Importance of Heap Specialization in Pointer Analysis

Erik M. Nystrom, Hong-Seok Kim and Wen-mei W. Hwu

Center for Reliable and High Performance Computing
University of lllinois, Urbana-Champaign

{nystrom, hskim, hwu}@crhc.uiuc.edu

ABSTRACT

Specialization of heap objects is critical for pointer analysis
to effectively analyze complex memory activity. This pa-
per discusses heap specialization with respect to call chains.
Due to the sheer number of distinct call chains, exhaus-
tive specialization can be cumbersome. On the other hand,
insufficient specialization can miss valuable opportunities to
prevent spurious data flow, which results in not only reduced
accuracy but also increased overhead.

In determining whether further specialization will be fruit-
ful, an object’s escape information can be exploited. From
empirical study, we found that restriction based on escape
information is often, but not always, sufficient at prohibiting
the explosive nature of specialization.

For in-depth case study, four representative benchmarks
are selected. For each benchmark, we vary the degree of
heap specialization and examine its impact on analysis re-
sults and time. To provide better visibility into the impact,
we present the points-to set and pointed-to-by set sizes in
the form of histograms.

Categories and Subject Descriptors

F.3.2 [Semantics of Programming Languages|: pro-
gram analysis; D.3.3 [Language Constructs and Fea-
tures|: procedures, functions, and subroutines

General Terms

algorithms, languages

Keywords

pointer analysis, context sensitivity, heap specialization

1. INTRODUCTION

Many software-engineering tools rely on pointer analysis
to resolve complex memory activities. In these tools, the
accuracy of the results is one factor governing the number of

Permissionto malke digital or hard copiesof all or part of this work for
personalor classroomuseis grantedwithout fee provided that copiesare
not madeor distributedfor profit or commercialadvantageandthatcopies
bearthis noticeandthefull citationonthefirst page.To copy otherwiseto
republisho poston senersor to redistrituteto lists, requiresprior specific
permissiorand/orafee.

PASTE’ 04, June7—8,2004,WashingtonDC, USA.

Copyright 2004ACM 1-58113-910-1/04/0006.$5.00.

false positives and negatives observed. On the other hand,
the efficiency of obtaining the results is also important if
tools are meant to be used on a daily basis.

In pointer analysis, abstraction of heap objects greatly af-
fects overall quality (both accuracy and efficiency). Many
analyses in the literature [1, 2, 5, 6, 13] assign a unique
global variable per allocation site. This approach, called a
per-site scheme, is less likely to impact scalability. On the
other hand, it has a potential to introduce spurious data
flow through under-specialized objects. This phenomenon
is often observed when analyzing programs with custom
wrappers around allocation routines. In general, the per-site
scheme can easily become ineffective in forming the appro-
priate view of heap usage.

In many context-sensitive pointer analyses [3, 8, 9, 10,
12], heap specialization is performed by cloning heap ob-
jects along paths in call graphs, called call chains. Even
though imperfect, this simple method is found to be use-
ful in eliminating many sources of spurious data flow. On
the other hand, uncontrolled heap specialization can quickly
overload the analysis process impacting scalability. There-
fore, while heap specialization is necessary, a controlling
method is needed that can provide a finer resolution of heap
usage while leaving overall scalability unaffected.

Our analysis framework is aggressive in preventing unnec-
essary specialization. The techniques currently employed by
our framework are non-lossy in the sense that they never
result in accuracy degradation. In many programs, these
techniques are sufficient in controlling the amount of spe-
cialization. However, in certain programs, we feel that fur-
ther (potentially lossy) restrictions are necessary to make
analysis time more predictable.

For in-depth case study, four representative SPEC bench-
marks were selected. For each of the benchmarks, to provide
better visibility into the impact of heap specialization, we
present the points-to set (PT) and pointed-to-by set (PB)
sizes in the form of histograms. The following is a summary
of our study.

1. In many cases, the per-site scheme leaves substantial
room for accuracy improvement. Sometimes, we no-
ticed that its analysis time is longer than that of heap-
specializing alternatives.

2. Often, there exists a clear threshold beyond which ad-
ditional heap specialization yields little benefit. How-
ever, generalization of this observation remains as fu-
ture work.

3. When performed superfluously, especially beyond the

threshold, heap specialization begins to significantly
affect scalability.

The longer-term goal of this research is to understand
heap usage better and eventually develop methods to apply
heap specialization only when necessary.

2. ANALYSISFRAMEWORK

In C programs, indirect calls can be made using func-
tion pointers. In the presence of indirect calls, a cyclic de-
pendency exists between call-graph construction and pointer
analysis. Our framework breaks this cyclic dependency us-
ing an iterative approach as in [3, 8]. It starts with a call
graph consisting of only direct calls. Based on this incom-
plete call graph, pointer information is constructed. Then,
using this as feedback, the call graph is updated and the
process iterates until there are no more changes.

Each iteration consists of three phases: recursion merg-
ing, computation of pointer information, and call-graph up-
dating. Recursion merging renders the call graph acyclic,
from which pointer information is computed in two phases.
The bottom-up phase propagates procedure summaries from
callees to callers, followed by the removal of side-effect caus-
ing assignments at the level of callees. Then the top-down
phase computes the actual pointer information using a sin-
gle run of a context-insensitive analysis. This results in a
fully context-sensitive result.

Intraprocedural data flow is modeled as a field-sensitive
extension of Andersen’s pointer analysis [1] while array in-
dices are ignored. Field sensitivity is modeled in a fashion
similar to [11] with four differences: 1) physical offsets are
used instead of field indices; 2) offsets are discovered on-
line rather than derived offline from type information; 3) to
guarantee termination in the presence of cyclic offsets, the
maximum offset of a heap object is bounded by the size of
the largest type;! 4) Assignments are not bound to a pointer
size but, instead, vary by the size of the C construct. When
combined with online detection of field offsets, it makes the
analysis more tolerant to type abuse in C programs.

3. HEAP SPECIALIZATION

Heap specialization is performed during the bottom-up
phase of the two-phase computation where call chains are
walked backwards from callees to callers. It begins by as-
signing a unique heap object for each allocation routine. As
the procedure summary of a callee is inserted into a caller’s
call site, a fresh (specialized) heap object is introduced for
each heap object in the summary. Therefore, in our frame-
work, the per-call-site scheme is equivalent to applying heap
specialization only up to the call sites of the allocation rou-
tines.

Example 1 Figure 1 is a small example derived from actual
code in 132.ijpeg, one of the benchmarks used for the case
study in §5. Note that we have simplified the code (such
as shortening variable names) for clarity. We focus on the
following facts.

LA similar issue and solution are observed in [11], except the
maximum numerical index was limited to the largest number of
fields in any type.

typedef union {
funcptr *alloc;
funcptr *prepare;
} FUNCS;

typedef struct {
FUNCS *mem;
FUNCS *master;
} CINFO;

void main() {
CINFO cinfo;
memory_mgr (&cinfo) ;
master_decompress(&cinfo) ;

1: (*cinfo->master->prepare) (&cinfo) ;

}

void memory_mgr (CINFO *cinfo) {
2: cinfo->mem = alloc(sizeof FUNCS); /* Hy */
3: cinfo->mem->alloc = alloc;

}

void master_decompress (CINFO *cinfo) {
4: cinfo->master = (*cinfo->mem->alloc) (size); /* Ho */
5: cinfo->master->prepare = prepare;

}

void# alloc(int size) {
return malloc(size);

Figure 1: Example 1 derived from 132.ijpeg.

1. Procedure alloc is a custom wrapper around the stan-
dard allocation routine malloc. Effectively, this code
fragment has only a single allocation site.

2. In dynamic execution, two heap objects are allocated:
one created in memory mgr (H;) and the other created
master_decompress (Hz).

3. Both objects H; and Ha are associated with the type
FUNCS. Since FUNCS is defined as a union, two field
names alloc and prepare refer to the same offset.

4. In memory_mgr, field alloc of object H; acquires the
pointer to procedure alloc. On the other hand, in
master_decompress, field prepare of object Ha acquires
the pointer to procedure prepare.

5. In call site *cinfo->mem->alloc in master_decompress,
since cinfo->mem points to object Hi, only the proce-
dure alloc can be called indirectly.

6. In call site *cinfo->master->prepare in main, since
cinfo->master points to object Ha, only the procedure
prepare can be called indirectly.

By Fact 1, the per-call-site scheme will create only a single
heap object (H) that represents both Hi and Hz, resulting in

cinfo

Figure 2: Storage graph of Example 1 before (a) and
after (b) heap specialization.

void main() {
if (connection_machine) { unlap;(-1); }
if(doglobal) { unlap2(-2); }

}

void unlap(int flag)

{

int *left_queue = mallocsz();
int *right_queue = malloc4();
int *center_queue = mallocs();

for(i =1 ; i <= cell_count ; i++) {
left_queuel] = ...
right_queuell = ...
center_queue[] = ...

}

Figure 3: Example 2 derived from 300.twolf. All
the objects in this example have purely local effects,
thus, specialization is not necessary.

object H acquiring both alloc and prepare as in Figure 2(a).
Therefore, the two call sites at Lines 1 and 4 invoke both
alloc and prepare, leading to further spurious data flow.
On the other hand, specialization of heap objects beyond
allocation sites can prevent spurious data flow by creating
two distinct heap objects thereby resolving that Hi can point
to only alloc while Hy only to prepare. This leads to a more
accurate call graph where Line 1 can only call prepare and
Line 4 only alloc.

As seen in Example 1, heap specialization can increase
accuracy by disallowing spurious data flow through under-
specialized heap objects. However, its blind application can
easily inflate analysis time. The following subsection de-
scribes the techniques used by our framework in determining
whether further specialization is necessary.

3.1 Overhead reduction

The restriction scheme currently employed by our frame-
work is based on the escape information of heap objects as
in [10, 12]. Intuitively speaking, if the visibility of a heap ob-
ject spans beyond that of a procedure, we say that the heap
object escapes the procedure. For instance, both heap ob-
jects Hy and H» in Example 1 escape procedure alloc. For
a more complete list of references and in-depth discussion of
escape analysis, we refer readers to [4].

Example 2 The code fragment in Figure 3 shows a simple
example derived from 300.twolf where the per-site scheme is
sufficient.

In this example, arrays left_queue, right_queue, and
center_queue are created only for local use, thus, do not es-
cape unlap. Therefore, further specialization of the arrays
(differentiating those in unlap; and unlapz) will unneces-
sarily incur overhead since each specialized version will be
identical.

Example 3 Procedure dummy in Figure 4 creates an object
of int type, assigns m to it, then returns its contents.

In this example, when the per-site scheme is used, the
heap object created in dummy ends up acquiring both 1 and
2. On the other hand, by specializing this object further, one

main() {
int a = dummy (1);
int b = dummy (2);
}

dummy (int m) {
int *obj = malloc(sizeof int); *obj = m; return *obj;
}

Figure 4: Example 3 demonstrating the effect of
compaction for non-escaping objects.

typedef struct node { char n_type; struct node *n_next; } NODE;
NODE *newseg;

void main(void) {
NODE *nl1 = newnode; (1);
NODE *n2 = newnodes(2);
classify (ni->n_type);

}
NODE #newnode(int type) {
NODE *nnode;
if (newseg == NIL) { findmem(); }
nnode = newseg;
newseg = nnode->n_next;
nnode->n_type = type;
return (nnode);
}
void findmem() { newseg = calloc(1,ALLOCSIZE); ... }

Figure 5: Example 4 derived from 130.li. In this
example, since objects escape only through global
variables, specialization does not aid accuracy.

can find that the object created in call site dummy; acquires
only 1 while the other object created in the other call site
dummy> acquires only 2. Consequently, in main, local variable
a acquires only 1, while variable b acquires only 2.

Even in this case, our framework can exploit the fact that
the object does not escape dummy and avoid the specializa-
tion overheads using procedure summaries as follows.

1. From the perspective of caller main, only the net effect
of callee dummy is important. Therefore, instead of spe-
cializing the entire callee, only its summary needs to
be specialized. Since the object does not escape dummy,
all its data flow can be represented in a compact form,
i.e. return m. In this form, the same overall effect is
achieved without specializing the heap object.

2. From the perspective of dummy, when considering call-
chain unspecific queries (what the object acquires dur-
ing the entire run of the code fragment), the object can
acquire either 1 or 2. Specialization cannot change this
fact. Omn the other hand, call-chain specific queries
(what the object acquires from a subset of call sites,
e.g. dummy), can be answered efficiently in a demand-
driven fashion by back-tracing data flow.

While the exposure of a heap object to a caller is often
an opportunity to improve accuracy through specialization
(as in Example 1), when the object escapes only through a
global variable, surprisingly, there is no benefit. This obser-
vation turns out to be useful in dealing with programs that
use global allocation pools, such as 130.1i.

Example 4 The code fragment in Figure 5 shows a sim-
ple example derived from 130.li where specialization, again,
does not result in improved accuracy.

In this situation, the program uses a custom global allo-
cation pool. The heap objects assigned into n1 and n2 are
stored and fetched from a global allocation pool rooted at
newseg. Specialization for newnode; and newnodes will not
aid accuracy in a flow-insensitive analysis because global
variable newseg will acquire both heap objects. Therefore,
nl and n2 end up pointing to both heap objects.

3.2 Limitation

From empirical studies, we found that, for a number of
benchmarks (including 008.espresso, 134.perl, 176.gcc, and
253.perlbmk), the above-mentioned techniques are ineffec-
tive at preventing the explosive nature of heap specializa-
tion. Unlike local variables, a heap object’s lifetime is not
inherently bounded by a single procedure and many heap
objects tend to repeatedly escape into higher-level proce-
dures. When combined with a dense call graph, such re-
peated escape can produce a large number of heap objects,
sometimes, with little impact on accuracy.

For instance, in 008.espresso, a common high-level object
is passed down through a number of call layers. Within each
procedure in the call layers, heap objects are allocated and
their pointers assigned into the fields of the common high-
level object. Heap specialization causes situations where
new objects are created, only to be assigned into the same
field of the same object. The high density of the call graph
results in a large number of specialization opportunities but
their eventual interaction with a common high-level object
blurs their values.

4. MEASUREMENT STRATEGY

The primary goal of this work is to investigate the im-
pact of heap object specialization. To this end, the exper-
iments vary the number of heap generations allowed for a
small number of applications. However, some metric must
be used to compare the effect of differing amounts of special-
ization. If points-to sets (PTs) or pointed-to-by sets (PBs)
of a heap object remain very similar even after specializa-
tion, the expense of introducing more objects may outweigh
the benefit. Therefore, to predict the impact of specializa-
tion, it is important to quantify how distinguishable heap
objects are among themselves.

Simple metrics, like total PT size or even average PT
size per node, are inconclusive in the presence of varying
amounts of heap specialization. This is because differing
amounts of specialization can cause a substantial difference
in the number of locations. Clearly if, in one instance there
is only a single heap object, while another creates 1000
heap objects, comparing absolute P'T size across all objects
would be inappropriate. A similar observation with regard
to choice of metrics is made by Hind [7].

To help delineate when heap specialization is worth the
cost, we present data in the form of histograms. Each his-
togram groups nodes by PT (or PB) sizes into buckets and
connects buckets from the same analysis configuration by a
line. Compared to a single, aggregate number a histogram
provides greater visibility into the results. The area under
the line is roughly proportional to the total number of heap
objects after specialization. The breadth of the histogram

shows how much variation there is in heap object resolution.

Figure 6 shows initial heap specialization results for four
benchmarks. Parts (a-b), (d-e), (g-h), and (j-k) are the his-
togram lines, one line per heap specialization configuration.
As an example, the black line in Figure 6(a) shows that
roughly 4 heap objects have a PB size of 1, 20 heap objects
a PB size of 5, 450 heap objects a PB size of 10, 140 heap
objects a PB size of 50, and so on. Note that parts (c), (f),
(i), and (1) are the analysis times for the particular heap
specialization settings.

One obvious property of the histograms is their shape.
Before heap specialization, the histogram consists of one or
two points. Once specialization takes place, a large range
in PT and PB size becomes apparent, sometimes ranging
from singleton sets to sets of almost ten thousand elements.
From the perspective of this work, the relative values and
distributions are far more important than the absolute mea-
surements.

The trends between histogram lines give a rough estima-
tion of both benefits and wastes from specializing heap ob-
jects. A shift to the left depicts an increase in precision. A
shift upward denotes an overall increase in nodes. If “too
much” specialization occurs, it is possible for the trend to
show a shift to the right. This is not really a loss of precision,
but depicts wasted attempts at specialization that result in
densely connected clumps of heap objects. Figure 6(a) shows
a clear trend up and to the left as more specialization takes
place. This means heap specialization increased the number
of objects but also benefited the precision of many objects.
A large part of Figure 6(h) shows a shift up and, in some
cases, to the right. This represents a wasteful increase in
heap objects for little or no benefit. Section 5 provides an
extensive discussion of the results. While not a perfect met-
ric, we feel these histograms are a good start for presenting
trends.

5. CASE STUDY

The end goal of our research is to investigate (a) quantifi-
cation of the effects of specialization on accuracy. (b) how
much specialization is actually necessary to have an effec-
tive view of heap usage; (c) the cost of such specialization
in terms of analysis time.

To this end, having the restriction methods based on es-
cape information in § 3.1 as a baseline, we applied an addi-
tional simple controlling mechanism that limits the number
of heap generations. For example, by imposing a generation
limit of 2 (GL-2), the heap object assigned for each alloca-
tion routine can be specialized at most 2 times. From this
perspective, per-site scheme site is equivalent to generation
limit of 1 (GL-1). and exhaustive specialization to genera-
tion limit of infinity (GL-IN). This method is simple but al-
lows straightforward interpretation and comparison among
different degrees of specialization.

The SPEC benchmarks can be roughly partitioned into
following categories: (1) those that lack any real heap ac-
tivity (e.g. 099.go and 129.compress), (2) those with heap
behavior consisting almost entirely of global allocation pools
(e.g. 130.1i and 254.gap), (3) those with non-pool heap be-
havior where specialization is bounded by the techniques
in § 3.1 (e.g. 132.ijpeg and 300.twolf), and (4) heap be-
havior where those techniques are ineffective at controlling
specialization (e.g. 008.espresso and 253.perlbmk). For a
more in-depth study, four representative benchmarks were

et GL-Infinity - -» -GL-3

o
=]
=]

132.ijpeg
Number of Nodes
5 8

N

——0GL2 - = -GLA o GL-0 \
1000
- A
@ 100
e\ /o Y\
E 1

10 100 1000

N

10 100 1000

10000 1 10000 v w @ z
oy oh 4y 5
Pointed-To-By Set Size Points-To Set Size 0 0 0o0g
(a) (b) ©
[—~—GLnfinity - - -GL3 ——GL-2 - -a- -GL1 o GL-0
& 100 10
= E \/\.
9 @
£, - \ :
= E
5! ‘E =
S]
z 1 N ¢ 1
1 10 100 10000 10000 1 10 100 1000 g s vz
Pointed-To-By Set Size Points-To Set Size © 00 o0g
@ ©) ®
» -GL3 —e—GL-2 - - -GL1 o GLo |
1000 . 1000
. A

/s @ 100
/e
E 10

008.espresso
Number of Nodes

~—
1 1L,
1 10 100 1000 10000 1 10 100 1000 S % Y=
Pointed-To-By Set Size Points-To Set Size © e e 0°
(€3] (h) @
‘ e GL-INfinity - -w -GL-3 e GL-2 - -m- -GL1 ¢ GL-0
% 1000 10
|
Z 100
> = R
w S / T A =
g 5 SRR Y
=g 10 ——\ PR g
E - \\ B =
z ' \ \ 1)
o Q@ w 4 @ Z
1 10 100 1000 10000 1 10 100 1000 3333 g
Pointed-To-By Set Size Points-To Set Size
(1)) &) U]

Figure 6: Histograms showing the effects of varying levels of heap specialization on points-to set (PT) size,
pointed-to-by set (PB) size, and analysis time on 132.ijpeg, 300.twolf, 008.espresso, and 175.vpr. Note that
GL-0 is equivalent to one heap location per allocation routine and is therefore only one or two points.

selected: 132.ijpeg (25k LOC), 300.twolf (20k LOC), and
175.vpr (17k LOC) from category (3) and 008.espresso (13k
LOC) from category (4).

51 132.ijpeg

The GL-1 histogram for 132.ijpeg shows a dramatic range
of PT and PB sizes. For example, the one object at GL-0
had a PB size of about 10000. However, at GL-1, there are
many objects with PB sizes less than 100. On the other
hand, some objects were created at 10000 that did not ben-
efit, purely increasing overall problem size. However, the
total benefit outweighed the total cost, resulting in a de-
crease in overall analysis time.

GL-2 does little to help precision and greatly increases
the number of heap locations. Looking at PB size again,
at GL-0 there was one object with a PB size of 10000, at
GL-1 a handful of objects of that size, but at GL-2 there
are almost 100 such objects. The overhead from this many
highly connected objects results in a ten fold increase in
analysis time, relative to GL-1, and as shown in Figure 6(c),
3 times as much as the GL-0 run.

Previous increases in the amount of heap specialization

performed resulted in more heap objects and much greater
analysis times. However, GL-3 shows an interesting change.
At GL-3, the precision suddenly increases with the largest
PB now under 1000 and PT under 100, with a large pro-
portion of the sets well under 100 and 10 respectively. This
increase in precision coincides with a 100 fold decrease in
analysis time. While initial increases in specialization did
little to benefit accuracy, and drastically impacted analysis
time, at GL-3, a threshold was reached where key objects
were finally distinguished. In 132.ijpeg, the bulk of these ob-
jects are those created by jinit_XXX routines which include
important function pointers that configure various indirect
calls. We found that the failure to distinguish them results
in a very inaccurate call graph. Due to the indirection to
malloc provided by cinfo->mem->alloc as well as multiple
allocation wrappers, a few layers of specialization are neces-
sary to realize the large gains.

Finally, for unrestricted heap specialization (GL-IN), there
is little further precision benefit over GL-3. The number
of heap locations continues to increase, though only to a
small degree, resulting in a corresponding increase in anal-
ysis time.

132.ijpeg shows that heap specialization can substantially
improve pointer analysis results and greatly reduce anal-
ysis time. It also shows that specialization well beyond
per-allocation site (GL-1) is necessary to realize this ben-
efit. In fact, the situation gets worse until a threshold is
reached. Finally, this example shows that too much spe-
cialization (i.e. completely unrestricted) can unnecessarily
increase the problem size and analysis time without improv-
ing the results.

5.2 300.twolf

From the perspective of heap specialization, 300.twolf and
175.vpr are fairly straightforward. 300.twolf shows little gain
until GL-2, because almost all calls to malloc and calloc
are made through safe malloc and safe_calloc wrappers.
Once two generations are allowed, all but two specialization
possibilities are handled. This is reflected by the formation
of a broad distribution and the dramatic shift to the upper
left when going from GL-1 to GL-2.

5.3 175.vpr

175.vpr follows a similar pattern. Due to use of the cus-
tom wrappers my_malloc and and my_calloc, GL-1 has little
effect. Further specializations help differentiating heap lo-
cations with GL-3 obtaining almost all of the benefits. How-
ever, looking at the sharp increase in P71 size in Figure 6(k),
it is also evident that overspecialization has begun. GL-IN
does not provide any obvious gains but, looking at both Fig-
ure 6(k) and the times in Figure 6(1), it noticeably increased
the overhead.

Overall, both 300.twolf and 175.vpr show the need for
more than GL-1. For 175.vpr, better control is needed to
avoid the overheads of blind specialization.

5.4 008.espresso

Unlike the previous two benchmarks, heap specialization
for 008.espresso can cause the analysis process to grind to a
halt. GL-1 creates some benefit over no specialization but
also shows a significant number of heap objects and a 5 fold
increase in analysis time. Any further specialization only
exacerbates the problem. At GL-2 and GL-3 the number
of heap locations grow substantially without obvious reduc-
tions in PT and PB sizes. At each increase, the analysis
time swells. In fact, an attempt at GL-Inf did not complete
for us. Figure 6(i) shows the continued, and exponential
increase in analysis time as heap specialization is increased.
The portions of the call graph leading to the allocation rou-
tines is fairly dense in 008.espresso and the number of loca-
tions increases sharply from 1, to 168, 633, and then 1328
locations. While similar in heap object quantity to 132.ijpeg
the specialization does little to help accuracy and, instead,
only adds overhead.

6. FUTURE WORK

This work has shown that there are merits to specializ-
ing beyond allocation sites. It has also shown that, unless
used selectively, heap specialization can incur wasteful over-
head, even if specialization occurs only when a heap object
is visible through parameters. For instance, the analysis of
008.espresso does not terminate when specialization is per-
formed exhaustively. There is a need for a comprehensive
mechanism to control specialization. From our perspective,
the mechanism may involve one or more of the following: (1)

analytical approximation and prediction of the cost-benefit
of specialization (2) derivation of benefit from call graph
shape information (for example, do not specialize at a fork
in the call graph, but only at merges) (3) leveraging type in-
formation (specialize at type changes). (4) late unification
of specialized nodes.

7. REFERENCES

[1] Lars O. Andersen. Program Analysis and
Specialization for the C' Programming Language. Ph.D
thesis, DIKU, Unversity of Copenhagen, 1994.

[2] Ramkrishna Chatterjee, Barbara G. Ryder, and
William A. Landi. Relevant context inference. In
Proceedings of the ACM SIGPLAN/SIGACT
Symposium on Principles of Programming Languages,
1999.

[3] Ben-Chung Cheng and Wen-mei W. Hwu. Modular
interprocedural pointer analysis using access paths:
design, implementation, and evaluation. In Proceedings
of the ACM SIGPLAN Conference on Programming
Language Design and Implementation, 2000.

[4] Jong-Deok Choi, Manish Gupta, Mauricio J. Serrano,
Vugranam C. Sreedhar, and Samuel P. Midkiff. Stack
allocation and synchronization optimizations for java
using escape analysis. ACM Transactions on
Programming Languages and Systems, 2003.

[6] Manuvir Das. Unification-based pointer analysis with
directional assignments. In Proceedings of the ACM
SIGPLAN Conference on Programming Language
Design and Implementation, 2000.

[6] Jeffrey S. Foster, Manuel Fahndrich, and Alexander
Aiken. Polymorphic versus monomorphic
flow-insensitive points-to analysis for C. In Proceedings
of the Static Analysis Symposium, 2000.

[7] Michael Hind. Pointer analysis: Haven't we solved this
problem yet? In Proceedings of the 2001 ACM
SIGPLAN-SIGSOFT Workshop on Program Analysis
for Software Tools and Engineering, 2001.

[8] Michael Hind, Michael Burke, Paul Carini, and
Jong-Deok Choi. Interprocedural pointer alias
analysis. ACM Transactions on Programming
Languages and Systems, 21(4):848-894, 1999.

[9] Chris Lattner and Vikram Adve. Data Structure
Analysis: A Fast and Scalable Context-Sensitive Heap
Analysis. Technical Report, CS Dept., University of
Illinois. 2003.

[10] Donglin Liang and Mary Jean Harrold. Efficient
computation of parameterized pointer information for
interprocedural analyses. In SAS, 2001.

[11] David J. Pearce, Paul H. J. Kelly, and Chris Hankin.
Efficient field-sensitive pointer analysis for C. In ACM
SIGPLAN-SIGSOFT Workshop on Program Analysis
for Software Tools and Engineering, 2004.

[12] Erik Ruf. Effective synchronization removal for java.
In Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation,
2000.

[13] Bjarne Steensgaard. Points-to analysis in almost linear
time. In Proceedings of the ACM SIGPLAN/SIGACT
Symposium on Principles of Programming Languages,
1996.

