
Importance Estimation for Neural Network Pruning

Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri Frosio, Jan Kautz

NVIDIA

{pmolchanov, amallya, styree, ifrosio, jkautz}@nvidia.com

Abstract

Structural pruning of neural network parameters reduces

computation, energy, and memory transfer costs during in-

ference. We propose a novel method that estimates the

contribution of a neuron (filter) to the final loss and iter-

atively removes those with smaller scores. We describe

two variations of our method using the first and second-

order Taylor expansions to approximate a filter’s contribu-

tion. Both methods scale consistently across any network

layer without requiring per-layer sensitivity analysis and

can be applied to any kind of layer, including skip con-

nections. For modern networks trained on ImageNet, we

measured experimentally a high (>93%) correlation be-

tween the contribution computed by our methods and a re-

liable estimate of the true importance. Pruning with the

proposed methods leads to an improvement over state-of-

the-art in terms of accuracy, FLOPs, and parameter reduc-

tion. On ResNet-101, we achieve a 40% FLOPS reduction

by removing 30% of the parameters, with a loss of 0.02%

in the top-1 accuracy on ImageNet. Code is available at

https://github.com/NVlabs/Taylor_pruning.

1. Introduction

Convolutional neural networks (CNNs) are widely used

in today’s computer vision applications. Scaling up the size

of datasets as well as the models trained on them has been

responsible for the successes of deep learning. The dra-

matic increase in number of layers, from 8 in AlexNet [20],

to over 100 in ResNet-152 [11], has enabled deep net-

works to achieve better-than-human performance on the Im-

ageNet [31] classification task. Empirically, while larger

networks have exhibited better performance, possibly due to

the lottery ticket hypothesis [5], they have also been known

to be heavily over-parameterized [34].

The growing size of CNNs may be incompatible with

their deployment on mobile or embedded devices, with lim-

ited computational resources. Even in the case of cloud

services, prediction latency and energy consumption are

important considerations. All of these use cases will bene-

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

GFLOPs

24

26

28

30

32

To
p-

1
Er

ro
r (

%
)

0.5 1.0 1.5 2.0 2.5 3.0

Parameters (1e7)
7.5 8.0 4.0 5.0

ResNet-34 ResNet-50 ResNet-101
No pruning Taylor-FO-BN (Ours)

SSS [17] Li et al. [23] ThiNet [25] NISP [31] Ye et al. [32]

Figure 1: Pruning ResNets on the ImageNet dataset. The proposed

method is highlighted in gray. Bottom-left is better.

fit greatly from the availability of more compact networks.

Pruning is a common method to derive a compact network

– after training, some structural portion of the parameters is

removed, along with its associated computations.

A variety of pruning methods have been proposed, based

on greedy algorithms [26, 33], sparse regularization [21, 23,

32], and reinforcement learning [13]. Many of them rely on

the belief that the magnitude of a weight and its importance

are strongly correlated. We question this belief and observe a

significant gap in correlation between weight-based pruning

decisions and empirically optimal one-step decisions – a gap

which our greedy criterion aims to fill.

We focus our attention on extending previously proposed

methods [2, 22, 27] with a new pruning criterion and a

method that iteratively removes the least important set of

neurons (typically filters) from the trained model. We define

the importance as the squared change in loss induced by

removing a specific filter from the network. Since comput-

ing the exact importance is extremely expensive for large

networks, we approximate it with a Taylor expansion (akin

to [27]), resulting in a criterion computed from parameter

gradients readily available during standard training. Our

method is easy to implement in existing frameworks with

minimal overhead.

Additional benefits of our novel criterion include: a) no

11264

hyperparameters to set, other than providing the desired

number of neurons to prune; b) globally consistent scale

of our criterion across network layers without the need for

per-layer sensitivity analysis; c) a simple way of computing

the criterion in parallel for all neurons without greedy layer-

by-layer computation; and d) the ability to apply the method

to any layer in the network, including skip connections. We

highlight our main contributions below:

• We propose a new method for estimating, with a little

computational overhead over training, the contribution

of a neuron (filter) to the final loss. To do so, we use

averaged gradients and weight values that are readily

available during training.

• We compare two variants of our method using the

first and second-order Taylor expansions, respectively,

against a greedy search (“oracle”), and show that both

variants achieve state-of-the-art results, with our first-

order criteria being significantly faster to compute with

slightly worse accuracy. We also find that using a

squared loss as a measure for contribution leads to

better correlations with the oracle and better accuracy

when compared to signed difference [22]. Estimated

Spearman correlation with the oracle on ResNets and

DenseNets trained on ImageNet show significant agree-

ment (>93%), a large improvement over previous meth-

ods [17, 22, 23, 27, 32], leading to improved pruning.

• Pruning results on a wide variety of networks trained

on CIFAR-10 and ImageNet, including those with skip

connections, show improvement over state-of-the-art.

2. Related work

One of the ways to reduce the computational complexity

of a neural network is to train a smaller model that can mimic

the output of the larger model. Such an approach, termed

network distillation, was proposed by Hinton et al. [15]. The

biggest drawback of this approach is the need to define the

architecture of the smaller distilled model beforehand.

Pruning – which removes entire filters, or neurons, that

make little or no contribution to the output of a trained net-

work – is another way to make a network smaller and faster.

There are two forms in which structural pruning is com-

monly applied: a) with a predefined per-layer pruning ratio,

or b) simultaneously over all layers. The second form al-

lows pruning to automatically find a better architecture, as

demonstrated in [1]. An exact solution for pruning will be to

minimize the ℓ0 norm of all neurons and remove those that

are zeroed-out. However, ℓ0 minimization is impractical as

it is non-convex, NP-hard, and requires combinatorial search.

Therefore, prior work has tried to relax the optimization

using Bayesian methods [25, 29] or regularization terms.

One of the first works that used regularization, by Hanson

and Pratt [9], used weight decay along with other energy

minimization functions to reduce the complexity of the neu-

ral network. At the same time, Chauvin [2] discovered that

augmenting the loss with a positive monotonic function of

the energy term can lead to learning a sparse solution.

Motivated by the success of sparse coding, several meth-

ods relax ℓ0 minimization with ℓ1 or ℓ2 regularization, fol-

lowed by soft thresholding of parameters with a predefined

threshold. These methods belong to the family of Iterative

Shrinkage and Thresholding Algorithms (ISTA) [4]. Han et

al. [8] applied a similar approach for removing individual

weights of a neural network to obtain sparse non-regular

convolutional kernels. Li et al. [23] extended this approach

to remove filters with small ℓ1 norms.

Due to the popularity of batch-normalization [18] layers

in recent networks [11, 16], several approaches have been

proposed for filter pruning based on batch-norm parame-

ters [24, 32]. These works regularize the scaling term (γ) of

batch-norm layers and apply soft thresholding when value

fell below a predefined threshold. Further, FLOPS-based

penalties can also be included to directly reduce computa-

tional costs [6]. A more general scheme that uses an ISTA-

like method on scaling factors was proposed by [17] and can

be applied to any layer.

All of the above methods explicitly rely on the belief

that the magnitude of the weight or neuron is strongly cor-

related with its importance. This belief was investigated as

early as 1988 by Mozer [28] who proposed adding a gating

function after each layer to be pruned. With gate values

initialized to 1, the expectation of the negative gradient is

used as an approximation for importance. Mozer noted that

weights magnitude merely reflect the statistics of importance.

LeCun et al. [22] also questioned whether magnitude is a

reasonable measure of neuron importance. The authors sug-

gested using a product of the Hessian’s diagonal and the

squared weight as a measure of individual parameter impor-

tance, and demonstrated improvement over magnitude-only

pruning. This approach assumes that after convergence, the

Hessian is a positive definite matrix, meaning that removing

any neuron will only increase the loss. However, due to

stochasticity in training with minibatches under a limited

observation set and in the presence of saddle points, there

do exist neurons whose removal will decrease the loss. Our

method does not assume that the contribution of all neurons

is strictly positive. Therefore, we approximate the squared

difference of the loss when a neuron is removed and can do

so with a first-order or second-order approximation, if the

Hessian is available.

A few works have estimated neuron importance empir-

ically. Luo et al. [26] propose to use a greedy per-layer

procedure to find the subset of neurons that minimize a re-

construction loss, at a significant computational cost. Yu et

al. [33] estimate the importance of input features to a linear

classifier and propagate their importance assuming Lipschitz

continuity, requiring additional computational costs and non-

11265

trivial implementation of the feature score computation. Our

proposed method is able to outperform these methods while

requiring little additional computation and engineering.

Pruning methods such as [13, 14, 23, 26, 33] require sen-

sitivity analysis in order to estimate the pruning ratio that

should be applied to particular layers. Molchanov et al. [27]

assumed all layers have the same importance in feed-forward

networks and proposed a normalization heuristic for global

scaling. However, this method fails in networks with skip

connections. Further, it computes the criterion using network

activations, which increases memory requirements. Con-

versely, pruning methods operating on batch-normalization

[6, 17, 24, 32] do not require sensitivity analysis and can be

applied globally. Our criterion has globally-comparable scal-

ing by design and does not require sensitivity analysis. It can

be efficiently applied to any layer in the network, including

skip connections, and not only to batch-norm layers.

A few prior works have utilized pruning as a network

training regularizer. Han et al. [7] re-initialize weights after

pruning and finetune them to achieve even better accuracy

than the initial model. He et al. [12] extend this idea by

training filters even after they were zeroed-out. While our

work focuses only on removing filters from networks, it

might be possible to extend it as a regularizer.

3. Method

Given neural network parameters W = {w0, w1, ..., wM}
and a dataset D = {(x0, y0), (x1, y1), ..., (xK , yK)} com-

posed of input (xi) and output (yi) pairs, the task of training

is to minimize error E by solving:

min
W

E(D,W) = min
W

E(y|x,W). (1)

In the case of pruning we can include a sparsification term

in the cost function to minimize the size of the model:

min
W

E(D,W) + λ||W||0, (2)

where λ is a scaling coefficient and ||·||0 is the ℓ0 norm which

represents the number of non-zero elements. Unfortunately

there is no efficient way to minimize the ℓ0 norm as it is

non-convex, NP-hard, and requires combinatorial search.

An alternative approach starts with the full set of param-

eters W upon convergence of the original optimization (1)

and gradually reduces this set by a few parameters at a time.

In this incremental setting, the decision of which parame-

ters to remove can be made by considering the importance

of each parameter individually, assuming independence of

parameters. We refer to this simplified approximation to full

combinatorial search as greedy first-order search.

The importance of a parameter can be quantified by the

error induced by removing it. Under an i.i.d. assumption,

this induced error can be measured as a squared difference

of prediction errors with and without the parameter (wm):

Im =

(
E(D,W)− E(D,W|wm = 0)

)2

. (3)

Computing Im for each parameter, as in (3), is computation-

ally expensive since it requires evaluating M versions of the

network, one for each removed parameter.

We can avoid evaluating M different networks by approx-

imating Im in the vicinity of W by its second-order Taylor

expansion:

I(2)
m (W) =

(
gmwm −

1

2
wmHmW

)2

, (4)

where gm = ∂E
∂wm

are elements of the gradient g, Hi,j =
∂2E

∂wi∂wj
are elements of the Hessian H, and Hm is its m-th

row. An even more compact approximation is computed

using the first-order expansion, which simplifies to:

I(1)
m (W) =

(
gmwm

)2

. (5)

The importance in Eq. (5) is easily computed since the

gradient g is already available from backpropagation. For

the rest of this section we will primarily use the first-order

approximation, however most statements also hold for the

second-order approximation. Future reference we denote the

set of first-order importance approximations:

I(1)(W) = {I
(1)
1 (W), I

(1)
2 (W), ..., I

(1)
M (W)}. (6)

To approximate the joint importance of a structural set

of parameters WS , e.g. a convolutional filter, we have two

alternatives. We can define it as a group contribution:

I
(1)
S

(W) ,

(
∑

s∈S

gsws

)2

, (7)

or, alternatively, sum the importance of the individual pa-

rameters in the set,

Î
(1)
S

(W) ,
∑

s∈S

I(1)
s (W) =

∑

s∈S

(gsws)
2. (8)

For insight into these two options, and to simplify cal-

culations, we add “gates” to the network, z = 1M , with

weights equal to 1 and dimensionality equal to the number

of neurons (feature maps) M . Gating layers make impor-

tance score computation easier, as they: a) are not involved

in optimization; b) have a constant value, therefore allowing

W to be omitted from Eq. (4-8); and c) implicitly combine

the contributions of filter weights and bias.

11266

If a gate zm follows a neuron parameterized by weights

Ws∈Sm
, then the importance approximation I

(1)
m is:

I(1)
m (z) =

(
∂E

∂zm

)2

=

(∑

s∈Sm

gsws

)2

= I
(1)
Sm

(W), (9)

where S represents the inner dimensions needed to compute

the output of the previous layer, e.g. input dimension for a

linear layer, or spatial and input dimensions for a convolu-

tional layer. We see that gate importance is equivalent to

group contribution on the parameters of the preceding layer.

Through some manipulation, we can make a connection

to information theory from our proposed method. Let’s

denote hm = ∂E
∂zm

= gTs∈Sm
Ws∈Sm

and observe (under the

assumption that, at convergence, E(hm)2 = 0):

Var(hm) = E(h
2
m)− E(hm)2 = I(1)(z), (10)

where the variance is computed across observations.

If the error function E(·) is chosen to be the log-

likelihood function, then assuming the gradient is estimated

as hx = ∂ ln p(x;z)
∂z

, borrowing from concepts in information

theory [3], we obtain

Varx(h) = E
x

{
hxhT

x

}
= J(h), (11)

where J is the expected Fisher information matrix. We

conclude that the variance of the gradient is the expectation

of the outer product of gradients and is equal to the expected

Fisher information matrix. Therefore, the proposed metric,

I(1), can be interpreted as the variance estimate and as the

diagonal of the Fisher information matrix.

3.1. Pruning algorithm

Our pruning method takes a trained network as input and

prunes it during an iterative fine-tuning process with a small

learning rate. During each epoch, the following steps are

repeated:

1. For each minibatch, we compute parameter gradients

and update network weights by gradient descent. We

also compute the importance of each neuron (or filter)

using the gradient averaged over the minibatch, as de-

scribed in (7) or (8). (Or, the second-order importance

estimate may be computed if the Hessian is available.)

2. After a predefined number of minibatches, we average

the importance score of each neuron (or filter) over the

of minibatches, and remove the N neurons with the

smallest importance scores.

Fine-tuning and pruning continue until the target number of

neurons is pruned, or the maximum tolerable loss can no

longer be achieved.

3.2. Implementation details

Hessian computation. Computing the full Hessian in

Eq. (4) is computationally demanding, thus we use a diago-

nal approximation. During experiments with ImageNet we

cannot compute the Hessian because of memory constraints.

Importance score accumulation. During training or fine-

tuning with minibatches, observed gradients are combined

to compute a single importance score Î = E
〈
I
〉
.

Importance score aggregation. In this work, we compute

the importance of structured parameters as a sum of individ-

ual contributions defined in Eq. (8), unless gates are used

automatically compute the group contribution on the param-

eters from the preceding layer. Second-order methods are

always computed on gates. We observed that the “group

contribution” criterion in Eq. (7) exhibits very low correla-

tion with the “true” importance (3) if the parameter set S is

too large, due to expectation of gradients tending to zero at

convergence.

Gate placement. Unless otherwise stated, gates are placed

immediately after a batch normalization layer to capture

contributions from scaling and shifting parameters simulta-

neously. The first-order criterion computed for a feature

map m at the gate can be shown to be I(1)m (γm, βm) =
(γm

∂E
∂γm

+ βm
∂E
∂βm

)2 with γ and β being the scale and shift

parameters of the batch normalization.

Averaging importance scores over pruning iterations.

We average importance scores between pruning iterations us-

ing an exponential moving average filter (momentum) with

coefficient 0.9.

Pruning strategy. We found that the method performs better

when we define the number of neurons to be removed, prune

them in batches and fine-tune the network after that. An

alternative approach is to continuously prune as long as the

training or validation loss is below the threshold. The latter

approach leads the optimization into local minima and final

results are slightly worse.

Number of minibatches between pruning iterations needs

be sufficient to capture statistics of the overall data. We use

10 minibatches and a small batch size for CIFAR datasets,

but a larger (256) batch size and 30 minibatches for Ima-

geNet pruning, as noted with each experiment.

Number of neurons pruned per iteration needs to be chosen

based on how correlated the neurons are to each other. We

observed that a filter’s contribution changes during prun-

ing and we usually prune around 2% of initial filters per

iteration.

4. Experiments

We evaluate our method on a variety of neural network

architectures on the CIFAR-10 [19] and ImageNet [31]

datasets. We also experiment with variations of our method

to understand the best variant. Whenever we refer to Weight,

11267

Weight magnitude or BN scale, we use ℓ2 norm.

4.1. Results on CIFAR10

With the CIFAR-10 dataset, we evaluate “oracle” meth-

ods and second-order methods by pruning smaller networks,

including LeNet3 and variants of ResNets [10] and pre-

activation ResNets [11].

4.1.1 LeNet3

We start with a simple network, LeNet3, trained on the

CIFAR-10 dataset to achieve 73% test accuracy. The ar-

chitecture of LeNet consists of 2 convolutional and 3 lin-

ear layers arranged in a C-R-P-C-R-P-L-R-L-R-L (C:

Conv, R: ReLU, P: Pooling, L: Linear) order with 16, 32,

120, 84, and 10 neurons respectively. We prune the first 2
convolutional and first 2 linear layers without changing the

output linear layer or finetuning after pruning.

Single layer pruning. In this setup, we only prune the first

convolutional layer. This setting allows us to use the Com-

binatorial oracle, the true ℓ0 minimizer: we compute the

loss for all possible combinations of k neurons that can be

pruned and pick the best one. Note that this requires an expo-

nential number of feedforward passes to evaluate –
(
n
k

)
per

k, where n is the number of filters and k is number of filters

to prune, and so is not practical for multiple layers or larger

networks. We compare against a greedy search approxima-

tion, the Greedy oracle, that exhaustively finds the single

best neuron to remove at each pruning step, repeated k times.

Results shown in Fig. 2 show the loss vs. the number of

neurons pruned. We observe that the Combinatorial oracle

is not significantly better than the Greedy oracle when prun-

ing a small number of neurons. Considering that the former

has exponential computational complexity, in subsequent

experiments we use the Greedy oracle (referred to simply as

Oracle) as a representation of the best possible outcome.

Figure 2: Pruning the first layer of LeNet3 on CIFAR-10 with

Combinatorial oracle and Greedy oracle. Networks remain fixed

and are not fine-tuned. Results for Greedy oracle are averaged over

30 seeds with mean and standard deviation shown. Best observed

results for Combinatorial oracle for every seed are averaged.

All layers pruning. Fig. 3 shows pruning results when all

layers are pruned using various criteria. We refer to our

methods based on the Taylor expansion as Taylor FO/Taylor

SO, indicating the order of the approximation used, first-

and second-order, respectively. We consider both a direct

application to convolutional filter weights (“on weight”) and

the use of gates following each convolutional layer (“on

gate”).] We treat linear layers as 1× 1 convolutions. In all

cases, pruning removes the entire filter and its corresponding

bias. At each pruning iteration, we remove the neuron with

the least importance as measured by the criterion used, and

measure the loss on the training set.

Results in Fig. 3 show that Oracle pruning performs best,

followed closely by the second- and first-order Taylor expan-

sion criteria, respectively. Both first and second-order Taylor

methods prune nearly the same number of neurons as the

Oracle before exceeding the loss threshold. Weight-based

pruning, which removes neurons with the least ℓ2 norm, per-

forms as poorly as randomly removing neurons. OBD [22]

performs similarly to the Oracle and Taylor methods.

The experiments on LeNet confirm the following: (1) The

greedy oracle closely follows the pruning performance of

the Combinatorial oracle for small changes to the network,

while being exponentially faster to compute. (2) Our first-

order method (Taylor FO) is comparable to the second-order

method (Taylor SO) in this setting.

4.1.2 ResNet-18

Now we compare pruning criteria on the more com-

plex architecture ResNet-18, from the pre-activation fam-

ily [11]. Each residual block has an architecture of

BN1-ReLU-conv1-BN2-ReLU-conv2, together with a

skip connection from the input to the output, repeated for a

total of 8 blocks. Trained on CIFAR-10, ResNet-18 achieves

a test accuracy of 94.79%. For pruning, we consider entire

Figure 3: Pruning LeNet3 on CIFAR-10 with various criteria. Net-

work remains fixed and is not fine-tuned. Results are averaged over

50 seeds with mean and standard deviation. The number of pruned

neurons when the loss reaches 1.0 is shown in parentheses.

11268

Method
Residual block

All layers
conv1 conv2

Taylor FO on conv weight 0.726 0.766 0.892
Weight magnitude 0.660 0.677 0.861

Gate after BN2

Taylor FO 0.955 0.811 0.924
Taylor SO 0.968 0.849 0.957

OBD 0.855 0.707 0.901
Taylor FO - FG 0.775 0.746 0.924

Gate before BN2

Taylor FO 0.275 0.811 0.295
Taylor SO 0.376 0.849 0.286
OBD 0.350 0.707 0.299
Taylor FO - FG 0.642 0.746 0.900

Table 1: Spearman correlation of different criteria with the Ora-

cle on CIFAR-10 with ResNet-18. (FG denotes full gradient, as

described in the text).

feature maps in the conv layers as they command the largest

share of computational resources.

In these experiments, we examine the following ways of

estimating our criterion: (1) Applying it directly on convolu-

tional filter weights, (2) Using gates placed before BN2 and

after conv2, and (3) Using gates placed after BN2 and after

conv2. We remove 100 neurons every 20 minibatches, and

report final results averaged over 10 seeds. We also compare

using gradients averaged over a mini-batch and gradients

obtained per data sample, the latter denoted by “full grad”,

or “FG”. We should note that using the full gradient changes

the gate formulation from computing the group contribution

(Eq. 7) to the sum of individual contributions (Eq. 8).

Table 1 presents the Spearman correlation between var-

ious pruning criteria and the greedy oracle. Results in the

Residual block column are averaged over all 8 blocks. The

All layers column includes additional layers: the first convo-

lutional layer (not part of residual blocks), all convolutions in

residual blocks, and all strided convolutions. We observe that

placing the gate before BN2 significantly reduces correlation

– correlation for conv1 drops from 0.95 to 0.28 for Tay-

lor FO, suggesting that the subsequent batch-normalization

layer significantly affects criteria computed from the gate.

We observe that the effect is less significant when the full

gradient is used, however it shows smaller correlation overall

with the oracle. OBD has lower correlation than our Tay-

lor based methods. The highest correlation is observed for

Taylor SO, with Taylor FO following right after. As placing

gates after BN2 dramatically improves the results, this indi-

cates that the batch-normalization layers play a key role in

determining the contribution of the corresponding filter.

Results of pruning ResNet-18 without fine-tuning are

shown in Fig. 4. We observe that the oracle achieves the

best accuracy for a given number of pruned neurons. All

methods, except “-fixed” and Random, recompute the criteria

Figure 4: Pruning ResNet-18 trained on CIFAR-10 without fine-

tuning. The number of neurons pruned when the loss reaches 0.5

is shown in parentheses.

after each iterative step and can adjust to the pruned network.

Oracle-fixed and Taylor FO-fixed are computed across the

same number of batches as non-fixed criteria. We notice

that fixed criteria clearly perform significantly worse than

oracle, emphasizing importance of reestimating the criteria

after each pruning iteration, allowing the values to adjust to

changes in the network architecture.

An interesting observation is that the OBD method per-

forms poorly in spite of having a good correlation with the

oracle in Table 1. The reason for this discrepancy is that

when we evaluate correlation with the oracle, we square

estimates of OBD to make them comparable to the way

the oracle was estimated. However, during pruning, we

use signed values of OBD, as was prescribed in [22]. As

mentioned earlier, for deep networks, the diagonal of the

Hessian is not positive for all elements and removing those

with negative impact results in increased network instability.

Therefore, without fine-tuning, OBD is not well suited for

pruning. Another important observation is that if the Hes-

sian is available, using the Taylor SO expansion can get both

better pruning and correlation. Surprisingly, we observe no

improvement in using the full gradient, probably because of

the switch in contributions from group to individual.

At this stage, after experiments with the small LeNet3

network the larger ResNet-18 on the CIFAR-10 dataset, we

make the following observations: (1) Our proposed criteria

based on the Taylor expansion of the pruning loss have a

very high correlation with the neuron ranking produced by

the oracle. (2) The first- and second-order Taylor criteria

are comparable. As the Taylor FO can be computed much

faster with a lower memory footprint, further experiments

with larger networks on ImageNet are performed using this

criterion only.

11269

4.2. Results on ImageNet

Here, we apply our method on the challenging task of

pruning networks trained on ImageNet [31], specifically the

ILSVRC2012 version. For all experiments in this section,

we use PyTorch [30] and default pretrained models as a

starting point for network pruning. We use standard pre-

processing and augmentation: re-sizing images to have a

smallest dimension of 256, randomly cropping a 224× 224
patch, randomly applying horizontal flips, and normalizing

images by subtracting a per-dataset mean and dividing by a

per-dataset standard deviation. During testing, we use the

central crop of size 224× 224.

4.2.1 Neuron importance correlation study

We compare against pruning methods that use various heuris-

tics, such as weight magnitude [21, 23], magnitude of the

batch-norm scale, BN scale [6, 24, 32], and output-based

heuristics (Taylor expansion applied to layer outputs) [27].

We estimate the correlation between the “real importance”

of a filter and these criteria. Estimating real importance, or

the change in loss value upon removing a neuron, requires

running inference multiple times while setting each individ-

ual filter to 0 in turn. (Note that the oracle ranks neurons

based on this value). For ResNet-101, we pruned filters in

the first 2 convolutional layers of every residual block. Sep-

arately, we add gates to skip connections at the input and

output of each block. For the VGG11-BN architecture, we

replace drop-out layers with batch-norms (0.5 scale and 0
shift) and fine-tune for 12 epochs until test accuracy reaches

70.8% to be comparable with [1]. For DenseNet201, we

considered features after the batch-norm layer that follows

the first 1× 1 convolution in every dense layer.

The statistical correlation between heuristics and mea-

sured importance are summarized in Table 2. Correlations

were measured on a subset of ImageNet consisting of a

few thousand images. We evaluated various implementa-

tions of our method, but always use the first-order Taylor

expansion, denoted Taylor FO. As previously discussed, the

most promising variation uses a gate after each batch-norm

layer. The All layers correlation columns show how well

the criteria scale across layers. Our method exhibits >93%
Spearman correlation for all three networks. Weight magni-

tude and BN scale have quite low correlation, suggesting that

magnitude is not a good representation of importance. Out-

put-based expansion proposed in [27] has high correlation on

the VGG11-BN network but fails on ResNet and DenseNet

architectures. Surprisingly, we observe >92% Pearson cor-

relation for ResNet and DenseNet, showing we can almost

exactly predict the change in loss for every neuron.

We are also able to study the effect of skip connections

by adding a gate after the output of each residual block. We

add skip connections to the full set of filters and evaluate

Method
Ours Averaged per layer All layers

Taylor FO Pearson Spearman Kendall Pearson Spearman Kendall

ResNet-101

Gate after BN X 0.877 0.870 0.710 0.925 0.965 0.843

Gate after BN - FG X 0.772 0.817 0.644 0.778 0.944 0.803
Conv weight X 0.719 0.740 0.570 0.780 0.874 0.698
BN scale X 0.703 0.664 0.501 0.792 0.866 0.681
BN scale 0.371 0.405 0.296 0.632 0.807 0.621
Weight magnitude 0.566 0.651 0.493 0.376 0.587 0.432
Taylor-output [27] 0.520 0.586 0.429 0.381 0.287 0.198

Including skip connections

Gate after BN X 0.874 0.867 0.707 0.806 0.946 0.809
Gate after BN - FG X 0.768 0.814 0.640 0.725 0.873 0.727

VGG11-BN

Gate after BN X 0.964 0.974 0.894 0.798 0.999 0.972

Conv/Linear weight X 0.659 0.627 0.507 0.843 0.983 0.893
Gate after BN - FG X 0.825 0.800 0.666 0.812 0.982 0.887
BN scale X 0.751 0.718 0.586 0.634 0.968 0.846
BN scale 0.474 0.438 0.351 0.031 0.257 0.213
Weight magnitude 0.604 0.603 0.474 0.537 0.812 0.654
Taylor-output [27] 0.590 0.581 0.468 0.534 0.968 0.876

DenseNet-201

Gate after BN X 0.825 0.849 0.740 0.967 0.932 0.811

Gate after BN - FG X 0.891 0.898 0.742 0.764 0.944 0.798
Conv weight X 0.825 0.836 0.659 0.701 0.817 0.627
BN scale X 0.645 0.645 0.479 0.677 0.434 0.307
BN scale 0.472 0.471 0.342 0.506 0.597 0.436
Weight magnitude 0.725 0.737 0.558 0.300 0.300 0.208
Taylor-output [27] 0.673 0.699 0.530 0.455 0.472 0.333

Table 2: Correlation study of different criteria and oracle on the Im-

ageNet dataset. Spearman and Kendall measure rank correlations.

BN stands for batch-normalization, FG for full gradient.

their correlation, denoted “Including skip connections” in

Table 2. We observe high correlation of the criterion with

skip connections as well. Given this result, we adopt this

methodology for pruning ResNets and remove channels from

skip connections and bottleneck layers simultaneously. We

refer to this variant of our method as Taylor-FO-BN.

4.2.2 Pruning and fine-tuning

We use the following settings: 4 GPUs and a batch size of

256 examples; we optimized using SGD with initial learning

rate 0.01 (or 0.001, see Sec. 6.2) decayed a factor 10 every

10 epochs, momentum set to 0.9; pruning and fine-tuning

run for 25 epochs total; we report the best validation ac-

curacy observed. Every 30 mini-batches we remove 100
neurons until we reach the predefined number of neurons to

be pruned, after which we reset the momentum buffer and

continue fine-tuning. By setting the percentage of neurons

to remain after pruning to be X, we get different versions of

the final model and refer to them as Taylor-FO-BN-X%.

Comparison of pruning networks on ImageNet by the

proposed method and other methods is presented in the Ta-

ble 3, where we report total number of FLOPs, number of

parameters, and the top-1 error rate. Comparison is grouped

by network architecture type and the number of parameters.

For ResNet-101 we observe smaller error rates and fewer

GFLOPs (by at least 1.22 GFLOPs) when compare to BN-

ISTA method [32]. Pruning only skip connections shows

larger errors however makes the final network faster (see

Sec 6.2). By pruning 40% of FLOPs and 30% of parameters

from original ResNet-101 we only lose 0.02% in accuracy.

11270

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
ra

nk
, s

m
al

le
r b

et
te

r

sk
ip

 c
on

ne
ct

io
ns

64 128 256 512

1 1 6 11 16 21 26 31 36 41 46 51 56 61
Layer #

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
ra

nk
, s

m
al

le
r b

et
te

r

sk
ip

 c
on

ne
ct

io
ns

64 128 256 512

Figure 5: Statistics in boxplot form of per-layer ranks before (top) and after (bottom) pruning ResNet-101 with Taylor-FO-BN-50%. First 4

layers correspond to skip connections, the rest are residual blocks represented by the first 2 convolutional layers per block. We can notice

that after pruning most of neurons become more equal than before pruning.

Pruning Method GFLOPs Params(107) ↓ Error, %

ResNet-101

Taylor-FO-BN-40% (Ours) 1.76 1.36 25.84

Taylor-FO-BN-50% (Ours) 2.47 1.78 24.62

BN-ISTA v2 [32] 3.69 1.73 25.44

Taylor-FO-BN-55% (Ours) 2.85 2.07 24.05

BN-ISTA v1 [32] 4.47 2.36 24.73

No pruning 7.80 4.47 22.63

Taylor-FO-BN-75% (Ours) 4.70 3.12 22.65

pruning only skip connections

Taylor-FO-BN-52% (Ours) 6.57 3.60 22.94
Taylor-FO-BN-22% (Ours) 5.19 2.86 24.77

ResNet-50

Taylor-FO-BN-56% (Ours) 1.34 0.79 28.31

Taylor-FO-BN-56% (No skip) 1.28 0.85 30.74
ThiNet-30 [25] ≈1.17 0.87 31.58

Taylor-FO-BN-72% (Ours) 2.25 1.42 25.50

NISP-50-B [31] ≈2.29 1.43 27.93
ThiNet-70 [25] ≈2.58 1.69 27.96

Taylor-FO-BN-81% (Ours) 2.66 1.79 24.52

SSS [17], ResNet-32 2.82 1.86 25.82
NISP-50-A [31] ≈2.97 1.86 27.25

Taylor-FO-BN-91% (Ours) 3.27 2.26 23.57

No pruning 4.09 2.56 23.82
SSS [17], ResNet-41 3.47 2.53 24.56

ResNet-34

No pruning 3.64 2.18 26.69
Taylor-FO-BN-82% (Ours) 2.83 1.72 27.17

Li et al. [23] 2.76 1.93 27.80

VGG11-BN

No pruning 7.61 13.29 29.16

Taylor-FO-BN-50% (Ours) 6.93 3.18 29.35
From scratch [1] ≈6.93 ≈3.18 30.00
Slimming [24], from [1] ≈6.93 ≈3.18 31.38

DenseNet-201

No pruning 4.29 2.20 23.20

Taylor-FO-BN-60% (Ours) 3.02 1.25 23.49
Taylor-FO-BN-36% (Ours) 2.21 0.90 24.72
No pruning 2.74 0.76 25.57

Table 3: Pruning results on ImageNet (1-crop validation errors).

Pruning results on ResNet-50 and ResNet-34 demonstrate

significant improvements over other methods. Addition-

ally we study our method without pruning skip connections,

marked as “No skip” and observe accuracy loss. Comparison

per layer ranking of different layers in ResNet-101 before

and after pruning is shown in Fig. 5.

Pruning neurons with a single step. As an alternative to

iterative pruning, we performed pruning of 10000 neurons

with a single step after 3000 mini-batches, followed by fine-

tuning. This gave a top-1 error of 25.3% , which is 0.68%

higher than Taylor-FO-BN-50%, again emphasizing the ben-

efit of re-evaluating the criterion between pruning iterations.

Pruning other networks. We also prune the VGG11-BN

and DenseNet networks. The former is a simple feed-

forward architecture, without skip connections. We prune

50% of neurons across all layers, as per prior work [1, 24].

Our approach shows only 0.19% loss in accuracy after re-

moving 76% of parameters and improves on the previously

reported results by 0.65% [1] and more than 2% [24]. De-

seNets reuse feature maps multiple times, potentially making

them less amenable to pruning. We prune DenseNet-201 and

observe that with the same number of FLOPs (Taylor-FO-

BN-52%) as DenseNet-121, we have 1.79% lower error.

5. Conclusions

In this work, we have proposed a new method for estimat-

ing the contribution of a neuron using the Taylor expansion

applied on a squared change in loss induced by removing a

chosen neuron. We demonstrated that even the first-order

approximation shows significant agreement with true impor-

tance, and outperforms prior work on a range of deep net-

works. After extensive analysis, we showed that applying the

first-order criterion after batch-norms yields the best results,

under practical computational and memory constraints.

11271

References

[1] Anonymous submission. Rethinking the value of network

pruning. ICLR, 2019.

[2] Y. Chauvin. A back-propagation algorithm with optimal use

of hidden units. In NIPS, 1989.

[3] T. M. Cover and J. A. Thomas. Elements of information

theory. John Wiley & Sons, 2012.

[4] I. Daubechies, M. Defrise, and C. De Mol. An iterative

thresholding algorithm for linear inverse problems with a

sparsity constraint. Communications on Pure and Applied

Mathematics, 2004.

[5] J. Frankle and M. Carbin. The lottery ticket hypothesis: Train-

ing pruned neural networks. arXiv preprint arXiv:1803.03635,

2018.

[6] A. Gordon, E. Eban, O. Nachum, B. Chen, H. Wu, T.-J. Yang,

and E. Choi. Morphnet: Fast & simple resource-constrained

structure learning of deep networks. In CVPR, 2018.

[7] S. Han, J. Pool, S. Narang, H. Mao, S. Tang, E. Elsen,

B. Catanzaro, J. Tran, and W. J. Dally. Dsd: regularizing

deep neural networks with dense-sparse-dense training flow.

arXiv preprint arXiv:1607.04381, 2016.

[8] S. Han, J. Pool, J. Tran, and W. Dally. Learning both weights

and connections for efficient neural network. In NIPS, 2015.

[9] S. J. Hanson and L. Y. Pratt. Comparing biases for minimal

network construction with back-propagation. In NIPS, 1989.

[10] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In CVPR, 2016.

[11] K. He, X. Zhang, S. Ren, and J. Sun. Identity mappings in

deep residual networks. In ECCV, 2016.

[12] Y. He, X. Dong, G. Kang, Y. Fu, and Y. Yang. Progres-

sive deep neural networks acceleration via soft filter pruning.

arXiv preprint arXiv:1808.07471, 2018.

[13] Y. He and S. Han. Adc: Automated deep compression and

acceleration with reinforcement learning. arXiv preprint

arXiv:1802.03494, 2018.

[14] Y. He, X. Zhang, and J. Sun. Channel pruning for accelerating

very deep neural networks. In ICCV, 2017.

[15] G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge

in a neural network. In arXiv preprint arXiv:1503.02531,

2015.

[16] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger.

Densely connected convolutional networks. In CVPR, 2017.

[17] Z. Huang and N. Wang. Data-driven sparse structure selection

for deep neural networks. arXiv preprint arXiv:1707.01213,

2017.

[18] S. Ioffe and C. Szegedy. Batch normalization: Accelerating

deep network training by reducing internal covariate shift.

arXiv preprint arXiv:1502.03167, 2015.

[19] A. Krizhevsky and G. Hinton. Learning multiple layers of

features from tiny images. Tech Report, 2009.

[20] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

NIPS, pages 1097–1105, 2012.

[21] V. Lebedev and V. Lempitsky. Fast convnets using group-wise

brain damage. In CVPR, pages 2554–2564, 2016.

[22] Y. LeCun, J. S. Denker, S. Solla, R. E. Howard, and L. D.

Jackel. Optimal brain damage. In NIPS, 1990.

[23] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf.

Pruning filters for efficient convnets. ICLR, 2017.

[24] Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, and C. Zhang.

Learning efficient convolutional networks through network

slimming. In ICCV, 2017.

[25] C. Louizos, M. Welling, and D. P. Kingma. Learning sparse

neural networks through l 0 regularization. arXiv preprint

arXiv:1712.01312, 2017.

[26] J.-H. Luo, J. Wu, and W. Lin. Thinet: A filter level pruning

method for deep neural network compression. ICCV, 2017.

[27] P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz.

Pruning convolutional neural networks for resource efficient

transfer learning. ICLR, 2017.

[28] M. C. Mozer and P. Smolensky. Skeletonization: A technique

for trimming the fat from a network via relevance assessment.

In NIPS, 1989.

[29] K. Neklyudov, D. Molchanov, A. Ashukha, and D. P. Vetrov.

Structured bayesian pruning via log-normal multiplicative

noise. In Advances in Neural Information Processing Systems,

pages 6775–6784, 2017.

[30] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. De-

Vito, Z. Lin, A. Desmaison, L. Antiga, and A. Lerer. Auto-

matic differentiation in pytorch. In NIPS-W, 2017.

[31] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,

Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg,

and L. Fei-Fei. ImageNet Large Scale Visual Recognition

Challenge. IJCV, 2015.

[32] J. Ye, X. Lu, Z. Lin, and J. Z. Wang. Rethinking the smaller-

norm-less-informative assumption in channel pruning of con-

volution layers. ICLR, 2018.

[33] R. Yu, A. Li, C.-F. Chen, J.-H. Lai, V. I. Morariu, X. Han,

M. Gao, C.-Y. Lin, and L. S. Davis. NISP: Pruning networks

using neuron importance score propagation. CVPR, 2017.

[34] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals. Un-

derstanding deep learning requires rethinking generalization.

ICLR, 2016.

11272

