
Implicit vs. Explicit Data-Flow Requirements
in Web Service Composition Goals

Annapaola Marconi, Marco Pistore, and Paolo Traverso

ITC-irst
Via Sommarive 18, Trento, Italy

{marconi, pistore, traverso}@itc.it

Abstract. In this paper we compare two different approaches to specify data-
flow requirements in Web service composition problems, i.e., requirements on
data that are exchanged among component services. Implicit data-flow require-
ments are a set of rules that specify how the functions computed by the component
services are to be combined by the composite service. They implicitly define the
required constraints among exchanged data. Explicit data-flow requirements are
a set of explicit specifications on how the composition should manipulate mes-
sages and route them from/to components. In the paper, we compare these two
approaches through an experimental evaluation, both from the point of view of
efficiency and scalability and from that of practical usability.

1 Introduction

Service composition is one of the fundamental ideas underlying service-oriented appli-
cations: composed services perform new functionalities by interacting with component
services that are available on the Web. In most real-world applications, service compo-
sitions must be at the “process-level”, i.e., they must take into account that component
services are stateful processes [1] and that they require to follow complex interaction
protocols specified in language such as WS-BPEL [2], The automated synthesis of com-
posed services is one of the key tasks that supports the design and development of
service oriented applications: given a set of available component services and a compo-
sition goal, the task corresponds to the synthesis of a composition, e.g., a new service,
or a set of constraints on the behaviors of existing services, which satisfies the require-
ments expressed by the composition goal.

Recent works address the problem of the automated synthesis of composed services
at the process level, see, e.g., [1,3,4,5,6,7]. However, most of them do not take into
account a key aspect of the composition problem: the specification of data-flow re-
quirements, i.e. requirements on data that are exchanged among component services.
This is a significant and challenging problem, since, in real life scenarios, business an-
alysts and developers need a way to express complex requirements on the exchanged
data. Moreover, to make the automated composition an effective and practical task, the
requirements specification should be easy to write and to understand for the analyst.
Surprisingly, very little effort has been devoted in the literature to address this problem.

In this paper we compare two different approaches to the specification of data-flow
requirements for the automated synthesis of composed services specified in WS-BPEL.

A. Dan and W. Lamersdorf (Eds.): ICSOC 2006, LNCS 4294, pp. 459–464, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



460 A. Marconi, M. Pistore, and P. Traverso

The first approach is based on implicit data-flow requirements [7]. It exploit the func-
tions that define the tasks carried out by the component services, and that annotate their
WS-BPEL descriptions. Composition goals contain references to such functions that im-
plicitly define constraints on data flows. Consider, for instance, a virtual travel agency
(VTA from now on) that composes two component services, a Flight and a Hotel reser-
vation service. The implicit data-flow requirement stating that the cost offered to the
Customer is a specific function (prepare cost) of the costs of the Hotel and of the Flight
can be specified as follows:

C.cost = prepare cost(H.costOf(C.loc,C.date),F.costOf(C.loc,C.date))

We assume that the cost functions F.costOf and H.costOf appear as “semantic” annota-
tions in the WS-BPEL processes of the flight and hotel components, respectively. This
requirement implicitly specifies a data flow from the messages of the components to
the composed service. The composition task should determine from this specification
which messages and which data should be sent from a service to another. In [7] it is
shown how the framework for process-level composition defined in [5,6] can be ex-
ploited to generate the composition starting from implicit data-flow requirements.

The second approach is based on explicit data-flow requirements. In this case, com-
position goals contain constraints that define the valid routings and manipulations on
the messages of the component services, i.e., these constraints specify how the out-
put messages of the composed service are obtained by manipulating and combining in
suitable ways the input messages obtained from the component services. In the VTA
example, the explicit data flow requirement is the following:

It directly specifies that the VTA must apply its internal function prepare cost on the
costs received from the Hotel and from the Flight, to obtain the cost to be sent in the
offer to the Customer. In [8] it is shown that explicit data-flow requirements can be
described in a graphical way, as data-nets. It is also shown how to adapt the composition
framework of [5,6] to the case of explicit data-flow requirements.

2 Comparison of the Two Approaches

We now compare the two proposed approaches for modeling data-flow requirements
from a technical point of view, from the point of view of the performance, and for what
concerns usability.

The two approaches present some similarities. First of all, both of them extend the
automated composition framework proposed in [6,5]. Moreover, the analysis of the ap-
proaches described in [7] and in [8] shows that they adopt the same strategy to encode
data manipulation and exchange at an abstract level in the composition domain: in-
troducing goal variables (which model variables of the new composite process) and
encoding data-flow requirements as constraints on the operations that can be performed



Implicit vs. Explicit Data-Flow Requirements 461

on goal variables. Another similarity is that both approaches do not require to enu-
merate the values that these variables can assume; this task would be impossible since
variables often require very large or infinite ranges that prevent an explicit enumera-
tion — consider for instance the variables representing the costs in the VTA example.
The main difference lies in the way the two approaches reason on goal variables. The
implicit approach reasons on what is “known” about the goal variables in the states of
the composition domain (e.g., H.costOf(C.loc, C.date) becomes a goal variable, and the
composition approach reasons on whether the value of this variable is “known”), and
uses this information to check whether the goal is satisfied. The explicit approach does
not encode at all data within the composition domain: its states simply model the evo-
lution of the processes, and data-flow constraints are modeled as additional “services”
(e.g. the requirement in the VTA example is modeled as a ’service’ that transforms the
flight and hotel cost into the cost for the customer). This difference is reflected in the
size of the obtained composition domain, which in the implicit approach is much larger.

In order to test the performance of the proposed approaches, we have conducted some
experiments on a scalable domain. Since we wanted to compare the two approaches
on realistic domains, we consider here a real e-commerce scenario, the Virtual Online
Shop (VOS from now on). The VOS consists in providing an electronic purchase and
payment service by combining a set of independent existing services: a given number
of e-commerce services Shops and a credit-card payment service Bank. This way, the
Customer, also described as a service, may directly ask the composite service VOS to
purchase some given goods, which are offered by different Shops, and pay them via
credit-card in a single payment transaction with the Bank. For the Bank we modeled a
real on-line payment procedure offered by an Italian bank. Such a process handles sev-
eral possible failures: it checks both the validity of the target bank account (the Store’s
one in our case) and the validity of the credit card, it checks whether the source bank ac-
count has enough money and whether the owner is authorized for such a money transfer.
The Shop models a hypothetical e-commerce service, providing a complex offer nego-
tiation and supporting a transactional payment procedure. This composition problem
requires a high degree of interleaving between components (to achieve the goal, it is
necessary to carry out interactions with all component services in an interleaved way)
and both the implicit and explicit models of data-flow requirements are pretty complex
(due to the number of functions and to the need of manipulating data in a complex
way). To evaluate the scalability of the two approaches when the number of (complex)
component services grows, we increased the number of stores participating to the com-
position. The following table reports the experimental results.

Implicit Explicit WS-BPEL

domain time (sec.) domain time (sec.) num
goal nr. of max model composition goal data nr. of max model composition complex
vars states path construction & emission vars constr. states path construction & emission activities

VOS 6 1357 54 11.937 3.812 14 6 390 26 1.612 0.218 52
VO2S 9 8573 64 185.391 84.408 20 9 1762 32 1.796 0.688 84
VO3S 12 75289 74 M.O. - 26 12 12412 38 1.921 2.593 109
VO4S - - - - - 32 15 122770 44 2.218 12.500 136
VO5S - - - - - 38 18 1394740 50 2.547 26.197 165
VO6S - - - - - 44 21 16501402 56 2.672 246.937 196



462 A. Marconi, M. Pistore, and P. Traverso

For each considered scenario the table shows some parameters that characterize the
complexity of the composition domain, the automated composition time, and the size
of the generated composite process. The complexity of the implicit approach is given
in terms of the number of goal variables that encode the pieces of “knowledge” that the
composite process acquires while interacting with the component services and manip-
ulating messages (see [7] for the details). For what concerns the explicit approach, we
consider the number of data-flow constraints and the number of goal variables (as shown
in [8], the variables correspond to number of nodes of the data net obtained by combin-
ing all the data-flow constraints). To complete the characterization of the complexity of
the composition domain, for both approaches we report the number of states and the
number of transitions of the longest path in the composition domain that is passed as
input to the automated generation techniques of [5,6]. These measures characterize the
size of the search space for the composed service.

The complexity of the composition task can also be deduced from the size of the new
composite WS-BPEL process, which is reported in the last column of the table. We re-
mark that we report the number of WS-BPEL basic activities (e.g. invoke, receive,
reply, assign, onMessage) and do not count the WS-BPEL structured activi-
ties that are used to aggregate basic activities (e.g. sequence, switch, flow).
Indeed, the former activities are a better measure of the complexity of the generated
process, while the latter are more dependent on the coding style used in the composite
WS-BPEL process. Notice that we report only one measure for the composite process.
Indeed, the processes generated by the two approaches are basically identical: they
implement the same strategy, handle exceptions and failures in the same way and
present the same number of activities. The only difference is the way in which such
activities are arranged, e.g. the order of invocation of the different shops or of the as-
signments when preparing different parts of a message to be sent.

The composition times have been obtained on a Pentium Centrino 1.6 GHz with 512
Mb RAM of memory running Linux. We distinguish between model construction time
and composition and emission time. The former is the time required to obtain the com-
position domain, i.e., to translate the WS-BPEL component services into a finite state
domain and to encode the composition goal. The latter is the time required to synthe-
size the controller according to [5,6] and to emit the corresponding WS-BPEL process.
The experiments show that the implicit approach has worse performances both for the
model construction time and for the composition time. In particular, the implicit ap-
proach is not able to synthesize the VOS scenario with three shops: a memory out is
obtained in model construction time. In the case of the explicit approach, instead, the
time required to generate the composition domain is very low for all the scenarios, and
also the performance for the composition scales up to very complex composition scenar-
ios: the VO6S example (6 Stores, 1 Bank and 1 Customer) can be synthesized in about
4 minutes. We remark that this example is very complex, and requires several hours of
work to be manually encoded: the corresponding WS-BPEL process contains about 200
non-trivial activities! We also remark that the number of states in the implicit domain
for the VO6S example is much larger than the number of states of the VO3S example
in the explicit approach. The fact that the former composition has success while the
latter has not shows another important advantage of the explicit approach: the domain



Implicit vs. Explicit Data-Flow Requirements 463

is very modular, since each data-flow constraint is modeled as a separated “service”,
which allows for a very efficient exploitation of the techniques implemented by [5,7].

For what concerns usability, the judgment is not so straightforward, since the two
approaches adopt very different perspectives. From the one side, modeling data-flow
composition requirements through a data net requires to explicitly link all the messages
received from component services with messages sent to component services. More-
over, a second disadvantage is that component services are black boxes exporting only
input and output ports: there is no way to reason about their internal data manipulation
behaviors. From the other side, data nets models are easy to formulate and understand
through a very intuitive graphical representation. It is rather intuitive for the designer
to check the correctness of the requirements on data routings and manipulations. Also
detecting missing requirements is simple, since they usually correspond to WS-BPEL

messages (or part of messages) that are not linked to the data net. Finally, the practical
experience with the examples of the experimental evaluations reported in this section
is than the time required to specify the data net is acceptable, and much smaller that
the time required to implement the composite service by hand. In the case of the VO6S
scenario, for instance, just around 20 minutes are sufficient to write the requirement,
while several hours are necessary to implement the composite service.

The implicit approach adopts a more abstract perspective, through the use of anno-
tations in the process-level descriptions of component services. This makes the goal
independent from the specific structure of the WS-BPEL processes implementing the
component services, allowing to leave out most implementation details. It is therefore
less time consuming, more concise, more re-usable than data nets. Moreover, annota-
tions provide a way to give semantics to WS-BPEL descriptions of component services,
along the lines described in [9], thus opening up the way to reason on semantic anno-
tations capturing the component service internal behavior. Finally, implicit knowledge
level specifications allow for a clear separation of the components annotations from the
composition goal, and thus for a clear separation of the task of the designers of the com-
ponents from that of the designer of the composition, a separation that can be important
in, e.g., cross-organizational application domains. However, taking full advantage of the
implicit approach is not obvious, especially for people without a deep know-how of the
exploited composition techniques. There are two main opposite risks for the analysts:
to over-specify the requirements adding non mandatory details and thus performing the
same amount of work required by the explicit approach; to forget data-flow requirements
which are necessary to find the desired composite service. Moreover, our experiments
have shown that, while the time required to write the implicit data-flow requirements
given the annotated WS-BPEL processes is much less than the time to specify the data
net, the time required to write the requirements and to annotate the WS-BPEL processes
is much more (and the errors are much more frequent) than for the data net.

3 Conclusions and Related Works

We have compared two different approaches to the definition of data flow require-
ments for the automated synthesis of process-level compositions for component ser-
vices described in WS-BPEL. Implicit requirements [7] compose functions that annotate



464 A. Marconi, M. Pistore, and P. Traverso

WS-BPEL descriptions of component services. Explicit requirements [8] directly specify
the routing and manipulations of data exchanged in the composition. Both approaches
have their pros and cons. Explicit models allow for much better performances, due to
the very modular encoding of requirements. Moreover, they are rather easy to write and
to understand for the analyst. Implicit requirements allow for a higher degree of re-use
and abstraction, as well as for a clear separation of the components annotations from
the composition goal.

Most of the works that address the problem of the automated synthesis of process-
level compositions do not take into account data flow specifications. This is the case of
the work on synthesis based on automata theory that is proposed in [1,3], and of work
within the semantic web community, see, e.g., [10]. Some other approaches, see, e.g.,
[11], are limited to simple composition problems, where component services are either
atomic and/or deterministic.

The work closest to ours is the one described in [4], which proposes an approach to
service aggregation that takes into account data flow requirements. The main difference
is that data flow requirements in [4] are much simpler and at a lower level than in our
framework, since they express direct identity routings of data among processes, and
do not allow for manipulations of data. The examples reported in this paper clearly
show the need for expressing manipulations in data-flow requirements and higher level
requirements.

References

1. Hull, R., Benedikt, M., Christophides, V., Su, J.: E-Services: A Look Behind the Curtain. In:
Proc. PODS’03. (2003)

2. Andrews, T., Curbera, F., Dolakia, H., Goland, J., Klein, J., Leymann, F., Liu, K., Roller, D.,
Smith, D., Thatte, S., Trickovic, I., Weeravarana, S.: Business Process Execution Language
for Web Services (version 1.1) (2003)

3. Berardi, D., Calvanese, D., Giacomo, G.D., Mecella, M.: Composition of Services with
Nondeterministic Observable Behaviour. In: Proc. ICSOC’05. (2005)

4. Brogi, A., Popescu, R.: Towards Semi-automated Workflow-Based Aggregation of Web
Services. In: Proc. ICSOC’05. (2005)

5. Pistore, M., Traverso, P., Bertoli, P., A.Marconi: Automated Synthesis of Composite
BPEL4WS Web Services. In: Proc. ICWS’05. (2005)

6. Pistore, M., Traverso, P., Bertoli, P.: Automated Composition of Web Services by Planning
in Asynchronous Domains. In: Proc. ICAPS’05. (2005)

7. Pistore, M., Marconi, A., Traverso, P., Bertoli, P.: Automated Composition of Web Services
by Planning at the Knowledge Level. In: Proc. IJCAI’05. (2005)

8. Marconi, A., Pistore, M., Traverso, P.: Specifying Data-Flow Requirements for the Auto-
mated Composition of Web Services. In: Proc. SEFM’06. (2006)

9. Pistore, M., Spalazzi, L., Traverso, P.: A Minimalist Approach to Semantic Annotations of
Web Processes. In: Proc. of ESWC’05. (2005)

10. McIlraith, S., Son, S.: Adapting Golog for Composition of Semantic Web Services. In: Proc.
KR’02. (2002)

11. Ponnekanti, S., Fox, A.: SWORD: A Developer Toolkit for Web Service Composition. In:
Proc. WWW’02. (2002)


	Introduction
	Comparison of the Two Approaches
	Conclusions and Related Works

