
 Open access Proceedings Article DOI:10.1145/859618.859624

Implicitly-multithreaded processors — Source link

Il Park, Babak Falsafi, T. N. Vijaykumar

Institutions: Purdue University, Carnegie Mellon University

Published on: 01 May 2003 - International Symposium on Computer Architecture

Topics: Thread (computing), Multithreading, Simultaneous multithreading and Microarchitecture

Related papers:

 A dynamic multithreading processor

 Multiscalar processors

 A chip-multiprocessor architecture with speculative multithreading

 Data speculation support for a chip multiprocessor

 A scalable approach to thread-level speculation

Share this paper:

View more about this paper here: https://typeset.io/papers/implicitly-multithreaded-processors-
2anv2hlcpe

https://typeset.io/
https://www.doi.org/10.1145/859618.859624
https://typeset.io/papers/implicitly-multithreaded-processors-2anv2hlcpe
https://typeset.io/authors/il-park-43ebrqfdl8
https://typeset.io/authors/babak-falsafi-12ifmdcvw1
https://typeset.io/authors/t-n-vijaykumar-ja8yyu0xko
https://typeset.io/institutions/purdue-university-2ddhwsmq
https://typeset.io/institutions/carnegie-mellon-university-2nn2m0cz
https://typeset.io/conferences/international-symposium-on-computer-architecture-3cw0260z
https://typeset.io/topics/thread-computing-3sl9jakl
https://typeset.io/topics/multithreading-1ucs9aoi
https://typeset.io/topics/simultaneous-multithreading-ye0lhii0
https://typeset.io/topics/microarchitecture-29hv9jx1
https://typeset.io/papers/a-dynamic-multithreading-processor-fl9y4p7fnl
https://typeset.io/papers/multiscalar-processors-4zb5avkvh0
https://typeset.io/papers/a-chip-multiprocessor-architecture-with-speculative-1zdrgq50aq
https://typeset.io/papers/data-speculation-support-for-a-chip-multiprocessor-1dg3kqhoju
https://typeset.io/papers/a-scalable-approach-to-thread-level-speculation-3fbf6b2ycy
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/implicitly-multithreaded-processors-2anv2hlcpe
https://twitter.com/intent/tweet?text=Implicitly-multithreaded%20processors&url=https://typeset.io/papers/implicitly-multithreaded-processors-2anv2hlcpe
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/implicitly-multithreaded-processors-2anv2hlcpe
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/implicitly-multithreaded-processors-2anv2hlcpe
https://typeset.io/papers/implicitly-multithreaded-processors-2anv2hlcpe

Implicitly-Multithreaded Processors

Il Park, Babak Falsafi∗ and T. N. Vijaykumar

School of Electrical & Computer Engineering

Purdue University

{parki,vijay}@ecn.purdue.edu

∗Computer Architecture Laboratory (CALCM)

Carnegie Mellon University

babak@cmu.edu
http://www.ece.cmu.edu/~impetus

Appears in the Proceedings of the 30th Annual International Symposium on Computer Architecture (ISCA)

Abstract

This paper proposes the Implicitly-MultiThreaded

(IMT) architecture to execute compiler-specified specula-

tive threads on to a modified Simultaneous Multithreading

pipeline. IMT reduces hardware complexity by relying on

the compiler to select suitable thread spawning points and

orchestrate inter-thread register communication. To

enhance IMT’s effectiveness, this paper proposes three

novel microarchitectural mechanisms: (1) resource- and

dependence-based fetch policy to fetch and execute suit-

able instructions, (2) context multiplexing to improve utili-

zation and map as many threads to a single context as

allowed by availability of resources, and (3) early thread-

invocation to hide thread start-up overhead by overlapping

one thread’s invocation with other threads’ execution.

We use SPEC2K benchmarks and cycle-accurate simu-

lation to show that an microarchitecture-optimized IMT

improves performance on average by 24% and at best by

69% over an aggressive superscalar. We also compare IMT

to two prior proposals, TME and DMT, for speculative

threading on an SMT using hardware-extracted threads.

Our best IMT design outperforms a comparable TME and

DMT on average by 26% and 38% respectively.

1 Introduction

Architects are now exploring thread-level parallelism

to exploit the continuing improvements in CMOS technol-

ogy to deliver higher performance. Simultaneous Multi-

threading (SMT) [12] has been proposed to improve

system throughput by overlapping multiple (either multi-

programmed or explicitly parallel) threads on a single

wide-issue processor. The proposed Alpha 21464, the

recently-announced IBM Power5, and the HyperThreaded

Pentium 4 currently in production [5] are examples of SMT

processors. Recently, researchers have also advocated

using SMT’s threading support to improve a single sequen-

tial program’s execution time. Examples of these proposals

include Threaded Multipath Execution (TME) [14] and

Dynamically MultiThreaded (DMT) processors [1].

In this paper, we propose the Implicitly-Multi-

Threaded (IMT) processor. IMT executes compiler-speci-

fied speculative threads from a sequential program on a

wide-issue SMT pipeline. IMT is based on the fundamental

observation that Multiscalar’s execution model — i.e.,

compiler-specified speculative threads [10] — can be

decoupled from the processor organization — i.e., distrib-

uted processing cores. Multiscalar [10] employs sophisti-

cated specialized hardware, the register ring and address

resolution buffer, which are strongly coupled to the distrib-

uted core organization. In contrast, IMT proposes to map

speculative threads on to generic SMT.

IMT differs fundamentally from prior proposals, TME

and DMT, for speculative threading on SMT. While TME

executes multiple threads only in the uncommon case of

branch mispredictions, IMT invokes threads in the com-

mon case of correct predictions, thereby enhancing execu-

tion parallelism. Unlike IMT, DMT creates threads in

hardware. Because of the lack of compile-time informa-

tion, DMT uses value prediction to break data dependence

across threads. Unfortunately, inaccurate value prediction

incurs frequent misspeculation stalls, prohibiting DMT

from extracting thread-level parallelism effectively. More-

over, selective recovery from misspeculation in DMT

requires fast and frequent searches through prohibitively

large (e.g., ~1000 entries) custom instruction trace buffers

that are difficult to implement efficiently.

In this paper, we find that a naive mapping of com-

piler-specified speculative threads onto SMT performs

poorly. Despite using an advanced compiler [13] to gener-

ate threads, a Naive IMT (N-IMT) implementation per-

forms only comparably to an aggressive superscalar. N-

IMT’s key shortcoming is its indiscriminate approach to

fetching/executing instructions from threads, without

accounting for resource availability, thread resource usage,

and inter-thread dependence information. The resulting

poor utilization of pipeline resources (e.g., issue queue,

load/store queues, and register file) in N-IMT negatively

offsets the advantages of speculative threading.

We also identify three key microarchitecture optimiza-

tions necessary to alleviate the inefficiencies in N-IMT,

and address them in our proposal, called Optimized IMT

(O-IMT). These novel optimizations are:

• Novel fetch policy to bring suitable instructions:

Because the choice of instruction fetch policy funda-

mentally impacts performance, O-IMT carefully con-

trols fetch via a resource- and dependence-based fetch

policy. We propose a highly accurate (~97%) dynamic

resource predictor to gauge resource (e.g., physical

registers) availability and avoid thread misspeculation

due to lack of resources midway through execution.

Moreover, we propose a inter-thread dependence heu-

ristic to avoid delaying earlier threads’ instructions in

favor of fetching from later threads that are data-

dependent on earlier threads. In contrast, TME, DMT,

and N-IMT use variations of ICOUNT [12] or round-

robin fetch policies that do not account for resource

availability and result in suboptimal performance.

• Multiplexing hardware contexts to bring more suit-

able instructions: As in TME and DMT, N-IMT

assigns a single thread to each SMT context [12] con-

sisting of an active list and a load/store queue. Because

many programs have short-running threads and SMT

implementations are likely to have only a few (e.g., 2-

8) contexts, such an assignment severely limits the

number of instructions in flight. Unfortunately, a brute-

force increase in thread size would result in an increase

in misspeculation frequency and the number of instruc-

tions discarded per misspeculation [13]. To obviate the

need for larger threads, O-IMT multiplexes the hard-

ware contexts by mapping and simultaneously execut-

ing as many in-program-order threads onto a single

context as allowed by the resources.

• Hiding thread start-up delay to increase overlap

among suitable instructions: Speculatively-threaded

processors incur the delay of setting up register rename

tables at thread start-up to ensure proper register value

communication between earlier and newly-invoked

threads. Many prior proposals for speculative thread-

ing (e.g., DMT and Multiscalar) do not explicitly

address the overhead due to thread start-up delay. TME

and N-IMT both account for this overhead and incur

extra start-up delay prior to thread invocation. In con-

trast, O-IMT hides the delay by overlapping rename

table set-up with previous threads’ execution, because

the compiler-specified inter-thread register dependence

information is available well before the thread starts.

Using the SPEC2K benchmarks, we show that N-IMT

actually degrades performance in integer benchmarks on

average by 3%, and improves performance negligibly in

floating-point benchmarks relative to a superscalar with

comparable hardware resources. In contrast, O-IMT

achieves average speedups of 20% and 29% in the integer

and floating-point benchmarks, respectively, over a com-

parable superscalar. Our results also indicate that TME

and DMT are on average not competitive relative to a

comparable superscalar.

The rest of this paper is organized as follows.

Section 2, briefly describes compiler-specified threading.

Section 3, describes our proposals for N-IMT and O-IMT.

In Section 4, we present experimental results. We discuss

related work in Section 5, and conclude in Section 6.

2 Compiler-Specified Speculative Threads

Speculatively-threaded architectures may use hard-

ware [1,6] or compiler [10,4,11,8] to partition a sequential

program into threads. Architectures extracting speculative

threads in hardware have the key advantage that they offer

binary compatibility with superscalar. These architectures,

however, may incur high thread speculation overhead

because: (1) hardware has relatively limited scope in

selecting suitable threads and thread spawning points, (2)

hardware typically precludes thread-level code optimiza-

tion, and (3) these architectures primarily rely on value

prediction (with potentially low accuracy) to implement

inter-thread communication.

Instead, IMT uses Multiscalar’s compiler-specified

speculative threads. The Multiscalar compiler employs

several heuristics to optimize thread selection [13]. The

compiler maximizes thread size while limiting the number

of thread exit points to a pre-specified threshold. To the

extent possible, the compiler exploits loop parallelism by

capturing entire loop bodies into threads, avoids inter-

thread control-flow mispredictions by enclosing both if

and else paths of a branch within a thread, and reduces

inter-thread register dependences. Typical threads contain

10-20 instructions in integer programs, and 30-100

instructions in floating-point programs. These instruction

counts give an idea of the order of magnitude of resources

needed and overheads incurred per thread, and help under-

stand the optimizations introduced in this paper.

The compiler provides summary information of a

thread’s register and control-flow dependences in the

thread descriptor. In the descriptor, the compiler identi-

fies: (1) the set of live registers entering the thread via the

use mask, and the set of registers written in at least one of

the control-flow paths through the thread via the create

mask; and (2) the possible control-flow exits out of the

thread via the targets.

The compiler also annotates the instructions to spec-

ify each instance of the dependence summarized in the

descriptor. Figure 1 shows an example thread. An instruc-

tion that is the last write to an architectural register in all

the possible control flow paths is annotated with forward

bits (labeled “F”) and is referred to as a forward instruc-

tion. There are cases where forward bits are not sufficient.

For instance, in the figure, the write to r1 in B1 is not the

last write in the path B1B2B4 but it is in the path B1B3B4.

To handle this case, the compiler inserts a release instruc-

tion in B3. In Section 3.2, we explain how the hardware

uses forward and release instructions to implement inter-

thread register communication. Instructions that lead to a

target are annotated with stop bits (labeled “S”), signaling

the end of the thread.

Figure 1: Compiler-specified speculative threads.

r1 := r5

r1 := r6 release r1F

r2 :=F

B1

B2 B3

B4

beq r1, 0 B1

B5

Targets: B1,B5
Create: r1,r2
Use: r5,r6

S

true false

Threa

Threa

Threa

Thread

3 Implicitly-Multithreaded Processors

We propose the Implicitly-MultiThreaded (IMT) pro-

cessor to utilize SMT’s support for multithreading by exe-

cuting speculative threads. Figure 2 depicts the anatomy of

an IMT processor derived from SMT. IMT uses the

rename tables for register renaming, the issue queue for

out-of-order scheduling, the per-context load/store queue

(LSQ) and active list for memory dependences and

instruction reordering prior to commit. As in SMT, IMT

shares the functional units, physical registers, issue queue,

and memory hierarchy among all contexts.

IMT exploits implicit parallelism, as opposed to pro-

grammer-specified, explicit parallelism exploited by con-

ventional SMT and multiprocessors. Like Multiscalar,

IMT predicts the threads in succession and maps them to

execution resources, with the earliest thread as the non-

speculative (head) thread, followed by subsequent specu-

lative threads [10]. IMT honors the inter-thread control-

flow and register dependences specified by the compiler.

IMT uses the LSQ to enforce inter-thread memory depen-

dences. Upon completion, IMT commits the threads in

program order.

We present two IMT variations: (1) a Naive IMT (N-

IMT) that performs comparably to an aggressive supersca-

lar, and (2) an Optimized IMT (O-IMT) that uses novel

microarchitectural techniques to enhance performance.

Figure 2: The anatomy of an IMT processor.

Pro-
Order-

Resource
Allocation

Is
su

e
 Q

u
e
u
e

I-
C

a
ch

e

Decode

F
u
n
ct

io
n
a
l U

n
its

DRP

Fetch Unit

with ITDH

Added/modified for IMT Controlled by DRP

Register

File

Active list

LSQ

Rename

Free

Pro-
Order-

D
e
sc

ri
p
to

r
C

a
ch

e

3.1 Thread Invocation

Like Multiscalar, both IMT variants invoke threads in

program order by predicting the next thread from among

the targets of the previous thread (specified by the thread

descriptor) using a thread predictor. A descriptor cache

(Figure 2) stores recently-fetched thread descriptors.

Although threads are invoked in program order, IMT may

fetch later threads’ instructions out of order prior to fetch-

ing all of earlier threads’ instructions, thereby interleaving

instructions from multiple threads. To decide which thread

to fetch from, IMT consults the fetch policy.

3.1.1 Resource Allocation & Fetch Policy

Our base IMT processor, N-IMT, uses an unmodified

ICOUNT policy [12], in which the thread with the least

number of instructions in flight is chosen to fetch instruc-

tions from every cycle. The rationale is that the thread that

has the fewest instructions is the one whose instructions

are flowing through the pipeline with the fewest stalls.

We also make the observation that the ICOUNT pol-

icy may be suboptimal for a processor in which threads

exhibit control-flow and data dependence and resources

are relinquished in program (and not thread) order. For

instance, later (program-order) threads may result in

resource (e.g., physical registers, issue queue and LSQ

entries) starvation in earlier threads, forcing the later

threads to squash and relinquish the resources for use by

earlier threads. Unfortunately, frequent thread squashing

due to indiscriminate resource allocation without regards

to demand incurs high overhead. Moreover, treating (con-

trol- and data-) dependent and independent threads alike is

suboptimal. Fetching and executing instructions from later

threads that are dependent on earlier threads may be

counter-productive because it increases inter-thread

dependence delays by taking away front-end fetch and

processing bandwidth from earlier threads. Finally, depen-

dent instructions from later threads exacerbate issue queue

contention because they remain in the queue until the

dependences are resolved.

To mitigate the above shortcomings, O-IMT employs

a novel resource- and dependence-based fetch policy that

is bimodal. In the “dependent mode”, the policy biases

fetch towards the non-speculative thread when the threads

are likely to be dependent, fetching sequentially to the

highest extent possible. In the “independent mode”, the

policy uses ICOUNT when the threads are potentially

independent, enhancing overlap among multiple threads.

Because loop iterations are typically independent, the pol-

icy employs an Inter-Thread Dependence Heuristic

(ITDH) to identify loop iterations for the independent

mode, otherwise considering threads to be dependent.

ITDH predicts that subsequent threads are loop iterations

if the next two threads’ start PCs are the same as the non-

speculative (head) thread’s start PC.

To reduce resource contention among threads, the pol-

icy employs a Dynamic Resource Predictor (DRP) to ini-

tiate fetch from an invoked thread only if the available

hardware resources exceed the predicted demand by the

thread. The DRP dynamically monitors the threads activ-

ity and allows fetch to be initiated from newly invoked

threads when earlier threads commit and resources

become available.

Figure 3 (a) depicts an example of DRP. O-IMT

indexes into a table using the start PC of a thread. Each

table entry holds the numbers of active list and LSQ slots,

and physical registers used by the thread’s last four execu-

tion instances. The pipeline monitors a thread’s resource

needs, and upon thread commit, updates the thread’s DRP

entry. DRP supplies the maximum among the four

instances for each resource as the prediction for the next

instance’s resource requirement. In Section 4.2, we show

results indicating that overestimating resource usage using

the maximum value works well in practice due to low

variation in resource needs across nearby instances of a

thread.

O-IMT’s fetch policy increases instruction throughput

by choosing suitable instructions, thus making room for

earlier threads when necessary. The policy alleviates inter-

thread data dependence by processing producer instruc-

tions earlier and decreasing instruction execution stalls,

thereby reducing pipeline resource contention.

In contrast to O-IMT, prior proposals for speculative

threading using SMT both use variants of conventional

fetch policies. TME uses biased-ICOUNT, a variant of

ICOUNT that does not consider resource availability and

thread-level independence. DMT’s fetch policy statically

partitions two fetch ports, and allocates one port for the

non-speculative thread and the other for speculative

threads in a round-robin manner. However, DMT does not

suffer from resource contention because the design

assumes prohibitively large custom instruction trace buff-

ers (holding thousands of instructions) allowing for

threads to make forward progress without regards to

resource availability and thread-level independence.

Unfortunately, large frequent associative searches through

such buffers are slow and impractical.

3.1.2 Multiplexing Hardware Contexts

Much like prior proposals, N-IMT assigns a single

thread to a hardware context. Because many programs

have short threads [13] and real SMT implementations are

bound to have only a few (e.g., 2-8) contexts, this

approach often leads to insufficient instruction overlap.

Larger threads, however, increase both the likelihood of

dependence misspeculation [13] and the number of

instructions discarded per misspeculation, and cause spec-

ulative buffer overflow [4].

Instead, to increase instruction overlap without the

unwanted side-effects of large threads, O-IMT multiplexes

the hardware contexts by mapping as many threads as

allowed by the resources in one context (typically 3-6

threads for SPEC2K). Context multiplexing requires for

each context only an additional fetch PC register and

rename table pointer per thread for a given maximum

number of threads per context. Context multiplexing dif-

fers from prior proposals for mapping multiple threads on

to a single processing core [11,3] to alleviate load imbal-

ance, in that multiplexing allows instructions from multi-

ple threads within a context to execute and share resources

simultaneously.

Figure 3: Using DRP (a) and context multiplexing (b).

20 21 20 19

10 9 10 10Thread XThread X+1

Inst A1

Inst A2

Inst B1

Inst B2

21

10

Active list N

Inst A1
Inst A2

Active list NActive list N+1

LSQRegisters Instructions

10
Inst B1
Inst B221

(a)

(b)

DRP Table

Inst A1
Inst A2

Inst B1
Inst B2

Two design complexities arise due to sharing

resources in context multiplexing. First, conventional

active list and LSQ designs assume that instructions enter

these queues in (the predicted) program order. Such an

assumption enables the active list to be a non-searchable

(potentially large) structure, and allows honoring memory

dependences via an ordered (associative) search in the

LSQ. If care is not taken, multiplexing would invalidate

this assumption if multiple threads were to place instruc-

tions out of program order in the shared active list and

LSQ. Such out-of-order placement would require an asso-

ciative search on the active list to determine the correct

instruction(s) to be removed upon commit or misspecula-

tion. In the case of the LSQ, the requirements would be

even more complicated. A memory access would have to

search through the LSQ for an address match among the

entries from the accessing thread, and then (conceptually)

repeat the search among entries from the thread preceding

the accessing thread, working towards older threads.

Unfortunately, the active list and LSQ cannot afford these

additional design complications because active lists are

made large and therefore non-searchable by design and the

LSQ’s ordered, associative search is already complex and

time-critical.

Second, allowing a single context to have multiple

out-of-program-order threads complicates managing inter-

thread dependence. Because two in-program-order threads

may be mapped to different contexts, honoring memory

dependences would require memory accesses to search

through multiple contexts thereby prohibitively increasing

LSQ search time and design complexity.

Using DRP, O-IMT avoids the first design complexity

by placing instructions in the active list and LSQ in pro-

gram order. O-IMT keeps instructions in both structures in

program order while fetching instructions out of order, by

using DRP’s resource demand estimates for a thread and

creating a gap (as in [2]) in the active list and LSQ for the

thread’s yet-to-be-fetched instructions. The next thread

(invoked in program order) creates its gap after the previ-

ous thread’s gaps, maintaining program order among the

context’s threads. Because the gap lengths are estimates

based on previous thread execution instances, it is possible

that the gaps fill up before all the thread’s instructions are

fetched. In that case, O-IMT simply squashes later threads

in the context to make room for the earlier thread. As such,

DRP helps dynamically partition a context’s active list and

LSQ so that instructions from one thread do not interfere

with those of other threads within the context.

O-IMT avoids the second design complexity by map-

ping threads to a context in program order. Inter-thread

and intra-thread dependences within a single context are

treated similarly. Figure 3 (b) shows how in-program-

order threads X and X+1 are mapped to a context. In addi-

tion to program order within contexts, O-IMT tracks the

global program order among the contexts themselves for

precise interrupts.

3.2 Register Renaming

Superscalar’s register rename table relies on in-order

instruction fetch to link register value producers to con-

sumers. IMT processors’ out-of-order fetch raises two

issues in linking producers in earlier threads to consumers

in later threads. First, IMT has to ensure that the rename

maps for earlier threads’ source registers are not clobbered

by later threads. Second, IMT must guarantee that later

threads’ consumer instructions obtain the correct rename

maps and wait for the yet-to-be-fetched earlier threads’

producer instructions. While others [1,6] employ hard-

ware-intensive value prediction to address these issues

potentially incurring frequent misspeculation and recovery

overhead, IMT uses the create and use masks (Section 2)

combined with conventional SMT rename tables.

Both IMT variants address these issues as follows.

Upon thread start-up (and prior to instruction fetch), the

processor copies the rename maps of the registers in create

and use masks from a master rename table, to a thread’s

local rename table.1 To allow for invoking subsequent

threads, the processor pre-allocates physical registers and

pre-assigns mappings for all the create-mask registers in a

pre-assign rename table. Finally, the processor updates the

master table with the pre-assigned mappings and marks

them as busy to reflect the yet-to-be-created register val-

ues. Therefore, upon thread invocation the master table

correctly reflects the register mappings that a thread

should either use or wait for.

Instructions use the local table both to get their source

rename maps and to put their destination rename maps.

Instructions that produce and consume values (locally)

within a thread allocate new mappings in the local table.

Instructions that are data-dependent on earlier-threads’

instructions wait until the corresponding pre-assigned

physical register is ready. Forward and release instructions

(Section 2) wake up waiting instructions in subsequent

threads through the pre-assigned physical registers; for-

ward instructions write their results in the pre-assigned

physical registers, and release instructions copy values

from the physical registers given by the local table to the

pre-assigned physical registers. By copying the create

mask maps at thread start-up, the local table holds the lat-

est rename map for the create-mask registers irrespective

of whether the thread actually writes to the create-mask

registers or not.

3.2.1 Hiding the Thread Start-up Delay

Even though the next thread’s start PC is known,

fetching instructions from the next thread has to wait until

the rename tables are set up. This waiting diminishes the

full benefit of the fetch policy and context multiplexing.

Updating the local, master and pre-assign tables must

complete before a thread’s instructions can be renamed.

The updating rate of rename tables is limited by the table

bandwidth. In conventional pipelines, this bandwidth

matches the pipeline width and is sufficient for the peak

demand. In contrast, IMT’s requirement of updating the

1. Conventional superscalar pipelines similarly checkpoint rename

tables upon branch prediction to accelerate misprediction recovery.

tables creates a burst demand that may exceed the band-

width and may take several (e.g., 2-4) cycles to complete.

Our base IMT processor, N-IMT, incurs the thread

start-up overhead immediately prior to fetching instruc-

tions. O-IMT, however, prevents the bandwidth constraint

from delaying thread start-up. While the current thread’s

instructions are fetched, O-IMT invokes the next thread,

obtains the next thread’s descriptor from the descriptor

cache, and sets up the rename tables well before needing

to fetch the next thread’s instructions. O-IMT utilizes the

rename table bandwidth unused by the current thread’s

instructions to update the three tables. For instance if in a

given cycle only six instructions are renamed but the

rename tables have the bandwidth to rename eight instruc-

tions, O-IMT uses the unused bandwidth to modify the

tables. Thus, O-IMT overlaps a thread’s start-up with pre-

vious threads’s execution, hiding the thread start-up delay.

Thread start-up delay also exists in Multiscalar, TME,

and DMT. In Multiscalar, the next thread needs to set up

its rename tables so that the next thread can appropriately

wait for register values from previous threads. However,

Multiscalar does not address this issue. TME incurs extra

cycles to set up the rename tables, and employs an extra

dedicated bus for a bus-based write-through scheme to

copy rename maps. DMT copies not only register values

but also the entire return address stack at the start of a

thread. DMT does not concretely address the delay of the

copying, and instead assumes the delay away using extra

wires to do the copying.

3.3 Load/Store Queues

N-IMT imposes program order in the LSQs to enforce

memory dependences within and across threads. A

thread’s memory search its context’s LSQ to honor mem-

ory dependences. If there is no match in the local LSQ,

accesses proceed to search other contexts’ LSQs. The non-

speculative thread’s loads do not search other contexts, but

its stores search later contexts to identify and squash pre-

mature loads. Speculative threads’ loads search in earlier

contexts for previous matching stores, and stores search in

later contexts for premature loads. Thus, N-IMT uses the

LSQ to achieve the same functionality as ARB’s [10].

Searching other contexts’ LSQs takes extra cycles

which may impact load hit latency. In addition, this

searching makes the hit latency variable, which may com-

plicate early scheduling of instructions dependent on the

load. Fortunately, the non-speculative thread’s loads,

which are the most critical accesses, do not incur any extra

searching, and hence, do not have variable hit latency

problems. In speculative threads, IMT schedules load-

dependent instructions only after loads finish searching.

Thus, IMT gives up early scheduling of load-dependent

instructions to avoid scheduling complications. The

latency incurred by speculative threads’ loads and their

dependent instructions is hidden under instruction-level

and thread-level parallelism. Upon a memory dependence

violation, IMT squashes the offending threads. IMT uses

memory dependence synchronization [7] — e.g., squash

buffer [10] — to avoid frequent dependence violation.

4 Results

We have built a cycle-accurate simulator of an out-of-

order SMT pipeline with extensions to evaluate a base

superscalar processor (using a single SMT context), and

the three speculatively-threaded processors, IMT, DMT,

and TME. We use the Multiscalar compiler [13] to gener-

ate optimized MIPS binaries. The superscalar, TME, and

DMT experiments use the plain MIPS binaries (without

Multiscalar annotations). The IMT binaries include Multi-

scalar’s thread specifications and register communication

instructions.

Table 1: System configuration parameters.

Processing Units System

Issue width

Issue queue

8

64 entries

DRP table 64 entries
(3 x 256 bytes)

Number of
contexts

8 ITDH 4 program
counters

Branch unit

BTB

Miss Penalty

hybrid GAg & PAg
4K-entries each,
1K-entry 4-way

7 cycles

L1 cache

2-port i-cache
&
4-port d-cache

64K 2-way,
pipelined

2-cycle hit,
32-byte block

Functional
units

8 integer,
8 pipelined

floating-point

L2 cache 2M 8-way,
pipelined

10-cycle hit,
64-byte block

Register file 356 INT/ 356 FP Memory 80 cycles

Per Context

Active list

LSQ

128 entries

32 entries,
4 ports

Squash buffer

Thread

desc. cache

64 entries

16K 2-way,
2-cycle hit

Table 1 depicts the system configuration parameters

we assume for this study. Our base pipeline assumes an

eight-wide issue out-of-order SMT with eight hardware

contexts. The pipeline assumes two i-cache ports and the

branch predictor allows up to two predictions per context

per cycle. In addition to the base pipeline, O-IMT also

uses a 64-entry DRP table and a 4-entry ITDH table to

optimize fetch.

To gauge speculative threading’s potential conserva-

tively, we compare IMT’s performance against an aggres-

sive superscalar implementation that assumes the same

resources available to a single context within the SMT

pipeline including the high-bandwidth branch prediction

and fetch, and the large register file. We also assume a

large active list of 1024 entries, because active lists are

FIFO structures and are inherently scalable.

Table 2 shows the SPEC2K applications we use in

this study, and the branch prediction accuracy and super-

scalar IPC we achieve per application. We use the refer-

ence input set in all of the benchmarks. To allow for

practical simulation turnaround times, our simulator skips

the first 3 billion instructions before simulating a total of

500 million instructions (plus overhead instructions, in

IMT’s case). We use total number of cycles as our base

metric to compare performance. In the case of IMT, the

cycle counts include the overhead instructions.

The rest of the results are organized as follows. We

first compare the performance of N-IMT and O-IMT to

superscalar, and break down the performance bottlenecks

O-IMT optimizes. Then we present results on the effec-

tiveness of O-IMT’s microarchitectural optimizations.

Then we present O-IMT’s ability to increase issue queue

and LSQ efficiency as compared to superscalar using

thread-level parallelism. Finally, we compare and contrast

O-IMT with TME and DMT, two prior proposals for spec-

ulative threading using SMT hardware.

Table 2: Applications, and their branch

misprediction rates and superscalar IPCs.

INT

Bench.

Branch

misp. (%)
 IPC

FP

Bench.

Branch

misp. (%)
 IPC

bzip 5.5 1.6 ammp 1.1 1.1

gap 2.8 3.0 applu 0.1 2.4

gcc 4.7 1.8 art 0.6 0.4

gzip 6.2 1.7 equake 0.5 1.0

mcf 7.6 0.3 mesa 2.0 2.6

parser 3.3 1.2 mgrid 0.8 2.3

perl 5.3 1.7 sixtrack 1.9 2.4

twolf 10.9 1.2 swim 0.1 0.9

vortex 0.6 1.9 wupwise 0.2 2.4

vpr 6.8 1.1

4.1 Base System Results

Figure 4 motivates the need for optimizing the specu-

lative threading performance on SMT hardware. The fig-

ure presents execution times under N-IMT and O-IMT

normalized to our base superscalar. The figure indicates

that N-IMT’s performance is actually inferior to supersca-

lar for integer benchmarks. N-IMT reduces performance

in integer benchmarks by as much as 24% and on average

by 3% as compared to superscalar. Moreover, while the

results for floating-point benchmarks vary, on average N-

IMT only improves performance slightly over superscalar

for these benchmarks. The figure also indicates that

microarchitectural optimizations substantially benefit

compiler-specified threading, enabling O-IMT to improve

performance over superscalar by as much as 69% and 65%

and on average 20% and 29% for integer and floating-

point benchmarks respectively.

Figure 4: Performance comparison of N-IMT and O-IMT normalized to the baseline superscalar.

S
p
e

e
d
u

p

0%

-20%

20%

60% N-IMT

O-IMT
40%

80%

0%

-20%

20%

60%

40%

80%

ap
pl
u

m
cf

pa
rs

er vp
r

pe
rl

vo
rte

x

eq
ua

ke

m
es

a

m
gr

id

si
xt
ra

ck

w
up

w
is
e

gc
c

bz
ip

gz
ip

Fp
Avg

.

sw
im

In
t.

Avg
.

ga
p

tw
ol
f

am
m

p
ar

t

Figure 5 compares the key sources of execution over-

head in superscalar, N-IMT and O-IMT. The breakdown

includes the overhead of squashing instructions due to

branch misprediction (both within and across threads) and

resource pressure (in N-IMT and O-IMT), register data

dependence stalls, memory waiting stalls (due to data

cache misses), underutilized instruction fetch bandwidth,

and runtime instruction overhead for IMT machines.

Not surprisingly, the dominant execution time compo-

nent in superscalar that speculative threading improves is

the register data dependence stalls. The IMT machines

extract parallelism across threads and increase the likeli-

hood inserting suitable instructions (from across the

threads) into the pipeline, thereby reducing data depen-

dence stalls. Speculative threading also helps overlap

latency among cache misses in benchmarks with available

memory parallelism across threads, reducing memory

stalls as compared to superscalar. These benchmarks most

notably include perl, applu, mgrid, and swim. Finally, the

cycles spent executing instructions (denoted by “useful

run”) across the machines are comparable, indicating that

the instruction execution overhead of compiler-specified

threading is negligible.

Figure 5: Breakdown of execution into instruction execution and pipeline stalls.

Data DependenceSquash Wait for MemoryUnderutilized Fetch Useful run

N: N-IMT O: O-IMT

S N O

applu
m

cf

pars
er

vp
r

perl

vo
rte

x

equake
m

esa

m
grid

six
tra

ck

wupwisegcc

bzip gzip sw
im

gap
tw

olf

am
m

p
art

1.0

0.0

0.4

0.8

0.6

0.2

1.2

1.0

0.0

0.4

0.8

0.6

0.2

1.2

F
ra

c
ti
o

n
 o

f
E

x
e
c
u

ti
o

n
 T

n
o
rm

a
liz

e
d
 t
o
 s

u
p
e
rs

c
a

S: Superscalar

There are a number of benchmarks in which N-IMT

actually reduces performance as compared to superscalar.

In gap, vpr, ammp, and mesa, N-IMT simply fetches

instructions indiscriminately without regards to resource

availability and from the wrong threads (using round-

robin) resulting in high misspeculation/squash frequency.

In mcf, vpr, and art, N-IMT increases the data dependence

or memory stalls by bringing unsuitable instructions into

the pipeline. In mcf N-IMT increases the L1 data-cache

miss ratio as compared to superscalar because later

threads’ cache accesses conflict with those from the non-

speculative thread. In art, N-IMT increases the L1 data-

cache miss ratio by delaying the issue of data cache misses

from the non-speculative thread. Finally, in bzip N-IMT

incurs a high thread start-up delay and increases the frac-

tion of stalls due underutilized fetch.

The graphs also indicate that O-IMT substantially

reduces the stalls as compared to N-IMT. O-IMT’s

resource- and dependence-based fetch policy and context

multiplexing reduce data dependence and memory stalls

by fetching and executing suitable instructions. Accurate

resource allocation minimizes the likelihood of misspecu-

lation and reduces squash stalls. Finally, hiding the thread

start-up delay reduces the likelihood of underutilized fetch

cycles by increasing the overlap among instructions. The

combined effect of these optimizations results in superior

performance in O-IMT as compared to superscalar and N-

IMT. Section 4.2 presents detail analysis on these tech-

niques’ contributions to O-IMT’s performance.

Figure 6: Dynamic vs. static resource partitioning.

8 16 32 64 128 256 356 512 768 1024

Static integer

DRP integer

Static fp

DRP fp

Static integer

DRP integer

Static fp

DRP fp

Demand integer
Demand fp

LSQ entries per context Register file size

1.0

0.0

0.4

0.8

0.6

0.2

1.0

0.0

0.4

0.8

0.6

0.2

F
ra

c
ti
o

n
 o

f
O

-I
M

T
 P

e
rf

o
rm

a

w
it
h

 U
n

lim
it
e

d
 R

e
s
o

u
rc

e
s

8T

8T

8T
16T

8T

14T

16T

20T
24T 26T

4.2 Optimizing Thread-Level Speculation

Resource Allocation & Prediction. Figure 6 illus-

trates the need for dynamic resource allocation, and the

impact of DRP’s accurate prediction on performance in O-

IMT. The figure compares performance under dynamic

partitioning using DRP against static partitioning for LSQ

entries (left) and the register file (right). In the register file

case, the figure also plots demand-based allocation of

entries by threads, allowing for threads to allocate regis-

ters upon demand without partitioning or reservation. The

graphs plot average performance (for integer and floating-

point benchmarks) as a fraction of that in a system with

unlimited resources. Context multiplexing allows more

threads per context, thereby requiring a different (optimal)

number of threads depending on the availability of

resources. In these graphs, we plot the optimal number of

threads (denoted by the letter T) for every design point on

the x-axis.

The graphs on the left indicate that DRP successfully

eliminates all stalls related to a limited number of LSQ

entries in integer benchmarks with as few as 16 LSQ

entries per context. In contrast, a static partitioning scheme

requires as many as 64 LSQ entries to achieve the same

results. Similarly, in floating-point benchmarks, DRP can

eliminate virtually all LSQ stalls with 32 entries per con-

text, whereas static partitioning would require two times

as many entries per context. Moreover, static partitioning

can have a severe impact on benchmark performance,

reducing performance on average by 40% given 16 entries

per context.

The graphs on the right indicate that the results for

allocating registers are more dramatic. DRP allocation of

registers can achieve the best performance with four times

fewer registers in integer and floating-point benchmarks.

Moreover, static partitioning of registers for smaller regis-

ter file sizes (>256) virtually brings execution to a halt and

limits performance. Demand-based allocation of registers

substantially improves performance over static partition-

ing, allowing threads to share a large pool of registers

effectively even with as few as 128 registers per integer

and floating-point register files. Demand-based allocation,

however, only reaches within 10% of DRP-based alloca-

tion and, much like static partitioning, requires four times

as many registers to bridge the performance gap with DRP.

Demand-based allocation’s performance improves gradu-

ally beyond 256 registers. Register demand varies drasti-

cally across threads resulting in a slow drop in

misspeculation frequency, and consequently gradual

improvement in performance, with an increase in register

file size.

Table 3: Accuracy of dynamic resource prediction and allocation.

Benchmarks

LSQ Registers Active List

acc(%) avg. used avg. over acc(%) avg. used avg. over acc(%) avg. used avg. over

integer 99.2 7.4 0.8 97.5 15.9 3.0 98.9 17.0 2.1

floating-point 99.6 19.7 1.8 98.4 29.8 2.9 99.7 43.9 1.8

Table 3 presents statistics on the accuracy of DRP for

the dynamic allocation of registers, active list and LSQ

entries. Unfortunately, demand for resources actually

slightly varies even across dynamic instances of the same

(static) thread. Our predictors learn and predict the worst-

case demand on a per-thread basis, thereby opting for

over-estimating the demand in the common case. Alterna-

tively, predictors that would target predicting the exact

demand for resources may frequently under-estimate,

thereby causing later threads to squash and release

resources for earlier threads (Section 3.1). The table

depicts the fraction of the time and the amount by which

our DRP on average over-estimates demand. The results

indicate that predicting based on the demand for the last

four executed instances of a thread leads to high accuracy

for (over-)estimating the resources. More importantly, the

average number by which the predictors over-estimate is

relatively low, indicating that there is little opportunity lost

due to over-estimation.
Resource- & Dependence-Based Fetch Policy. O-

IMT’s fetch policy gives the priority to the non-specula-

tive (head) thread and only fetches from other threads

when: (1) ITDH indicates the likelihood of parallelism and

the availability of suitable instructions, and (2) DRP indi-

cates the availability of resources based on the predicted

demand. In contrast, a round-robin policy (used in DMT)

would let later dependent threads hog the resources while

earlier threads attempt to make forward progress, poten-

tially reducing performance. Similarly, an ICOUNT policy

[12] (used in SMT) that favors a thread with the fastest

issue rate without regards to resource usage or dependence

may indiscriminately allocate resources to speculative

threads, leading to resource bottlenecks. Finally, a con-

stant bias in the non-speculative thread’s fetch priority in a

biased-ICOUNT policy [14] (used in TME) may improve

performance only slightly when resource usage and depen-

dence across threads drastically vary.

Figure 7: The impact of fetch policy.

-20%

-30%

-10%

0%

P
e

rf
o

rm
a

n
ce

 R
e

la
tiv

e
 t

o
 O

-
w

ith
 R

o
u

n
d

-R
o

b
in

 F
e

tc
h

 P
o

integer floating-point

ICOUNT

R&D-based policy

Biased-ICOUNT

10%

20%

30%

Figure 7 shows O-IMT’s performance under four dif-

ferent fetch policies. The figure plots three priority-based

fetch policies, ICOUNT, biased-ICOUNT, and resource-

and dependence-based fetch policy. The graphs plot the

average performance improvement for integer and float-

ing-point benchmarks. The figure indicates that indeed in

integer benchmarks, ICOUNT reduces performance on

average over round-robin, because it allows speculative

threads issuing at a high rate to inadvertently fetch, allo-

cate resources, and subsequently squash. Biased-ICOUNT

addresses this shortcoming in ICOUNT by biasing the pri-

ority towards the non-speculative thread by a constant

value, and improving performance over round-robin. O-

IMT’s resource- and dependence-based fetch policy sig-

nificantly improves performance over round-robin by pre-

venting later threads from fetching unless: (1) there are

resources available, and (2) the threads are loop iterations

and likely to be independent.

The figure also indicates that the floating-point

benchmarks actually slightly benefit from ICOUNT and

biased-ICOUNT. The floating-point applications exhibit a

high fraction of thread-level parallelism and independence

across threads. As in SMT, ICOUNT allows for the

threads making the fastest rate of progress to proceed,

improving performance over a round-robin policy. Biased-

ICOUNT reduces the likelihood of misspeculation due to

resource pressure, and as such improves performance over

ICOUNT. O-IMT’s fetch policy performs best by allowing

the most suitable instructions to flow through the pipeline.

Figure 8: The impact of context multiplexing.

1 context

2 contexts

4 contexts

8 contexts

without MuxA

B with Mux

1.0

0.0

0.4

0.8

0.6

0.2

F
ra

ct
io

n
 o

f
O

-I
M

T
 P

e
rf

o
rm

w
ith

 U
n
lim

ite
d
 R

e
so

u
rc

e
s

A B A B
integer floating-point

Context Multiplexing. Multiplexing offers two key

advantages for applications with short threads. Multiple

threads per context help increase the number of suitable

in-flight instructions. Alternatively, multiplexing makes

unused contexts available to threads across multiple appli-

cations in a multiprogrammed (SMT) environment.

Figure 8 illustrates the impact of multiplexing on O-IMT’s

performance. To accurately gauge the overall impact on

performance with an increase in available resources, we

also vary the register file size linearly from 132 to 356

(adding 32 registers to the base case with every context)

when varying the number of contexts from one to eight.

The figure indicates that without multiplexing, neither

integer nor floating-point benchmarks can on average

reach best achievable performance even with eight hard-

ware contexts. Moreover, performance substantially

degrades (to as low as 35% in integer applications) when

reducing the number of contexts.

Multiplexing’s performance impact is larger with

fewer contexts because context resources are used more

efficiently. Multiplexing best benefits integer benchmarks

with short-running threads allowing for two contexts (e.g.,

as in a HyperThreaded Pentium 4 [5]) to outperform eight

contexts without multiplexing. Multiplexing also benefits

floating-point benchmarks, reducing the required number

of contexts. Floating-point benchmarks’ performance,

however, scales well with an increase in the number of

contexts even without multiplexing due to these bench-

marks’ long-running threads.

Hiding the Thread Start-up Delay. Figure 9 illus-

trates the impact of thread start-up delay on O-IMT’s per-

formance. The graphs represent performance for start-up

latency of two and four cycles as a fraction of that in an

ideal system with no start-up delay. The figure indicates

that a higher start-up delay of four cycles on average can

reduce performance by 9% in integer benchmarks.

Because of their long-running threads, the floating-point

benchmarks can amortize a higher start-up delay, and as

such show less performance sensitivity to start-up delay.

In contrast, O-IMT’s mechanism for overlapping thread

start-up on average almost achieves ideal performance

(incurring no start-up overhead).

Figure 9: The impact of start-up delay.

2 cycles4 cycles Overlap

F
ra

ct
io

n
 o

f
O

-I
M

T
 P

e
rf

o
rm

a
w

ith
 Z

e
ro

 S
ta

rt
-u

p
 O

ve
rh

e
a

0.6

0.5

0.7

0.8

0.9

1.0

integer floating-point

4.3 Issue Queue & LSQ Performance Sensitivity

In SMT/superscalar pipelines, the issue queue and

LSQ(s) sizes are often the key impediments to perfor-

mance scalability [9]. Thread-level speculation helps

increase the effectiveness of these queues of a given size

by allowing suitable instructions from across the threads to

enter the queues. Figure 10 illustrates improvements in

superscalar and O-IMT performance with increasing num-

ber of entries in the issue queue and LSQ. The graphs indi-

cate that as compared to a superscalar with a 32/16 entry

queue pair, O-IMT can achieve the same performance with

half as many queue entries. Because issue queue/LSQ are

often on the pipeline’s critical path, O-IMT can actually

help reduce the critical path and increases clock speed by

requiring smaller queues.

Figure 10: Issue queue/LSQ sensitivity.

O-IMT fp

O-IMT int

Superscalar fp

Superscalar int

Issue queue/LSQ size
16/8 32/16 64/32 128/64 256/128

150%

0%

50%

P
e

rf
o
rm

a
n

c
e

 n
o
rm

a
liz

e
d
 t

o
 s

u
p

e
rs

c
a

la
r

w
it
h
 1

6
-e

n
tr

y
/8

-e
n

tr
y
 i
s
s
u

e
 q

u
e
u

e
/L

S
Q

200%

100%

The graphs also indicate that for integer applications,

performance levels off with 64/32 entry queue pairs, with

up to 50% performance improvement over a 16/8 entry

queue pair. O-IMT maintains a 25% additional improve-

ment in performance over superscalar by extracting

thread-level parallelism. Moreover, superscalar’s perfor-

mance never reaches that of O-IMT’s even with 256/128

entry queues. High branch misprediction frequency in

integer applications ultimately limits performance even

with a larger issue queue/LSQ. In O-IMT, a mispredicted

branch within a thread only squashes instructions from

that thread, thereby allowing suitable instructions from

future threads to remain in the pipeline while a branch

from an earlier thread mispredicts.

In contrast, superscalar’s performance continues to

scale for floating-point applications with higher levels of

ILP, up to the 256/128 entry queues. O-IMT significantly

enhances queue efficiency over superscalar and achieves

superscalar’s performance at the 256/128 design point

with less than a quarter of the queue entries. Moreover, O-

IMT’s performance levels off at the 64/32 design point,

obviating the need for large queues to extract the available

parallelism.

4.4 Comparison to TME & DMT

In this section, we compare O-IMT’s performance

against TME and DMT. Our models for TME and DMT

are quite aggressive allowing for a conservative compari-

son against these machines. We assume no contention for

TME’s mapping synchronization bus [23]. To favor DMT,

we assume that DMT has a 256-entry custom trace buffer

per context (for a total of 2048 entries) with zero-cycle

access, zero-cycle thread spawning, and selective recovery

(squash) with zero-cycle penalty. As proposed, TME

fetches from two ports using biased-ICOUNT, and DMT

uses a dedicated i-cache port for the non-speculative

thread and a shared i-cache port for speculative threads.

We also assume an improvement over the proposed

machines by allowing TME and DMT to take advantage of

both i-cache ports when there are no speculative threads

running. We compare these improved models against the

original proposals.

Figure 11: Performance comparison of TME, DMT, and IMT normalized to baseline superscalar.

S
p
e

e
d
u

p

DMT

O-IMT

TME

0% -1%

0%0% 0%

0%

-20%

20%

60%

40%

80%

-40%

0%

-20%

20%

60%

40%

80%

-40%

ap
pl
u

m
cf

pa
rs

er vp
r

pe
rl

vo
rte

x

eq
ua

ke

m
es

a

m
gr

id

si
xt
ra

ck

w
up

w
is
e

gc
c

bz
ip

gz
ip

Fp
Avg

.

sw
im

In
t.

Avg
.

ga
p

tw
ol
f

am
m

p
ar

t

Figure 11 compares speedups of our optimized TME

and DMT machines, against O-IMT normalized to our

baseline superscalar. Unlike O-IMT, TME and DMT

reduce performance on average with respect to a compara-

ble superscalar. TME [14] primarily exploits thread-level

parallelism across unpredictable branches. Because unpre-

dictable branches are not common, TME’s opportunity for

improving performance by exploiting parallelism across

multiple paths is limited. TME’s eagerness to invoke

threads on unpredictable branches also relies on the extent

to which a confidence predictor can identify unpredictable

branches. A confidence predictor with low accuracy

would often spawn threads on both paths, often taking

away fetch bandwidth from the correct (and potentially

predictable) path. An accurate confidence predictor would

result in a TME machine that performs close to, or

improves performance slightly over, our baseline super-

scalar machine. Vpr and mesa are benchmark examples in

which the confidence predictor predicts accurately, allow-

ing TME to improve performance over superscalar.

DMT’s poor performance is due to the following rea-

sons. First, DMT often suffers from poor thread selection

because it spawns a new thread when the fetch unit

reaches a function call or a backward branch, and selects

the new thread to include instructions after the call or

backward branch. Therefore, DMT precludes exploiting

the potentially high degree of parallelism that exists across

inner loop iterations. Moreover, DMT’s threads are typi-

cally inordinately long, increasing the probability of data

dependence misspeculation despite using “dataflow”

dependence prediction. Second, DMT achieves low condi-

tional branch and return address prediction accuracies

because DMT spawns threads out of program order while

global branch history and return address stack require in-

program-order information to result in high prediction

accuracy. Our results indicate that DMT results in lower

branch and return address prediction accuracies whether

the branch history register and return address stack con-

tents are cleared or copied upon spawning new threads.

Due to the low accuracy of DMT’s branch and data-

dependence prediction, DMT fetches, executes, and subse-

quently squashes twice as many instructions as it commits

(i.e., DMT’s commit rate is one third of its fetch/execute

rate). With the exception of mcf, twolf, vpr, and equake, in

which branch prediction accuracies remain high, all

benchmarks exhibit a significantly lower branch predic-

tion accuracy as compared to our baseline superscalar,

resulting in a lower average performance than superscalar.

5 Conclusions

SMT has emerged as a promising architecture to share

a wide-issue processor’s datapath across multiple program

executions. This paper proposed the IMT processor to uti-

lize SMT’s support for multithreading to execute com-

piler-specified speculative threads from a single sequential

program. The paper presented a case arguing that a naive

mapping of even highly-optimized threads onto SMT per-

forms only comparably to an aggressive superscalar. N-

IMT incurs high thread execution overhead because it

indiscriminately divides SMT’s shared pipeline resources

(e.g., as fetch bandwidth, issue queue, LSQs, and physical

registers) across threads independently of resource avail-

ability, thread resource usage, and inter-thread depen-

dence.

This paper also proposed O-IMT, an IMT variant

employing three key mechanisms to improve speculative

thread execution efficiency in an SMT pipeline. (1) a

novel resource- and dependence-based fetch policy to

decide which thread to fetch from every cycle. (2) context

multiplexing to map as many threads to a single hardware

context as allowed by hardware resources, and (3) a mech-

anism to virtually eliminate the thread start-up overhead of

setting up rename tables (to ensure proper register value

communication between earlier threads and the newly

invoked thread). As SMT and speculative threading

become prevalent, O-IMT’s optimizations will be neces-

sary to achieve high performance.

Using results from cycle-accurate simulation and

SPEC2K benchmarks we showed that O-IMT improves

performance by 24% over an aggressive superscalar. We

also presented performance comparisons against two prior

proposals for speculative threading on SMT, and showed

that O-IMT outperforms a comparable TME by 26% and a

comparable DMT by 38%.

Acknowledgements

We would like to thank Haitham Akkary, the mem-

bers of CMU Impetus group, and the anonymous review-

ers for feedback on earlier drafts of this paper. This work

is supported in part by grants from IBM and Intel, an NSF

Next-Generation Software grant, NSF CAREER awards,

and an NSF Instrumentation grant.

References

[1] Haitham Akkary and Michael A. Driscoll. A dynamic mul-

tithreading processor. In Proceedings of the 31st Annual

IEEE/ACM International Symposium on Microarchitecture

(MICRO 31), pages 226–236, December 1998.

[2] Chen-Yong Cher and T. N. Vijaykumar. Skipper: A microar-

chitecture to explore control-flow independence. In Pro-

ceedings of the 32nd Annual IEEE/ACM International

Symposium on Microarchitecture (MICRO 32), December

1999.

[3] Marcelo Cintra, Jose F. Martinez, and Josep Torrellas.

Architectural support for scalable speculative parallelization

in shared-memory systems. In Proceedings of the 27th

Annual International Symposium on Computer Architecture,

pages 13–24, June 2000.

[4] Lance Hammond, Mark Willey, and Kunle Olukotun. Data

speculation support for a chip multiprocessor. In Proceed-

ings of the Eighth International Conference on Architec-

tural Support for Programming Languages and Operating

Systems (ASPLOS VIII), October 1998.

[5] Intel Corporation. Intel Pentium 4 and Intel Xeon Processr

Optimization: Reference Manual, October 2002.

[6] Pedro Marcuello and Antonio Gonzalez. Thread-spawning

schemes for speculative multithreading. In Proceedings of

the Ninth IEEE Symposium on High-Performance Com-

puter Architecture, February 2003.

[7] Andreas Moshovos, Scott E. Breach, and T. N. Vijaykumar.

Dynamic speculation and synchronization of data depen-

dences. In Proceedings of the 24th Annual International

Symposium on Computer Architecture, June 1997.

[8] Chong-Liang Ooi, Seon Wook Kim, Il Park, Rudolf Eigen-

mann, Babak Falsafi, and T. N. Vijaykumar. Multiplex: Uni-

fying conventional and speculative thread-level parallelism

on a chip multiprocessor. In Proceedings of the 2001 Inter-

national Conference on Supercomputing, June 2001.

[9] Subbarao Palacharla, Norman P. Jouppi, and J. E. Smith.

Complexity-effective superscalar processors. In Proceed-

ings of the 24th Annual International Symposium on Com-

puter Architecture, pages 206–218, June 1997.

[10] Gurindar S. Sohi, Scott E. Breach, and T. N. Vijaykumar.

Multiscalar processors. In Proceedings of the 22nd Annual

International Symposium on Computer Architecture, pages

414–425, June 1995.

[11] J. Gregory Steffan, Christopher B. Colohan, Antonia Zhai,

and Todd C. Mowry. A scalable approach to thread-level

speculation. In Proceedings of the 27th Annual Interna-

tional Symposium on Computer Architecture, July 2000.

[12] Dean M. Tullsen, Susan J. Eggers, Joel S. Emer, Henry M.

Levy, and Jack L. Lo. Exploiting choice: Instruction fetch

and issue on an implementable simultaneous multithreading

processor. In Proceedings of the 23rd Annual International

Symposium on Computer Architecture, pages 13–24, May

1996.

[13] T. N. Vijaykumar and Gurindar S. Sohi. Task selection for a

multiscalar processor. In Proceedings of the 31st Annual

IEEE/ACM International Symposium on Microarchitecture

(MICRO 31), December 1998.

[14] Steven Wallace, Brad Calder, and Dean M. Tullsen.

Threaded multiple path execution. In Proceedings of the

25th Annual International Symposium on Computer Archi-

tecture, June 1998.

