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Abstract

Parametric and implicit forms are two common representations of geometric objects. It is important to be
able to pass back and forth between the two representations, two processes called parameterization and
implicitization, respectively. In this paper, we study the parametrization and implicitization of quadrics
(quadratic parametric surfaces with two base points) and cubic surfaces (cubic parametric surfaces with
six base points) with the help of µ-bases – a newly developed tool which connects the parametric form
and the implicit form of a surface. For both cases, we show that the minimal µ-bases are all linear in the
parametric variables, and based on this observation, very efficient algorithms are devised to compute the
minimal µ-bases either from the parametric equation or the implicit equation. The conversion between
the parametric equation and the implicit equation can be easily accomplished from the minimal µ-bases.

AMS Subject Classifications: 65D18, 68U05.

Keywords: µ-basis, parametrization, implicitization, base point.

1. Introduction

A surface defined by an algebraic equation of degree two (resp. three) is called a
quadric (resp. cubic surface). In geometric modeling systems, parametric represen-
tations of surfaces are preferred because of their simple analytical properties. On the
other hand, these systems rely heavily on the ability to decide quickly whether a given
point is inside or outside a given object. If that object is defined by a simple implicit
surface, such a decision is quick and reliable [11]. Hence one possibly needs both
the parametric representations and the implicit representations depending on differ-
ent applications. The process of converting parametric forms into implicit forms is
called implicitization, and the converse process is called parameterization.

In this paper, we study implicitization and parameterization of quadratic and cubic
surfaces. A nonsingular quadric has a rational parameterization of degree two with
two base points [17], and a nonsingular cubic surface has a parameterization of
degree three with six base points [1]. A base point of a rational surface P(s, t) =
(x(s, t), y(s, t), z(s, t), w(s, t)) is a parameter value (s0, t0) such that P(s0, t0) =
(0, 0, 0, 0).

There are several methods to solve the implicitization and parameterization prob-
lems for a general surface. For implicitization, resultants and Gröbner bases are two
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mostly used methods [15], while for parameterization, the process is much harder
[13]. For quadratic and cubic surfaces, special methods exist to solve the above
problems. For example, Wang presented a method to parameterize a quadric by a
stereographic projection [17]; while in [1], the implicitization and parametrization
of a nonsingular cubic surface are unified with Hilbert-Burch matrices. The purpose
of this paper is to deal with the implicitization and parametrization of quadratic
and cubic surfaces by the µ-basis theory in a more unified and simple approach.

The µ-basis was first introduced in [9] to provide a compact representation for the
implicit equation of a rational parametric curve. Then it was generalized by one of
the present authors to general rational surfaces [2], [3], [5]. The µ-basis of a rational
curve/surface can recover the parametric equation as well as derive the implicit equa-
tion of the curve/surface. Thus it serves as a connection between the implicit form
and the parametric form of a curve/surface.

Unfortunately, except for rational ruled surfaces, little is known about the µ-bases
of general parametric surfaces. For example, one does not have a degree bound
for the µ-bases, and one does not know how to compute a µ-basis with minimal
degree, though an algorithm to compute a non-minimal µ-basis of a rational sur-
face was developed recently [10]. In this paper, we show that the minimal µ-bases of
quadrics and cubic surfaces are linear in the parameter variables, and based on this
fact, efficient algorithms are developed to compute the minimal µ-bases either from
the parametric equation or the implicit equation. Furthermore, the implicit equa-
tion and the parametric equation can be derived straightforward from the minimal
µ-bases.

The paper is organized as follows. In the next section, we present some preliminary
knowledge about the µ-bases of rational surfaces. In Sects. 3 and 4, the minimal
µ-bases of quadrics and cubic surfaces are derived, and conversion between the
parametric form and the implicit form is accomplished by the minimal µ-bases.
Section 5 concludes the paper with a summary and some further research problems.

2. Preliminaries

Let R[s, t ] be the polynomial ring which consists of all the bivariate polynomials with
real coefficients. A rational parametric surface in homogenous form is defined as

P(s, t) = (a(s, t), b(s, t), c(s, t), d(s, t)), (2.1)

where a, b, c, d ∈ R[s, t ] are polynomials with gcd(a, b, c, d) = 1. The rational sur-
face (2.1) is assumed to be nonsingular. In the later discussion, sometimes we need to
homogenize the variables s, t to s, t, u. Hence P(s, t)=(a(s, t), b(s, t), c(s, t), d(s, t))

is also written as P(s, t, u)=(a(s, t, u), b(s, t, u),c(s, t, u), d(s, t, u)), wherea(s, t, u),
b(s, t, u), c(s, t, u), and d(s, t, u) are homogenous polynomials with the same total
degree.
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A moving plane is a family of planes with parameter pair (s, t), defined by

L(s, t) := L(x, y, z; s, t) := A(s, t)x + B(s, t)y + C(s, t)z + D(s, t) = 0,

or, in vector form:

L(s, t) := (A(s, t), B(s, t), C(s, t), D(s, t)) ∈ R[s, t ]4.

A moving plane L(s, t) is said to follow the rational surface P(s, t) if

L(s, t) · P(s, t) = a(s, t)A(s, t) + b(s, t)B(s, t) + c(s, t)C(s, t) + d(s, t)D(s, t) ≡ 0.

Let Ls,t be the set of the moving planes following the rational surface P(s, t). Then
Ls,t is exactly the syzygy module syz(a, b, c, d) and is a free module of rank 3 [2].

Definition 1: Let p, q, r ∈ Ls,t be three moving planes of P(s, t) such that

[p, q, r] = κP(s, t) (2.2)

for some nonzero constant κ, where p = (p1, p2, p3, p4), q = (q1, q2, q3, q4), and
r = (r1, r2, r3, r4). Then {p, q, r} are called to form a µ-basis of the rational surface
P(s, t). Here [p, q, r] is the outer product of p, q and r which is defined by

[p, q, r] =



∣∣∣∣∣∣
p2 q2 r2
p3 q3 r3
p4 q4 r4

∣∣∣∣∣∣
, −

∣∣∣∣∣∣
p1 q1 r1
p3 q3 r3
p4 q4 r4

∣∣∣∣∣∣
,

∣∣∣∣∣∣
p1 q1 r1
p2 q2 r2
p4 q4 r4

∣∣∣∣∣∣
, −

∣∣∣∣∣∣
p1 q1 r1
p2 q2 r2
p3 q3 r3

∣∣∣∣∣∣


 . (2.3)

If, in addition, among all the triples of p, q, r satisfying (2.2), the total degree tdeg(p)+
tdeg(q) + tdeg(r) is smallest, then p, q, r are called to form a minimal µ-basis.

The existence of µ-bases was proved in [2] and an algorithm was developed to com-
pute a µ-basis in [10]. However, it is an unsolved problem to compute a minimal
µ-basis for a general rational surface.

3. Quadrics

In this section, we first show that the minimal µ-bases of a quadric surface are lin-
ear in the variables s, t, u, and then we present a very simple algorithm to compute
the minimal µ-bases. The conversion between the parametric form and the implicit
form of a quadric is thus derived.

3.1. The form of the minimal µ-bases

For a quadratic parametric surface, its minimal µ-bases are linear in the parameter
variables.
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Lemma 1: Suppose P(s, t, u) is a rational parametric quadratic surface with two base
points. Then it has a minimal µ-basis with the following form:

p = (p1, p2, p3, p4) = puu + pss,

q = (q1, q2, q3, q4) = quu + qt t, (3.1)

r = (r1, r2, r3, r4) = ruu + rss + rt t,

where pu, ps , qu, qt , ru, rs , and rt are constant vectors in R
4, and ps = qt .

Proof: The details are very tedious and we just outline the proof. For the de-
tails, the reader is referred to [16]. By choosing a proper parameter transformation
(s, t, u) = (s̃, t̃ , ũ)M, where M is a three by three invertible matrix, the quadratic
surface P(s, t, u) with two base points can be transformed into a ruled surface by
mapping one of the base points to (0, 1, 0):

P̃(s̃, t̃ , ũ) = (p1(s̃, t̃ , ũ), p2(s̃, t̃ , ũ), p3(s̃, t̃ , ũ), p4(s̃, t̃ , ũ)),

where pi(s̃, t̃ , ũ) = pi0ũ
2 + pi1s̃ũ + pi2 t̃ ũ + pi3s̃ t̃ + pi4s̃

2. By the result in [3], the
µ-bases of P̃(s̃, t̃ , ũ) have the form p̃(s̃, ũ), q̃(s̃, ũ), r̃(t̃ , ũ) with total degree one. Then
it follows that

[p̃, q̃, r̃] = k1ũP̃(s̃, t̃ , ũ), for some nonzero constant k1. (3.2)

By applying the inverse transformation of M, one does not usually obtain the µ-
basis of P(s, t, u), since ũ in Eq. (3.2) would be replaced by a linear combination of
s, t, u. Hence some linear transformation should be taken on p̃, q̃, r̃ before applying
the inverse transformation of M. The details are omitted. ��

3.2. Computing µ-bases

Based on the linear form of the minimal µ-basis of a quadric, we present efficient
algorithms to compute the minimal µ-basis either from the parametric form or the
implicit form of the quadric, respectively.

3.2.1. From parametric equations

The following lemma is essential to the µ-basis algorithm below.

Lemma 2: Let P(s, t) be a quadratic parametric surface with two base points. Then
there exist unique vectors (up to a scalar multiple) pu, ps , qu ∈ R

4 such that

(pu + pss) · P(s, t) = (qu + ps t) · P(s, t) = 0.

Furthermore, there exist at least four linearly independent solutions (with ru, rs , rt ∈ R
4

being unknowns) for the following equation:

(ru + rss + rt t) · P(s, t) = 0.
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Proof: In the proof, all the vectors are in column form. Assume P(s, t) = P1+Pss+
Pt t +Ps2s2 +Pst st +Pt2 t2. It follows that (pu+pss) ·P(s, t) = (qu+ps t) ·P(s, t) ≡ 0
if and only if

(pT
u , pT

s , qT
u )M = 0,

where

M =




P1 Ps Pt Ps2 Pst Pt2 0 0 0 0 0 0 0 0 0

0 P1 0 Ps Pt 0 Ps2 Pst Pt2 0 0 P1 0 Ps Pt

0 0 0 0 0 0 0 0 0 P1 Ps Pt Ps2 Pst Pt2




is a matrix with size 12 × 15. We know P(s, t) has two base points. If these two
base points are different, denote them as (si, ti , ui), i = 1, 2. Then it follows that
u2

i P1 + uisiPs + uitiPt + s2
i Ps2 + si tiPst + t2

i Pt2 = 0, i = 1, 2. From these relation-
ships, we can show that rank(M) is exactly 11 by applying column transformations
on M. If the two base points are a double base point with multiplicity two, the same
result holds. This proves the first part of the lemma. The second part can be proved
by a similar technique. ��

Now the algorithm to compute minimal µ-bases is described as follows.

Algorithm (PAR-MU-BASIS)

Input: A quadratic parametric surface P(s, t) with two base points.
Output: A minimal µ-basis of the quadratic surface.
Steps:

1. Solve the linear system of equations:

(pu + pss) · P(s, t) = (qu + ps t) · P(s, t) = 0

with pu, qu, ps being unknown vectors. By Lemma 2, there exists one solution.
2. Solve the linear system

(ru + rss + rt t) · P(s, t) = 0

with ru, rs , rt being unknown vectors. By Lemma 2, we can select ru, rs , rt such
that pu + pss, qu + ps t and ru + rss + rt t are linearly independent.

3. Output pu+pss, qu+ps t and ru+rss+rt t . By Lemma 1 and 2, they are a minimal
µ-basis of the quadratic surface P(s, t).

We provide some examples to illustrate the above algorithm.

Example 1: Suppose the quadratic surface is defined by

P(s, t) = (−3 − 2t + 3s − st, 1 + 2t − s, 3 − 3t + 2s + 2st, −3 − t + 3s − 3st)
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which has two base points (1, 0, 0), (0, 1, 0). A minimal µ-basis is computed by our
algorithm as




17 + 13 s 15 + 13 t 5 − 3 s

27 − 2 s 30 − 2 t 3 − 6 s

7 − 7 s −7 t 0
−1 − 9 s −5 − 9 t −4 + s


 ,

where the three columns of the matrix are the three elements of the µ-basis.

Example 2: Let the quadratic surface be

P(s, t) = (1 + 4 t + 3 s2, −4 + 3 t − s, −4 − 4 t − 5 s − 4 s2, −2 − 5 t + 5 s − 5 s2)

which has a double base point (0, 1, 0). A minimal µ-basis is computed as follows:



36 + 135 s −168 + 135 t −858 + 13842 s

−12 − 45 s 45 − 45 t 99 − 4614 s

17 + 50 s −61 + 50 t 5189 s

8 + 41 s −52 + 41 t −627 + 4154 s


 .

Example 3: Consider a quadratic surface defined by

P(s, t) = (1 − s2 − t2, 2t, 2s, s2 + t2 + 1).

It has a pair of conjugate complex base points (±i, 1, 0). A minimal µ-basis by our
algorithm is:




s t 1
0 −1 t

−1 0 s

s t −1


 .

3.2.2. From implicit equations

Although the µ-bases are defined for parametric equations, we can also design
µ-bases for implicit equations.

Lemma 3: Given a quadratic implicit equation f (x, y, z) = 0, let Q0 = (x0, y0, z0)

be a point on the quadric surface, and pu, qu and ps = qt be three linearly independent
planes passing through Q0. Then there exist three linear functions (in x, y, z) ru, rs
and rt such that

purs + qurt − psru = f (x, y, z). (3.3)

Proof: Consider the ideal I = 〈pu, qu, ps〉. Since pu, qu and ps = qt are
independent planes passing through Q0, V (I) = Q0. Since I is a maximal ideal
and f (Q0) = 0, by Hilbert’s Nullstallensatz [8], f ∈ I . That is, there exist polyno-
mials (in x, y, z) ru, rs, rt such that Eq. (3.3) holds. Furthermore, it can be shown
that these polynomials can be linear in x, y, z. ��
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Theorem 4: Let pu, ps, qu, qt , ru, rs, rt be defined as in Lemma 3. Define

p = pu + pss, q = qu + qt t, r = ru + rss + rt t,

and let p, q, r be the vector forms of p, q, r. Then

P(s, t) := [p, q, r]

is a parametric representation of f (x, y, z) = 0.

Proof: For any parameter values (s0, t0), let X = (x0, y0, z0, 1) = P(s0, t0). From
P(s, t) · p ≡ 0, P(s, t) · q ≡ 0 and P(s, t) · r ≡ 0, one has

p(x0, y0, z0; s0, t0) = 0, q(x0, y0, z0; s0, t0) = 0, r(x0, y0, z0; s0, t0) = 0.

Thus




pu(x0, y0, z0) ps(x0, y0, z0) 0

qu(x0, y0, z0) 0 qt (x0, y0, z0)

ru(x0, y0, z0) rs(x0, y0, z0) rt (x0, y0, z0)







1

s0

t0


 = 0.

Therefore

f (x0, y0, z0) = (purs + qurt − psru)|(x,y,z)=(x0,y0,z0)

=

∣∣∣∣∣∣∣

pu(x0, y0, z0) ps(x0, y0, z0) 0

qu(x0, y0, z0) 0 qt (x0, y0, z0)

ru(x0, y0, z0) rs(x0, y0, z0) rt (x0, y0, z0)

∣∣∣∣∣∣∣
= 0.

On the other hand, one can show that

rspu + rtqu − psru ≡ 0 ⇔ [p, q, r] ≡ 0.

Thus P(s, t) := [p, q, r] gives a parameterization of f (x, y, z) = 0. ��

Based on the above theorem, an algorithm for computing a µ-basis of a quadratic
implicit surface is outlined as follows.

Algorithm (IMP-MU-BASIS)

Input: A quadratic implicit equation f (x, y, z) = 0.
Output: A µ-basis of the quadric surface.
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Step:

1. Choose a point Q0 = (x0, y0, z0) on the surface f (x, y, z) = 0, and three inde-
pendent planes pu, qu and ps = qt passing through the point Q0.

2. Use polynomial division algorithm to divide f (x, y, z) by pu, qu and ps . Let the
quotients be rs , rt and −ru, i.e.,

f (x, y, z) = pur1 + qur2 − psru.

3. Let p = pu + pss, q = qu + qt t, r = ru + rss + rt t. Output p, q, r.

Example 4: Suppose the implicit equation of a quadric surface isf (x, y, z) = −116x2−
212xy + 117x − 156y2 + 52y + 14xz − 21yz − 21z − 37 = 0. Choose a point
Q0 = (1/3, 0, −2/3) on the quadric, and three planes passing through Q0 are pu =
17x + 27y + 7z − 1, qu = 15x + 30y − 5 and ps = 13x − 2y − 7z − 9. Using the
polynomial division algorithm to find the quotients ru, rs and rt of f divided by pu, qu

and ps:

ru = 5x + 3y − 4, rs = −3x − 6y + 1, rt = 0.

Then

p = (17 + 13s, 27 − 2s, 7 − 7s, −1 − 9s),

q = (15 + 13t, 30 − 2t, −7t, −5 − 9t), (3.4)

r = (5 − 3s, 3 − 6s, 0, −4 + s).

3.3. Applications of µ-bases

As we have observed in the above section, µ-bases serve as a connection between the
parametric form and the implicit form of a quadric surface. Thus conversion between
the parametric form and the implicit surface can be easily achieved. Furthermore,
the inversion formula (given a point on a parametric surface, find corresponding
parameter value) is directly obtained from the µ-bases.

3.3.1. Implicitization

Given the parametric equation P(s, t) of a quadric surface, we can compute a min-
imal µ-basis p, q, r of the surface by the algorithm PAR-MU-BASIS. Then the
implicit equation of the surface is given by the following theorem.

Theorem 5: Let

p = pu + pss, q = qu + qt t, r = ru + rss + rt t

be a minimal µ-basis of a quadratic surface with two base points. Then the implicit
equation of the quadric surface is given by

f (x, y, z) := purs + qurt − psru = 0.



Implicitization and parametrization of quadratic and cubic surfaces 139

Proof: Similar to the proof of Theorem 4. ��

We illustrate an example.

Example 5: Consider the quadratic surface in Example 3. A µ-basis is obtained as

p = z − (x + 1)s,

q = y − (x + 1)t,

r = 1 − x − zs − yt.

So the implicit equation is f (x, y, z, w) := purs +qurt −rups = 1−x2 −y2 −z2 = 0.

3.3.2. Parameterization

Given the implicit equation f (x, y, z) = 0 of a quadric surface, we can compute a
µ-basis p, q, r of the surface by the algorithm IMP-MU-BASIS. Then a parametri-
zation of the surface is given by P(s, t) = [p, q, r].

The following example illustrates the parametrization procedure from µ-bases.

Example 6: Considering the surface in Example 4, we have construct a minimal
µ-basis as shown in Eq. (3.4). Then the parametric equation of the surface is

P(s, t) = [p, q, r] = (−3 − 2t + 3s − st, 1 + 2t − s, 3 − 3t + 2s + 2st, −3 − t

+ 3s − 3st).

3.3.3. Inversion formula

Given a point (x0, y0, z0) on the quadratic parametric surface P(s, t), we compute
a µ-basis:

p = py + pss, q = qu + qt t, r = ru + rss + rt t.

From p(x0, y0, z0; s, t) = 0, p(x0, y0, z0; s, t) = 0 and p(x0, y0, z0; s, t) = 0, we
obtain

s = −pu(x0, y0, z0)

ps(x0, y0, z0)
, t = −qu(x0, y0, z0)

qt (x0, y0, z0)
,

which is the inversion formula for the parametric equation P(s, t).

For the parametric surface in Example 3, the inversion formula is

s = z

x + 1
, t = y

x + 1
.
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4. Cubic surfaces

The results in the above section can be similarly generalized to cubic surfaces which
can be parameterized by cubic rational parametric surfaces with six base points. We
just summarize the results in the following theorems. We refer the reader to [16] for
details.

Theorem 6: The minimal µ-bases of a cubic rational parametric surface P(s, t) with
six base points take the form

p = pu + pss, q = qu + qt t, r = ru + rss + rt t .

Based on the above theorem, the minimal µ-bases can be found using undetermined
coefficients method from p · P = q · P = r · P = 0.

Theorem 7: Let

p = pu + pss, q = qu + qt t, r = ru + rss + rt t .

be a minimal µ-bases of P(s, t). Then the implicit equation of P(s, t) is given by

f (x, y, z) =
∣∣∣∣∣∣
ps 0 pu

0 qt qu

rs rt ru

∣∣∣∣∣∣
= 0,

where pu = pu · X, ps = ps · X, qu = qu · X, qt = qt · X, ru = ru · X, rs = rs · X,
rt = rt · X, and X = (x, y, z, 1).

Remark 1: For a cubic surface, the implicit equation is exactly the resultant of the
minimal µ-basis. The reason is that a µ-basis gives a homogeneous µ-basis in this case.
On the other hand, for a quadratic surface, the resultant of the minimal µ-basis is a
multiple of the implicit equation (with the multiple being ps = qt) since a µ-basis fails
to give a homogeneous µ-basis.

We illustrate an example.

Example 7: P(s, t) = (3s2 +s+s2t −5st2, 2s2 +st −3st2, (−5s+2t +3s2)/2, (s2 −
3s + 2t2)/2) is a cubic rational parametric surface with six base points (1, 0, 0),
(0, 1, 0), (0, 0, 1), (1, 1, 1), (1, 2, 3), and (2, −1, 1). One of its minimal µ-bases is
p = (0, −1, s, −3s), q = (3, −5, −2t, 2t), r = (9t, 3s − 15t − 5, −4s, 0). Hence the
implicit equation of P(s, t) is

f (x, y, z) =
∣∣∣∣∣∣

z − 3 0 −y

0 −2z 3x − 5y + 2
3y − 4z 9x − 15y −5y

∣∣∣∣∣∣
= 2yz2 − 3x2z + 10xyz − 9y2z − 2xz + 9x2 − 30xy + 25y2 + 6x − 10y

= 0.
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Conversely, if we are given the implicit equation of a cubic surface, we can also
devise a minimal µ-basis and thus find a parameterization of the cubic surface.

Theorem 8: Let L1 = ps ∩ qt , L2 = ps ∩ pu, L3 = qt ∩ qu, where ps, pu, qt , qu are
defined in Theorem 7. Then L1, L2 and L3 lie on the cubic surface P(s, t). Conversely,
suppose that f (x, y, z) = 0 is a cubic surface, and L1 = ps ∩ qt , L2 = ps ∩ pu,
L3 = qt ∩ qu are three lines on the cubic surface. Then there are linear functions ru, rs
and rt such that

f = psqt ru − puqt rs − psqurt .

Based on the above theorem, the parametrization algorithm of a nonsingular cubic
surface is stated as follows.

Input: A cubic implicit equation f (x, y, z) = 0.
Output: A parametric representation of the cubic surface.
Steps:

1. Find a line L1 on the cubic surface.
2. Find planes ps and qt passing through L1 such that they intersect the cubic sur-

face into three lines, respectively. Let L2 = ps ∩ pu and L3 = qt ∩ qu be one of
the three lines, respectively.

3. Find ru, rs and rt using polynomial division algorithm such that

f = psqt ru − puqt rs − psqurt .

4. Let p = pu +pss, q = qu + qt t , r = ru + rss + rt t , and p, q, r be the vector forms
of p, q, r. Then P(s, t) := [p, q, r] is a parameterization of the cubic surface.

Remark 2: The details in Step 1 and Step 2 can be found in [14].

Remark 3: The three rows of the Hilbert-Burch matrix in [1] is in fact the minimal
µ-basis of a cubic surface.

5. Conclusion

In this paper, the parametrization and implicitization of a quadric surface and a
cubic surface are studied with the the help of µ-bases theory. In both cases, we
proved that the minimal µ-bases of quadratic and cubic surfaces are all linear in the
parametric variables. Based on this result, fast algorithms are proposed to compute
the minimal µ-bases from either parametric representations or implicit representa-
tions, and the following conversion diagram between parametric forms and implicit
forms is achieved:

A quadratic/cubic µ-basis: three An implicit
parametric surface

⇐⇒
families of planes

⇐⇒
quadric/cubic surface
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In the future, we will try to generalize the above diagram to higher degree curves and
surfaces. We will also study the problem of finding “good” parametrization for a
given implicit equation. Applications of µ-bases in other problems such as singular
locus computation are also worthy of further exploration.
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