where we are seeking for a maximum on the interval

u ∈

⎧⎪⎨
⎪⎩
[0, t), r0 < r1
(t,α], r0 > r1
t r0 = r1

It can be seen that themaximum for the equation 2.8 can-
not be found analytically for u and therefore numerical
methods have to be used. Overall, an exact and contin-
uous solution with the finite machine precision can be
obtained, however the numerical search for the global
maximummeans that the point query is computationally
expensive. For the numerical computations we can use
the value of the function r(t) as the initial approximation.
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4. Applications and discussion

Our main motivation for this research was to introduce
the geometric primitive, namely the arc canal surface, to
the modeling system dealing with the geometry defined
in the implicit form. However as the exact solution could
not be obtained and the approximate ones should be used
instead, we have to test different approaches in real-life
scenarios. Our testing models include the artistic design
model, the “Swan” (see Fig. 5), and the architecture-
inspiredmodel “Dome” (see Fig. 6). All the timingsmen-
tioned belowwere done on the PCwith 6-core Intel Xeon
W3680 processor and 8GB of memory.

4.1. Case study 1: the swanmodel

In modeling with arc canal surfaces one of the case stud-
ies is a situation where we have a curve approximated by
arcs and the radius of the rolling sphere approximated
by linear function. In this case each sweeping segment
for the arc is approximated by an arc canal surface. The
swanmodel is an example of this approach: in this model
6 arcs were connected together for the spine and the
radius changes linearly for each arc (see Fig. 5a). In this
model we have 6 connected arc canal surfaces, where set-
theoretic union was used to connect these canal surfaces
together.

For this model from designer’s point of view the spine
shape and the smooth transitions between adjacent arcs
are more important than the nature of the changes in
the radius. That is why the obvious strategy here was to
use the lightweight polynomial solution presented in the
section 3.1. This allows us to obtain the desired shape and
at the same time keep the defining function relatively easy
to evaluate. While sampling the function to polygonize
the object, each sample for the whole swan model took
approximately 1.83e-6 seconds where the calculation of
canal surfaces took approximately 3.5e-7 seconds, hence
being approximately 20%of the calculations for the defin-
ing function of the swan model. Because of the approx-
imation, the maximum difference between the expected
radius of the arc canal surface and the resulting radius
in the shape is approximately 19% for all the segments in
themodel. This difference, however, is not visible and the
resulting shape is in line with designer’s needs.

Because of the lightweight defining function, it was
also possible to quickly convert the model from the func-
tion representation to the slice format which modern 3D
printers understand and hence fabricate the model to
get a physical copy (see Fig. 5b). The mesh generation
by using adaptive resolution 550*190*700 took approx-
imately 135 seconds. The model was 3D printed using an
Ultimaker 2 machine in around 2 hours.

Figure 5. Swan model with 6 arc canal surfaces containing the neck of the model: (a) rendered version, (b) physical version produced
with 3D printer

Figure 6. Architectural-like model “half-dome”: (a) model containing 29 arc canal surfaces unioned together, (b) further blending
operation was performed to complete the model.
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4.2. Case study 2: the domemodel

Another case study deals with a type of shapes where dif-
ferent sweeping objects intersect, and it is assumed that
in the place of intersection the radius of sweeping sphere
is the same for different objects. A domemodel is such an
example with a number of arc canal surfaces that are not
only connected by endpoints of the arc spines, but also
have intersections. For themodel like that, it is important
that the radius of the rolling sphere is changed exactly lin-
early; otherwise the condition of having the same radius
of the sweeping sphere at the intersection points is vio-
lated. Looking at the possible ways to represent the arc
canal surface, it can be seen that no approximation of
the radius is possible, and approximation of the spine
or approximation of the moving object should be used
instead. In our experiments with a dome model, the
approximation of the spine by a large set of line segments
(see section 3.2) and the approximationwith rolling circle
and radius correction (see section 3.3) produces visu-
ally equal results, however the timings are significantly
different. Sampling the function for the dome model,
where each arc canal surface is approximated by 50 line
segments took approximately 8.5e-6 seconds per sam-
ple. Sampling of the function where radius correction
is used took several milliseconds, mainly because of the
operation of maximization. In general, the nature of the
numerical correction of the radius when we approxi-
mate the arc canal surface by the rolling circle results in
larger timings for computation of the defining function,
and hence it becomes slower to visualize and process the
model. Another important property of the approxima-
tion of the spine with linear segments is C1-continuity
which is useful for further operations applied to the arc
canal surface. In the case of the domemodel these opera-
tions include blending union operation which required
the defining function of the model to be smooth and
continuous.

4.3. Recommendations on approximations of
variable-radius arc canal surfaces

After preparing these case studies and further tests with
applications of the arc canal surface for the purposes of
solid modeling with real functions, we can identify the
following strategies which allow for efficiently creating
the desired shape withmost efficient defining function:

(1) In the case of the small radius of the spine it is more
convenient to approximate the radius change func-
tion rather than the spine. Also this approximation
is more convenient to use in the applications, which
donot require exactly linear change of the radius (see
discussion in 4.1 above).

(2) In the case of the significant radius change and the
large angle of the arc, it is more convenient to use
the spine approximation, because the radius approx-
imation might result in large difference between the
desired shape and the approximated one. Also, the
spine approximation is better to use when the lin-
ear change of radius is essential (see discussion in 4.2
above).

(3) The approximation of the spine of the canal surface
is the easiest to implement and evaluate, however it
depends on the choice of the function for the set-
theoretic union. In the case of R-functions providing
C1 continuity and a large number of segments, the
resulting timings might be slow.

(4) If the speed is not important, but the shape should
be precisely described, for example, for robotics
applications, the combination of disk sweeping with
the radius from sphere sweeping should be used.
However, by researching arc canal surface, we were
unable to identify such applications, mainly because
current robotics applications use sweepingwith con-
stant radius and linearly changing radius is a rather
unusual application. Still we do not want to leave this
option behind, yet stating it as a rare one.

The resulting canal surface can be used in a solid
modeling system as a base primitive allowing additional
operations and deformations on top of it.

5. Conclusions

In this paper we presented differentmethods allowing for
solving the problem of obtaining an implicit form of the
canal surfacewhose spine is an arc and the radius changes
linearly in respect to the angle of the spine. It can be seen
that various methods to define the same object can be
used. Let us briefly summarize all the methods presented
so far:

• Using the elimination we can have an exact and easy
to evaluate query to check if the point is on the
desired surface or not; however it is not C0- contin-
uous (simply not defined) at all the points outside the
surface;

• The spine can be approximated with line segments
resulting in a very simple definition of the desired
canal surface; however to calculate with finitemachine
precisionwe should use large number of segments that
slows down the function evaluation significantly and,
in addition, depends on the choice of the set-theoretic
operation implementation;

• The change of the radius can be approximated with
a trigonometric function; the result is a polynomial
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equation and additional set-theoretic operations are
needed to get the desired shape;

• The combination of the disk sweeping formulation
with the radius of the shape obtained from sphere
sweep provides an exact solution; however it involves
the global maximum search and therefore can be
computationally expensive and be considered as an
approximation with the finite precision.

Unfortunately, there is no method which would be
a perfect fit to the criteria we set at the beginning of
the paper. At the same time, we can see that in real life
applications all the computations are being done with the
finite machine precision and therefore we can consider
the approximation methods as well as the exact ones as
long as we can set the finite machine precision as the
approximation tolerance.We should bear inmind that all
the approximation methods presented above rely on the
fact that we can subdivide the spine onto smaller arcs and
then get the resulting shape by using set-theoretic union
of the canal surfaces build for each arc.

The problem of the arc canal surface seems to be very
important for solidmodeling systemswith implicit forms
of the geometric objects because of the lack of canal sur-
faces that can be used in such systems with the spine as
a curve. As we have not found the perfect solution, we
feel that more methods to solve this problem should be
found. During our investigations, we have found that the
desired shape can be approximated by Dupin cyclides by
applying formulation from [6] and finding parameters of
the cyclide such that start radius and end radius coin-
cide with those from arc canal surface. However we have
also found out that such a geometric object is an approx-
imation in both radius and the spine, so more research
is needed to find an appropriate balance. To address the
problem of the arbitrary canal surface representation in
the implicit form, we are going to approximate the given
spine curve with an arc spline [8], assign radius values to
the endpoints of each arc, and then to apply set-theoretic
union to the obtained implicit arc canals.
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