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Abstract

This paper proposes the Implicitly-MultiThreaded 

(IMT) architecture to execute compiler-specified specula-

tive threads on to a modified Simultaneous Multithreading 

pipeline. IMT reduces hardware complexity by relying on 

the compiler to select suitable thread spawning points and 

orchestrate inter-thread register communication. To 

enhance IMT’s effectiveness, this paper proposes three 

novel microarchitectural mechanisms: (1) resource- and 

dependence-based fetch policy to fetch and execute suit-

able instructions, (2) context multiplexing to improve utili-

zation and map as many threads to a single context as 

allowed by availability of resources, and (3) early thread-

invocation to hide thread start-up overhead by overlapping 

one thread’s invocation with other threads’ execution. 

We use SPEC2K benchmarks and cycle-accurate simu-

lation to show that an microarchitecture-optimized IMT 

improves performance on average by 24% and at best by 

69% over an aggressive superscalar. We also compare IMT 

to two prior proposals, TME and DMT, for speculative 

threading on an SMT using hardware-extracted threads. 

Our best IMT design outperforms a comparable TME and 

DMT on average by 26% and 38% respectively.

1  Introduction

Architects are now exploring thread-level parallelism 

to exploit the continuing improvements in CMOS technol-

ogy to deliver higher performance. Simultaneous Multi-

threading (SMT) [12] has been proposed to improve 

system throughput by overlapping multiple (either multi-

programmed or explicitly parallel) threads on a single 

wide-issue processor. The proposed Alpha 21464, the 

recently-announced IBM Power5, and the HyperThreaded 

Pentium 4 currently in production [5] are examples of SMT 

processors. Recently, researchers have also advocated 

using SMT’s threading support to improve a single sequen-

tial program’s execution time. Examples of these proposals 

include Threaded Multipath Execution (TME) [14] and 

Dynamically MultiThreaded (DMT) processors [1]. 

In this paper, we propose the Implicitly-Multi-

Threaded (IMT) processor. IMT executes compiler-speci-

fied speculative threads from a sequential program on a 

wide-issue SMT pipeline. IMT is based on the fundamental 

observation that Multiscalar’s execution model — i.e., 

compiler-specified speculative threads [10] — can be 

decoupled from the processor organization — i.e., distrib-

uted processing cores. Multiscalar [10] employs sophisti-

cated specialized hardware, the register ring and address 

resolution buffer, which are strongly coupled to the distrib-

uted core organization. In contrast, IMT proposes to map 

speculative threads on to generic SMT. 

IMT differs fundamentally from prior proposals, TME 

and DMT, for speculative threading on SMT. While TME 

executes multiple threads only in the uncommon case of 

branch mispredictions, IMT invokes threads in the com-

mon case of correct predictions, thereby enhancing execu-

tion parallelism. Unlike IMT, DMT creates threads in 

hardware. Because of the lack of compile-time informa-

tion, DMT uses value prediction to break data dependence 

across threads. Unfortunately, inaccurate value prediction 

incurs frequent misspeculation stalls, prohibiting DMT 

from extracting thread-level parallelism effectively. More-

over, selective recovery from misspeculation in DMT 

requires fast and frequent searches through prohibitively 

large (e.g., ~1000 entries) custom instruction trace buffers 

that are difficult to implement efficiently. 

In this paper, we find that a naive mapping of com-

piler-specified speculative threads onto SMT performs 

poorly. Despite using an advanced compiler [13] to gener-

ate threads, a Naive IMT (N-IMT) implementation per-

forms only comparably to an aggressive superscalar. N-

IMT’s key shortcoming is its indiscriminate approach to 

fetching/executing instructions from threads, without 

accounting for resource availability, thread resource usage, 

and inter-thread dependence information. The resulting 

poor utilization of pipeline resources (e.g., issue queue, 

load/store queues, and register file) in N-IMT negatively 

offsets the advantages of speculative threading. 

We also identify three key microarchitecture optimiza-

tions necessary to alleviate the inefficiencies in N-IMT, 



and address them in our proposal, called Optimized IMT 

(O-IMT). These novel optimizations are:

• Novel fetch policy to bring suitable instructions: 

Because the choice of instruction fetch policy funda-

mentally impacts performance, O-IMT carefully con-

trols fetch via a resource- and dependence-based fetch 

policy. We propose a highly accurate (~97%) dynamic 

resource predictor to gauge resource (e.g., physical 

registers) availability and avoid thread misspeculation 

due to lack of resources midway through execution. 

Moreover, we propose a inter-thread dependence heu-

ristic to avoid delaying earlier threads’ instructions in 

favor of fetching from later threads that are data-

dependent on earlier threads. In contrast, TME, DMT, 

and N-IMT use variations of ICOUNT [12] or round-

robin fetch policies that do not account for resource 

availability and result in suboptimal performance. 

• Multiplexing hardware contexts to bring more suit-

able instructions: As in TME and DMT, N-IMT 

assigns a single thread to each SMT context [12] con-

sisting of an active list and a load/store queue. Because 

many programs have short-running threads and SMT 

implementations are likely to have only a few (e.g., 2-

8) contexts, such an assignment severely limits the 

number of instructions in flight. Unfortunately, a brute-

force increase in thread size would result in an increase 

in misspeculation frequency and the number of instruc-

tions discarded per misspeculation [13]. To obviate the 

need for larger threads, O-IMT multiplexes the hard-

ware contexts by mapping and simultaneously execut-

ing as many in-program-order threads onto a single 

context as allowed by the resources. 

• Hiding thread start-up delay to increase overlap 

among suitable instructions: Speculatively-threaded 

processors incur the delay of setting up register rename 

tables at thread start-up to ensure proper register value 

communication between earlier and newly-invoked 

threads. Many prior proposals for speculative thread-

ing (e.g., DMT and Multiscalar) do not explicitly 

address the overhead due to thread start-up delay. TME 

and N-IMT both account for this overhead and incur 

extra start-up delay prior to thread invocation. In con-

trast, O-IMT hides the delay by overlapping rename 

table set-up with previous threads’ execution, because 

the compiler-specified inter-thread register dependence 

information is available well before the thread starts. 

Using the SPEC2K benchmarks, we show that N-IMT 

actually degrades performance in integer benchmarks on 

average by 3%, and improves performance negligibly in 

floating-point benchmarks relative to a superscalar with 

comparable hardware resources. In contrast, O-IMT 

achieves average speedups of 20% and 29% in the integer 

and floating-point benchmarks, respectively, over a com-

parable superscalar. Our results also indicate that TME 

and DMT are on average not competitive relative to a 

comparable superscalar.

The rest of this paper is organized as follows. 

Section 2, briefly describes compiler-specified threading. 

Section 3, describes our proposals for N-IMT and O-IMT. 

In Section 4, we present experimental results. We discuss 

related work in Section 5, and conclude in Section 6.

2  Compiler-Specified Speculative Threads

Speculatively-threaded architectures may use hard-

ware [1,6] or compiler [10,4,11,8] to partition a sequential 

program into threads. Architectures extracting speculative 

threads in hardware have the key advantage that they offer 

binary compatibility with superscalar. These architectures, 

however, may incur high thread speculation overhead 

because: (1) hardware has relatively limited scope in 

selecting suitable threads and thread spawning points, (2) 

hardware typically precludes thread-level code optimiza-

tion, and (3) these architectures primarily rely on value 

prediction (with potentially low accuracy) to implement 

inter-thread communication. 

Instead, IMT uses Multiscalar’s compiler-specified 

speculative threads. The Multiscalar compiler employs 

several heuristics to optimize thread selection [13]. The 

compiler maximizes thread size while limiting the number 

of thread exit points to a pre-specified threshold. To the 

extent possible, the compiler exploits loop parallelism by 

capturing entire loop bodies into threads, avoids inter-

thread control-flow mispredictions by enclosing both if 

and else paths of a branch within a thread, and reduces 

inter-thread register dependences. Typical threads contain 

10-20 instructions in integer programs, and 30-100 

instructions in floating-point programs. These instruction 

counts give an idea of the order of magnitude of resources 

needed and overheads incurred per thread, and help under-

stand the optimizations introduced in this paper.

The compiler provides summary information of a 

thread’s register and control-flow dependences in the 

thread descriptor. In the descriptor, the compiler identi-

fies: (1) the set of live registers entering the thread via the 

use mask, and the set of registers written in at least one of 

the control-flow paths through the thread via the create

mask; and (2) the possible control-flow exits out of the 

thread via the targets. 

The compiler also annotates the instructions to spec-

ify each instance of the dependence summarized in the 

descriptor. Figure 1 shows an example thread. An instruc-

tion that is the last write to an architectural register in all 

the possible control flow paths is annotated with forward

bits (labeled “F”) and is referred to as a forward instruc-

tion. There are cases where forward bits are not sufficient. 



For instance, in the figure, the write to r1 in B1 is not the 

last write in the path B1B2B4 but it is in the path B1B3B4. 

To handle this case, the compiler inserts a release instruc-

tion in B3. In Section 3.2, we explain how the hardware 

uses forward and release instructions to implement inter-

thread register communication. Instructions that lead to a 

target are annotated with stop bits (labeled “S”), signaling 

the end of the thread. 

Figure 1: Compiler-specified speculative threads.
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3  Implicitly-Multithreaded Processors

We propose the Implicitly-MultiThreaded (IMT) pro-

cessor to utilize SMT’s support for multithreading by exe-

cuting speculative threads. Figure 2 depicts the anatomy of 

an IMT processor derived from SMT. IMT uses the 

rename tables for register renaming, the issue queue for 

out-of-order scheduling, the per-context load/store queue 

(LSQ) and active list for memory dependences and 

instruction reordering prior to commit. As in SMT, IMT 

shares the functional units, physical registers, issue queue, 

and memory hierarchy among all contexts. 

IMT exploits implicit parallelism, as opposed to pro-

grammer-specified, explicit parallelism exploited by con-

ventional SMT and multiprocessors. Like Multiscalar, 

IMT predicts the threads in succession and maps them to 

execution resources, with the earliest thread as the non-

speculative (head) thread, followed by subsequent specu-

lative threads [10]. IMT honors the inter-thread control-

flow and register dependences specified by the compiler. 

IMT uses the LSQ to enforce inter-thread memory depen-

dences. Upon completion, IMT commits the threads in 

program order. 

We present two IMT variations: (1) a Naive IMT (N-

IMT) that performs comparably to an aggressive supersca-

lar, and (2) an Optimized IMT (O-IMT) that uses novel 

microarchitectural techniques to enhance performance. 

Figure 2: The anatomy of an IMT processor.
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3.1  Thread Invocation

Like Multiscalar, both IMT variants invoke threads in 

program order by predicting the next thread from among 

the targets of the previous thread (specified by the thread 

descriptor) using a thread predictor. A descriptor cache 

(Figure 2) stores recently-fetched thread descriptors. 

Although threads are invoked in program order, IMT may 

fetch later threads’ instructions out of order prior to fetch-

ing all of earlier threads’ instructions, thereby interleaving 

instructions from multiple threads. To decide which thread 

to fetch from, IMT consults the fetch policy.

3.1.1  Resource Allocation & Fetch Policy

Our base IMT processor, N-IMT, uses an unmodified 

ICOUNT policy [12], in which the thread with the least 

number of instructions in flight is chosen to fetch instruc-

tions from every cycle. The rationale is that the thread that 

has the fewest instructions is the one whose instructions 

are flowing through the pipeline with the fewest stalls. 

We also make the observation that the ICOUNT pol-

icy may be suboptimal for a processor in which threads 

exhibit control-flow and data dependence and resources 

are relinquished in program (and not thread) order. For 

instance, later (program-order) threads may result in 

resource (e.g., physical registers, issue queue and LSQ 

entries) starvation in earlier threads, forcing the later 

threads to squash and relinquish the resources for use by 

earlier threads. Unfortunately, frequent thread squashing 

due to indiscriminate resource allocation without regards 

to demand incurs high overhead. Moreover, treating (con-

trol- and data-) dependent and independent threads alike is 

suboptimal. Fetching and executing instructions from later 

threads that are dependent on earlier threads may be 

counter-productive because it increases inter-thread 

dependence delays by taking away front-end fetch and 

processing bandwidth from earlier threads. Finally, depen-

dent instructions from later threads exacerbate issue queue 

contention because they remain in the queue until the 

dependences are resolved. 

To mitigate the above shortcomings, O-IMT employs 

a novel resource- and dependence-based fetch policy that 

is bimodal. In the “dependent mode”, the policy biases 



fetch towards the non-speculative thread when the threads 

are likely to be dependent, fetching sequentially to the 

highest extent possible. In the “independent mode”, the 

policy uses ICOUNT when the threads are potentially 

independent, enhancing overlap among multiple threads. 

Because loop iterations are typically independent, the pol-

icy employs an Inter-Thread Dependence Heuristic 

(ITDH) to identify loop iterations for the independent 

mode, otherwise considering threads to be dependent. 

ITDH predicts that subsequent threads are loop iterations 

if the next two threads’ start PCs are the same as the non-

speculative (head) thread’s start PC. 

To reduce resource contention among threads, the pol-

icy employs a Dynamic Resource Predictor (DRP) to ini-

tiate fetch from an invoked thread only if the available 

hardware resources exceed the predicted demand by the 

thread. The DRP dynamically monitors the threads activ-

ity and allows fetch to be initiated from newly invoked 

threads when earlier threads commit and resources 

become available. 

Figure 3 (a) depicts an example of DRP. O-IMT 

indexes into a table using the start PC of a thread. Each 

table entry holds the numbers of active list and LSQ slots, 

and physical registers used by the thread’s last four execu-

tion instances. The pipeline monitors a thread’s resource 

needs, and upon thread commit, updates the thread’s DRP 

entry. DRP supplies the maximum among the four 

instances for each resource as the prediction for the next 

instance’s resource requirement. In Section 4.2, we show 

results indicating that overestimating resource usage using 

the maximum value works well in practice due to low 

variation in resource needs across nearby instances of a 

thread. 

O-IMT’s fetch policy increases instruction throughput 

by choosing suitable instructions, thus making room for 

earlier threads when necessary. The policy alleviates inter-

thread data dependence by processing producer instruc-

tions earlier and decreasing instruction execution stalls, 

thereby reducing pipeline resource contention. 

In contrast to O-IMT, prior proposals for speculative 

threading using SMT both use variants of conventional 

fetch policies. TME uses biased-ICOUNT, a variant of 

ICOUNT that does not consider resource availability and 

thread-level independence. DMT’s fetch policy statically 

partitions two fetch ports, and allocates one port for the 

non-speculative thread and the other for speculative 

threads in a round-robin manner. However, DMT does not 

suffer from resource contention because the design 

assumes prohibitively large custom instruction trace buff-

ers (holding thousands of instructions) allowing for 

threads to make forward progress without regards to 

resource availability and thread-level independence. 

Unfortunately, large frequent associative searches through 

such buffers are slow and impractical. 

3.1.2  Multiplexing Hardware Contexts

Much like prior proposals, N-IMT assigns a single 

thread to a hardware context. Because many programs 

have short threads [13] and real SMT implementations are 

bound to have only a few (e.g., 2-8) contexts, this 

approach often leads to insufficient instruction overlap. 

Larger threads, however, increase both the likelihood of 

dependence misspeculation [13] and the number of 

instructions discarded per misspeculation, and cause spec-

ulative buffer overflow [4]. 

Instead, to increase instruction overlap without the 

unwanted side-effects of large threads, O-IMT multiplexes

the hardware contexts by mapping as many threads as 

allowed by the resources in one context (typically 3-6 

threads for SPEC2K). Context multiplexing requires for 

each context only an additional fetch PC register and 

rename table pointer per thread for a given maximum 

number of threads per context. Context multiplexing dif-

fers from prior proposals for mapping multiple threads on 

to a single processing core [11,3] to alleviate load imbal-

ance, in that multiplexing allows instructions from multi-

ple threads within a context to execute and share resources 

simultaneously.

Figure 3: Using DRP (a) and context multiplexing (b).
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Two design complexities arise due to sharing 

resources in context multiplexing. First, conventional 

active list and LSQ designs assume that instructions enter 

these queues in (the predicted) program order. Such an 

assumption enables the active list to be a non-searchable 

(potentially large) structure, and allows honoring memory 

dependences via an ordered (associative) search in the 

LSQ. If care is not taken, multiplexing would invalidate 

this assumption if multiple threads were to place instruc-

tions out of program order in the shared active list and 

LSQ. Such out-of-order placement would require an asso-

ciative search on the active list to determine the correct 



instruction(s) to be removed upon commit or misspecula-

tion. In the case of the LSQ, the requirements would be 

even more complicated. A memory access would have to 

search through the LSQ for an address match among the 

entries from the accessing thread, and then (conceptually) 

repeat the search among entries from the thread preceding 

the accessing thread, working towards older threads. 

Unfortunately, the active list and LSQ cannot afford these 

additional design complications because active lists are 

made large and therefore non-searchable by design and the 

LSQ’s ordered, associative search is already complex and 

time-critical. 

Second, allowing a single context to have multiple 

out-of-program-order threads complicates managing inter-

thread dependence. Because two in-program-order threads 

may be mapped to different contexts, honoring memory 

dependences would require memory accesses to search 

through multiple contexts thereby prohibitively increasing 

LSQ search time and design complexity. 

Using DRP, O-IMT avoids the first design complexity 

by placing instructions in the active list and LSQ in pro-

gram order. O-IMT keeps instructions in both structures in 

program order while fetching instructions out of order, by 

using DRP’s resource demand estimates for a thread and 

creating a gap (as in [2]) in the active list and LSQ for the 

thread’s yet-to-be-fetched instructions. The next thread 

(invoked in program order) creates its gap after the previ-

ous thread’s gaps, maintaining program order among the 

context’s threads. Because the gap lengths are estimates 

based on previous thread execution instances, it is possible 

that the gaps fill up before all the thread’s instructions are 

fetched. In that case, O-IMT simply squashes later threads 

in the context to make room for the earlier thread. As such, 

DRP helps dynamically partition a context’s active list and 

LSQ so that instructions from one thread do not interfere 

with those of other threads within the context.

O-IMT avoids the second design complexity by map-

ping threads to a context in program order. Inter-thread 

and intra-thread dependences within a single context are 

treated similarly. Figure 3 (b) shows how in-program-

order threads X and X+1 are mapped to a context. In addi-

tion to program order within contexts, O-IMT tracks the 

global program order among the contexts themselves for 

precise interrupts. 

3.2  Register Renaming

Superscalar’s register rename table relies on in-order 

instruction fetch to link register value producers to con-

sumers. IMT processors’ out-of-order fetch raises two 

issues in linking producers in earlier threads to consumers 

in later threads. First, IMT has to ensure that the rename 

maps for earlier threads’ source registers are not clobbered 

by later threads. Second, IMT must guarantee that later 

threads’ consumer instructions obtain the correct rename 

maps and wait for the yet-to-be-fetched earlier threads’ 

producer instructions. While others [1,6] employ hard-

ware-intensive value prediction to address these issues 

potentially incurring frequent misspeculation and recovery 

overhead, IMT uses the create and use masks (Section 2) 

combined with conventional SMT rename tables. 

Both IMT variants address these issues as follows. 

Upon thread start-up (and prior to instruction fetch), the 

processor copies the rename maps of the registers in create 

and use masks from a master rename table, to a thread’s 

local rename table.1 To allow for invoking subsequent 

threads, the processor pre-allocates physical registers and 

pre-assigns mappings for all the create-mask registers in a 

pre-assign rename table. Finally, the processor updates the 

master table with the pre-assigned mappings and marks 

them as busy to reflect the yet-to-be-created register val-

ues. Therefore, upon thread invocation the master table 

correctly reflects the register mappings that a thread 

should either use or wait for.

Instructions use the local table both to get their source 

rename maps and to put their destination rename maps. 

Instructions that produce and consume values (locally) 

within a thread allocate new mappings in the local table. 

Instructions that are data-dependent on earlier-threads’ 

instructions wait until the corresponding pre-assigned 

physical register is ready. Forward and release instructions 

(Section 2) wake up waiting instructions in subsequent 

threads through the pre-assigned physical registers; for-

ward instructions write their results in the pre-assigned 

physical registers, and release instructions copy values 

from the physical registers given by the local table to the 

pre-assigned physical registers. By copying the create 

mask maps at thread start-up, the local table holds the lat-

est rename map for the create-mask registers irrespective 

of whether the thread actually writes to the create-mask 

registers or not. 

3.2.1  Hiding the Thread Start-up Delay

Even though the next thread’s start PC is known, 

fetching instructions from the next thread has to wait until 

the rename tables are set up. This waiting diminishes the 

full benefit of the fetch policy and context multiplexing. 

Updating the local, master and pre-assign tables must 

complete before a thread’s instructions can be renamed. 

The updating rate of rename tables is limited by the table 

bandwidth. In conventional pipelines, this bandwidth 

matches the pipeline width and is sufficient for the peak 

demand. In contrast, IMT’s requirement of updating the 

1. Conventional superscalar pipelines similarly checkpoint rename 

tables upon branch prediction to accelerate misprediction recovery.



tables creates a burst demand that may exceed the band-

width and may take several (e.g., 2-4) cycles to complete. 

Our base IMT processor, N-IMT, incurs the thread 

start-up overhead immediately prior to fetching instruc-

tions. O-IMT, however, prevents the bandwidth constraint 

from delaying thread start-up. While the current thread’s 

instructions are fetched, O-IMT invokes the next thread, 

obtains the next thread’s descriptor from the descriptor 

cache, and sets up the rename tables well before needing 

to fetch the next thread’s instructions. O-IMT utilizes the 

rename table bandwidth unused by the current thread’s 

instructions to update the three tables. For instance if in a 

given cycle only six instructions are renamed but the 

rename tables have the bandwidth to rename eight instruc-

tions, O-IMT uses the unused bandwidth to modify the 

tables. Thus, O-IMT overlaps a thread’s start-up with pre-

vious threads’s execution, hiding the thread start-up delay. 

Thread start-up delay also exists in Multiscalar, TME, 

and DMT. In Multiscalar, the next thread needs to set up 

its rename tables so that the next thread can appropriately 

wait for register values from previous threads. However, 

Multiscalar does not address this issue. TME incurs extra 

cycles to set up the rename tables, and employs an extra 

dedicated bus for a bus-based write-through scheme to 

copy rename maps. DMT copies not only register values 

but also the entire return address stack at the start of a 

thread. DMT does not concretely address the delay of the 

copying, and instead assumes the delay away using extra 

wires to do the copying.

3.3  Load/Store Queues

N-IMT imposes program order in the LSQs to enforce 

memory dependences within and across threads. A 

thread’s memory search its context’s LSQ to honor mem-

ory dependences. If there is no match in the local LSQ, 

accesses proceed to search other contexts’ LSQs. The non-

speculative thread’s loads do not search other contexts, but 

its stores search later contexts to identify and squash pre-

mature loads. Speculative threads’ loads search in earlier 

contexts for previous matching stores, and stores search in 

later contexts for premature loads. Thus, N-IMT uses the 

LSQ to achieve the same functionality as ARB’s [10].

Searching other contexts’ LSQs takes extra cycles 

which may impact load hit latency. In addition, this 

searching makes the hit latency variable, which may com-

plicate early scheduling of instructions dependent on the 

load. Fortunately, the non-speculative thread’s loads, 

which are the most critical accesses, do not incur any extra 

searching, and hence, do not have variable hit latency 

problems. In speculative threads, IMT schedules load-

dependent instructions only after loads finish searching. 

Thus, IMT gives up early scheduling of load-dependent 

instructions to avoid scheduling complications. The 

latency incurred by speculative threads’ loads and their 

dependent instructions is hidden under instruction-level 

and thread-level parallelism. Upon a memory dependence 

violation, IMT squashes the offending threads. IMT uses 

memory dependence synchronization [7] — e.g., squash 

buffer [10] — to avoid frequent dependence violation. 

4  Results

We have built a cycle-accurate simulator of an out-of-

order SMT pipeline with extensions to evaluate a base 

superscalar processor (using a single SMT context), and 

the three speculatively-threaded processors, IMT, DMT, 

and TME. We use the Multiscalar compiler [13] to gener-

ate optimized MIPS binaries. The superscalar, TME, and 

DMT experiments use the plain MIPS binaries (without 

Multiscalar annotations). The IMT binaries include Multi-

scalar’s thread specifications and register communication 

instructions. 

Table 1: System configuration parameters.

Processing Units System

Issue width

Issue queue 

8

64 entries

DRP table 64 entries 
(3 x 256 bytes) 

Number of 
contexts

8 ITDH 4 program 
counters

Branch unit

BTB

Miss Penalty

hybrid GAg & PAg 
4K-entries each, 
1K-entry 4-way 

7 cycles

L1 cache

2-port i-cache 
&
4-port d-cache

64K 2-way,
pipelined 

2-cycle hit,
32-byte block

Functional 
units

8 integer, 
8 pipelined 

floating-point

L2 cache 2M 8-way,
pipelined

10-cycle hit,
64-byte block

Register file 356 INT/ 356 FP Memory 80 cycles

Per Context

Active list 

LSQ 

128 entries

32 entries,
4 ports

Squash buffer

Thread 

desc. cache

64 entries

16K 2-way, 
2-cycle hit

Table 1 depicts the system configuration parameters 

we assume for this study. Our base pipeline assumes an 

eight-wide issue out-of-order SMT with eight hardware 

contexts. The pipeline assumes two i-cache ports and the 

branch predictor allows up to two predictions per context 

per cycle. In addition to the base pipeline, O-IMT also 

uses a 64-entry DRP table and a 4-entry ITDH table to 

optimize fetch. 

To gauge speculative threading’s potential conserva-

tively, we compare IMT’s performance against an aggres-

sive superscalar implementation that assumes the same 

resources available to a single context within the SMT 

pipeline including the high-bandwidth branch prediction 

and fetch, and the large register file. We also assume a 



large active list of 1024 entries, because active lists are 

FIFO structures and are inherently scalable.

Table 2 shows the SPEC2K applications we use in 

this study, and the branch prediction accuracy and super-

scalar IPC we achieve per application. We use the refer-

ence input set in all of the benchmarks. To allow for 

practical simulation turnaround times, our simulator skips 

the first 3 billion instructions before simulating a total of 

500 million instructions (plus overhead instructions, in 

IMT’s case). We use total number of cycles as our base 

metric to compare performance. In the case of IMT, the 

cycle counts include the overhead instructions. 

The rest of the results are organized as follows. We 

first compare the performance of N-IMT and O-IMT to 

superscalar, and break down the performance bottlenecks 

O-IMT optimizes. Then we present results on the effec-

tiveness of O-IMT’s microarchitectural optimizations. 

Then we present O-IMT’s ability to increase issue queue 

and LSQ efficiency as compared to superscalar using 

thread-level parallelism. Finally, we compare and contrast 

O-IMT with TME and DMT, two prior proposals for spec-

ulative threading using SMT hardware.

Table 2: Applications, and their branch 

misprediction rates and superscalar IPCs.

INT 

Bench.

Branch 

misp. (%)
 IPC

FP 

Bench.

Branch 

misp. (%)
 IPC

bzip 5.5 1.6 ammp 1.1 1.1

gap 2.8 3.0 applu 0.1 2.4

gcc 4.7 1.8 art 0.6 0.4

gzip 6.2 1.7 equake 0.5 1.0

mcf 7.6 0.3 mesa 2.0 2.6

parser 3.3 1.2 mgrid 0.8 2.3

perl 5.3 1.7 sixtrack 1.9 2.4

twolf 10.9 1.2 swim 0.1 0.9

vortex 0.6 1.9 wupwise 0.2 2.4

vpr 6.8 1.1

4.1  Base System Results

Figure 4 motivates the need for optimizing the specu-

lative threading performance on SMT hardware. The fig-

ure presents execution times under N-IMT and O-IMT 

normalized to our base superscalar. The figure indicates 

that N-IMT’s performance is actually inferior to supersca-

lar for integer benchmarks. N-IMT reduces performance 

in integer benchmarks by as much as 24% and on average 

by 3% as compared to superscalar. Moreover, while the 

results for floating-point benchmarks vary, on average N-

IMT only improves performance slightly over superscalar 

for these benchmarks. The figure also indicates that 

microarchitectural optimizations substantially benefit 

compiler-specified threading, enabling O-IMT to improve 

performance over superscalar by as much as 69% and 65% 

and on average 20% and 29% for integer and floating-

point benchmarks respectively.

Figure 4: Performance comparison of N-IMT and O-IMT normalized to the baseline superscalar.
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Figure 5 compares the key sources of execution over-

head in superscalar, N-IMT and O-IMT. The breakdown 

includes the overhead of squashing instructions due to 

branch misprediction (both within and across threads) and 

resource pressure (in N-IMT and O-IMT), register data 

dependence stalls, memory waiting stalls (due to data 

cache misses), underutilized instruction fetch bandwidth, 

and runtime instruction overhead for IMT machines. 

Not surprisingly, the dominant execution time compo-

nent in superscalar that speculative threading improves is 

the register data dependence stalls. The IMT machines 

extract parallelism across threads and increase the likeli-

hood inserting suitable instructions (from across the 

threads) into the pipeline, thereby reducing data depen-

dence stalls. Speculative threading also helps overlap 

latency among cache misses in benchmarks with available 

memory parallelism across threads, reducing memory 

stalls as compared to superscalar. These benchmarks most 

notably include perl, applu, mgrid, and swim. Finally, the 

cycles spent executing instructions (denoted by “useful 

run”) across the machines are comparable, indicating that 

the instruction execution overhead of compiler-specified 

threading is negligible.



Figure 5: Breakdown of execution into instruction execution and pipeline stalls.
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There are a number of benchmarks in which N-IMT 

actually reduces performance as compared to superscalar. 

In gap, vpr, ammp, and mesa, N-IMT simply fetches 

instructions indiscriminately without regards to resource 

availability and from the wrong threads (using round-

robin) resulting in high misspeculation/squash frequency. 

In mcf, vpr, and art, N-IMT increases the data dependence 

or memory stalls by bringing unsuitable instructions into 

the pipeline. In mcf N-IMT increases the L1 data-cache 

miss ratio as compared to superscalar because later 

threads’ cache accesses conflict with those from the non-

speculative thread. In art, N-IMT increases the L1 data-

cache miss ratio by delaying the issue of data cache misses 

from the non-speculative thread. Finally, in bzip N-IMT 

incurs a high thread start-up delay and increases the frac-

tion of stalls due underutilized fetch.

The graphs also indicate that O-IMT substantially 

reduces the stalls as compared to N-IMT. O-IMT’s 

resource- and dependence-based fetch policy and context 

multiplexing reduce data dependence and memory stalls 

by fetching and executing suitable instructions. Accurate 

resource allocation minimizes the likelihood of misspecu-

lation and reduces squash stalls. Finally, hiding the thread 

start-up delay reduces the likelihood of underutilized fetch 

cycles by increasing the overlap among instructions. The 

combined effect of these optimizations results in superior 

performance in O-IMT as compared to superscalar and N-

IMT. Section 4.2 presents detail analysis on these tech-

niques’ contributions to O-IMT’s performance. 

Figure 6: Dynamic vs. static resource partitioning.
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4.2  Optimizing Thread-Level Speculation

Resource Allocation & Prediction. Figure 6 illus-

trates the need for dynamic resource allocation, and the 

impact of DRP’s accurate prediction on performance in O-

IMT. The figure compares performance under dynamic 

partitioning using DRP against static partitioning for LSQ 

entries (left) and the register file (right). In the register file 

case, the figure also plots demand-based allocation of 

entries by threads, allowing for threads to allocate regis-

ters upon demand without partitioning or reservation. The 

graphs plot average performance (for integer and floating-

point benchmarks) as a fraction of that in a system with 

unlimited resources. Context multiplexing allows more 

threads per context, thereby requiring a different (optimal) 

number of threads depending on the availability of 

resources. In these graphs, we plot the optimal number of 

threads (denoted by the letter T) for every design point on 

the x-axis. 

The graphs on the left indicate that DRP successfully 

eliminates all stalls related to a limited number of LSQ 

entries in integer benchmarks with as few as 16 LSQ 

entries per context. In contrast, a static partitioning scheme 

requires as many as 64 LSQ entries to achieve the same 

results. Similarly, in floating-point benchmarks, DRP can 

eliminate virtually all LSQ stalls with 32 entries per con-

text, whereas static partitioning would require two times 

as many entries per context. Moreover, static partitioning 

can have a severe impact on benchmark performance, 



reducing performance on average by 40% given 16 entries 

per context.

The graphs on the right indicate that the results for 

allocating registers are more dramatic. DRP allocation of 

registers can achieve the best performance with four times 

fewer registers in integer and floating-point benchmarks. 

Moreover, static partitioning of registers for smaller regis-

ter file sizes (>256) virtually brings execution to a halt and 

limits performance. Demand-based allocation of registers 

substantially improves performance over static partition-

ing, allowing threads to share a large pool of registers 

effectively even with as few as 128 registers per integer 

and floating-point register files. Demand-based allocation, 

however, only reaches within 10% of DRP-based alloca-

tion and, much like static partitioning, requires four times 

as many registers to bridge the performance gap with DRP. 

Demand-based allocation’s performance improves gradu-

ally beyond 256 registers. Register demand varies drasti-

cally across threads resulting in a slow drop in 

misspeculation frequency, and consequently gradual 

improvement in performance, with an increase in register 

file size. 

Table 3: Accuracy of dynamic resource prediction and allocation.

Benchmarks

LSQ Registers Active List

acc(%) avg. used avg. over acc(%) avg. used avg. over acc(%) avg. used avg. over 

integer 99.2 7.4 0.8 97.5 15.9 3.0 98.9 17.0 2.1

floating-point 99.6 19.7 1.8 98.4 29.8 2.9 99.7 43.9 1.8

Table 3 presents statistics on the accuracy of DRP for 

the dynamic allocation of registers, active list and LSQ 

entries. Unfortunately, demand for resources actually 

slightly varies even across dynamic instances of the same 

(static) thread. Our predictors learn and predict the worst-

case demand on a per-thread basis, thereby opting for 

over-estimating the demand in the common case. Alterna-

tively, predictors that would target predicting the exact 

demand for resources may frequently under-estimate, 

thereby causing later threads to squash and release 

resources for earlier threads (Section 3.1). The table 

depicts the fraction of the time and the amount by which 

our DRP on average over-estimates demand. The results 

indicate that predicting based on the demand for the last 

four executed instances of a thread leads to high accuracy 

for (over-)estimating the resources. More importantly, the 

average number by which the predictors over-estimate is 

relatively low, indicating that there is little opportunity lost 

due to over-estimation. 
Resource- & Dependence-Based Fetch Policy. O-

IMT’s fetch policy gives the priority to the non-specula-

tive (head) thread and only fetches from other threads 

when: (1) ITDH indicates the likelihood of parallelism and 

the availability of suitable instructions, and (2) DRP indi-

cates the availability of resources based on the predicted 

demand. In contrast, a round-robin policy (used in DMT) 

would let later dependent threads hog the resources while 

earlier threads attempt to make forward progress, poten-

tially reducing performance. Similarly, an ICOUNT policy 

[12] (used in SMT) that favors a thread with the fastest 

issue rate without regards to resource usage or dependence 

may indiscriminately allocate resources to speculative 

threads, leading to resource bottlenecks. Finally, a con-

stant bias in the non-speculative thread’s fetch priority in a 

biased-ICOUNT policy [14] (used in TME) may improve 

performance only slightly when resource usage and depen-

dence across threads drastically vary.

Figure 7: The impact of fetch policy.
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Figure 7 shows O-IMT’s performance under four dif-

ferent fetch policies. The figure plots three priority-based 

fetch policies, ICOUNT, biased-ICOUNT, and resource- 

and dependence-based fetch policy. The graphs plot the 

average performance improvement for integer and float-

ing-point benchmarks. The figure indicates that indeed in 

integer benchmarks, ICOUNT reduces performance on 

average over round-robin, because it allows speculative 

threads issuing at a high rate to inadvertently fetch, allo-

cate resources, and subsequently squash. Biased-ICOUNT 

addresses this shortcoming in ICOUNT by biasing the pri-

ority towards the non-speculative thread by a constant 

value, and improving performance over round-robin. O-

IMT’s resource- and dependence-based fetch policy sig-

nificantly improves performance over round-robin by pre-

venting later threads from fetching unless: (1) there are 

resources available, and (2) the threads are loop iterations 

and likely to be independent. 

The figure also indicates that the floating-point 

benchmarks actually slightly benefit from ICOUNT and 

biased-ICOUNT. The floating-point applications exhibit a 

high fraction of thread-level parallelism and independence 

across threads. As in SMT, ICOUNT allows for the 



threads making the fastest rate of progress to proceed, 

improving performance over a round-robin policy. Biased-

ICOUNT reduces the likelihood of misspeculation due to 

resource pressure, and as such improves performance over 

ICOUNT. O-IMT’s fetch policy performs best by allowing 

the most suitable instructions to flow through the pipeline.

Figure 8: The impact of context multiplexing.
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Context Multiplexing. Multiplexing offers two key 

advantages for applications with short threads. Multiple 

threads per context help increase the number of suitable 

in-flight instructions. Alternatively, multiplexing makes 

unused contexts available to threads across multiple appli-

cations in a multiprogrammed (SMT) environment. 

Figure 8 illustrates the impact of multiplexing on O-IMT’s 

performance. To accurately gauge the overall impact on 

performance with an increase in available resources, we 

also vary the register file size linearly from 132 to 356 

(adding 32 registers to the base case with every context) 

when varying the number of contexts from one to eight. 

The figure indicates that without multiplexing, neither 

integer nor floating-point benchmarks can on average 

reach best achievable performance even with eight hard-

ware contexts. Moreover, performance substantially 

degrades (to as low as 35% in integer applications) when 

reducing the number of contexts.

Multiplexing’s performance impact is larger with 

fewer contexts because context resources are used more 

efficiently. Multiplexing best benefits integer benchmarks 

with short-running threads allowing for two contexts (e.g., 

as in a HyperThreaded Pentium 4 [5]) to outperform eight 

contexts without multiplexing. Multiplexing also benefits 

floating-point benchmarks, reducing the required number 

of contexts. Floating-point benchmarks’ performance, 

however, scales well with an increase in the number of 

contexts even without multiplexing due to these bench-

marks’ long-running threads. 

Hiding the Thread Start-up Delay. Figure 9 illus-

trates the impact of thread start-up delay on O-IMT’s per-

formance. The graphs represent performance for start-up 

latency of two and four cycles as a fraction of that in an 

ideal system with no start-up delay. The figure indicates 

that a higher start-up delay of four cycles on average can 

reduce performance by 9% in integer benchmarks. 

Because of their long-running threads, the floating-point 

benchmarks can amortize a higher start-up delay, and as 

such show less performance sensitivity to start-up delay. 

In contrast, O-IMT’s mechanism for overlapping thread 

start-up on average almost achieves ideal performance 

(incurring no start-up overhead). 

Figure 9: The impact of start-up delay.
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4.3  Issue Queue & LSQ Performance Sensitivity

In SMT/superscalar pipelines, the issue queue and 

LSQ(s) sizes are often the key impediments to perfor-

mance scalability [9]. Thread-level speculation helps 

increase the effectiveness of these queues of a given size 

by allowing suitable instructions from across the threads to 

enter the queues. Figure 10 illustrates improvements in 

superscalar and O-IMT performance with increasing num-

ber of entries in the issue queue and LSQ. The graphs indi-

cate that as compared to a superscalar with a 32/16 entry 

queue pair, O-IMT can achieve the same performance with 

half as many queue entries. Because issue queue/LSQ are 

often on the pipeline’s critical path, O-IMT can actually 

help reduce the critical path and increases clock speed by 

requiring smaller queues. 

Figure 10: Issue queue/LSQ sensitivity.
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The graphs also indicate that for integer applications, 

performance levels off with 64/32 entry queue pairs, with 

up to 50% performance improvement over a 16/8 entry 

queue pair. O-IMT maintains a 25% additional improve-

ment in performance over superscalar by extracting 



thread-level parallelism. Moreover, superscalar’s perfor-

mance never reaches that of O-IMT’s even with 256/128 

entry queues. High branch misprediction frequency in 

integer applications ultimately limits performance even 

with a larger issue queue/LSQ. In O-IMT, a mispredicted 

branch within a thread only squashes instructions from 

that thread, thereby allowing suitable instructions from 

future threads to remain in the pipeline while a branch 

from an earlier thread mispredicts.

In contrast, superscalar’s performance continues to 

scale for floating-point applications with higher levels of 

ILP, up to the 256/128 entry queues. O-IMT significantly 

enhances queue efficiency over superscalar and achieves 

superscalar’s performance at the 256/128 design point 

with less than a quarter of the queue entries. Moreover, O-

IMT’s performance levels off at the 64/32 design point, 

obviating the need for large queues to extract the available 

parallelism. 

4.4  Comparison to TME & DMT

In this section, we compare O-IMT’s performance 

against TME and DMT. Our models for TME and DMT 

are quite aggressive allowing for a conservative compari-

son against these machines. We assume no contention for 

TME’s mapping synchronization bus [23]. To favor DMT, 

we assume that DMT has a 256-entry custom trace buffer 

per context (for a total of 2048 entries) with zero-cycle 

access, zero-cycle thread spawning, and selective recovery 

(squash) with zero-cycle penalty. As proposed, TME 

fetches from two ports using biased-ICOUNT, and DMT 

uses a dedicated i-cache port for the non-speculative 

thread and a shared i-cache port for speculative threads. 

We also assume an improvement over the proposed 

machines by allowing TME and DMT to take advantage of 

both i-cache ports when there are no speculative threads 

running. We compare these improved models against the 

original proposals. 

Figure 11: Performance comparison of TME, DMT, and IMT normalized to baseline superscalar.
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Figure 11 compares speedups of our optimized TME 

and DMT machines, against O-IMT normalized to our 

baseline superscalar. Unlike O-IMT, TME and DMT 

reduce performance on average with respect to a compara-

ble superscalar. TME [14] primarily exploits thread-level 

parallelism across unpredictable branches. Because unpre-

dictable branches are not common, TME’s opportunity for 

improving performance by exploiting parallelism across 

multiple paths is limited. TME’s eagerness to invoke 

threads on unpredictable branches also relies on the extent 

to which a confidence predictor can identify unpredictable 

branches. A confidence predictor with low accuracy 

would often spawn threads on both paths, often taking 

away fetch bandwidth from the correct (and potentially 

predictable) path. An accurate confidence predictor would 

result in a TME machine that performs close to, or 

improves performance slightly over, our baseline super-

scalar machine. Vpr and mesa are benchmark examples in 

which the confidence predictor predicts accurately, allow-

ing TME to improve performance over superscalar. 

DMT’s poor performance is due to the following rea-

sons. First, DMT often suffers from poor thread selection 

because it spawns a new thread when the fetch unit 

reaches a function call or a backward branch, and selects 

the new thread to include instructions after the call or 

backward branch. Therefore, DMT precludes exploiting 

the potentially high degree of parallelism that exists across 

inner loop iterations. Moreover, DMT’s threads are typi-

cally inordinately long, increasing the probability of data 

dependence misspeculation despite using “dataflow” 

dependence prediction. Second, DMT achieves low condi-

tional branch and return address prediction accuracies 

because DMT spawns threads out of program order while 

global branch history and return address stack require in-

program-order information to result in high prediction 

accuracy. Our results indicate that DMT results in lower 

branch and return address prediction accuracies whether 

the branch history register and return address stack con-

tents are cleared or copied upon spawning new threads.

Due to the low accuracy of DMT’s branch and data-

dependence prediction, DMT fetches, executes, and subse-

quently squashes twice as many instructions as it commits 

(i.e., DMT’s commit rate is one third of its fetch/execute 

rate). With the exception of mcf, twolf, vpr, and equake, in 

which branch prediction accuracies remain high, all 



benchmarks exhibit a significantly lower branch predic-

tion accuracy as compared to our baseline superscalar, 

resulting in a lower average performance than superscalar.

5  Conclusions

SMT has emerged as a promising architecture to share 

a wide-issue processor’s datapath across multiple program 

executions. This paper proposed the IMT processor to uti-

lize SMT’s support for multithreading to execute com-

piler-specified speculative threads from a single sequential 

program. The paper presented a case arguing that a naive 

mapping of even highly-optimized threads onto SMT per-

forms only comparably to an aggressive superscalar. N-

IMT incurs high thread execution overhead because it 

indiscriminately divides SMT’s shared pipeline resources 

(e.g., as fetch bandwidth, issue queue, LSQs, and physical 

registers) across threads independently of resource avail-

ability, thread resource usage, and inter-thread depen-

dence. 

This paper also proposed O-IMT, an IMT variant 

employing three key mechanisms to improve speculative 

thread execution efficiency in an SMT pipeline. (1) a 

novel resource- and dependence-based fetch policy to 

decide which thread to fetch from every cycle. (2) context 

multiplexing to map as many threads to a single hardware 

context as allowed by hardware resources, and (3) a mech-

anism to virtually eliminate the thread start-up overhead of 

setting up rename tables (to ensure proper register value 

communication between earlier threads and the newly 

invoked thread). As SMT and speculative threading 

become prevalent, O-IMT’s optimizations will be neces-

sary to achieve high performance. 

Using results from cycle-accurate simulation and 

SPEC2K benchmarks we showed that O-IMT improves 

performance by 24% over an aggressive superscalar. We 

also presented performance comparisons against two prior 

proposals for speculative threading on SMT, and showed 

that O-IMT outperforms a comparable TME by 26% and a 

comparable DMT by 38%.
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