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Abstract.  An arrangement of n lines (or line segments)  in the p lane  is the par t i t ion 

of  the p lane  defined by these objects. Such an a r rangement  consists of  O(n 2) regions, 

called faces. In this pape r  we study the problem of calculat ing and  storing arrange- 

ments  implicitly, using subquadra t ic  space and  preprocessing,  so that,  given any 

query point  p, we can calculate  efficiently the face conta ining p. First, we consider  

the case of  lines and  show that  with A(n)  space ~ and  A(n 3/2) preprocess ing time, 

we can answer  face queries in A(~/n)  + O ( K )  time, where K is the output  size. (The 

query t ime is achieved with high probabil i ty.)  In the process, we solve three 

interest ing subproblems:  (1) given a set of n points,  find a s traight-edge spanning  

tree of  these points such that  any line intersects only a few edges of the tree, (2) 
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t We use A(f(n))  to abbreviate O(f(n)log ~ n), where k is a constant. 
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given a simple polygonal path F, form a data structure from which we can find the 
convex hull of any subpath of F quickly, and (3) given a set of points, organize 
them so that the convex hull of their subset lying above a query line can be found 
quickly. Second, using random sampling, we give a tradeoff between increasing 
space and decreasing query time. Third, we extend our structure to report faces in 
an arrangement of line segments in A(n~/~)+ O(K) time, given A(n ~/3) space and 
A(n 5/3) preprocessing time. Lastly, we note that our techniques allow us to compute 
m faces in an arrangement of n lines in time A(m 2/~ n 2/3 + n), which is nearly optimal. 

1. Introduction 

Suppose we are given a set L of n straight lines in the plane. These lines partition 

the plane into a set of  convex regions called faces. The collection of all these 

faces is referred to as the arrangement of L, and is denoted by M(L). Now suppose 

we are allowed to perform some preprocessing on L so that the following type 

of query can be answered readily: for a given query point p, which face in sO(L) 

contains p? 
What do we mean by "which face"? We want a complete description of the 

face containing p in terms of the lines in L, that is, which lines of  L appear along 

the boundary of  that face in, say, counterclockwise order. In some cases we may 

be satisfied with a simpler property of  the face, such as its intersection with a 

line, its leftmost vertex, the edge below p, or the number of lines on the face 

boundary. 

One direct approach to this problem is to precompute complete descriptions 

of all the faces in M(L). Given a query point p, we then just need to locate p in 

the face containing it, the precomputed description of that face can be used to 

answer the query quickly. The complete descriptions of  all the faces in .~(L) can 

be computed in O(n 2) time [CGL], [EOS]; determining which face of ~ff(L) 

contains p is an instance of planar point location, which can be solved in O(log n) 

time [Ki], lEGS2], [ST] after O(n 2) preprocessing. Thus, after O(n 2) 

preprocessing, any face-reporting query can be answered in O(Iog n + K) time, 

where K is the "output size," namely the number of lines that bound the desired 

face. The simpler queries listed above can be answered in O(log n) time. 

But what if it is deemed excessive to use O(n 2) time for preprocessing, or if 

the O(n 2) space that the above method requires is not available? What if the 

space at our disposal is only about linear in n ? 

Again, there is a straightforward solution: do not do any preprocessing at all; 

simply use any set representation as the data structure for L. When given a query 

point p, first determine for each line l~ L which of the two halfplanes bounded 

by I contains p, and then construct the intersection of these halfplanes. This takes 

O(n log n) time using divide-and-conquer [SH]. If the lines in L are initially 

sorted by slope, then the intersection can be computed in O(n) time. This query 

time compares poorly with the O(log n) query time achieved by the first method. 

In this paper we address the question of whether we can answer face queries 

in sublinear time using only roughly linear space. We show that it is possible to 
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preprocess  a set L of  n lines in r andomized  t ime O(n  3/2 log 2 n), p roduc ing  a 

da ta  s t ructure  that  uses O(n log n) space,  so that,  with high p robab i l i ty ,  any 

face- repor t ing  query can be answered  in t ime O(x/-fflog 5 n+K) .  The s impler  

queries men t ioned  above  take O ( x / n l o g  5 n) t ime. (By an al ternat ive a p p r o a c h  

that  uses more  p r ecompu ta t i on ,  we can reduce  the space to O(n) and  guarantee  

O(v/-fflog 3 n + K )  query t ime.) We also present  a s imi lar  result  for the more 

general  case  when the set L consists o f  line segments, ins tead  of  (infinite) 
tines. 2 

Our  so lu t ion  p roceeds  roughly  as fol lows:  First ,  using dual i ty ,  we t ransform 

the p rob l em into a re la ted  one  abou t  da t a  po in ts  and  query lines. 3 In this dual  

setting, our  p rob lem becomes  that  o f  p reprocess ing  a set P o f  points  in the p lane  

so that ,  for  any query l ine l, we can de te rmine  quickly  the convex hull o f  the 

poin ts  in P lying above  l, and  the convex hull  o f  the poin ts  in P lying be low L 

To achieve this we cons t ruc t  a family  o f  spann ing  trees for P with the p roper ty  

that  any s t raight  l ine intersects  only  few edges o f  one of  these trees. This means  

that  any s t raight  line "cu t s "  such a tree into a small  number  of  pieces,  each o f  

which lies comple te ly  on one side of  the line. Using an app rop r i a t e  da ta  structure 

based  on the spanning  tree, it is poss ible  to der ive an impl ic i t  represen ta t ion  of  

the convex hulls o f  the ind iv idua l  tree pieces  quickly,  and these ind iv idua l  hulls 

can then be c o m b i n e d  to give the two des i red  convex hulls. 

To ensure  the output -s ize  sensi t ivi ty o f  our  a lgor i thm,  it is impera t ive  that  we 

do  not  cons t ruc t  the convex hulls o f  the tree pieces  explici t ly,  because  their  total  

size might  be larger  than  the size o f  the c o m b i n e d  hull.  We achieve this using a 

h ierarchica l  r epresen ta t ion  o f  convex hulls that  is desc r ibed  in Sect ion 4. 

Our  use o f  spann ing  trees is c losely re la ted  to a recent  technique  o f  Chaze l le  

and  Welzl [CW]  for i m p r o v e d  ha l fp lane  range searching.  However ,  in our  

a p p r o a c h  we face several  add i t iona l  in teres t ing subprob lems ;  for example ,  the 

initial form o f  the s p a n n i n g  trees that  we p r o d u c e  can be highly  self- intersect ing,  

which is unsu i t ab le  for our  appl ica t ion .  We deve lop  an efficient p rocedu re  for  

"un t ang l i ng"  such a tree while  increas ing the m a x i m u m  number  o f  cuts o f  that  

tree by a line by at most  a factor  o f  two. The p rocedure  uses the shor tes t -pa th  

a lgor i thm for s imple  po lygons  o f  [GH] .  

We next  cons ider  the case of  line segments ,  which is more compl i ca t ed  because  

of  the h ighly  i r regular  shape  of  the faces in an a r rangement  of  segments .  We 

show that  by using A(n -~/3) r andomized  p reprocess ing  and A(n 4/3) space ,  we can 

obta in  the face conta in ing  a query poin t  in t ime A(n 1/3) + O(K ), where  K is the 

size o f  the face. Note  that  in this case we have dec reased  the query t ime at the 

2 Matougek [M] has recently improved these preprocessing bounds by showing how to build the 
necessary, spanning trees more efficiently. His method runs in O(n |og 2 n) time in the randomized 
case and in A(n 3) time in the deterministic case (A(n ~ s) arithmetic operations on ,,~n-bit numbers). 
Matou~ek also gives an O(n ~ 4+4) randomized algorithm (for any 8 > 0) that gives a query time of 
O(x/~log 4 n+ K). Matougek~s results improve the preprocessing bounds claimed in Theorems 
3.2, 3.5, 5.1, 6.1, and 7.1. For example, the preprocessing needed to represent an arrangement of n 
line segments (see below) decreases from A(n ~/~) to A(n4/3). 

3 We assume the reader is familiar with the concept of point-line duality in the plane. Otherwise 
consult Brown [B] or Edelsbrunner [E, pp. 12-14]. 
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cost of  using more preprocessing and space. We show that for the case of lines, 

this is an instance of a generally applicable tradeoff. 

We believe that our results will have many applications in speeding up 

algorithms that manipulate arrangements of  lines or of segments in the plane. 

One application, given in this paper, is the computation of m distinct faces in 

an arrangement of n lines in time A( me/3n ~/3 + n), which, by the results of  [CEG*],  

is almost optimal. Another recent application is the calculation of many 

components  in an arrangement of  n (intersecting) triangles in 3-space [AS]. 

The organization of this paper  is as follows: Section 2 describes some of  the 

notation we use. Section 3 gives the spanning-tree construction for the points 

dual to the lines in L, as well as the algorithm for "untangling" a self-intersecting 

spanning tree. Section 4 uses the spanning tree to find the convex hulls of  points 

on either side of  a query line, and then Section 5 applies this result to solve the 

original face-reporting problem on ~¢(L). Section 6 discusses a general tradeoff 

between space and query time, Section 7 uses random sampling to obtain an 

efficient implicit representation for arrangements of  segments, and Section 8 

presents the application of calculating many faces at once. 

2. Geometric Preliminaries 

We make a few definitions before we begin. The convex hull of  a set S of points 

is denoted by h ( S ) .  Given a (nonvertical) line I, let I ÷ be the closed halfspace 

above the line and let l -  be the closed half space below the line. We occasionally 

use I* to refer to either I ÷ or l-. 
In this pap."r we introduce "big-A" notation to suppress logarithmic and 

smaller factors. Specifically, i f f  and g are functions of  n, we write f ( n )  = A(g(n))  

if, for some constant k, we have f ( n )  = O ( g ( n )  log k n). 

Let L = {11, 12, • • • ,  l ,} be the set of  n lines whose arrangement,  ~¢(L), we wish 

to store. We assume that no three lines of L pass through a common point. Given 

a query point p, the face containing p is bounded by the lines that p can "travel 

to" without crossing lines of  L. We can map the set of  lines L to a set of points 

P = { P ~ , P 2 , . . . , P , }  by a duality transform that preserves the above/below 
relationship between points and lines. The nondegeneracy of L implies that no 

three points of  P are coilinear. (See Edelsbrunner for a precise formulation of 

the duality [El.) A primal query point p becomes a dual nonvertical query line 

/. The lines of  L bounding the face containing p now become points of  P that 

the line l can "travel to"  by translation and rotation without crossing any other 

point. In other words, the dual of  the face consists of  the portions of  the convex 

hulls h ( P  n l ÷) and h ( P  n l - )  between their inner common tangents, as depicted 

in Fig. t. Thus our problem becomes one of  finding quickly the convex hulls of  

the points of  P lying either above or below a query line. 

3. Computing Trees with Low Stabbing Number 

In this section we define the stabbing number  of  a spanning tree on a configuration 

of  points in the plane. We give three algorithms for computing trees with low 
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Fig. 1. The dual of  a face. 

stabbing number; these methods have tradeoffs between space, preprocessing 

time, stabbing number, and the use of randomization. 

We begin with some definitions. Any line 1 that does not intersect P partitions 

the points of  P into two se ts - - I  + c~ P and t- ~ P. Two lines are equivalent with 

respect to P if they induce the same partition. We frequently use ~ to denote a 

set of  lines such that every line that partitions P into two nonempty sets is 

equivalent to exactly one line of Zf. We can establish a correspondence between 

the lines of  L# and pairs of  points of P: I f  a line I c L# is rotated counterclockwise 

as far as possible without crossing points of P, it hits a unique pair of points, 

the left one from above and the right one from below. If  the line determined by 

a pair of  points of P is rotated slightly clockwise, so that it passes above the left 

point and below the right one, it is equivalent to a unique line of ~.  Therefore 

there are ( ; ) l i n e s  in L, w. 

Let T be a (straight-edge) spanning tree on P. The stabbing number of a 

line I with respect to the tree T is the number  of  edges of  T cut by l, that is, the 

number of  edges whose endpoints come from different sets of  the partition induced 

by L The stabbing number of T is the maximum of the stabbing numbers of all 

lines with respect to T. We can prove the following lower bound: 

Lemma 3.1. There is a configuration of n points for which every spanning tree has 

stabbing number f~( x/ if ). 

Proof Let P be the configuration of size n = m 2 given by the points of an m x m 

grid. The arrangement of  2m - 2 lines between the rows and columns of the grid 

isolates each point in a face; thus, each edge of the spanning tree must intersect 

one of these lines. The average number of  edges intersected by a line is 

(n - 1)/(2m - 2 )  > - m / 2 -  1. So f/(~'h') is a lower bound for the stabbing number  

of  this configuration of n points. [] 

We have several methods for computing trees with stabbing number close to 

this lower bound. The first method gives a slow deterministic construction of a 

tree with optimal stabbing number O(~,/-n); the second uses a conjugation partition 

tree, which can be built quickly, to make a spanning tree with stabbing number 
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O(n °'695) [EW]. These methods are described in Section 3.1. The third method, 

described in Section 3.2, employs random sampling to find a tree such that, for 

any line 1 from the set of nonequivalent lines ~, the stabbing number of ! is 

A(x/-~) with probability greater than one-half. We can then produce a family of 
O(log n) trees such that, with probability arbitrarily close to 1, any line I has 

stabbing number A(x/if) with respect to one of the trees. Our method is based 
on drawing random samples from an implicitly specified set of lines; this is 

described in Section 3.3. 
The first and third algorithms produce trees that may intersect themselves 

when embedded in the plane, so we also discuss how to untangle spanning trees 
without significantly increasing their stabbing number. In particular, in Section 

3.4 we provide an algorithm that will, for the randomized construction, remove 
all self-intersections and at most double the stabbing number of each line. 

3.1. Preliminary Approaches 

This section describes two deterministic algorithms for building spanning trees 

with low stabbing number. Roughly speaking, these algorithms are at opposite 

ends of the tradeoff between stabbing number and preprocessing time and space. 

In Section 3.2 we show how introducing randomization lets us get close to the 
optimal stabbing number without incurring large preprocessing costs. 

Theorem 3.2. For a configuration o f  n points P, we can compute a spanning tree 

T with stabbing number O(x/-n) by a procedure that can be implemented to run in 

A(n 3"5) time and A(n 1"5) space. 

Proof. Chazelle and Welzl [CW] prove that the procedure descisced in the 
following two paragraphs computes a spanning tree with stabbing number O(x/n). 

Let TI be the graph with vertex set P~ = P and no edges. Let 6( be a set of 
lines such that every line that partitions P is equivalent to exactly one line in Le. 

Let w~: ~-~ N be a weight function that assigns integer 1 to each line in ~. For 

a pair of points p, q E P let ~r.q c ~ be the set of lines that separate p and q. 
Repeat the following steps for i = 1 , . . . ,  n - 1: Find a pair p, q ~ Pi that minim- 

izes the sum of  the weights in ~p.q. Add the edge (p, q) to T~ to obtain graph 

T~÷,. Remove q from P~ to obtain Pi+j. Define the weight function w,+~: ~ N as 

~2w~(I) if IE.5~p,q, 

w~+l(l) = (w~(l) otherwise. 

After n - 1 iterations, T = T, will be a spanning tree with stabbing number O(v/-nn) 
(see [CW]). 

This procedure is most naturally implemented by considering the dual problem. 

Each point p c  P dualizes to a line Ip, edges (p, q) to double wedges Dp. 4, and 
(the equivalence classes of) lines l in ~ to cells CI in the arrangement of dual 
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lines. The functions w~ then assign weights to cells of the arrangement and can 
be naturally extended to assign weights to any region R in the dual plane by 

w,(R)=ZCcR w,(C). 
The reader may convince himself that one iteration of the procedure outlined 

above in the primal corresponds to the following in the dual: Identify p, q e P~ 

so that wi(Dp.q) is minimal. Add the edge (p, q) to T~ to obtain graph T~+l. 
Remove q from P, to obtain P~+l. Define the weight function 

w,+,(C) ~2w,(C) if C c  Dp, q, 

= (w,(C)  otherwise. 

If the entire arrangement of dual lines is stored along with the weights for the 
cells, we can compute the weights of  all double wedges by a fairly straightforward 

sweep algorithm. Unfortunately, the weights can become so large that it would 

be unreasonable to assume that arithmetic operations can be performed on them 
in time less than the number of bits necessary to represent them, which turns out 
to be O(x/-ff) (see [CW]). As a consequence, one iteration takes time A(n2'5), and 
the entire tree construction algorithm takes time A(n 3'5) and uses space A(n2 5). 

It is possible to reduce the space requirements to A(n ~5) using a two-pass 

algorithm. Each pass sweeps a vertical line from left to right over the arrangement 

of dual lines, but does not represent the arrangement explicitly. The first pass 

computes the weight of  the cells below each line. The second pass enumerates 

the ( ~ )  intersection points of the dual lines in left-to-right order and computes 

the weights of  the double wedges associated with them. Over the course of  the 
sweep, the algorithm computes the double wedge of  minimum weight. 

To describe the algorithm, we introduce some notation. For each cell C, the 
weight wi(C) is equal to 2 k,tc), where k~(C) is the number of edges (p, q) of T~ 

for which C c Dp, q. For a line lp of the arrangement let lp denote the lower 
halfplane bounded by lp. For a vertical line 1 let 1' denote the halfplane to the 
left of I. 

The first phase of  the algorithm sweeps a vertical line l from left to right over 

the arrangement while maintaining two data structures for the sweep line. One 

allows us to compute k~(C) whenever the sweep line reaches the rightmost vertex 
of a cell C. The other data structure maintains wi(~c~ I') for all p e P~. We leave 

the details of  these data structures to the reader and just remark that they can 

be implemented using space for O(n) numbers so that updates and queries take 
O(log n) arithmetic operations. (Note that in the second data structure each 
arithmetic operation can take time A(v~) due to the size of the numbers involved.) 

At the completion of the sweep, w~(Tp) will have been computed for each p e P~; 
these values can be stored using A(n 1"5) space. 

The second phase performs another sweep to determine the desired double 

wedge that has minimal weight. This sweep proceeds exactly as the first one does, 

using the same data structures. However, whenever the sweep line l reaches the 
intersection point of two lines lp and lq, with p, qcP~ and slope(p)<slope(q), 
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the weight of  the double wedge Dp.q can be computed by 

w,(Dp.q) = w , ( ~ ) -  w,(g) + 2(w,(~c~ l ' ) -  w , (~n  l')). 

This works because our duality transform guarantees that each double wedge 

consists of  left and right wedges, rather than top and bottom wedges. The weight 

of  each double wedge is compared with the minimum weight seen so far. 
During the sweeps O(n 2) updates and queries are performed on the data 

structures, each at a maximal cost of A(,,/-ff) using space A(nl5). Thus the two 
sweeps take time A(n zS) and use space A(n~S), which yields a A(n 3.s) time, 

A(n ~'5) space algorithm for finding the desired spanning tree with low stabbing 

number. [] 

If  we assume that addition and subtraction operations on integers with O(x/~) 
bits take O(x/-ff) time, then this sweepline algorithm runs in O(n 3"5 log n) time. 

The running time can be improved to O(n 3"5) by using a topological sweep [EG], 
but we do not give details of  that method here. 

The spanning tree produced by the method of Theorem 3.2 may intersect itself. 

Section 3.4 tells how to transform the tree into one without self-intersections 

while at most doubling its stabbing number. 
For our purpose, the time bound of the algorithm of  Theorem 3.2 is excessive; 

given O(n 2) time and space, we could explicitly construct the arrangement of 

lines and use it to answer queries. However, if we can accept a larger stabbing 
number, then we can apply a second deterministic technique to find a spanning 
tree from a partition tree using much less preprocessing time. 

Theorem 3.3. For a configuration of  n points P, we can compute a non-self- 

intersecting spanning tree T with stabbing number O(n 0'695) by a procedure that 

uses O(n log n) time and linear space. 

Proof. Partition trees, such as Wiilard trees [Wi] or the conjugation trees of 
Edelsbrunner and Welzl JEW], recursively divide a set of points for efficient 
processing of  halfplane range queries. Each node of the tree is associated with 

a subset of  the points. The important property of  partition trees is that, for any 

line l, at most O(n ~) nodes contain sets of  points that are separated by I. The 

conjugation tree, for example, is a binary tree with a = log2((1 +x/5)/2);  it can 

be built deterministically in O(n log n) time. 
We construct a graph with stabbing number O(n ~) from a conjugation tree 

by computing the convex hull of  the set of points at each node. Using a divide-and- 

conquer strategy, we merge the convex hulls of  the two children of  a node by 
finding two outer common tangents. (In a conjugation tree, the children of a 
node are separable by a line; this guarantees that their convex hulls have exactly 

two outer common tangents.) Two hulls with m points can easily be merged in 

O ( m )  time, which gives an O(n log n) bound for the whole process. 

This divide-and-conquer procedure terminates with a planar embedding of a 

connected graph that has at most two edges for each node of the conjugation 

tree. Compute a spanning tree T on this graph. Any line I separates points in at 
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most O(n ~) nodes of the conjugation tree, and thus T has stabbing number 
O(n':') = 0(n°695), [] 

3.2. Randomized Algorithms 

To obtain either fast preprocessing or optimal stabbing number, the deter- 

ministic algorithms of the preceding subsection sacrifice the other. If we use 
randomization, we can in O(n log n) time compute a tree T with an average 

stabbing number nearly as good as that of Theorem 3.2. More precisely: 

Theorem 3.4. Given a configuration o f  n points P, a random sample with size 

(1 +v~) ,¢~  drawn from a set o f  lines ~ ,  and a constant a > O, we can construct a 

spanning tree T on P such that, with probability 1 - n -~' for any ct' < or, the total 

number o f  intersections between ~ and T is m(lLel,/-d), where the constant o f  

proportionality also includes ct as a factor. Thus, the stabbing number of  the lines 

of  ~ is A(x/-n) on the average. The construction takes O(n log n) time. 

Proof. In order to minimize the total number of line-edge intersections as we 
build our tree, we employ random sampling techniques due to Clarkson [C], 

which are closely related to the e-nets used by Haussler and Welzl [We], [HW]. 

The theory of  e-nets says that, in a range space of finite Vapnik-Chervonenkis 

dimension d, a random sample of  size r drawn from a space of n elements 
is an e-net with probability 1 -~ ,  if the sample size r is at least 
max((4/e)  !og(2/~5), ( 8 d / e )  log(8d/e)) .  In our case the ranges will be triangles 

or lines and our ~ = n -~. Thus we can compute a constant c such that, with 
probability 1 -  ~, the random sample is an e-net for e = (ca log n)/r.  

Our algorithm constructs the tree T in at most log n phases. It uses part of  

the random sample of  lines from ~ in each phase; the unused sample lines are 

stored in a list, which initially contains the whole random sample. The algorithm 

maintains a current set of points, which it initializes to P; each phase discards 
at least half of the current set. If a phase begins with j points--call it phase j - - w e  
do the following. Obtain a random sample R of the lines of  2T by removing the 
first [ j,,~/2] lines from the list. Construct the arrangement ~ ( R )  in time linear 

in j [EOS], [CGL]. Triangulate each of the faces of  this arrangement to form a 

subdivision of the plane, which we denote 3 ( R ) .  A short calculation shows that 

the number of  triangular faces in J ( R )  is at most j / 2  f o r j  > 2. Place the j points 

into the triangles that contain them by performing a point location on each 

point. After O( j )  initial preprocessing, each of these j point locations takes 
logarithmic time [EGS2], [Ki], [ST]. Finally, within each triangle, form a (non- 
self-intersecting) spanning tree on the points it contains, choose a root vertex, 

and discard all points except the root. This leaves at most j / 2  points. ( I f j  = 2, 

we do not bother to pick R, but just form a single-edge spanning tree on the two 
points.) 

Each phase gets an independent random sample from the lines of  Z¢, but for 

convenience we bundle them into the single sample specified in the statement of 

the lemma. The total size of  the random sample we need from ~, summed over 
all phases, is at most Y~>o x/n~2'= (1 + x/2)v;-ff. 
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We must do three things: prove that the algorithm gives a spanning tree, show 
that this tree has the right average stabbing number, and determine the time 

complexity of the algorithm. 

We stop the algorithm when j =  1, so the last phase finds a spanning tree. 
Phase j computes at most j /2  rooted spanning trees and, by induction, the 

remainder of  the algorithm computes a spanning tree on their roots. Thus, the 

graph returned is connected. Since n - I  edges are used altogether, the result is 
a spanning tree. 

As mentioned above, there is a constant ci (which here includes the multiplica- 
tive factor of  a )  such that, with probability 1 - n  -~, our sample R is an e-net of 

size e = cl log n/x/] for triangular ranges. This means that for any triangle r in 
i f (R) ,  at most c~l~ ] log n/x/] of the lines of  the set ~ intersect r. Therefore, each 

edge we add contributes at most this number of line-edge incidences to the total. 

Summing over all log n phases, the total number of edge.line incidences is, with 

probability (1 - n-'~) I°g" -> 1 - n -~ log n, at most 

log n< 1 
Y c,lZel--~--_ c,l~el log n )2 

for e a c h  e d g e  I < i ~  n 

in e a c h  p h a s e  j 

= 2cd~l :~  log n(1 + O(1/v~)) .  

Thus, the average stabbing number over the lines of  Le is A(x/-n). 

The time required by the j point locations at O(Iog n) time apiece dominates 
the time of  phase j. Since the j ' s  are bounded by a geometric series, the total 
time complexity is O(n log n). 

Note that the theorem allows the random sample to contain duplicates. In 

fact, the theorem holds even when l~l is smaller than (1 +x/2)x/-ff. 

compare this theorem to Theorem 3.2, let ~ be the set of  (~ )nonequiva len t  To 

lines that separate the points of  P. We can obtain a random line of ~ by choosing 
a random pair of  points and rotating slightly the line that they define (note that 

the rotation is only conceptual). Thus the average stabbing number is A(x/n) and 

we can be assured that at least half of  the lines have stabbing number at most 

twice the average. 
Theorem 3.4 is useful for applications in which the average stabbing number 

is important, but the worst-case stabbing number is not. The calculation of many 

faces in an arrangement of  lines, described in Section 8, is such an application. 
We use an iterative approach to obtain a good worst-case stabbing number. 

The algorithm of  Theorem 3.4, running on a set of  lines Af, produces a tree T 

with the property that at least half of the lines of ~ are good: they have stabbing 

number A(x/ff). If  we could identify which lines were bad, then we could run the 

algorithm again on these lines. Repeating this process a logarithmic number of 

times, we would form a family of  trees such that every line has stabbing number 

A(x/-ff) with respect to one of  the trees. To identify the bad lines explicitly seems 
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expensive; however, by one 
approximate the set of  bad 

theorem. 

more application of  random sampling, we can 

lines closely enough to establish the following 

Theorem 3.5. Given a configuration o f  n points P and a constant a > 0, we can 

compute a family  o f  k = O(log n) spanning trees Tl, T2 . . . .  , Tk on P with the 

property that, with probability 1 - n -  "' for  any a ' < ct, for  every line I there is a tree 

T~ such that l has stabbing number A(v/-n) with respect to T~. The procedure uses 

A(n 3/2) time and linear space for  each tree in the family,  for  a total o f  A(n 3/2) time 

and O(n  log n) space. Again, ct enters as a multiplicative factor into the time 

complexity bound. 

Proof. To aid our presentation, we number the bad sets and the spanning trees 
according to the order in which they are produced. Tree L is built based on the 

bad set ~ ,  and bad set LP~+, is defined by ~ and L. The first set, ~ ,  = ~,  is the 
/ . _ \  

set of 12 ) nonequivalent lines that separate P i n  all possible ways. The first 

spanning tree, T,, is good for at least t~, l /2  lines. We would like ~2 to include 
the bad lines and none of the good lines; more generally, we would like LP~+, to 

include the bad lines of  ~ and none of the good lines. However, since we do 

not allow ourselves enough time to count all intersections between ~ and T~, 
this seems to be asking too much. 

We resolve the problem by letting the set ~i  approximate the set of bad lines. 

There are two challenges to be met: First, we cannot let bad lines slip out of  the 

approximation, yet we need to reduce the size of Ze~ by a constant factor at each 
step. Second, we cannot store Zf~ explicitly--it is too large. We need to store it 
in an implicit form that still allows us to choose a random sample of (1 + x/2)vrff 

lines quickly. It is the cost of  sampling from ~ that dominates the cost of  

constructing the spanning trees: by Theorem 3.4, each spanning tree construction 
takes O(n  log n) time, given a random sample from ~ of size O(x/-ff), but, as 
Theorem 3.8 below shows, finding the random sample takes A(n 3/2) time. 

Our method for computing the set ~ uses the fact that a random sample of  
the edges of  T~ is a good estimator for the number of  intersections of a line with 

L: if we take an appropriately sized random sample of tree edges, we expect 
bad lines to reveal themselves by intersecting the sample. 

We pick a random sample R of r = c2x/-n/log n tree edges, where the constant 
c2 is chosen so that at most 1~,1/2 lines intersect the sample. The iines of  &¢i that 
intersect an edge of the sample constitute the new bad set approximation, ~+1.  

In the next two paragraphs, we show how to choose the constant c2 to obtain a 

sample with at most 1~,1/2 points of  intersection between Ze~ and R-- this  will 
certainly ensure that I~e,+,l_ t~e~t/2. Then we show that the lines that do not 
intersect an edge of R stab few edges of  T~. 

How do we bound the number of intersections between &e~ and our random 

sample R ? The construction of  T~ gives a bound on the number of intersections 

between each edge of  the tree and the lines of  ZP~. In fact, the construction of T~ 

gives a bound on the number of lines passing through the triangle containing 
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edge e when e is added to the tree; the algorithm can store that bound as B(e). 
Since the average bound on the number  of  line intersections with an edge of T, 

is 2c11~,1 tog n/x/if, the expected number  of  intersections between LP, and R (the 

random sample of  r = c2v/-ff/log n edges of  T~) is bounded by 2c~c21~I. Choose 

c2 so that 2ctc2 = ~. Then at least half of  all the random samples of  size r have 

at most I~,1/2 intersections with 2~, according to the bounds B(e). 
For a particular sample R, we sum the intersection bounds of its edges, 

~.e~ B(e), in order to bound the number of  intersections between R and ~f~. If 

the bound is greater than 1~,t/2, we pick another sample. Since summing the 

bounds takes only O(x/-ff) time, in linear time we can choose up to x/-ff samples 

if  necessary. Thus, with probability 1 - 2  -e~, we can guarantee that the sum of 

the bounds is at most t&¢~I/2. I f  the construction of  tree T~ succeeded, then the 

bounds are accurate, and t~,+,1---1~,t/2. 
We use e-nets to bound the stabbing number  of  lines o f ~  - ~,+~. The elements 

of  the range space are tree edges and the ranges are lines. We again choose ~ to 

be n-~; this implies that e = ®(log n/r). In this application of random sampling, 
we reject as many as half of  the samples, so the proportion of times the sample 

fails to be an e-net may as much as double. But we can still compute a constant 

c' such that with probability at least 1 - 2 n  -~, any line that cuts at least c'x/-ff log 2 n 

edges of  T~ also cuts a line of  the random sample. Therefore, each line deleted 

from Z~ has stabbing number  A(x/-ff) with respect to tree T~. 

What is the probability that all the bounds on stabbing numbers are correct, 

and hence that the algorithm succeeds? With probability 1 - 2  - ' q ,  we can find a 

random sample R that has a low intersection bound with ~ .  Independently, 

each sample has the e-net property with probabili ty 1 - 2 n  ", and each spanning 

tree T~ has the right stabbing bounds with probability ( 1 -  n-~) j°s". Thus the 

overall probability of  success is at least 

( 1 - 2 n  - "  - 2 - v ~ ) 2 1 ° g n ( 1  - n-~) 21°gzn --> 1 -- (4 log n + 2  log 2 n + 1)n -~ -> 1 - n -~' 

for any a ' <  ct as n goes to infinity. 

Let us summarize our algorithm. In a sequence of  k = O(Iog n) stages, the 

algorithm produces k spanning trees for P. Stage i draws a random sample of 

size (1 + v/2) x/-ff from the approximate  bad set ~ .  We show in Theorem 3.8 below 

that drawing the sample from L~i takes O(n 3/2 log n) time and linear space for 

all stages after the first (sampling from ~1 = LP takes O(x/-ff) time). The algorithm 

uses the random sample from Ze~ to compute T~ in O(n log n) time by the method 

of  Theorem 3.4. It then draws a random sample of  the edges of  T~ and defines 

~i÷~ implicitly as the set of  lines in ZP~ that intersect these edges. To bound the 

time and space required by the algorithm, we impose a mixed termination 

condition: the algorithm terminates when Zei+~ is empty or after 2 log n stages, 

whichever comes first. With high probability, ~÷~ contains at most half  the lines 

of  Ze~ at each stage, so the algorithm almost always terminates with ZPi÷~ empty. 

Let k be the number  of  trees built by the algorithm. The space needed to store 

the trees is O(kn) = O(n log n), and the time used to build them is O(n 3/2 log 2 n); 
- a  

The properties of random samples ensure that, with probability at least 1 -  n 
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for any a '< ct, every line l has stabbing number O(v/-ff log 2 n) with respect to at 

least one of  T1, T2 , . . . ,  Tk. [] 

3.3. Random Sampling from a Bad Set 

Theorem 3.5 defines the approximate bad set ~i+, as the set of  all lines in ~i 
that intersect a random sample of the edges of T~. This subsection shows how to 
sample from Zei+~ without looking at all of  its lines. We begin by considering the 
definition of the lines in ~ = ~. 

Each line l of  ~ is determined by two points of  P: we draw 1 through the 

two points and rotate it slightly clockwise, so that it passes above the left point 
and below the right one. But recall that the points of  P are really the duals of  

the original n lines of  L. In primal space, then, l corresponds to an intersection 

of two original lines, perturbed slightly into one of the four quandrants defined 
by the lines (the quadrant above the line whose dual is the left point, and below 
the line whose dual is the right point). We refer to the primal version of I as the 
canonical perturbation of  its corresponding intersection. Line l cuts a (dual) 

segment if l's corresponding primal point lies in a double wedge corresponding 

to the segment. (The bounding lines of the double wedge are the primal versions 

of the segment endpoints.) Define W~ to be the (primal) arrangement of the 

double wedges that correspond to all the randomly sampled edges from 
T~ . . . .  , T~_~. Each face of  Wi dualizes to the set of  all lines that cut a particular 

subset of  the sample edges. A line is in 2T~ if and only if it cuts a sampled edge 
from each tree T ~ , . . . ,  T~_~ ; equivalently, a line belongs to SCi if and only if its 

primal version falls in one of  a certain set of  faces of W~. We think of these faces 

as being colored. Translating the definition of  ~i÷~ in Theorem 3.5 to primal 
terms, we get the colored faces of W~,~ by intersecting the colored faces of W~ 

with the set of double wedges that correspond to the random sample from T~. 
Since W~ has complexity O(ni2/log 2 n) = O(n), we can build it and determine 

its colored faces in linear time [CGL], [EOS]. 

The arrangement Wi defines ~ implicitly. To build T~ based on ~ ,  we need 
to draw random samples from 2T,. In primal terms, we want to pick a random 

sample from the intersections of  the lines of L (the original n lines) that fall in 
colored faces of W~, or whose canonical perturbations do so. We refer to these 

intersections, which fall in colored faces, as being colored themselves. To enumer- 

ate all the intersections of primal lines explicitly would take O(n 2) time; we 
enumerate them implicitly using A(n 3/2) time and O(n) space. Our implicit 

enumeration is based on the fact that there are only 0(n3/2i/log n) intersections 

between the n original lines of  L and the edges of  W~. We compute these 

intersections, then use them to count and sample from the colored intersections. 

The idea of  the sampling procedure is the following: We count the colored 
intersections, implicitly assigning a unique integer index to each. We then pick 

a random sample from the integers between 1 and the number of  colored 
intersections. Our counting algorithm lets us explicitly produce the intersection 

COrresponding to any given index, so we run the algorithm again to produce the 



446 H. Edelsbrunner et al. 

intersections that correspond to the randomly chosen integers. These intersections 
constitute the desired random sample. 

The algorithm for counting and computing intersections has two distinct parts, 
one dealing with a single face of W~ and one dealing with all the faces. The 

single-face algorithm takes as input the set of  all lines of L that intersect the 

boundary of  a given colored face. It counts the intersections of lines of L that 
fall inside the face and implicitly assigns indices to them. Given a sorted set of 
indices, it can produce the intersections corresponding to them. The global part 
of the algorithm provides the input to the single-face algorithm. It enumerates 
the colored faces of W~ and computes the intersections of L with the boundary 

of each face. Both parts of the algorithm use O(log n) time per intersection 

between L and W~ and linear space altogether. The following lemma describes 

the single-face algorithm. 

Lemma 3.6. Let f be a colored face of W~, and let H be the set of lines of L that 

intersect the boundary o f f .  Define h = IHI. I f  we are given H as input, then in 

O( h log h) time and O( h ) space we can count the intersections of  L inside f, including 

those on the boundary whose canonical perturbations lie in f Let the number of 

these intersections be I. The counting algorithm implicitly assigns a unique integer 

in the range 1 to I to each intersection; given a sorted list of  integers between l 

and I, the algorithm can produce the corresponding intersections in O(log n) 

additional time per intersection during the counting process. 

Proof We restrict our attention to the lines in H, since any line of L that 
intersects the interior of face f must cross the boundary o f f ,  and therefore must 
belong to H. Our algorithm has two steps, one to count intersections on the 

boundary o f f  and one to count intersections inside f 
The first step of the algorithm sorts the intersections of H with the boundary 

of  the f a c e f  in order around f This takes O(h log h) time. (Because H includes 

the supporting lines of  f, our analysis does not need to include the complexity 

of  the boundary o f f  explicitly.) From the sorted list the algorithm determines 
the O(h) intersections of  lines of L that fall on the boundary of  f It counts 

explicitly the ones whose canonical perturbations fall inside the face f 
The second step of  the algorithm counts the intersections of lines in the interior 

of  f It considers only the transverse intersections between the lines of H and 

the boundary of f, those whose lines cut the interior of f It numbers these 

intersections in order around f from 1 to h', for some h'_< 2h. The intersections 

are paired: each intersection stores the index of the other intersection of its line 

with the boundary o f f  The algorithm to count the intersections inside the face 

is similar to counting inversions in a permutation [Kn]. The algorithm maintains 
a list S of active intersections, which it initializes to empty, and a count count 

of  intersections noted so far. The counting algorithm scans through the intersection 

indices in order from 1 to h'. At each step, let a be the current index. The line 

that intersects the face f at a cuts it a second time, at a point with index b. If 
a < b, then neither is in S; we append a to S. On the other hand, if a > b, then 

b already belongs to S; we locate b in S, set c to be the number of  elements of 
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S after b, add c to count, and delete b from $. The same technique has been used 
in [GOS] to count intersections between line segments. 

The correctness of  the second step of the counting algorithm rests on the 
observation that the quantity c is the number of lines that intersect segment ab 

and have not yet had their intersections counted. The list S is a sorted list of 

integers that supports the operations append, find, find-by-index (given j, return 
the j th  element of  S), delete, and length-of-tail (return the number of  elements 
after the given one). Each operation takes O(log h) time if S is represented by 
a balanced binary tree. The algorithm performs O(h) operations, each of which 
takes O(log h) time; this gives an O(h log h) overall time bound. The space 

requirement is O(h). 

Given a sorted list of indices, the algorithm can produce the corresponding 

intersections in order as it runs. The intersections on the boundary o f f  are trivial 

to produce. Consider an index x belonging to an intersection in the interior 

of f .  The algorithm runs as described above until count < x <-count + c. Then the 
desired intersection is the one involving ab and the line whose intersection with 
the face boundary is distance (x - count) after b in S. The intersection is computed 

using find-by-index. [] 

We have seen how to count the intersections of  the n original lines of L that 

fall inside a face of W, given the intersections of L with the boundary of the 

face. We must now show how to enumerate the colored faces of W~ in some 
order, and for each face find all intersections of L with its boundary. Our goal 
is to do the enumeration in O(n) space and in O(Iog n) time per intersection 
between L and Wj. We achieve these bounds by enumerating the faces along 

each line of  W~ successively (each double wedge contributes two lines to W~). 
In outline, our method is the following: We associate each colored face of  W~ 

with the unique supporting line below it of minimum slope. Our duality transform 

ensures that this line exists, since no double wedge can contain the bottom face 
of W~ (see the proof  of  Theorem 3.2). Next we step through the lines of  W~ in 

some arbitrary order. For each line I e W~, we find the intersections of  L with 
the faces associated with l, then count the intersections in each such face. We 
process one face at a time, taking them in left-to-right order. The algorithm uses 
the following ordering lemma: 

Lemma 3.7. Let f i , f 2 , . . ,  be the faces of  an arrangement that are incident to a 

line l of  the arrangement and lie on one side of  l (say above l). Then any other line 

l' that intersects some of  f~ ,f2 . . . .  intersects them in a left-to-right order consistent 

with their order along l, or the reverse of  that order. 

Proof. If the lemma is violated, then there are faces a, b, and c that appear 

along l in order a, b, c (either left-to-right or right-to-left order) and along l' in 

order a, c, b. We assume without loss of generality that the order along i is left 

to right. Consider the line l~ of  the arrangement whose intersection with I creates 

the left vertex of c on / .  See Fig. 2. Now a and b lie on the opposite side of l~ 
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Fig. 2. Any line intersects faces a, b, and c in order. 

from c, as do all predecessors of  c along/.  For 1' to intersect a, c, and b in that 
order, it must cross lc twice, which is impossible. [] 

This lemma lets us produce the intersections of  a line I' with the faces associated 

with l in left-to-right order (with respect to 1). We can use ray-shooting [CG1] 

or fractional cascading [CG2] to compute which of these faces l' hits in order 
along l'; by the lemma, this order is consistent with the order of  the faces 
along/.  We use a next-face function that, given l' and its current face, in O(log n) 

time computes the next face associated with l that l' hits. 
Given a line I of W~, our method begins by scanning through the colored faces 

incident to l and determining which of them are associated with I; we speak of 

these faces as being flagged in the remainder of this paragraph. The scan takes 
O(ix/-ff/log n) time [CGL],  [EOS]. Each flagged face has a bucket that holds 

lines of  L; each line of  L goes in at most one bucket. We maintain the invariant 

that when a flagged face is processed, its bucket holds all the lines of L that 
intersect the face. We initialize the buckets by using next-face to place each line 

of  L in the bucket for the leftmost flagged face (with respect to l) that it intersects. 

We next scan through the flagged faces along I from left to right. When we reach 

face f, we count the intersections of L inside f as described in Lemma 3.6. When 

we finish with face f, we apply next-face to each line l' of  L that hits f, obtaining 

the next intersection of  l' with a flagged face. We transfer l' from the bucket for 

f into the bucket for the next intersected face. This guarantees that when each 
face is processed, its bucket contains all the lines of L that intersect it, as required. 

This method lets us count the intersections of  L that fall in colored faces of 
W~. How do we use this to take a random sample from the colored intersections? 

Once we know how many colored intersections there are altogether, we generate 

a random sample of  (1 +x/2)V'ff integers between 1 and the number of  colored 

intersections, then run the algorithm again, this time using it to produce the 

intersections indexed by the random numbers. This produces a random sample 

of  the colored intersections. 
What are the time and space complexities of  this algorithm? For each line of 

W~, the algorithm uses O(n log n) time to initialize the buckets. It takes O(log n) 

time to find each face-line intersection. The face processing costs also amount 

to O(log n) per intersection. Therefore, since there are O(n~/2i/tog n) intersec- 

tions between L and W~, selecting a random sample from &el takes 0(n3/2i) time, 
or a total of  O(n 3/2 log 2 n) for all 1 -< i -  2 log n. The space complexity is linear: 

O(n) for the arrangement Wj, plus an additional O(n) for the buckets. 
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We have established the following theorem, which was required in the proof  

of Theorem 3.5: 

Theorem 3.8. Given the set of  spanning tree edges from trees T I , . . .  , T~_ I that 

determines the set of  lines ~,,  we can define the arrangement Wi of  the double 

wedges whose duals are these tree edges. We define some faces of  Wi to be colored 

in accordance with the definition of ~i: a line of  ~ belongs to ~ if  and only if  it 

is the dual of  a point lying in a colored face of  W,. We can build Wi in O(n) 

time and space. Using IV,, we can take a random sample of  size r from ~ in 

O((n3/: + r) log n) time and O(n + r) space. 

3.4. Untangling a Spanning Tree 

The algorithms of Theorems 3.2 and 3.4 can generate trees that have self- 

intersections--we call such trees tangled. In order to use these trees in our 
application, we must untangle them without increasing their stabbing numbers 

by too much. We give an algorithm that takes the output of  the algorithm of 

Theorem 3.4 and untangles i t --returning a tree without self-intersections in 

O(n log n) time. The algorithm can be adapted to untangle a tree from Theorem 

3.2 in A(n 3/2) time. The algorithm has two parts. First, we form a tree with no 

self-intersections that has at most n additional vertices, or Steiner points. Second, 

we eliminate the Steiner points by employing a result of  Guibas and Hershberger 

[GH] to find shortest paths from vertex to vertex using the tree as a simple 
polygonal obstacle. The first part does not increase the stabbing number  of any 

line; the second at worst doubles the stabbing number  of any line. 

At times during the algorithm, we want to think of an untangled tree as a 

simple polygon. We can do so by tracing a Eulerian tour around the tree and 

treating it as a simple polygon with twice as many edges. As a result, many basic 

algorithms designed for simple polygons apply to our trees as well. For example, 

Chazelle and Guibas [CG1] give an algorithm that can be adapted to our structure 

so that, with O(n log n) preprocessing and O(n) space, we can answer "shooting 

queries" in O(log n) time. A shooting query has the following form: given a ray 

from a point p, report the intersection point closest to p of  the ray with an 

untangled tree. This will be an important tool in the proof  of Theorem 3.9. 

Theorem 3.9. Suppose we are given the edges of  a tangled spanning tree on n 

points that are output by the algorithm of Theorem 3.4. Then we can construct an 

untangled tree with at most n additional (Steiner) points by using O(n log n) time 

and linear space. For any line, the stabbing number with respect to the untangled 

tree will be at most the stabbing number with respect to the tangled tree. 

Proof. Recall that Theorem 3.4 constructs a spanning tree in phases, so that the 

new edges generated within each phase do not intersect one another. We build 

the desired Steiner tree (a non-self-intersecting tree with at most n additional 

vertices, or Steiner points) in an incremental manner,  adding the edges one at a 
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time in a way that makes the union of all added edges connected at all times. 

That is, we now add edges in the order opposite to the one in which the edges 

were found. We say that the untangling algorithm runs in stages to distinguish 

them from the phases of  the tree-construction algorithm. We call the points of  

the configuration P real points or real vertices. 

In the beginning of  stage j, we assume that we have a Steiner tree with at most 

j (real and Steiner) vertices and without self-intersections. We can preprocess 

the Steiner tree for shooting queries as mentioned above. We also have several 
trees made up of the edges that were found in phase j of  the tree-construction 

algori thm--since each one is rooted on the Steiner tree, we call them rooted trees. 

Taking the Steiner tree along with all the rooted trees gives a spanning tree of  

all j points. Furthermore, no two edges from rooted trees intersect. 

Within each rooted tree, number  the vertices by a preorder traversal from the 

root; a child receives a higher number  than its parent. Order the edges by labeling 

them with the greater of  their two endpoint numbers. I f  we respect this order as 

we add edges to the Steiner tree, then the path from a vertex p to the root is 

added before any edge into p from one of its children. 

Suppose we want to add the edge (c, p), where vertex c has a larger number 

than vertex p. Shoot from the child c toward the parent p; the shot can hit either 

p or an edge of  the Steiner tree. In the former case, we add edge (c,p) to the 

tree. In the latter, we introduce a Steiner point s at the first intersection point 

from c toward p, and add edge (c, s). Point s splits a Steiner tree edge into two 

edges. 
This process maintains connectivity and clearly introduces no cycles, since it 

always adds as many vertices as edges. 

At the end of  stage j, we have performed shooting from a total o f j  - 1 vertices 

and so have introduced at most j -  1 Steiner points. We have a Steiner tree with 

no self-intersections and fewer than 2j vertices. The number  of  vertices will at 

least double at the next stage. Thus, we satisfy the initial assumption of  the next 

stage and can proceed to it. 

After stage n, we have a Steiner tree with fewer than n Steiner vertices. Since 

the shooting process merely shortens the original edges, the stabbing number of  
a line with respect to the tree cannot increase. The time taken is bounded by a 

geometric sum: 

for each j = /I . ----. 

stage j 

This completes the algorithm. [] 

We can use the same approach to build a Steiner tree from the output o f  

Theorem 3.2, or, in fact, from any tangled tree. We traverse the tangled tree in 

preorder. When we visit a vertex v, we shoot along the edge from v toward its 

parent, then add to the Steiner tree the edge from v to the first intersection of 

the shot with the current Steiner tree. Determining the first intersection is slow, 
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in general, but in the special case of  a tree with low stabbing number, we can 

determine all intersections of  tree edges, and hence the ones we need, in A(ns) 

time, where s is the stabbing number of  the tree [BO], ICE].  

In our application, additional Steiner vertices in the tree correspond to addi- 

tional lines in the primal arrangement. These lines could hide true edges or 

introduce dummy edges in the faces of  the arrangement and thus affect the 

answers to queries. To remove the Steiner points, we use the shortest path 

algorithm of Guibas and Hershberger [GH]  as follows: Consider an Eulerian 
tour r around the outside of  the tree; it visits both Steiner points and real vertices 

and has stabbing number at most double that of  the Steiner tree. For any pair 

of  real vertices p and q such that the portion of the tour r between them visits 

only Steiner points, we replace this portion by the shortest path from p to q that 

does not intersect the Steiner tree. We show that the resulting straight-edge 

multigraph G is connected, has only real points for vertices, and has at most 

O(n) edges. The edges of  G do not cross each other. Moreover, the stabbing 

number of  G with respect to any line is at most that of r. 

Two real vertices p and q are said to be adjacent on the tour if the tour contains 

a path from p to q that uses only Steiner points. We call the path a Steiner path 

and denote it by Stp(p, q). Let sp(p, q) denote the Euclidean shortest path from 

p to q that avoids the tree. In our algorithm, we replace the Steiner path Sip(p, q) 

between adjacent vertices p and q by the shortest path sp(p, q). This may turn 

our tour into a graph with higher degree vertices, but it maintains connectivity 

and, as we show, it does not increase the stabbing number  of  any line. We have 

one important observation about Steiner points. 

Lemma 3.10. With respect to the Eulerian tour, all Steiner points are convex vertices. 

Proof. Steiner points are introduced along an edge, forming one angle of 180 ° 

and two angles that sum to 180 °. [] 

We call a simple polygon a spiral from p to q if the two polygonal chains from 

p to q both turn only to the left or only to the right. 

Lemma 3.11. Between adjacent real vertices p and q, the Steiner path and shortest 

path, Stp(p, q) and sp(p, q), form a spiral .from p to q. This spiral contains no 

vertices of the Steiner tree in its interior. 

Proof. By construction, the Steiner path goes along the tree and the shortest 

path never touches the Steiner path, as shown in Fig. 3. Thus, concatenating the 

Steiner and shortest paths gives a simple polygon, S. 

Fig. 3. The Steiner and shortest paths form a spiral. 
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If  we take the convex hull of our tree, all the hull vertices are real vertices. 

Thus we will never have a Steiner path that leaves one bay or pocket of the hull 

and goes to another. The shortest path sp(p, q) lies in the same bay as Stp(p, q). 

Because the polygon S does not cross the Steiner tree, it must contain either all 

or none of it; because S lies in a single bay of the convex hull, it therefore 

contains no vertex of the Steiner tree. 

Lemma 3.10 implies that there are no reflex vertices on the Steiner path, so it 

turns in only one direction. If  the path sp(p, q) made a convex turn with respect 

to the inside of  S, then the path could be shortened. Thus the shortest path turns 

in only one direction--the same direction as the Steiner path. [] 

Since the shortest paths have reflex angles with respect to the tour, they use 

no Steiner points. Thus the graph of  all shortest paths between adjace~t real 

vertices uses only real vertices. 

We can now prove that the stabbing number of the shortest path sp(p, q) is 

less than or equal to that of  the Steiner path Stp(p, q). In a spiral, the chain with 

reflex angles on the inside of  the spiral is called the inner chain, and the other 

chain is the outer chain. For example, shortest path sp(p, q) is the inner chain 

of  the spiral from p to q. If  p and q are both on the convex hull of  the spiral 

from p to q, then we call it a short spiral. 

Lemma 3.12. Let S be a spiral from p to q. Any line intersects the outer chain at 

least as often as the inner chain. 

Proof. If  the spiral is short, then the conclusion holds. Thus we will cut a long 

spiral into several short spirals by the following process. Consider walking along 

the inner chain from p to q, maintaining a point w on the inner chain and a ray 

that is tangent to the inner chain at w and opposite the direction of the walk. As 

we walk on the inner chain from p, this ray sweeps a point w' on the outer chain. 

At the beginning of the walk, choose a direction d I p e r h a p s  the direction of 

the first edge on the walk. Whenever our walk faces direction d or - d ,  we cut 

the spiral along the edge (w, w'). See Fig. 4. Since w' is a convex angle, we form 

a short spiral from p to w that includes edge (w, w') on the outer chain. Since 

the cut is tangent to the inner chain at w, we have a spiral from w' to q with 

edge (w, w') on the inner chain. We continue walking and cutting until only short 

spirals remain. 

Fig. 4. Cutting a long spiral along a ray. 
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e 

Fig. 5. No two shortest path edges cross. 

Any line that intersects an added edge does so once as an inner and once as 

an outer edge. Thus, the added edges do not contribute to the difference between 

the number  of  intersections of  a line with the inner and outer chains. Since 

the conclusion holds for each of  the short spirals, it holds for the original 

spiral. []  

Before we show how to find the graph of adjacent shortest paths, we bound 

its size. We prove the following lemma. 

Lemma 3.13. Let G be the multigraph obtained by replacing each Steiner path 

Stp(p, q) between a pair of adjacent real vertices, p and q, with the shortest path 

avoiding the tree, sp(p, q). The number of (straight) edges in G is O(n). 

Proof. We first show that G is planar. Let e be any edge on the inner chain of  

a spiral. I f  we extend e in both directions until it hits the spiral boundary,  it will 

hit the outer chain of  the spiral (because all vertices on the inner chain are reflex). 

See Fig. 5. Any edge e' that crosses e without crossing the outer chain must end 

in the shaded region of Fig. 5; in particular, since the only real vertices on the 

shaded region are the endpoints of  e, at least one endpoint of e' is not a real 

vertex. Because the edges of  a shortest path end at real vertices, no shortest path 

edge can cross e. Thus no two edges of  G can cross: G is planar. 

Next we must show that any one edge is not used in too many shortest paths. 
Let e be an oriented edge of  G. Edge e belongs to some spiral, which lies either 

to the left or to the fight of  e. Because the interior of  a spiral is empty, if we 

extend the perpendicular bisector of  e into the spiral, we must hit the outer chain 

of  the spiral. This first intersection of the bisector with the Steiner tree is unique, 

and it lies on a unique Steiner path, whose endpoints therefore define a unique 

spiral. Thus at most two spirals contain e, one to its left and one to its right. 

We have shown that G is a straight-edge planar multigraph on n vertices in 

which each edge appears  at most twice. Therefore, G has O(n) edges. [] 

We now have enough machinery to indicate how Guibas and Hershberger 's 

shortest-path algorithm constructs the graph of  shortest paths between adjacent 

vertices, and to analyze the amount  of  time and space required. 

Theorem 3.14. Given a Steiner tree, in O( n log n) time and O( n ) space we can 

construct a spanning tree of the original points that has no Steiner points, and whose 

stabbing number with respect to any line is at most twice that of the Steiner tree. 
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Proof. Take an Eulerian tour ~" around the Steiner tree---doubling the stabbing 
number of  each l ine--and identify the pairs of  adjacent real vertices on the tour. 

Using the algorithm of  Guibas and Hershberger [GH], we can find the shortest 
path between any pair of points p and q in time O(log n + k), where k is number 

of  edges along the path. 

As a preprocessing step for finding shortest paths, triangulate the bays defined 
by the Steiner tree and its convex hull in O(n log n) time. The algorithm of 

Guibas and Hershberger [GH] requires a linear amount of preprocessing once 
a triangulation is given. It finds the shortest path sp(p, q) in time O(log n + k), 
where k is the number of edges on sp(p, q). In our application, Lemma 3.13 

proves that the total number of edges on all shortest paths is O(n);  thus the 

logarithmic overhead for each path determines the running time, giving O(n log n) 

in total. 
Lemmas 3.11 and 3.12 prove that, for any line, the stabbing number of the 

graph of all shortest paths is no larger than that of the Eulerian tour. Building 

a spanning tree on this graph completes the algorithm. [] 

4. Representing and Computing Convex Hulls 

This section takes the O(log n) spanning trees provided by Section 3 and trans- 

forms them into a data structure that supports face queries on .if(L). We describe 

a query algorithm that, given a query point p, returns an implicit representation 
of  the face of M(L) that contains p. If the dual line of p has g as its minimum 

stabbing number with respect to any of the spanning trees, then the query takes 

A(~) time. The implicit representation returned by the query can be used to find 
any of  several face properties (intersections with a line, extreme vertices, the edge 

below p, and the number of face edges, for example) in additional O(log n) time, 

or to list the K face edges in additional O(K +log n) time. 
Our algorithm uses geometric duality to answer face queries. The dual of the 

face of M(L) that contains p is an "hourglass" shape in the configuration P, as 

shown in Fig. 1. The "hourglass" is defined by the inner common tangents of 

the two convex hulls h(Pn  i +) and h(Pn 1-). Our algorithm computes the two 
hulls, finds the common tangents, and transforms the results to answer the primal 
query. Its basic operation is computing h(P n l*), for l*~ {l+, l-}. 

We transform the trees of  Section 3 into simple paths, which are easier to 
work with than trees. For a particular tree, we trace around the boundary of the 

tree to get an Eulerian tour, then drop an edge to get a path. Every nonleaf vertex 

of  the tree appears more than once along the path. However, in what follows we 

assume that the path is simple---that overlaps do not occur. We can simulate this 

condition during the running of our algorithm using standard techniques. Let F 

denote the simple polygonal path that we get from the spanning tree. 
We first preprocess F to get a structure called a bridge tree that represents the 

convex hull of  a simple polygonal path and supports several operations on that 

hull, including finding tangents. Let the s subpaths of F included in the query 

halfplane l* be Yl . . . . .  %. We determine the yi's by intersecting ! with F in 



Implicitly Representing Arrangements of Lines or Segments 455 

O(s log n) time [CG2]. (Actually, if we use the algorithm of  Theorem 3.5, which 
builds O(log n) trees, we have O(log n) paths, and we want to use the one with 
fewest intersections with /. To find it, we run the intersection-finding algorithm 

of [CG2] in lock-step on all the paths at the same time and stop when all 
intersections with one of the paths have been found. This path is denoted F. This 

takes O(s  log 2 n) time altogether.) We compute the bridge tree for each y~, then 
use these bridge trees to find h(y~ w .  " " w Ys). 

We now give an intuitive description of bridge trees, then formally list their 
properties. Implementation details are omitted here, but will appear in a forthcom- 

ing paper on bridge trees [GHS]. A bridge tree ~(3 ')  represents the convex hull 
of a simple polygonal path 3'. Bridge trees are similar to data structures used by 

Overmars and van Leeuwen [OL] and Guibas and Hershberger [GH]. Bridge 
trees exploit the observation that if paths 3/ and 3" are disjoint, then the hulls 

h(3') and h(3") have at most two common tangents [CG2]. (This is a crucial 
observation for our algorithm, and is the reason for the tree-untangling step of 

Section 3.4.) If 3' can be split into 3'1 and 3"r by erasing an edge, then h(3') is 
either identical to one of  h(3'~) and h(3'r), or its boundary consists of a convex 
chain from h(3,~), a convex chain from h(yr), and two outer common tangents 

joining the chains. The bridge tree for y stores the two tangents explicitly and 
represents the chains by pointers to ~(y~) and ~ (y , ) .  

To find the bridge tree for F, we remove an edge from the middle of  F to get 

the subpaths F~ and Fr, then build ~ ( F )  from the recursively constructed ~(Ft )  

and ~(Fr) .  An arbitrary subpath y of  F can be expressed as the concatenation 
of O(log n) of  the paths produced during the construction of ~ (F ) .  We use the 
bridge trees for these paths to find ~ ( y ) .  

Let us state the properties of bridge trees more formally. 

(1) We can build a bridge tree ~ (F )  for F in O(n)  time and space. 
(2) Given ~(F) ,  we can extract ~ ( y )  for any subpath y o f f  in O(log 2 n) 

time. 

Given a bridge tree ~ ( y ) ,  we can in O(log n) time 

(3) find the tangents to h(y)  that pass through a given point, 

(4) find the extreme vertex of h(3') in a query direction, 

(5) find the intersections of h(3') with a line, and 

(6) count the number of hull edges between two vertices of h(3'). 

We can also 

(7) list the k edges of h(3') between two hull vertices in O(log n + k )  

time. 

Given ~(3 ' )  and ~ (3" )  for disjoint paths 3' and 3", we can 

(8) find the inner common tangents of h(3,) and h(3,') in O(log n) time, 
if they exist, and 

(9) find the outer common tangents of  h(3") and h(3") in O(log 2 n) 

time, if h(3') and h(3") intersect in at most two points and we are 

given vertices on h(3') and h ( y ' )  that lie on h ( y u  3"). 
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Our representation of  the hull H = h (y~ u .  • • w %) uses bridge trees as building 

blocks. The hull H consists of  chains from the hulls of  the y~'s alternating with 

tangent edges that link the chains. Between the endpoints of  a chain from a single 

hull h(y~), the hull H is identical to h(y~). We represent each h(y~) by its bridge 

tree ~(y~); we represent H as a circular list of  tangent edges alternating with 

pointers to these bridge trees. We call this structure a necklace: we think of the 

bridge trees as beads strung on a loop of tangent edges. A necklace built from 

hulls of  s disjoint simple paths has size O(s) ,  exclusive of the bridge trees to 
which it points. This follows from the fact that any two convex hulls have at 

most two intersections and from a simple Davenport-Schinzel argument. If  we 

store the tangent edges in a binary search tree augmented with hull edge counts, 

the resulting hybrid structure supports operations (3)-(9) listed above. 

We use ~ ( F )  to produce ~ ( Y O , . . . ,  ~ ( % )  in O(s log 2 n) time. In the course 

of  calculating h(y~ u -  • • u %), we need to use operation (9) to find the tangents 

of  certain pairs of  hulls. The following lemma shows how to find the special 

vertices that operation (9) requires. 

Lemma 4.1. Let y and y'  be disjoint simple polygonal paths whose convex hulls 

are represented by ~ ( y )  and ~3(y'). I f  we are given a ray r that originates at a 

vertex o f  y and does not intersect 3/, we can determine whether y lies inside the hull 

o f T '  in O(log n) time. ! f  Y is not contained in h (y ' ) ,  we can in O(log n) time find 

a vertex o f  y that lies on h ( y  u y'  ). 

Proof. I f  y lies inside h ( y ' ) ,  it must lie in some bay bounded by y '  and an edge 

e of  h (y ' ) .  In this case r must intersect e. I f  y is not fully contained in h (y ' ) ,  r 

may or may not intersect the hull of  Y'. I f  r intersects h (y ' ) ,  let e be the hull 

edge it cuts. An edge of y must cross e to get out of h(y ' ) ,  and hence some 

vertex of  y lies on the opposite side of e from y'. Thus y is contained in h (y ' )  

if and only if r intersects an edge e of h ( y ' )  and h(y)  lies on the same side of 

e as y'. Since bridge trees allow each of  the operations necessary to test this 

condition to be performed in O(log n) time, the first claim follows. 

I f  y is not fully contained in h (y ' ) ,  we want to find a vertex of y on h ( y w  7')- 

I f  r intersects h (y ' ) ,  let e be the edge it cuts; if r does not intersect h (y ' ) ,  define 

e to be a tangent edge from the origin of  r to h (y ' ) .  In both cases, the vertex of 

h (y)  where the tangent line is parallel to e and where y and y '  lie on the same 

side of  the tangent is on h ( y u  y'). Using operations (3)-(5), we can find this 

vertex in O(log n) time. [] 

This lemma lets us find the common tangents (if any) of  h(%) and h(yj) for 
any i and j. The edges of  F cut by our dual query line I provide the rays that the 

lemma requires: At least one endpoint o f  y~ belongs to an edge of  F cut by I. 

The edge can be extended to infinity on the other side of  l without hitting y~, 

and hence can be used in Lemma 4.1. Using operation (9), we can find the desired 

common tangents, if  they exist. We use this fact in the proof  of  the main result 

of  this section: 
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Theorem 4.2. Given an untangled spanning tree T of  the n points in P, we can 

preprocess it in linear time to answer halfplane convex-hull queries. Given a query 

halfplane l*, we can compute a necklace representation of  h( P c~ l*) in 0 (  ~ log 3 n) 
time, where ~ is the stabbing number of  ! with respect to T. 

Proof. The preprocessing phase computes a path F from the given spanning 
tree, then builds the bridge tree ~(F) .  At query time we find the subpaths 
Yt . . . .  , y~ in l*c~F [CG2], then build ~(Yt)  . . . .  ,fl(Ys) in O(£log 2 n) time. 
(Note that g is between 2s - 2  and 2s.) We combine h ( y ~ ) , . . . ,  h(%) into a single 
hull using a divide-and-conquer approach. 

We find the necklace for h ( y ~ u . . . u y , )  by first partitioning the set 

{ y t , . . . ,  y~} into two subsets of  equal or nearly equal size, next finding the 

necklace for each subset separately, and finally merging the two necklaces into 
a single necklace. We must describe the merging step. 

We split each necklace at its leftmost and rightmost vertices, then merge upper 
and lower necklaces separately. We merge two upper necklaces using a left-to-right 
sweep. For each upper necklace, the endpoints of the tangent edges specify a 

sequence of x-coordinates. We merge the sequences for the two necklaces to get 
a single sequence with k elements x~, x 2 , . . . ,  xk, for some k = O(s).  See Fig. 6. 

In any interval (x~, xi+t), each necklace has just one element, either a piece of a 

subpath hull or a tangent edge. We scan through these intervals from left to right. 
In each interval we find the joint upper hull of  the two elements in O(log 2 n) 

time using Lemma 4.1 and operations (3), (5), and (9). We find the complete 
upper hull of the original two necklaces using a Graham scan [PS] through the 
intervals, at each step finding the common tangent from the hull in the current 

interval to the convex hull to its left. Operation (9) is applied O(k)  times during 
the scan, and thus the scan takes O(k  log 2 n) time. The resulting hull is a list 

of subpaths and common tangents between them, but the hull may be split 
unnecessarily at interval endpoints. In O(k)  time we can merge adjacent hull 

pieces that come from the same subpath or tangent edge. This gives us the merged 
hull in necklace form, as desired. 

Since merging two necklaces defined by a total of k subpaths takes O(k  log 2 n) 

time, finding the necklace of all s subpaths by divide-and-conquer takes 
O(s'log 3 n) time. []  

f 

/ 
\ 

) 

Fig. 6. Intervals arising from breaking necklaces at tangents. 
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Our divide-and-conquer algorithm to find the convex hull may seem like 
overkill: one might expect to be able to find the hull by scanning through y~ . . . .  , y~ 

once, in the order given by the intersections of F with I. However, this simple 
approach is too na'ive. One subpath Y, can appear on the necklace many times. 

Furthermore, the order of  subpath appearances along the necklace is not 

necessarily the same as the order given by the intersections of T with the halfplane 
boundary. However, it is possible that some method could use the intersection 

order to speed up the construction. 

5. Implicit Representation of Line Arrangements 

In this section we summarize how the techniques of  the preceding sections can 

be used in combination to represent an arrangement of lines implicitly. 

The first step is to dualize the set of n lines L to get a set of points P. A query 
point p then maps to a line l, and the face of ~¢(L) that contains p maps to an 

hourglass shape determined by the inner common tangents of h(Pc~l +) and 

h(Pc~l-) ,  as shown in Fig. 1. 
We preprocess P for finding an implicit representation of h ( P ~  I*) for any 

halfplane l*~ {l +, l-}. We use Theorem 3.5 to build a collection of O(Iog n) 
spanning trees of P with the property that, with high probability, any line l has 

stabbing number A(v~)  with respect to at least one of them. (The actual stabbing 

number is O(x/n log 2 n).) The construction uses random sampling in two places. 

One sample, taken from the edges of a spanning tree, is easy to pick, but the 
second, taken from an implicitly defined "bad"  set of  O(n 2) lines, requires A(n 3/2) 

time to compute using Theorem 3.8. (Notice, by the way, that this is the only 
step of the algorithm that takes more than A(n) time.) The spanning trees may 

have self-intersections; we remove these using the algorithm of  Section 3.4. 

Finally, we build a bridge tree for the Eulerian path defined by each spanning 
tree, as specified in Theorem 4.2. 

Given a query point p, we dualize it to get query line l, then compute necklaces 

for h (P c~ l ÷) and h (P c~ l -)  based on the path F that intersects I the fewest times. 

The necklaces let us find the inner common tangents of the two hulls in O(log n) 

time. The endpoints of  the tangents delimit a convex chain of  each necklace on 
the side closer to I. These chains dualize to the upper and lower hulls of the face 

containing p. We can use the necklace search structures to calculate properties 
of  the face, simply interpreting the dual edges and vertices as primal vertices and 

edges. Thus we have established the following theorem: 

Theorem 5.1. Given a set L of n lines, we can preprocess it in A(n 3/2) randomized 

time and A(n) space so that, with high probability, for any query point p we can in 

A(x/n) time produce an implicit representation of the face of M( L) that contains p. 

From the implicit representation we can (1) find the intersections of a line with the 

face, (2)f ind the extreme vertex of the face in any direction, (3) count the edges of 

the face, or (4) report the edges of the face. All the operations except (4) take 
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O(log n) time; reporting the edges of the face takes O(log n + K) time if there are 

K edges. 

The theorem is stated using A-notation; the actual bounds a r e  O(n 3/2 log 2 n) 

preprocessing time, O(n log n) space, and O(x/-n log 5 n) query time. 

Pankaj Agarwal (personal communication) has observed that we can use a 

weaker version of our bridge-tree data structure to answer ray-shooting queries 
in O(v/ff log 4 n) query time, improving a special case of  operation (1). A ray- 

shooting query specifies a point p and a direction d and asks for the first 

intersection of the specified ray with the arrangement of  lines. To answer a query, 

we map it to the dual plane. In the dual, shooting a ray in direction d from point 

p maps to rotating a line around the dual of  the ray, starting from the dual of  p 

and stopping when the rotating line hits a dual point. Let 1 be the dual of  point 

p. As described above, we find the spanning path F that intersects I the fewest 

times. The line l cuts F into s =  O(x/-n log 2 n) fragments, each of  which can be 

decomposed into O(log n) canonical subpaths. We do a query on each canonical 

subpath separately; this can be done in O(log n) time (computing a tangent to 

a convex set from a point). In the primal, the answer to the original shooting 

query is the nearest of  the answers to the "subqueries." This method avoids 

merging bridge trees into a necklace, and so saves a logarithmic factor. The query 
time is O(log n) per subpath, for a total of  O(s log 2 n ) =  O(x/'n log 4 n). 

Note that ray-shooting lets us determine whether two query points p and q 

lie in the same face. The line determined by p and q has the same intersections 
with the face containing p and the face containing q if and only if p and q lie 
in the same face. 

6. A Tradeoff Between Storage and Query Time 

In this section we present a technique that allows us to improve the query time 

for reporting a face in an arrangement of  lines at the expense of  more storage. 

The technique uses a random sampling step that is akin to the one used in [CEG*] 

for obtaining a bound on the combinatorial complexity of  several cells in a line 

arrangement. The tradeoff between storage and query time is controlled by a 

parameter r, 1---r_< n. I f  we increase storage to A(rn) and preprocessing time to 

A(rl/2n3/2), then we can decrease query time to A ( x / - ~ ) .  This tradeoff carries 

all the way to r ~ n, where it corresponds to storing essentially the full arrangement 

of the n lines and doing a point-location in it. As we will see in the next section, 

another interesting point in the tradeoff occurs when r = n ~/3, in which case the 
query time becomes A(nl/3). 

We should also remark here that since a random sampling step is involved, 

the more precise statement of  the tradeoff result is that we provide a search 

structure that (1) always works, (2) takes space A(rn), and (3) with high probabil- 

ity takes preprocessing time A(rl/2n 3/2) and can answer any face query in time 
A( , , /~/0.  
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Fig. 7. The face containing p crosses a triangle. 

Our technique proceeds as follows. We select at random a sample of size r 

among the given lines and triangulate all its faces by drawing auxiliary edges, if 

necessary. The e-net theory of Haussler and Welzl [HW] (or the probabilistic 

lemma of Clarkson [C]) then guarantees that with high probability each of the 

O(r 2) triangles thus created is intersected by at most O(n log r/r) of the arrange- 

ment lines. This is only slightly more than O(n/r) ,  the expected number of lines 

that cut through a triangle. See [CEG*] for more details on such arguments. 

Now the idea of the tradeoff technique is to treat all the lines cutting through a 

triangle as a subproblem to be solved by the methods of Section 4. 

Consider a specific triangle T and the collection of all original lines cutting 

it (strictly speaking, cutting its interior). For a query point p, if p lies in T, then 

we want the subproblem for T to return to us the face containing p. However, 

the face containing p in the subproblem might not be identical to the face 

containing p in the full arrangement. There are two possible reasons for this: 

either the face in the full arrangement is bordered by a line on the boundary of 

T, or triangles bordering T also contribute sides to the face, as Fig. 7 s h o w s .  4 

These problematic faces are exactly those that touch (share an edge with) a 

sample line, or are crossed by an auxiliary edge of  the triangulation. To deal 

with these faces, we just precompute and store them all in an explicit subdivision 

S of  the plane. We then preprocess S for efficient point location by one of the 

standard techniques. Now, when a query point p is given, we first do a point 

location for p in S. If  p falls into one of the convex faces of  S corresponding to 

faces of the original arrangement of  the n lines, then we report that face and we 

are done. Otherwise p must lie in a face of  S that is fully covered by a unique 

triangle T of  the triangulation. Furthermore, in that case the face of p in the 

subproblem is also the face of p in the full arrangement. So by an application 

of  the methods of Section 4 we can complete the computation. 

What is the cost of all this? The cost of choosing the random sample of  the 

lines and triangulating the faces of their arrangement is O(r2). It is known 

[CGL], [EOS] that in an arrangement of n lines the combinatorial complexity 

of all faces touching a particular line (the horizon or zone of the line [E]) is 

O(n). The results of [EGP*], [EGS1] imply that these faces can actually be 

4 In fact the face containing p in the full arrangement can cut across many such triangles. 
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calculated in time A(n). Thus the faces touching all the sample lines can be 

computed in time A(rn) and stored in space O(rn) .  The faces crossed by the 

auxiliary edges in the triangulation can be obtained in a similar fashion, by 

combining the horizons corresponding to the lines supporting these edges in each 

of the relevant subproblem arrangements. Since there are only O(n  log r / r )  lines 

in each triangle subproblem, a total of  O(r  2) triangles, and at most two auxiliary 

edges bordering each triangle, we conclude that the horizons of  all auxiliary 

edges can be computed in A(rn) time and stored in A(rn) space)  Finally, since 

the point-location structure takes linear space in the size of the underlying 

subdivision S, the overall space that we need is A(rn) for that structure and also 

A(rn) in total for the triangle subproblems. 

Theorem 6.1. For each r, 1 <- r < - n, we can build a structure for  the face-reporting 

problem that takes A(rn) space and which, with high probability, can be built in 

time A( rl/2n 3/2) and allows us to answer any face query in time A ( x / - ~ )  + O( K ), 

where K is the size o f  the reported face. 

7. Implicit Faces in Arrangements of Segments 

In this section we extend our techniques to collections of  line segments, as 

opposed to infinite lines. In this situation many new difficulties arise: the faces 

we may wish to report need not be convex, or even simply connected--see Fig. 

8. Our previous implicit techniques cannot be extended easily, as we have made 

very heavy use of  convexity. Instead, our approach will use the method of 

partitioning into "tr iangular" subproblems, as developed in the previous section. 

The reason partitioning helps is that in a "smal l"  triangle T we can hope that 

most segments intersecting T actually go all the way through 7". Since we are 

interested only in faces clipped to within T, when we solve the subproblem 

associated with T we can treat these long segments as infinite lines. A similar 

Fig. 8. A face in an arrangement of segments that is neither convex nor simply connected. 

5 In this description we have skipped over a number of straightforward details that are left to the 
reader. 
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We triangulate the arrangement of sampled lines M(L') together with the sampled points G'. Fig. 9. 

idea has been used in [GOS] to solve the problem of counting or reporting 

line-segment intersections. 
Let L denote the set of  lines supporting our n given segments, and G denote 

the set of endpoints of these segments. As in the previous section, we now use 
a random-sampling technique to partition our problem into subproblems. Each 

subproblem is associated with a triangle T and consists of all the original segments 

cutting through T. Let r be an integer parameter to be fixed later. We choose a 
random sample L' of  r of  the lines in L and, independently, a random sample 
G'  of r 2 of  the points in G. We now triangulate the arrangement of the lines in 
L' with the additional points of  G'  thrown in--see Fig. 9. By using O(r 2) triangles 

we can obtain a triangulation such that no triangle contains one of  the points in 

G '  in its interior, or has its interior intersected by one of the lines in L'. Now 

the e-net theory [HW], [C] allows us to conclude that, with high probability, no 

triangle is intersected by more than O(n log r/r) of the lines in L, and no triangle 
contains more than O(n log r /r  2) of the points in G. Notice that in this step the 

points in G are partitioned among the triangles, while each line in L may be 
distributed to many triangles. Thus, on the average, this partition step will decrease 

the number of points in a triangle more than it will decrease the number of 

lines. 
We now construct and store all faces of  the original arrangement of n segments 

that are bordered or crossed by one of  the r sample lines or by one of  the auxiliary 
O(r 2) triangulation edges. These faces belong either to the r horizons or zones 

[E] of  the sample lines in our  arrangement of  n segments, or to the O(r  2) horizons 

of  the auxiliary edges in arrangements of  O(n log r~ r) segments each. The results 

of  [EGP*],  lEGS1] can be used to prove that the total complexity of  these faces 
is only A(rn), in that they can all be calculated in A(rn) time. All these faces 

together define a subdivision of the plane, which we preprocess for efficient point 
location. The overall time and storage cost of  this step is A(rn). 

Our query algorithm then begins by doing a point location in the above 

structure. If  the query point p happens to lie in one of the explicitly stored faces, 

then we can complete processing the query without having to use any additional 

structures. Otherwise p falls into a region that is fully covered by a unique triangle 

T of  the triangulation and has the property that the face containing p in the 

subproblem corresponding to T is exactly the face of  p in the full arrangement. 
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How do we solve these triangle subproblems? Let us concentrate on a particular 

triangle T. The set of  lines Lr consists of the lines supporting the segments cutting 
T, and the set of  points Gr  consists of the endpoints of  these segments that 

actually lie in T. It is useful to categorize the segments crossing T into two groups: 
the "long" segments that cut all the way through T, and the "short" segments 

that have an endpoint in T. Notice that there can be no more short segments in 
T than the number of points in Gr. If we choose r ~ nl/3, then the e-net bounds 
imply that that the number of lines in LT (and therefore the number of long 
segments) is at most O(n 2/3 log n), while the number of points in Gr (and 

therefore the number of  short segments) is at most O(nl/3 tog n). The fact 
that the bound on the number of short segments is only slightly greater than 

the square root of  the bound on the number of long segments is favorable for 
us, as we will now see. This consideration determined the choice of  r made 
above. 

For the triangle T we store two separate structures: the full arrangement of  

the short segments of T, and the data structure of Theorem 5.1 for the duals of 
the infinite lines supporting the long segments of T. Because of our choice of r, 
the total size of these two structures is only A(n2/3). Summed over all O(r 2) 
triangles, the total is A(n4/3). In combination with the point-location structure 

described above, the overall storage that we use is A(n4/a); the preprocessing 
cost is, with high probability, A(nS/3). 

To answer a query in T, we separately solve it in the (explicit) arrangement 
of the short segments in T, and in the (implicit) arrangement of the long segments 

in T; then we combine the results. It is easy to see how this works for the types 

of queries we have been concerned with, except for face reporting, where we 
encounter a technical difficulty: the two subfaces obtained in the two separate 

arrangements can have complexities much greater than that of the desired face, 

which is a connected component of their intersection. 
There is, however, a lot of structure in the situation that we can exploit. Recall 

that what we desire is to answer the query at a cost which is A(nt/3)+ O(K), 
where K is the output size. By the results in [EGP*], the complexity of the 
"short" face is only A(nt/3), so we can afford to look at all of  it. Notice also that 

the implicitly represented "long" face is convex. 

To deal with the above difficulty, we can start out by triangulating the short 

face. Then we intersect separately each of these triangles with the long face. A 

triangle can be intersected efficiently with the long face: we just intersect the long 

face with each of the lines defining the triangle and collect the appropriate pieces. 
By the results of Section 4, we can construct an implicit representation of the 

portion of the long face inside each triangle in A(1) time per triangle. We can 

now put all the separate intersections together into the true intersection of the 

long and short faces. Notice that the additional breakage introduced along the 
long face by the edges used for triangulating the short face is only A(n ~/3) (two 

breakpoints per diagonal), so it can be paid out of  the allowable overhead. This 
computation might actually produce several intersection faces, not just the one 

containing the query point p. The others, however, can be easily disposed of if 

we keep around the dual graph of the triangulation of the short face. We can 
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start at the node v of  this graph corresponding to the query point p and in a 

depth-first traversal from v collect all the pieces corresponding to the final face. 

Once we have collected these pieces, we expand their implicit representations to 

get an explicit description of the desired component  of the intersection of the 

long and short faces. The expansion takes A(n  t/3) + O ( K )  time, where K is the 

size of  the final face. This completes our argument. 

Theorem 7.1, Given n segments in the plane, then in A( n 4/3) space we can construct 

a data structure such that, with high probability, the preprocessing cost is A(nS/3), 

and, for every query point p, the face of the arrangement of these segments containing 

p can be reported in time A(nl/3)+ O ( K ) ,  where K is the size of the desired face. 

8. Reporting Many Faces 

From the results of  [CEG*] it is known that the complexity of m distinct faces 

in an arrangement of  n lines in the plane is O(m2/3n2/3+ n). The method used 

in that paper  is based on a random-sampling step like the one presented in the 

previous section. I f  we think of the m desired faces as being specified by m given 

points, then the random-sampling step selects r lines and r 2 points and triangulates 

the arrangement of  these lines and points. Again by the e-net property, each 

triangle subproblem has no more than O(n log r/r)  lines and no more than 
O(m log r/r  2) points. The proper value of  r to use here is r = m2/3/n I/3 because 

that makes the bound on the number of  points per triangle A(n2/3/m~/3), which, 

just as before, is roughly the square root of  the bound on the number  of  lines 
per triangle, A(n4/3/m2/3). 

Suppose now that we use our face-reporting technique individually for each 

point in each triangle subproblem. However, since in each face we already know 

the queries we will make, we can use the technique of Theorem 3.4 to build a 
single tree that is good for the prespecified queries on the average. Thus we can 

avoid the extra cost associated with Theorem 3.8; with high probability, it takes 

only A(n4/3/m2/3) time to construct a structure that allows face reporting with 

A(n2/3/m 1/3) overhead on the average for each face query. The overall cost per 

subproblem is A(n4/3/m2/3)+ O(K),  where K is the total size of  the faces to be 

reported. I f  we sum this over  all triangles and in addition take into consideration 

the cost of  the point-location structure implied by the partitioning step, we obtain 

the following result on the cost of  reporting m faces in an arrangement of  n lines. 

Theorem 8.1. Given m points lying in distinct faces of an arrangement of n lines, 

then, with high probability, in time A( m2/3 n2/3 + n) and space O( m2/3 n2/3 + n ), we 

can report the faces containing these points. 

This result matches the worst-case output complexity [CEG*] to within a 

polylogarithmic factor. 
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