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Importance of Correlation Effects on Magnetic Anisotropy in Fe and Ni
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We calculate magnetic anisotropy energy of Fe and Ni by taking into account the effects of strong elec-
tronic correlations, spin-orbit coupling, and noncollinearity of intra-atomic magnetization. The LDA 1

U method is used and its equivalence to dynamical mean-field theory in the static limit is emphasized.
Both experimental magnitude of magnetic anisotropy energy and direction of magnetization are predicted
correctly near U � 1.9 eV, J � 1.2 eV for Ni and U � 1.2 eV, J � 0.8 eV for Fe. Correlations modify
the one-electron spectra which are now in better agreement with experiments.
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The calculation of the magnetic anisotropy energy
(MAE) [1] of magnetic materials containing transition-
metal elements from first principles calculations is a
long-standing problem. The MAE is defined as the differ-
ence of total energies with the orientations of magnetiza-
tion pointing in different, e.g., (001) and (111), crystalline
axes. The difference is not zero because of the spin-
orbit effect, which couples the magnetization to the lattice
and determines the direction of magnetization, called the
easy axis.

Being a ground state property, the MAE should be ac-
cessible, in principle, via density functional theory [2].
Despite the primary difficulty related to the smallness of
MAE ��1 meV�atom�, great efforts to compute the quan-
tity, with advanced total energy methods based on local
density approximation (LDA) combined with the develop-
ment of faster computers, have seen success in predicting
its correct orders of magnitude [3–7]. However, the cor-
rect easy axis of Ni has not been predicted by this method
and the fundamental problem of understanding MAE is
still open.

A great amount of work has been done to understand
what is the difficulty in predicting the correct easy axis of
Ni. Parameters within the LDA calculation have been var-
ied to capture physical effects which might not be correctly
described. These include (i) scaling spin-orbit coupling in
order to enlarge its effect on the MAE [4,5], (ii) calcu-
lating torque to avoid comparing large numbers of energy
[5], (iii) studying the effects of the second Hunds rule in
the orbital polarization theory [6], (iv) analyzing possible
changes in the position of the Fermi level by changing the
number of valence electrons [7], (v) using the state track-
ing method [8], and (vi) real space approach [9].

In this paper we take a new view that the correlation
effects within the d shell are important for the magnetic
anisotropy of 3d transition metals such as Ni. These effects
are not captured by the LDA but are described by Hubbard-
like interactions presented in these systems and need to be
treated by first principles methods [10].

Another effect which has not been investigated in the
context of magnetic anisotropy calculations is the non-
collinear nature of intra-atomic magnetization [11]. It is
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expected to be important when spin-orbit coupling and cor-
relation effects come into play together. In this Letter, we
show that when we include these new ingredients into the
calculation we solve the long-standing problem of predict-
ing the correct easy axis of Ni.

We believe that the physics of transition-metal com-
pounds is intermediate between the atomic limit, where
the localized d electrons are treated in the real space, and
fully itinerant limit, where the electrons are described by
band theory in k space. A many-body method incorporat-
ing these two important limits is the dynamical mean-field
theory (DMFT) [12]. The DMFT approach has been exten-
sively used to study the model Hamiltonian of correlated
electron systems in the weak, strong, and intermediate cou-
pling regimes. It has been very successful in describing the
physics of realistic systems such as transition-metal oxides
and, therefore, is expected to treat properly the materials
with d or f electrons.

The electron-electron correlation matrix Ug1g2g3g4 �
�m1m3jyCjm2m4�ds1s2 ds3s4 for d orbitals is the quantity
which takes strong correlations into account. This matrix
can be expressed via Slater integrals F�i�, i � 0, 2, 4, . . .
in the standard manner. The inclusion of this interac-
tion generates self-energy Sg1g2�ivn, �k� on top of the
one-electron spectra. Within DMFT it is approximated by
momentum-independent self-energy Sg1g2 �ivn�.

A central quantity of the dynamical mean-field theory is
the one-electron on-site Green function

Gg1g2�ivn� �
X

�k

��ivn 1 m�Og1g2 � �k� 2 H0
g1g2

� �k�

1 ydc 2 Sg1g2�ivn��21, (1)

where H0
g1g2

� �k� is the one-electron Hamiltonian standardly
treatable within the LDA. Since the latter already includes
the electron-electron interactions in some averaged way,
we subtract the double counting term ydc [13]. The use
of realistic localized orbital representation such as linear
muffin-tin orbitals (LMTOs) [14] leads us to include the
overlap matrix Og1g2 � �k� into the calculation.

The DMFT reduces the problem to solving the effec-
tive impurity model, where the correlated d orbitals are
treated as an impurity level hybridized with the bath of
© 2001 The American Physical Society 216405-1
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conduction electrons. The role of hybridization is played
by the so-called bath Green function defined as follows:

�G21
0 �g1g2

�ivn� � G21
g1g2

�ivn� 1 Sg1g2
�ivn� . (2)

Solving this impurity model gives access to the self-energy
Sg1g2 �ivn� for the correlated electrons. The one-electron
Green function (1) is now modified with new Sg1g2 �ivn�,
which generates a new bath Green function. Therefore, the
whole problem requires self-consistency.

In this paper we confine ourselves to zero temperature
and make an additional assumption on solving the impu-
rity model using the Hartree-Fock approximation. In this
approximation the self-energy reduces to

Sg1g2 �
X

g3g4

�Ug1g2g3g4 2 Ug1g2g4g3 �n̄g3g4 , (3)

where n̄g1g2 is the average occupation matrix for the corre-
lated orbitals. The off-diagonal elements of the occupancy
matrix are not zero when spin-orbit coupling is included
[15]. The latter can be implemented by following Ander-
sen’s prescription [14] or the more recent one by Pederson
and Khanna [16].

In the Hartree-Fock limit the self-energy is frequency
independent and real. The self-consistency condition of
DMFT can be expressed in terms of the average occu-
pation matrix: Having started from some n̄g1g2 we find
Sg1g2

according to (3). Fortunately, the computation of the
on-site Green function (1) need not be performed. Since
the self-energy is real, the new occupancies can be calcu-
lated from the eigenvectors of the one-electron Hamilto-
nians with Sg1g2 2 ydc added to its dd block. The latter
can be viewed as an orbital-dependent potential which has
been introduced by the LDA 1 U method [10].

The LDA 1 U method has been very successful com-
pared with experiments at zero temperature in ordered
compounds. By establishing its equivalence to the static
limit of the DMFT we see clearly that dynamical mean-
field theory is a way of improving upon it, which is crucial
for finite temperature properties.

In this paper we study the effect of the Slater param-
eters F0, F2, and F4 on the magnetic anisotropy energy.
Slater integrals can be linked to intra-atomic repulsion U
and exchange J obtained from LDA supercell procedures
via U � F0 and J � �F2 1 F4��14. The ratio F2�F4

is, to a good accuracy, a constant �0.625 for d electrons
[17]. The MAE is calculated by taking the difference of
two total energies with different directions of magnetiza-
tion �MAE � E�111� 2 E�001��. The total energies are
obtained via fully self-consistent solutions. Since the total
energy calculation requires high precision, a full poten-
tial LMTO method [18] has been employed. For the �k
space integration, we follow the analysis given by Trygg
et al. [6] and use the special point method [19] with a
Gaussian broadening [20] of 15 m Ry. The validity and
convergence of this procedure have been tested in their
work [6]. For convergence of the total energies within de-
sired accuracy, about 15 000 k points are needed. We used
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28 000 k points to reduce possible numerical noise, where
the convergency is tested up to 84 000 k points. Our cal-
culations include nonspherical terms of the charge density
and potential both within the atomic spheres and in the
interstitial region [18]. All low-lying semicore states are
treated together with the valence states in a common Ham-
iltonian matrix in order to avoid unnecessary uncertainties.
These calculations are spin polarized and assume the ex-
istence of long-range magnetic order. Spin-orbit coupling
is implemented according to the suggestions by Andersen
[14]. We also treat magnetization as a general vector field,
which realizes the noncollinear intra-atomic nature of this
quantity. Such a general magnetization scheme has been
recently discussed [11].

To incorporate the effects of intra-atomic correlations
on the magnetic anisotropy energy, we have to take into
account the intra-atomic repulsion U and the intra-atomic
exchange J. It is important to perform the calculations
for fixed values of magnetic moments which themselves
show a dependency on U and J. We have scanned the
�U, J� parameter space and have obtained the path of U
and J values which hold the theoretical magnetic moment
aligned along the (001) direction constant, following the
approach of Ref. [21].

We now discuss our calculated MAE. We first test our
method in the case of LDA �U � J � 0�. To compare
with previous calculations, we turn off the noncollinearity
of magnetization. The calculation gives the correct orders
of magnitude for both fcc Ni and bcc Fe but with the wrong
easy axis for Ni, which is the same result as the previous
one [6]. Turning on the noncollinearity results in a larger
value of the absolute value of the MAE �2.9 meV� for Ni
but with the easy axis predicted to be (001), while the
experimental magnetic moment is aligned along the (111)
direction [22].

We now describe the effect of correlations, which is
crucial in predicting the correct easy axis of Ni (see
Fig. 1). We walked along the path of parameters U and
J which hold the magnetic moment to 0.6mB. The MAE
first increases to 60 meV (U � 0.5 eV, J � 0.3 eV)
and then decreases. While decreasing it makes a rather
flat area from U � 1.4 eV, J � 0.9 eV to U � 1.7 eV,
J � 1.1 eV, where MAE is positive and about 10 meV.
After the flat area, the MAE changes from the wrong
easy axis to the correct easy axis. The correct magnetic
anisotropy is predicted at U � 1.9 eV and J � 1.2 eV.
The change from the wrong easy axis to the correct easy
axis occurs over the range of dU � 0.2 eV, which is of
the order of spin-orbit coupling constant ��0.1 eV�.

For Fe, the MAE is calculated along the path of U
and J values which fixes the magnetic moment to 2.2mB.
At U � 0 eV and J � 0 eV, the MAE is 0.5 meV. It
increases as we move along the contour in the direction
of increasing U and J. The correct MAE with the correct
direction of magnetic moment is predicted at U � 1.2 eV
and J � 0.8 eV.
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FIG. 1. The magnetic anisotropy energy MAE � E�111� 2
E�001� �1026 eV� (circles) and the difference of magnetic mo-
ment Dm � m�001� 2 m�111� �1024mB� (squares) for Ni (top)
and Fe (bottom) as functions of U . The experimental MAEs are
marked by arrows for Fe �1.4 meV� and Ni �22.8 meV�. The
values of exchange parameter J for every value of U are chosen
to hold the magnetic moment of 0.6mB in Ni and 2.2mB in Fe.

Notice that the values of U and J necessary to reproduce
the correct magnetic anisotropy energy within LDA 1 U
are similar to the values used to describe the photoemission
spectra of these materials [23] within DMFT. The values
of the parameters U and J are dependent on bases and
method, but the values of U and J used in our LDA 1 U
calculation are within 1 eV of those used in [23]. Since
DMFT contains the graphs which screen the on-site inter-
action which are omitted in the LDA 1 U functional, a
larger value of U is needed to produce the correct moment
in DMFT.

We find a direct correlation between the dependency
of the MAE as a function of �U, J� and the difference
of magnetic moments Dm � m�001� 2 m�111� behaving
similarly (see Fig. 1). Note that we fixed the magnetic
moment to an experimental one when it was aligned along
the (001) direction. The magnetic moment aligned along
the (111) direction fluctuates around this value, but the
fluctuation is of the order of 1024mB. For Ni the dif-
ference increases till U � 0.4 eV and J � 0.2 eV, then
decreases. While decreasing it makes a flat area from
U � 0.9 eV and J � 0.6 to U � 1.7 eV and J � 1.1 eV.
After the flat area, the difference decreases rapidly. For
Fe, the difference of magnetic moments slightly fluctuates
till U � 0.7 eV and J � 0.5 eV and then decreases till
U � 1.0 eV and J � 0.7 eV.

This concurrent change of MAE and the difference of
magnetic moments suggests why some previous attempts
based on force theorem [7] failed in predicting the correct
easy axes. Force theorem replaces the difference of the
total energies by the difference of one-electron energies.
In this approach, the contribution from the slight differ-
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ence in magnetic moments does not appear and, therefore,
is not counted in properly. Unfortunately, we could not
find any experimental data of magnetic moments with dif-
ferent orientations to the desired precision �1024mB� to
compare with.

We now present the implications of our results on the
calculated electronic structure for the case of Ni. One
important feature which emerges from the calculation is
the absence of the X2 pocket (see Fig. 2). This was pre-
dicted by LDA but has not been found experimentally [24].
The band corresponding to the pocket is pushed down just
below the Fermi level. This is expected since correla-
tion effects are more important for slower electrons and
the velocity near the pocket is rather small. It turns out
that the whole band is submerged under the Fermi level.
We also find that the X2 pocket disappears at the point
U � 1.9 eV and J � 1.2 eV. For comparison, the corre-
sponding band is just above the Fermi level at U � 1.9 eV
and J � 1.1 eV, forming a tiny pocket. This strengthens
the connection between MAE and the absence of the X2
pocket.

There has been some suspicions that the incorrect posi-
tion of the X2 band within LDA was responsible for the
incorrect prediction of the easy axis within this theory.
Daalderop et al. [7] removed the X2 pocket, by increas-
ing the number of valence electrons, and found the correct
easy axis. We therefore conclude that the absence of the
pocket is one of the central elements in determining the
magnetic anisotropy, and there is no need for any ad hoc
adjustment within a theory which takes into account the
correlations.

We now describe the effects originated from (near) de-
generate states close to the Fermi surface. These have
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FIG. 2. Calculated Fermi surface of Ni. The solid and dotted
lines correspond to majority and minority dominant spin car-
riers, respectively. Dominant orbital characters are expressed.
Both experimentally confirmed X5 pocket and L neck can be
seen. The X2 pocket is missing, which is in agreement with
experiments.
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been of primary interest in past analytic studies [25,26].
We will call such states degenerate Fermi surface crossing
(DFSC) states. The contribution to MAE by non-DFSC
states comes from the fourth order perturbation. Hence it
is of the order of l4, where l is the spin-orbit coupling
constant. The energy splitting between DFSC states due
to spin-orbit coupling is of the order of l because the con-
tribution comes from the first order perturbation. By using
linear approximation of the dispersion relation e� �kl�, the
relevant volume in k space was found to be of the order
l3. Thus, these DFSC states make a contribution of the or-
der of l4. Moreover, there may be accidental DFSC states
appearing along a line on the Fermi surface, rather than at
a point. We found this case in our LDA calculation for Ni.
Therefore the contribution of DFSC states is as important
as the bulk non-DFSC states though the degeneracies oc-
cur only in a small portion of the Brillouin zone.

The importance of the DFSC states leads us to the com-
parative analysis of the LDA and LDA 1 U band struc-
tures near the Fermi level. In LDA, five bands cross the
Fermi level at nearly the same points along the GX direc-
tion. Two of the five bands are degenerate for the residual
symmetry and the other three bands accidentally cross the
Fermi surface at nearly the same points. There are two sp
bands with spin up and spin down, respectively. The other
three bands are dominated by d orbitals. In LDA 1 U,
one of the d bands is pushed down below the Fermi sur-
face. The other four bands are divided into two degenerate
pieces at the Fermi level (see Fig. 2): two symmetry re-
lated degenerate d# bands and two near degenerate sp" and
sp# bands. In LDA, we found that two bands were acciden-
tally near degenerate along the line on the Fermi surface
within the plane GXL. One band is dominated by d# or-
bitals. The other is dominated by d# orbitals near X and
by s# orbitals off X. In LDA 1 U, these accidental DFSC
states disappear (see Fig. 2).

We see that strong correlations reduce the number of
DFSC states in GX direction and remove the near degener-
ate states on the GXL plane. We conclude that the change
of DFSC states is another important element that deter-
mines the easy axis of Ni.

To conclude, we demonstrated that it is possible to per-
form highly precise calculation of the total energy in order
to obtain both the correct easy axes and the magnitudes of
MAE for Fe and Ni. This was accomplished by includ-
ing the strong correlation effects via taking intra-atomic
repulsion and exchange into account and incorporating the
noncollinear magnetization. In both Fe and Ni, U and J
take physically acceptable values consistent with the values
known from atomic physics. The calculations performed
are state-of-the-art in what can currently be achieved for
realistic treatments of correlated solids. Further studies
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should be devoted to improving the quality of the solution
of the impurity model within DMFT and extending the cal-
culation to finite temperatures.
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