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Abstract

In this paper we use Gröbner bases for the implicitization of rational parametric
curves and surfaces in 3D-space. We prove that the implicit form of a curve or surface
given by the rational parametrization

x1 :=
p1

q1
x2 :=

p2

q2
x3 :=

p3

q3
,

where the p’s and q’s are univariate polynomials in y1 or bivariate polynomials in
y1, y2 over a field K, can always be found by computing

GB({q1 · x1 − p1, q2 · x2 − p2, q3 · x3 − p3}) ∩K[x1, x2, x3],

where GB is the Gröbner basis with respect to the lexical ordering with x1 ≺ x2 ≺
x3 ≺ y1 ≺ y2, if for every i, j ∈ {1, 2, 3} with i 6= j the polynomials pi, qi, pj , qj have
no common zeros. This result leads immediately to an implicitization algorithm for
arbitrary rational parametric curves.

Furthermore, we present an algorithm for the implicitization of arbitrary rational
parametric surfaces and prove its termination and correctness.

1 Introduction

The automatic conversion of parametrically defined varieties into their implicit form is of

fundamental importance in geometric modeling. The reason for this is that implicit and

parametric representations are appropriate for different classes of problems. For instance,

it is universally recognized that the parametric representation is best suited for generating

points along a variety, whereas the implicit representation is most convenient for determin-

ing whether a given point lies on a specific variety. It is also well-known that the problem

of intersecting two varieties is greatly simplified if one variety can be expressed implicitly

and the other parametrically.
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For some time the implicitization problem has been deemed unsolvable in the CAD liter-

ature ([4] or [11]). In 1984 the problem has been solved for rational parametric curves in

2D and rational parametric surfaces in 3D by using resultants (see [10]). Resolvents have

been applied to find the implicit representation of rational parametric cubic curves in 3D

([5]). Recently, algorithms based on resultants have been developed for solving the im-

plicitization problem for rational parametric surfaces ([3] and [9]). Arnon and Sederberg

used Gröbner bases for the implicitization of polynomial parametric varieties of dimen-

sion n − 1 in n-dimensional space ([1]). In 1987 Buchberger generalized their method

to the case of polynomial parametric varieties of arbitrary dimension ([2]). Recently, we

applied Gröbner bases to the most general problem, the implicitization of rational para-

metric varieties of arbitrary dimension in arbitrary dimensional space ([8]). Many of the

implicitization methods are highlighted in [7].

In this paper we use Gröbner bases for the implicitization of rational parametric curves and

surfaces in 3D-space. In contrast to the algorithms for the implicitization of m-dimensional

varieties in n-dimensional space presented in [8] the algorithms in this paper work without

introducing new variables. Therefore they solve the implicitization problem in 3D-space

much faster than the general algorithms. (A comparision of the computing times of our

implementations in Maple can be found in [8]).

In this paper we prove that the implicit form of a curve or surface given by the rational

parametrization

x1 :=
p1

q1

x2 :=
p2

q2

x3 :=
p3

q3

,

where the p’s and q’s are univariate polynomials in y1 or bivariate polynomials in y1, y2

over a field K, can always be found by computing

GB({q1 · x1 − p1, q2 · x2 − p2, q3 · x3 − p3}) ∩K[x1, x2, x3],

where GB is the Gröbner basis with respect to the lexical ordering with x1 ≺ x2 ≺ x3 ≺
y1 ≺ y2, if for every i, j ∈ {1, 2, 3} with i 6= j the polynomials pi, qi, pj, qj have no common

zeros. Since we can always assume that pi and qi are relatively prime (i = 1, 2, 3), the

above condition is always satisfied, if the p’s and q’s are univariate. Therefore, the above

result leads immediately to an implicitization algorithm for arbitrary rational parametric

curves.

Furthermore, we present an algorithm for the implicitization of arbitrary rational para-

metric surfaces and prove its termination and correctness.

In section 2 we state the problems we are concerned with. In section 3 a few theorems

are proved which are necessary for showing the correctness of the algorithms, which we

present in section 4.
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2 Problems

Throughout the paper let K be a field and K̄ the algebraic closure of K.

Let J be an ideal and g1, . . . , gm polynomials in K[x1, . . . , xn]. V (J) denotes the variety

of J , i.e. the set

{a ∈ K̄n | f(a) = 0 for every f ∈ J}.

Instead of V (Ideal({g1, . . . , gm})) we will often write V ({g1, . . . , gm}).
Let L be a field with K ⊆ L. Then (a1, . . . , an) ∈ Ln is a generic point of J if for every

f ∈ K[x1, . . . , xn]:

f ∈ J iff f(a1, . . . , an) = 0.

It is well-know that an ideal is prime if and only if it has a generic point with coordinates

in a universal domain (see for instance [12]).

In this paper we want to solve the following two problems:

Implicitization Problem for Rational Parametric Curves:

given: rational parametrization of a curve

x1 =
p1

q1

x2 =
p2

q2

x3 =
p3

q3

,

where p1, p2, p3 ∈ K[y1], q1, q2, q3 ∈ K[y1] − {0} and pi and qi are relatively prime (i =

1, 2, 3).

find: implicit representation of this curve, i.e. polynomials g1, . . . , gm in K[x1, x2, x3] such

that

V ({g1, . . . , gm}) = V (P ′),

where P ′ is the prime ideal in K[x1, x2, x3] with

(
p1

q1

,
p2

q2

,
p3

q3

) ∈ K(y1)
3

as generic point.

Implicitization Problem for Rational Parametric Surfaces:

given: rational parametrization

x1 =
p1

q1

x2 =
p2

q2

x3 =
p3

q3

,

where p1, p2, p3 ∈ K[y1, y2], q1, q2, q3 ∈ K[y1, y2] − {0} and pi and qi are relatively prime

(i = 1, 2, 3).

decide: whether the parametric object is a surface, i.e. whether the transcendence degree

of

K(
p1

q1

,
p2

q2

,
p3

q3

)
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(over K) is 2. In this case

find: implicit representation of this surface, i.e. a polynomial g in K[x1, x2, x3] such that

V ({g}) = V (P ′),

where P ′ is the prime ideal in K[x1, x2, x3] with

(
p1

q1

,
p2

q2

,
p3

q3

) ∈ K(y1, y2)
3

as generic point.

Example 1 For the rational parametrization

x1 =
2y2

1 + y2
1 + y2

2

x2 =
2y1y2

1 + y2
1 + y2

2

x3 =
y2

2 − y2
1 − 1

1 + y2
1 + y2

2

the implicit representation

x2
1 + x2

2 + x2
3 − 1

of the unit sphere is a solution of the above problem. 2

3 Theorems

Throughout the paper let p1, p2, p3 ∈ K[y1, y2] and q1, q2, q3 ∈ K[y1, y2]− {0} such that pi

and qi are relatively prime (i = 1, 2, 3). Let

f1 := q1 · x1 − p1, f2 := q2 · x2 − p2, f3 := q3 · x3 − p3,

I := Ideal({f1, f2, f3}) in K[x1, x2, x3, y1, y2]

and let Q1, . . . , Qr be primary ideals in K[x1, x2, x3, y1, y2] such that Q1 ∩ . . . ∩ Qr is

a reduced primary decomposition of I. Furthermore, P denotes the prime ideal in the

polynomial ring K[x1, x2, x3, y1, y2] which has

(
p1

q1

,
p2

q2

,
p3

q3

, y1, y2) ∈ K(y1, y2)
5

as generic point.

Theorem 1 There exists an i ∈ {1, . . . , r} with

Qi = P

and for every j ∈ {1, . . . , r} − {i}:

Qj ∩K[y1, y2] 6= {0}.
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Proof: In this proof we use the following notation:

For a given ideal F in K[x1, x2, x3, y1, y2] the ideal in K(y1, y2)[x1, x2, x3] generated by F

is denoted by F ?.

Obviously, I? is a zero-dimensional prime ideal. By [6] p.92, there exists exactly one

element i of {1, . . . , r} with

Qi ∩K[y1, y2] = {0}.

Furthermore, I? = Q?
i . By [6] p.47, P ? is a zero-dimensional prime ideal. As I ⊆ P ,

P ? = I? = Q?
i .

Using [6] p.92 again,

Qi = P. 2

For the rest of the paper let us assume that

Q1 = P

and that Q2, . . . , Qr are ordered in such a way that there exists a v ∈ {1, . . . , r} such that

Q1, . . . , Qv are isolated primary components and

Qv+1, . . . , Qr are embedded primary components.

Obviously,

V (I) = V (P1) ∪ . . . ∪ V (Pv), (1)

where Pi is the radical of Qi for i = 1, . . . , r.

By Krull’s Primidealkettensatz (see for instance [6] p.179),

dim(Pj) ≥ 2 (j = 1, . . . , v), (2)

where dim(Pj) denotes the dimension of Pj.

Definition: Let (b1, b2) ∈ K̄2. We denote the number of elements in the set

{i ∈ {1, 2, 3} | pi(b1, b2) = qi(b1, b2) = 0}

by zero(b1, b2).

Example 2 We consider again the parametrization

x1 =
2y2

1 + y2
1 + y2

2

x2 =
2y1y2

1 + y2
1 + y2

2

x3 =
y2

2 − y2
1 − 1

1 + y2
1 + y2

2

of the unit sphere. Then for (0, 0), (i, 0) ∈ Q̄2, where Q denotes the field of rational

numbers:

zero(0, 0) = 0 and zero(i, 0) = 3. 2
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Theorem 2 Let j ∈ {2, . . . , v} and (a1, a2, a3, b1, b2) the generic point of the prime ideal

Pj in K[x1, x2, x3, y1, y2]. Then

b1, b2 ∈ K̄ and dim(Pj) ≤ zero(b1, b2).

Proof: First of all, we know from Theorem 1 that the transcendence degree of K(b1, b2)

is smaller than 2.

Let us assume that the transcendence degree of K(b1, b2) is 1.

Let i ∈ {1, 2, 3}. From the fact that pi, qi are relatively prime it follows that (b1, b2) is

no common zero of pi and qi. As fi is an element of Pj, ai is algebraically dependent on

{b1, b2}. Thus, dim(Pj) = 1. This is a contradiction to (2).

Therefore,

b1, b2 ∈ K̄.

If (b1, b2) is no common zero of pi and qi then ai is algebraically dependent on {b1, b2}.
Thus, the transcendence degree of K(a1, a2, a3, b1, b2) is less equal zero(b1, b2). Therefore,

dim(Pj) ≤ zero(b1, b2). 2

Theorem 3

V (I) 6= V (P )

implies

that there exists a (b1, b2) ∈ K̄2 with zero(b1, b2) ≥ 2.

Proof: If V (I) 6= V (P ) then we obtain from (1) that v is greater equal 2.

Let (a1, a2, a3, b1, b2) be the generic point of P2. By Theorem 2 and (2),

(b1, b2) ∈ K̄2 and zero(b1, b2) ≥ 2. 2

4 Algorithms

If for every (i, j) ∈ {(1, 2), (1, 3), (2, 3)}

pi, qi, pj, qj have no common zeros

then, by Theorem 3,

V (I ∩K[x1, x2, x3]) = V (P ∩K[x1, x2, x3]).
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In this case it follows from the elimination property of Gröbner bases that we can obtain

the implicit form of the curve or the surface given by

x1 =
p1

q1

x2 =
p2

q2

x3 =
p3

q3

by computing

{g1, . . . , gm} := GB({q1 · x1 − p1, q2 · x2 − p2, q3 · x3 − p3}) ∩K[x1, x2, x3],

where GB has to be computed using the lexical ordering determined by x1 ≺ x2 ≺ x3 ≺
y1 ≺ y2.

In particular, if a polynomial parametric surface or a rational parametric curve is given we

obtain from Theorem 3:

Corollary 1

a) (Parametrization by polynomial functions:)

If q1 = q2 = q3 = 1 then V (I) = V (P ).

b) (Rational parametrization of curves:)

If p1, p2, p3, q1, q2, q3 ∈ K[y1] then V (I) = V (P ).

Hence, the simple algorithm described above solves the implicitization problem for rational

parametric curves.

It is an easy consequence of Theorem 2 that

I ∩K[x1, x2, x3] = {0}

iff

there exists a (b1, b2) ∈ K̄2 with zero(b1, b2) = 3.

Therefore, if there exists such a (b1, b2) then every technique from elimination theory must

fail in finding an implicit representation.

Example 3 The implicit equation of the unit sphere cannot be found by computing

GB({q1 · x1 − p1, q2 · x2 − p2, q3 · x3 − p3}) ∩K[x1, x2, x3],

where the p’s and q’s are defined as in Example 1 or 2:

Since there exists a (b1, b2) ∈ K̄2 with zero(b1, b2) = 3 (see Example 2),

Ideal({q1 · x1 − p1, q2 · x2 − p2, q3 · x3 − p3}) ∩K[x1, x2, x3] = {0}

and therefore

GB({q1 · x1 − p1, q2 · x2 − p2, q3 · x3 − p3}) ∩K[x1, x2, x3] = ∅. 2
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The same problem is addressed in [3] and [9]. In these papers parametrizations of that kind

are called parametrizations with base points. Resultant techniques are used to compute

implicit representations.

In this paper we use Gröbner bases for solving the implicitization problem for rational

parametric surfaces.

Definition: Let h, g be polynomials in K[x1, x2, x3, y1] such that g has no non-trivial

factor in K[y1] and there exists a polynomial p in K[y1] with h = g · p. Then

h/y1 := g.

implicit surface (in: p1, p2, p3, q1, q2, q3; out: g)

input: p1, p2, p3 ∈ K[y1, y2], q1, q2, q3 ∈ K[y1, y2]− {0} and

pi and qi are relatively prime (i = 1, 2, 3).

output: g ∈ K[x1, x2, x3] such that if the transcendence degree of

K(
p1

q1

,
p2

q2

,
p3

q3

)

is 2 then

g /∈ K and V ({g}) = V (P ′),

where P ′ is the prime ideal in K[x1, x2, x3] with the generic point

(
p1

q1

,
p2

q2

,
p3

q3

),

and

g = 1

otherwise.

for every (i, j) ∈ {(1, 2), (1, 3), (2, 3)} do

G(i,j) := GB({fi, fj}) ∩K[x1, x2, x3, y1], where fk := qk · xk − pk (k = 1, 2, 3)

F(i,j) := {h/y1 | h ∈ G(i,j)}
G := GB(F(1,2) ∪ F(1,3) ∪ F(2,3) ∪ {f1, f2, f3}) ∩K[x1, x2, x3]

g := gcd(G)

where GB has to be computed using the lexical ordering determined by x1 ≺ x2 ≺ x3 ≺
y1 ≺ y2.
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Example 4 Again we consider the unit sphere given by

x1 =
2y2

1 + y2
1 + y2

2

x2 =
2y1y2

1 + y2
1 + y2

2

x3 =
y2

2 − y2
1 − 1

1 + y2
1 + y2

2

.

Using implicit surface we obtain

G(1,2) := {x2 + y2
1x2 − x1y1 − y3

1x1},
F(1,2) := {−x2 + x1y1},
G(1,3) := {x2

1 + 2x2
1y

2
1 − y2

1 − 1 + y4
1x

2
1 + x2

3 + y2
1x

2
3},

F(1,3) := {x2
1y

2
1 + x2

1 − 1 + x2
3},

G(2,3) := {−x2
2 − 2y2

1x
2
2 + y4

1 + y2
1 − y4

1x
2
2 − y2

1x
2
3 − y4

1x
2
3},

F(2,3) := {y2
1x

2
2 + x2

2 − y2
1 + y2

1x
2
3},

G := {x2
1 + x2

2 + x2
3 − 1},

g := x2
1 + x2

2 + x2
3 − 1, the implicit representation of the unit sphere. 2

As termination of the algorithm is obvious it remains to prove its correctness.

Proof of correctness:

Let

Ī := Ideal(F(1,2) ∪ F(1,3) ∪ F(2,3) ∪ {f1, f2, f3}),

P̄ a prime ideal in K[x1, x2, x3, y1, y2] with Ī ⊆ P̄ and P 6= P̄ and let (a1, a2, a3, b1, b2) be

the generic point of P̄ .

Assumption: dim(P̄ ) > 1.

Then,

P 6⊆ P̄ .

As I ⊆ Ī ⊆ P̄ there exists an i ∈ {2, . . . , v} with Pi ⊆ P̄ . By Theorem 2,

b1, b2 ∈ K̄.

As dim(P̄ ) > 1 there exist j, k ∈ {1, 2, 3} such that j 6= k and {aj, ak} is algebraically

independent over K. Since pj and qj are relatively prime and gcd(fj, fk) divides pj and qj,

gcd(fj, fk) = 1.

Thus, Ideal({fj, fk}) ∩ K[x1, x2, x3, y1] 6= {0} and therefore there exists a non-zero poly-

nomial f(xj, xk, y1) ∈ F(j,k). By definition of F(j,k),

f(xj, xk, b1) 6= 0.

This is a contradiction to the fact that {aj, ak} is algebraically independent over K.
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Thus, P is the only prime ideal that is a superideal of Ī and has a dimension greater than

1. Hence, Ī can be written in the form

P ∩R,

where R is an ideal in K[x1, x2, x3, y1, y2] with dim(R) < 2. Therefore,

Ī ∩K[x1, x2, x3] = (P ∩K[x1, x2, x3])∩ (R∩K[x1, x2, x3]) and dim(R∩K[x1, x2, x3]) < 2.

(3)

It follows from the elimination property of Gröbner bases that

G is a basis of Ī ∩K[x1, x2, x3].

Case:

the transcendence degree of K(
p1

q1

,
p2

q2

,
p3

q3

) is 2.

In this case P ∩ K[x1, x2, x3] is a prime ideal of dimension 2. Thus, there exists an h ∈
K[x1, x2, x3]−K with Ideal({h}) = P ∩K[x1, x2, x3]. As G ⊆ P ∩K[x1, x2, x3],

h divides gcd(G).

Let p ∈ K[x1, x2, x3] such that gcd(G) = h · p. Obviously, p divides every polynomial

in R ∩ K[x1, x2, x3]. As the dimension of R ∩ K[x1, x2, x3] is less than 2, p is a non-zero

constant. Thus,

V ({gcd(G)}) = V ({h}) = V (P ∩K[x1, x2, x3]) = V (P ′).

Case:

the transcendence degree of K(
p1

q1

,
p2

q2

,
p3

q3

) is less than 2.

In this case dim(P ∩K[x1, x2, x3]) is less than 2 and therefore, by (3), dim(Ī∩K[x1, x2, x3])

is less than 2. Hence,

gcd(G) = 1. 2

Some of the Gröbner bases computations in implicit surface can be replaced by other

elimination methods, for instance by computations of Sylvester resultants:

We can replace

G(i,j) := GB({fi, fj}) ∩K[x1, x2, x3, y1]

by

G(i,j) := {resultant(fi, fj)}, where fi and fj are considered as polynomials in y2.

Since resultants seem to have a better run-time behaviour, this could lead to a speed-up

of the algorithm.
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[6] W. Gröbner, Algebraic Geometry II (Bibliographisches Institut Mannheim, 1970).

[7] C.M. Hoffmann, Geometric and Solid Modeling: An Introduction (Morgan Kaufmann

Publishers Inc., 1989).

[8] M. Kalkbrener, Implicitization by Using Gröbner Bases, Technical Report RISC-Series
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