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Abstract

Semantic segmentation (SS) is an important perception man-
ner for self-driving cars and robotics, which classifies each
pixel into a pre-determined class. The widely-used cross en-
tropy (CE) loss-based deep networks has achieved signifi-
cant progress w.r.t. the mean Intersection-over Union (mIoU).
However, the cross entropy loss can not take the different im-
portance of each class in an self-driving system into account.
For example, pedestrians in the image should be much more
important than the surrounding buildings when make a de-
cisions in the driving, so their segmentation results are ex-
pected to be as accurate as possible. In this paper, we pro-
pose to incorporate the importance-aware inter-class correla-
tion in a Wasserstein training framework by configuring its
ground distance matrix. The ground distance matrix can be
pre-defined following a priori in a specific task, and the previ-
ous importance-ignored methods can be the particular cases.
From an optimization perspective, we also extend our ground
metric to a linear, convex or concave increasing function
w.r.t. pre-defined ground distance. We evaluate our method
on CamVid and Cityscapes datasets with different backbones
(SegNet, ENet, FCN and Deeplab) in a plug and play fashion.
In our extenssive experiments, Wasserstein loss demonstrates
superior segmentation performance on the predefined critical
classes for safe-driving.

Introduction

Semantic segmentation is an importance task in many
vision-based applications or systems, such as self-driving,
robotics, augmented reality and automatic surgery system
(Yang et al. 2018). The goal is to densely assign class label
to each pixel in the input image for precisely understand-
ing the scene. Consequently, semantic segmentation can be
treated as an image classification task at pixel level. In the
past decades, significant amounts of research effort has been
spent on this issue (Long, Shelhamer, and Darrell 2015;
Paszke et al. 2017; Badrinarayanan, Kendall, and Cipolla
2017).

The recent semantic segmentation method based on
deep representation learning with cross-entropy (CE) loss
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Figure 1: The limitation of CE loss for real-world self-
driving system. The ground truth class of the pixel is car
i∗. Two possible softmax predictions of the segmenters have
the same probability at i∗ position. Therefore, both predicted
distributions have the same CE loss. However, the top pre-
diction is preferable to the bottom, since the two predictions
may result in different severity consequences.

have made considerable success on major open benchmark
datasets (Cordts et al. 2016; Brostow, Fauqueur, and Cipolla
2009). For each pixel in the input image, the CE loss com-
pares the prediction with one-hot encoded ground-truth la-
bel without considering any connections to other pixels.
The final loss is usually calculated as the average of the
cumulative CE loss across the entire image, making each
pixel contribute equally to the final loss (Liu et al. 2019e;
2019b). This would lead to a problem for different classes
with unbalanced representation in the image, due to training
probably dominated by the most prevalent class.

Even for the case that the pixels contribute unequally to
the final loss, such as assigning large weights to the border
of segmented objects (Li et al. 2017), the associated models
still encounter challenges in practical applications. Most ex-
isting semantic segmentation methods neglect the severity
of diverse misclassifications, which may cause unexpected
accidents. For example, an accident of Tesla is caused by
recognising a white truck as sky, arousing intense discussion
of self-vehicle safety 1. Supposing that the white truck is rec-

1https://www.nytimes.com/2017/01/19/business/tesla-model-

11629



ognized as a car/bus, the accident could be avoided. Accord-
ingly, it is necessary to investigate the severity of misclassi-
fications in semantic segmentation method.

Figure 1 shows an example to illustrate different sever-
ity consequences of misclassifications by using CE loss. For
this car image, there are two possible predictions, recognis-
ing the car as bus and road by Segment1 and Segment2 re-
spectively. The CE loss cannot discriminate these two soft-
max probability histograms. With one-hot ground-truth la-
bel, CE loss only depends on the prediction probability of
the true class. Actually, for self-driving system, the misclas-
sified prediction (Car→Bus) is more expected than the mis-
classified prediction (Car→Road) in terms of severity. How-
ever, when using the CE loss, the classes are assumed to
be independent of each other (Liu et al. 2018f). Therefore,
the inter-class correlations are not properly exploited. There-
fore, the inter-class correlation of (car, bus) should be closer
than that of (car, road). This cannot be revealed by CE loss
based models.

The importance-aware classification/segmentation (Chen,
Gong, and Yang 2018) proposes to define some class groups
based on the pre-defined importance of each class. For ex-
ample, the car, truck, bus are in the most important group,
road and sidewalks are in the less important group, and the
sky is in the least important group. Then, a larger weight
is assigned to the more important group to calculate the
loss. Therefore, misclassifying a car into any other classes
will receive larger punishment than misclassifying the sky
into any other classes. Nevertheless, for a specific class,
this method does not incorporate inter-class correlations be-
tween this class and any other class in the loss.

Based on the above mentioned analysis, we employ the
Wasserstein loss as an alternative to empirical risk min-
imization. Specifically, we calculate the Wasserstein dis-
tance between a softmax prediction histogram and its one-
hot encoded ground-truth label. By defining the ground met-
ric based on misclassification severity, classification perfor-
mance for each pixel can be measured related to inter-class
correlations.

The ground metric can be predefined by regarding the
severity structure as a priori, e.g., the distance between car
and road is larger than car and bus. We further investigate
various forms of the ground metric in optimization perspec-
tive. In the one-hot label setting, the exact Wasserstein dis-
tance can be formulated as a soft-attention scheme of all
prediction probabilities and is faster computed than other
general Wasserstein distance. For the semantic segmenta-
tion with unsupervised domain adaptation using constrained
non-one-hot pseudo-label, we can also resort to the fast ap-
proximate solution of Wasserstein distance.

The main contributions of this paper are summarized as:

• We propose to render reliable segmentation results for
self-driving by considering the different severity of misclas-
sification. The inter-class correlation is explicitly incorpo-
rated as a priori to form the ground metric in our Wasserstein
training framework. The importance-aware methods can be
viewed as a particular case by designing a specific ground

s-autopilot-fatal-crash.html

metric.
• For either one-hot or constrained target label in self-

training-based unsupervised domain adaption setting, we
systematically conclude the possible fast solution when a
non-negative linear, convex or concave increasing mapping
function is applied in ground metric.
• We empirically validate the effectiveness and general-

ity of the proposed Wasserstein training framework which
achieves promising performance on multiple challenging
benchmarks with different backbone models.

Related Work

Semantic Segmentation

Semantic segmentation provides a comprehensive descrip-
tion of the scene including object category, location and
shape details (Badrinarayanan, Kendall, and Cipolla 2017).
The deep learning revolution (Liu et al. 2018a; 2019c;
Che et al. 2019; Liu et al. 2018b; 2018e) sparked wide
interest in deep neural network-based semantic segmenta-
tion to replace the conventional methods (Liu et al. 2018c;
2017).

(Long, Shelhamer, and Darrell 2015) introduced a fully
convolutional network for pixel or super pixel-wise classifi-
cation. The conventional approaches usually employ CE loss
(Liu et al. 2018d; 2018e; 2019d; 2019a), which equally eval-
uates the errors incurred by all image pixels/classes without
taking into account the different severity-level of different
mistakes (Chen, Gong, and Yang 2018).

The importance-aware methods (Chen, Gong, and Yang
2017) argue that the distinction between object/pixel impor-
tance need to be taken under consideration. The classes in
Cityscapes are grouped as:
Group 4[most important]={Person,Car,Truck,Bus, · · ·};
Group 3={Road, Sidewalks,Train};
Group 2={Building,Wall,Fence,Vegetation,Terrain};
Group 1[least important]={Sky}.

To compute the sum of loss in all pixels, larger weights
will be given to the more important group. Consequently, the
misclassification of a pixel with ground truth label in group
4 will result in a larger loss than misclassifying the sky to
the other classes.

Recently, not only powerful segmentation nets (Chen et
al. 2017) have been developed but also the pose-processing
strategies are proposed to improve the initial results (Liu,
Lin, and Shen 2015). We note that these progress are or-
thogonal with our method and can be simply added to each
other.

Wasserstein Distance

Wasserstein distance is a measure defined between probabil-
ity distributions on a given metric space (Kolouri, Zou, and
Rohde 2016). Recently, it has appealed to a great deal of
attention in generative models etc (Arjovsky, Chintala, and
Bottou 2017). Due to the significant amount of computation
needed to solve the exact distance for general cases, usually,
it is difficult to use Wasserstein distance as a loss function.
Several methods propose to solve its approximate solution,
whose complexity is still in O(N2) (Cuturi 2013). (Frogner
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Figure 2: Left: a possible ground matrix for severity-aware segmentation. Right: the ground matrix as an alternative for
importance-aware setting.

et al. 2015) applies it for the multi-class multi-label task
with a linear model. The fast computing of discrete Wasser-
stein distance is also closely related to SIFT (Cha and Srihari
2002) descriptor, hue in HSV or LCH space (Cha 2002) and
sequence data (Su and Hua 2017).

Recently, several works propose to incorporate the
Wasserstein distance as an alternative of cross-entropy loss
in the context of deep learning. For example, (Liu et al.
2019e) use it for discrete and modulo classification, e.g.,
pose estimation. Targeting for the ordinal classification task,
(Liu et al. 2019b) propose to incorporate the correlation of
health risk-level in a line to alleviate the some what sophis-
ticate neural stick-breaking post-processing in (Liu et al.
2018f).

Inspired by the above works, we further adapted this idea
to the severity-aware estimation, and encoded the geometry
of label space by means of the ground matrix. We demon-
strate that Wasserstein loss can be computed by fast algo-
rithm in our class structure.

Methodology

The target of this work is to learn a segmenter hθ which is
parameterized by θ. It is based on an autoencoder structure.
Without loss of generality, suppose it projects a street view
image X ∈ R

Mx×Mx×3 to a prediction of semantic segmen-
tation map S ∈ R

Ms×Ms×N , where N indicates the number
of categories that pre-defined by the segmentation dataset.
In addition, the spatial size of input Mx × Mx and output
Ms×Ms are not necessarily the same. We note that the input
also not have to be the shape of square in many segmenters.

Suppose s = {si}
N
i=1

is the pixel-wise prediction of hθ(X),
i.e., the N classes probability normalized by softmax func-
tion. i ∈ {1, · · · , N} is the index of dimension (categories).
Then we can perform learning over a hypothesis space H
of hθ. Given X and its target one-hot ground truth label
T ∈ R

Ms×Ms×N , typically, learning is a process by em-
pirical risk minimization to solve min

hθ∈H L(hθ(X),T), with a

loss L(·, ·) acting as a surrogate of performance measure. In
other words, it is the sum of pixel-wise error in Ms ×Ms

positions.
In the context of the self-driving risk minimization, we ar-

gue that a good loss function should reflect the properties of
the importance of each class. Unfortunately, as the previous
statement, cross-entropy (CE)-based loss treat the output di-
mensions independently (Frogner et al. 2015), ignoring the
different severity of misclassification on label space, which
is also not adaptive here. Besides, information divergence,
Hellinger distance and X 2 distance-based loss are also not
the right choices, because it cannot distinguish between pre-
dictions.

Let define t = {tj}
N

j=1
as the target histogram distribution

label that can be either one-hot or non-one-hot vector. As-
sume the class label possesses a ground metric Di,j , which
measures the different severity of misclassifying i-th class
pixel into j-th class pixel. There are N2 possible potential
outcomes Di,j in a N class dataset and form a ground dis-

tance matrix D ∈ R
N×N (Rüschendorf 1985). When s and

t are both histograms, the discrete measure of exact Wasser-
stein loss is defined as

LDi,j
(s, t) = inf

W

N−1
∑

j=0

N−1
∑

i=0

Di,jWi,j (1)

where W is the transportation matrix with Wi,j indicating

the mass moved from the ith point in source distribution to
the jth target position. A valid transportation matrix W sat-
isfies:

Wi,j ≥ 0;
∑N−1

j=0
Wi,j ≤ si;

∑N−1

i=0
Wi,j ≤ tj ;

∑N−1

j=0

∑N−1

i=0
Wi,j = min(

∑N−1

i=0
si,

∑N−1

j=0
tj).

In mathematics, the Wasserstein or Kantorovich Rubin-
stein metric or distance is a distance function defined be-
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Figure 3: Left: The only possible transport plan in one-hot target case. Right: the transportation in smoothed pseudo label is
more complicated, e.g., car→bus.

tween probability distributions on a given metric space. Fur-
ther, we proposes the Wasserstein distance as a loss function
for unsupervised learning depends on a ground metric on the
sample space of images, which is an effective distance for
image retrieval, since it correlates with human perception.
A possible ground distance matrix D which has considered
different levels of importance is shown in Fig. 2.

The Wasserstein distance can be the same as the Earth
mover’s distance when two discrete histogram distributions

with the same masses (i.e.,
∑N−1

i=0
si =

∑N−1

j=0
tj) and

choosing the symmetric distance di,j as Di,j . However, our
case is more general and different from this case. The entries
in matrix D are not necessary to be symmetric with respect
to the main diagonal. Note that the importance-aware matrix
can be achieved by configuring the ground matrix as Fig. 2
right. The groups can be pre-defined by prior knowledge.

This setting is satisfactory for comparing the similarity of
SIFT or hue, which do not use a neural network. The pre-
vious efficient algorithm usually holds only for Di,j = di,j .
We propose to extend the ground metric in Di,j as f(di,j),
where f is a positive increasing function w.r.t. di,j .

Wasserstein Training with One-hot Target

In the multi-class and one-label classification tasks, the one-
hot labeling is a widely-used setting. The distribution of a
target label probability is t = δj,j∗ , where j∗ is the ground
truth class, δj,j∗ is a Dirac delta, which equals to 1 for j =
j∗2, and 0 otherwise.

Theorem 1. Assuming
∑N−1

j=0
tj =

∑N−1

i=0
si, and t is a

one-hot distribution and tj∗ = 1(or
∑N−1

i=0
si)

3, there is

2We use i, j interlaced for s and t, since they index the same
group of positions in a label set.

3We note that softmax cannot strictly guarantee the sum of its
outputs to be 1 considering the rounding operation in practice.

However, the difference of setting tj∗ to 1 or
∑N−1

i=0
si) is not

significant in our experiments using the typical format of softmax
output which has up to 8 decimal places precision.

only one feasible optimal transport plan.

Following the aforementioned criteria of W, all masses
have to be transferred to the cluster of the ground truth label
j∗, as illustrated in Fig. 3. Then, the Wasserstein distance be-
tween softmax prediction s and one-hot target t degenerates
to

L
D

f
i,j
(s, t) =

N−1
∑

i=0

sif(di,j∗) (2)

We can extend the ground metric in Di,j as f(di,j), where f

can be a linear or increasing function proper, e.g., pth power
of di,j and Huber function. The exact solution of Eq. (2) can
be computed with a complexity of O(N). The ground met-
ric term f(di,j∗) works as the weights w.r.t. si, which takes
all classes into account following a soft attention scheme
(Liu et al. 2018d). It explicitly encourages the probabili-
ties distributing on the neighboring classes of j∗. Since each
si is a function of the network parameters, differentiating

L
D

f
i,j
w.r.t. network parameters yields

∑N−1

i=0
s′if(di,j∗).

In contrast, the CE loss in one-hot setting can be formu-
lated as −1logsj∗ . Similar to the hard prediction scheme,
only a single class prediction is considered resulting in a
large information loss (Liu et al. 2018d). Besides, the regres-
sion loss with softmax prediction could be f(di∗,j∗), where
i∗ is the class with maximum prediction probability.

Wasserstein Training with Conservative Target

Deep self-training presents a powerful method for unsuper-
vised domain adaptation in semantic segmentation, which
involves an iterative process of predicting on target domain,
taking the confident predictions as pseudo-labels for retrain-
ing. Obviously, self-training can put overconfident label be-
lief on wrong classes and hence lead to deviated solutions
with propagated errors because pseudo-labels can be noisy.
(Zou et al. 2019) proposes to construct the soft Pseudo-label,
smoothing the one-hot Pseudo-label to a conservative target
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Group4
mIoU

Person Rider Car Truck Bus Motor Bike

SegNet(Badrinarayanan, Kendall, and Cipolla 2017) 62.8 42.8 89.3 38.1 43.1 35.8 51.9 57.0

+IAL(Chen, Gong, and Yang 2017) 84.1 46.0 91.1 75.9 65.0 22.2 65.3 65.7

+Ldi,j
86.4 48.7 92.8 78.5 68.2 40.2 62.8 67.4

+LD2

i,j
87.5 50.2 93.4 79.8 69.5 42.0 64.3 68.0

+LDHτ
i,j

87.6 49.8 93.2 79.5 70.3 41.6 63.6 67.9

ENet(Paszke et al. 2017) 65.5 38.4 90.6 36.9 50.5 38.8 55.4 58.3

+IAL(Chen, Gong, and Yang 2017) 87.7 41.3 92.4 73.5 76.2 24.1 69.7 67.5

+Ldi,j
90.7 48.7 95.5 70.8 75.3 46.2 73.3 69.1

+LD2

i,j
90.9 49.6 96.8 71.4 77.6 46.3 75.1 69.3

+LDHτ
i,j

90.1 49.5 96.8 72.6 77.8 46.2 75.0 69.5

Table 1: The comparison results of various methods of Cityscapes Group 4 with SegNet and ENet backbone.

distribution. With the conservative target label, the fast com-
putation of Wasserstein distance in Eq. (2) does not apply.

Regarding it as a general case of Wasserstein distance
and solving its closed-form result with a complexity higher
than O(N3) cannot satisfy the speed requirement of the loss
function. Therefore, a possible solution is to get an approx-
imate result with complexity in O(N2). (Cuturi 2013) pro-
poses an efficient approximation of both the transport matrix
and the subgradient of the loss, which is essentially a matrix
balancing problem that well-studied in numerical linear al-
gebra (Knight and Ruiz 2013). (Cuturi 2013) uses the well-
known efficient iterative Sinkhorn-Knopp algorithm.

Monotonic Increasing f w.r.t. di,j as Ground
Metric

Practically, f in D
f
i,j = f(di,j) can be a positive increasing

function w.r.t. di,j . For simplicity the linear function is sat-
isfactory for comparing the similarity of SIFT or hue (Rub-
ner, Tomasi, and Guibas 2000), which even does not involve
neural network optimization.

Convex Function w.r.t. di,j as Ground Metric
Furthermore, we can extend the ground metric as a non-

negative increasing and convex function of di,j . Here, we

give some measures4 using the typical convex ground met-
ric function.
LD

ρ
i,j
(s, t), the Wasserstein measure using dρ as the

ground metric with ρ = 2, 3, · · · . The case ρ = 2 is equiva-
lent to the Cramér distance (Rizzo and Székely 2016). Note
that the Cramér distance is not a distance metric proper.
However, its square root is.

D
ρ
i,j = d

ρ
i,j (3)

LDHτ
i,j

(s, t), the Wasserstein measure using a Huber cost

function with a parameter τ .

4We refer to “measure”, since a ρth-root normalization is re-
quired to get a distance (Villani 2003), which satisfies three prop-
erties: positive definiteness, symmetry and triangle inequality.

DHτ
i,j =

{

d2i,j if di,j ≤ τ

τ(2di,j − τ) otherwise.
(4)

Concave Function w.r.t. di,j as Ground Metric.
In real world applications, it may not meaningful to

choose the ground metric as the nonnegative, increasing and
concave function w.r.t. di,j . Noticing that the computing
time of obtaining an closed-form solution in the conserva-
tive target label case is usually not acceptable. While the step
function f(t) = 1t �=0 (one everywhere except at 0) could be
a special case. It can achieve the exact solution with sig-
nificantly less complexity (Villani 2003). Assuming that the
f(t) = 1t �=0, the Wasserstein metric between two normal-
ized discrete histograms on N bins is simplified to the ℓ1
distance.

L1di,j �=0(s, t) =
1

2

N−1
∑

i=0

|si − ti| =
1

2
||s − t||1 (5)

where || · ||1 is the discrete ℓ1 norm. Unfortunately, its
efficient computation of closed-form solution is at the cost of
losing its ability to differentiate different misclassifications.

Experiments
We show the implementation details and experimen-
tal results on two typical self-driving benchmarks (i.e.,
Cityscapes (Cordts et al. 2016) and CamVid (Brostow,
Fauqueur, and Cipolla 2009)). To illustrate the effectiveness
of each setting choice and their combinations, we give a
series of elaborate ablation studies along with the standard
measures. All of the networks are pre-trained with CE loss
as their vanilla version. The intersection-over-union (IoU) is
defined as:

IoU =
TP

TP + FP + FN
(6)

where TP, FP, and FN denote the numbers of true positive,
false positive, and false negative pixels, respectively. More-
over, the mean IoU is the average of IoU among all classes.
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Group3 Group4
mIoU

Road Sidewalk Sign Car Pedestrian Bike

FCN(Long, Shelhamer, and Darrell 2015) 98.1 89.5 25.1 84.5 64.6 38.6 69.6

+IAL(Chen, Gong, and Yang 2017) 96.3 91.8 21.5 82.2 69.5 57.6 71.2

+Ldi,j
98.5 93.2 28.3 87.4 71.3 60.0 72.4

+LD2

i,j
98.7 94.6 29.7 89.5 73.4 60.7 72.8

+LDHτ
i,j

98.5 95.0 29.5 89.7 73.5 60.6 72.8

Table 2: The comparison results of various methods on the Group 3/4 of CamVid dataset using FCN as backbone.

road sidewalk building wall fence pole traffic lgt traffic sgn vegetation ignored
terrain sky person rider car truck bus train motorcycle bike

(a) Input image (b) Ground truth

(c) Segmentation result (ENet) (d) Segmentation result (Our RWT)

Segmentation area in (c) better than (d) Segmentation area in (d) better than (c)

Figure 4: Representative semantic segmentation result of ENet and our Wasserstein training with ENet backbone on Cityscapes
dataset. The two image has the same mIoU but the misclassification of the person may lead to more severity result.

Importance-aware SS with One-hot Label

To achieve the importance-aware SS, we first pre-define our
ground matrix as Fig. 2. Following the setting in IAL (Chen,
Gong, and Yang 2017; 2018), we choose the SegNet (Badri-
narayanan, Kendall, and Cipolla 2017) and ENet (Paszke
et al. 2017) to be our backbone. We then use IAL and our
Wasserstein loss to replace the conventional CE loss in their
vanilla version.

For training/validation/testing, the recent Cityscapes
dataset contains 2975/500/1525 images respectively. The
19 classes that are most commonly used are selected and
grouped as IAL. Table 1 shows that the class in group 4
are segmented with higher IoU when considering the im-
portance of each class. Our Wasserstein loss normally out-
performs 2% than IAL, especially apply the convex function
w.r.t.di,j . The improvements w.r.t. Motor are more than
15% over IAL.

The CamVid dataset contains 367/26/233 images for
training/validation/testing respectively .We use the same set-
ting and measurements as IAL and report the results in the
table 2 for a fair comparison. We note that fine-tuning a pub-
lic available trained FCN segmenter (Long, Shelhamer, and
Darrell 2015) with Wasserstein loss is 1.5× faster than the
training of IAL. While the IoU of some relatively unim-
portant classes may drop, this will have limited impact on
driving safety. By introducing a stricter-than-usual objective
beyond simple CE loss, we can keep the mean IoU of all
classes comparable or even improved. To intuitively present
the effectiveness, we provide a representative segmentation
example in Fig. 4.

According to above qualitative and quantitative results,
we conclude that the proposed importance-aware Wasser-
stein training can improve the segmentation quality of the
important objects with a large margin in terms of mIoU met-
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Group4
mIoU

Person Rider Car Truck Bus Motor Bike

LRENT(Zou et al. 2019) 61.7 27.4 83.5 27.3 37.8 30.9 41.1 46.5

Ldi,j
65.4 33.7 88.5 36.2 44.8 39.3 48.4 46.8

LD2

i,j
65.7 34.0 88.9 36.7 45.3 39.6 49.1 47.0

LDHτ
i,j

66.2 34.7 89.5 37.1 46.0 40.8 50.5 47.3

Table 3: The comparison results of various methods on the Group4 of GTA5→Cityscapes unsupervised domain adaptation
using DeeplabV2 as backbone.

ric. Therefore, it is quite suitable for the application of self-
driving.

Importance-aware SS with Conservative Label

We further test our method for unsupervised domain adap-
tation with constrained self-training, i.e., label entropy regu-
larizer (LRENT) (Zou et al. 2019). We compute the approx-
imate Wasserstein distance as the loss. Table 3 shows the
performance of GTA5→Cityscapes adaptation and outper-
forms the CE loss-based LRENT by more than 5% in these
important classes consistently. Because the Huber function
is more robust to the label noise which is common for the
pseudo label in self-learning method. The improvements of
LDHτ

i,j
over LD2

i,j
are more significant than the one-hot case.

This task also indicates that our approach can be considered
as a general alternative objective of CE loss. Also it can be
employed in a plug and play fashion.

Conclusions

Targeting for the safety driving of self-driving vehicles
or robotics, we propose to implement a simple yet ef-
fective loss function for semantic segmentation based on
the Wasserstein distance. It is an effective alternative of
cross-entropy loss for empirical risk minimization. The
importance-correlation is given by a ground metric, which
can be predefined with expert knowledge. In the Wasser-
stein training, the importance-ignored task can be regarded
simply as a special case of our importance-aware setting.
Its effectiveness can be further boosted by using a con-
vex function (e.g., square and Huber) w.r.t.di,j . The fast
closed form solution is existed in the one-hot case, and can
be used as loss function directly. Besides, the fast approxi-
mate solution can also be applied to the case with conserva-
tive label which widely exist in self-learning based unsuper-
vised domain adaptation as well. We give extensive exper-
iments to evidence its effectiveness and Wasserstein train-
ing achieve the state of the art performance in importance-
aware tasks, and also improve the general metric mIoU with
a more strictly optimization objective. Although it is orig-
inally designed for semantic segmentation tasks, we argue
that our framework should has similar applicability to other
problems with discrete labels that have different importance-
level of misclassfication. In the future, we are planing to ap-
ply it on object detection (Ding et al. 2020), and extend it to
severity-aware semantic segmentation (Liu et al. 2020).
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